IUP SID M2 2011-2012

Maitrise statistique des procédés

FEUILLE TD 2 : cartes de contrôle

1 Lumineux

Depuis un certain temps l'entreprise Luminex éprouve certaines difficultés dans la fabrication de ses lampes-éclairs du type AGI. Plusieurs caractéristiques sont mesurées, entre autres l'intensité lumineuse. Ces caractéristiques semblent rencontrer les spécifications ; toutefois on a constaté un taux élevé d'explosions de ces lampes. Le responsable de ce secteur a constaté à quelques reprises que la pression du gaz ambiant à l'intérieur de ces lampes fluctuait de façon assez marquée et était probablement une cause importante de ces explosions. Les spécifications pour la pression de ce gaz sont 3750mm ± 125 mm. On a donc décidé d'examiner de plus près le comportement de cette variable en prélevant des 4-échantillons à toutes les heures pendant deux jours consécutifs. Les pressions relevées sont le mercredi :

7h	8h	9h	10h	11h	12h	13h	14h	15h	16h
3780	3795	3859	3852	3815	3868	3888	3811	3864	3822
3807	3855	3774	3769	3798	3881	3803	3828	3845	3884
3802	3852	3714	3895	3783	3751	3805	3806	3885	3855
3805	3766	3805	3784	3804	3728	3824	3847	3822	3803

et le jeudi

7h	8h	9h	10h	11h	12h	13h	14h	15h	16h
3702	3741	3774	3760	3761	3794	3853	3808	3861	3877
3777	3727	3761	3848	3755	3743	3786	3851	3821	3788
3752	3702	3682	3876	3765	3730	3858	3796	3839	3775
3709	3734	3759	3736	3871	3777	3831	3793	3811	3840

- a) Calculer les limites de contrôle pour les cartes \bar{X} et R.
- b) Examiner l'évolution de la pression en traçant les cartes \bar{X} et R.
- c) Que peut-on conclure quant à la la stabilité du processus de production ? Peut-on noter une particularité dans la disposition des moyennes ?
- d) Est ce que le processus est quand même d'une précision acceptable?
- e) Dans l'état actuel du procédé, quelle est la proportion de défectueux par excès?
- f) Quelles mesures correctives pourrait-on envisager? On rappelle que la limite sup de contrôle pour une carte R est $D_4(n)\bar{R}$ où pour n=2 à $10,\,D_4=3.267,\,2.575,\,2.282,\,2.115,\,2.004,\,1.924,\,1.864,\,1.816,\,1.777.$

2 Process

A intervalle régulier, un agent de contrôle prélève des 4—échantillons d'un processus de fabrication. 25 échantillons consécutifs ont permis d'obtenir les résultats suivants pour la caractéristique que l'on veut contrôler :

$$\sum_{j} \bar{X}_{j} = 4000, \ \sum_{j} R_{j} = 50, \ j = 1, \dots, 25.$$

a) On suggère les valeurs suivantes pour $LCS_{\bar{X}}$:

Parmi ces valeurs, quelle est celle la plus près de la limite sup de contrôle pour la carte \bar{X} ?

b) On suggère les valeurs suivantes pour LCS_R :

Parmi ces valeurs, quelle est celle la plus près de la limite sup de contrôle pour la carte R?

3 C'est pas de la carte

On utilise des cartes \bar{X} et R pour contrôler une caractéristique. On effectue 25 échantillons de taille 5. On obtient

$$\sum_{j} \bar{X}_{j} = 233.72, \ \sum_{j} R_{j} = 54.48, \ j = 1, \dots, 25.$$

- a) En supposant que la dispersion du processus est "sous contrôle statistique", estimer l'écart-type σ de la caractéristique.
- b) Déterminer les limites de contrôle pour la carte \bar{X} .
- c) Déterminer les limites de contrôle pour la carte R.