Feuille d'exercice 2

Juqu'à la limite

1 Les grands nombres font la loi

1.1 Beber

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi de Bernoulli $\mathcal{B}(p)$ avec 0 . $Pour tout <math>n \geq 1$, on pose

$$S_n = \sum_{k=1}^n X_k$$
 et $\overline{X}_n = \frac{S_n}{n}$.

Montrer que \overline{X}_n est un estimateur sans biais de p et $\overline{X}_n \to p$ p.s. Afin d'estimer la variance $\sigma^2 = p(1-p)$, on propose d'utiliser $U_n = \overline{X}_n(1-\overline{X}_n)$. Montrer que U_n est un estimateur biaisé de σ^2 et trouver un estimateur V_n sans biais de σ^2 tel que $V_n \to \sigma^2$ p.s. Créer un code Matlab illustrant ces deux LGN sur un n-échantillon de loi de Bernoulli $\mathcal{B}(p)$, où les paramètres n et p sont affectés par l'utilisateur.

1.2 Ampoule

La durée de vie d'une ampoule électrique peut être modélisée par une variable aléatoire X prenant au hasard ses valeurs dans l'intervalle $[0, \theta]$ avec $\theta > 0$. Afin d'optimiser l'agenda d'un réparateur, on cherche à estimer θ à partir d'un n-échantillon (X_1, X_2, \dots, X_n) de même loi que X. On propose d'estimer θ par

$$\widehat{\theta}_n = \max_{1 \le k \le n} X_k$$
 ou $\widetilde{\theta}_n = 2\overline{X}_n$.

Calculer la fonction de répartition puis la densité de probabilité de $\widehat{\theta}_n$ et en déduire que $\widehat{\theta}_n \to \theta$ p.s. Montrer également que $\widetilde{\theta}_n \to \theta$ p.s. Créer un code Matlab illustrant ces deux LGN sur un n-échantillon de loi uniforme $\mathcal{U}([0,\theta])$, où les paramètres n et θ sont affectés par l'utilisateur.

1.3 Paréto

La loi de Paréto, encore appelée loi de puissance, est utilisée pour modéliser les dépassements d'un seuil. On dit que X suit une loi de Paréto de paramètres $a, \theta > 0$ si $X = \theta \exp(Y)$ avec Y de loi exponentielle $\mathcal{E}(a)$. On propose d'estimer θ , à partir d'un n-échantillon (X_1, X_2, \dots, X_n) de même loi que X, par

$$\widehat{\theta}_n = \min_{1 \le k \le n} X_k.$$

Calculer la fonction de répartition puis la densité de probabilité de X. En déduire la loi de probabilité associée à $\hat{\theta}_n$ et montrer que $\hat{\theta}_n \to \theta$ p.s. Créer un code Matlab illustrant cette LGN sur un n-échantillon de loi de Paréto $\mathcal{P}(a,\theta)$, où les paramètres n, a et θ sont affectés par l'utilisateur.

1.4 Convergence

Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires i.i.d. de loi la loi de X. Montrer que :

- a) Si $E(|X|) < \infty$, alors (X_n/n) converge p.s. vers 0. (indication : X est intégrable ssi $\sum_{n>0} P(|X| \ge an) < \infty$).
- b) Si $E(|X|) = \infty$, alors, pour tout A positif, $P(\limsup\{|X_n| \ge An\}) = 1$.
- c) Soit $S_n = \sum_{i=1}^n X_i$. Déduire de (b) que si $E(|X|) = \infty$, alors $\limsup_n |S_n/n| = +\infty$ p.s.

1.5 Gauss

Soit $(X_k)_{k>0}$ une suite de v.a. indépendantes de loi gaussienne standard $\mathcal{N}(0,1)$. On pose $S_n = \sum_{i=1}^n X_i$.

- a) Montrer que $\sqrt{2\pi}P(X_0 > a) \sim \frac{1}{a}\exp(-a^2/2)$ quand $a \to +\infty$.
- b) Montrer que S_n/\sqrt{n} suit une loi $\mathcal{N}(0,1)$ (calculer la fonction caractéristique de S_n). En déduire que si (a_n) est une suite de réels positifs telle que a_n/\sqrt{n} tende vers $+\infty$. alors S_n/a_n converge vers 0 en probabilité. Peut-on conclure pour la convergence p.s.? Montrer cependant que si $a_n = \sqrt{n} \log n$, alors S_n/a_n converge p.s. vers 0.
- c) Montrer que $\limsup_n (2\log n)^{-1/2} X_n = 1$ p.s. et $\limsup_n (2\log n)^{-1/2} |X_n| = 1$ p.s.

1.6 Moment d'ordre 4

Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires i.i.d. et centrées ($E(X_i)=0$). On suppose que $E(X_i^4)<+\infty$. On pose $S_n=\sum_{i=1}^n X_i$. Montrer que

$$P(|S_n| > n\varepsilon) \le \frac{1}{(n\varepsilon)^4} E(S_n^4).$$

Calculer $E(S_n^4)$ et en déduire que S_n/n converge p.s. vers 0.

1.7 Borel et ses frères

Montrer que si les v.a X_n sont indépendantes alors X_n converge p.s. vers 0 si et seulement si, pour tout $\epsilon > 0$, $\sum_n P(|X_n| > \epsilon) < \infty$

2 Théorème Limite Centrale.

2.1 Pour les dimanche plus vieux

Utiliser le code Matlab suivant qui permet d'illustrer le TLC sur un n-échantillon de loi Uniforme $\mathcal{U}([0,1])$.

```
\begin{split} n &= input (\text{`Entrez la taille de l'échantillon } n \text{ (par exemple 10) : ')}; \\ N &= input (\text{`Entrez le nombre de réalisations } N \text{ (par exemple 2000) : ')}; \\ d &= input (\text{`Préciser la discrétisation } d \text{ (par exemple 100) : ')}; \\ X &= rand(n,N); Z &= (sum(X) - n/2)/sqrt(n/12); \\ dz &= range(Z)/d; \text{ [Effectifs, Classes]} = hist(Z,d); \\ Abscisses &= [min(Z) - dz/2 : dz : max(Z) + dz/2]; \\ DS &= [0 \text{ Effectifs 0]}/(N*dz); bar(Abscisses, DS,'b'); hold on \\ DN &= dnorm(\text{Abscisses}); plot(Abscisses, DN,'r-'); \\ legend(\text{`Densite simulée'}, \text{`Loi Normale'}); hold off \end{split}
```

2.2 Hans

Soit $(\varepsilon_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi de Rademacher $\mathcal{R}(1/2)$. Soit $(X_n)_{n\geq 1}$ la suite définie par $X_n=n^a\varepsilon_n$ avec a>0. On pose $S_n=X_1+X_2+\cdots+X_n$. Calculer la transformée de Laplace de S_n donnée, pour tout $t\in\mathbb{R}$, par $L_n(t)=\mathbb{E}[\exp(tS_n)]$. En déduire que

$$\frac{S_n}{n^a \sqrt{n}} \longrightarrow_{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{2a+1}\right).$$

Créer un code Matlab illustrant ce TLC sur un n-échantillon de loi de Rademacher $\mathcal{R}(1/2)$, où les paramètres n et a sont affectés par l'utilisateur.

2.3 Poisson

Pour tout $x, \lambda > 0$, on pose

$$L_n(x) = \exp(-n\lambda) \sum_{k=0}^{[nx]} \frac{(n\lambda)^k}{k!}.$$

Montrer à l'aide de la loi des grands nombres et du théorème de la limite centrale que

$$\lim_{n \to \infty} L_n(x) = \begin{cases} 0 & \text{si } x < \lambda, \\ 1/2 & \text{si } x = \lambda, \\ 1 & \text{si } x > \lambda. \end{cases}$$

Vérifier cette convergence avec un code Matlab.

2.4 Pink

Soit X une v.a.r. telle que $P(X=k)=p_k, 1 \leq k \leq r, p_1+\ldots+p_r=1$. Soit (X_1,\ldots,X_n) un échantillon de X. On pose $V_i=(\mathbb{I}_{X_i=1},\ldots,\mathbb{I}_{X_i=r})$.

- a) Montrer que $S_n = V_1 + \ldots + V_n$ est le vecteur aléatoire de \mathbb{R}^r dont la k-ième composante $S_n^{(k)}$ est égale au nombre d'entiers i de [1, n] tels que $X_i = k$.
- b) Montrer que $n^{-1/2}(S_n E(S_n))$ converge en loi vers un vecteur gaussien dont on déterminera la matrice de covariance.

- c) Montrer que $Y_n = n^{-1/2}(p_1^{-1/2}(S_n^{(1)} E(S_n^{(1)})), ..., (p_r^{-1/2}(S_n^{(r)} E(S_n^{(r)}))$ converge vers un vecteur gaussien dont on déterminera la matrice de covariance Γ .
- d) Soit $(Z_1, ..., Z_r)$ une vecteur gaussien centré de matrice de covariance Γ . Montrer que $Z_1^2 + ... + Z_r^2$ suit une loi du χ^2 à r-1 degrés de libertés. En déduire que le carré de la norme euclidienne de Y_n converge en loi vers χ^2_{r-1} .

2.5 Ze Wall

Soit X_n un échantillon d'une v.a.r. de loi N(0,1). Soit $Y_n(h) = \sum_{i=1}^n \sin(hX_i)$. Montrer que $\frac{1}{\sqrt{n}}(Y_n(1),...,Y_n(k))$ converge en loi vers un vecteur gaussien centré dont on donnera la matrice de covariance.