UPS - Toulouse - Licence d'Ingénierie Mathématique Examen de Probabilités du 9 Mai 2001

La durée de l'épreuve est 2h-Pas de document autorisé- Calculatrices UPS autorisées.

1 Vecteur gaussien

Soit X_1 et X_2 deux variables aléatoires indépendantes toutes les deux de loi normale centrée réduite. On pose $X^T = (X_1 \ X_2)$. Soit $\theta \in]0, 2\pi]$ on pose

$$A(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

et $Y(\theta) = A(\theta)X$.

- 1) Montrer que, pour $\theta \in]0, 2\pi]$, $Y(\theta)$ est un vecteur gaussien. Préciser sa moyenne et sa matrice de covariance.
- 2) Si u est un vecteur de \mathbb{R}^2 , ||u|| désigne sa norme euclidienne. Montrer que, pour $\theta \in]0, 2\pi]$, $||Y(\theta)||^2$ suit une loi du Khi2.
- 3) Quelle est la loi de la variable aléatoire

$$Z = \frac{1}{2} \left[(X_1 + X_2)^2 + (X_1 - X_2)^2 \right]?$$

2 Chaîne de Markov

Soit (X_n) la chaîne de Markov sur $\{1,2,3\}$ de matrice de transition :

$$\Pi = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

- 1) La chaîne est-elle irréductible?
- 2) Déterminer la probabilité invariante.
- 3) Que vaut la limite, quand n tend vers l'infini, de la matrice Π^n ?
- 4) On pose

$$Z_n = \frac{1}{n} \sum_{j=1}^n X_j^2.$$

Montrer que la suite (Z_n) converge, presque sûrement, vers une limite à déterminer.

3 Somme arrétée

Soit (θ_n) une suite de réels strictement positive qui décroît vers 0. On considère une variable aléatoire N_n de loi géométrique translatée de paramètre $1 - \theta_n$:

$$P(N_n = k) = \theta_n (1 - \theta_n)^{k-1}, \ (k \in \mathbb{N}^*).$$

Soit $(X_n)_{n\geq 1}$ une suite de variables i.i.d. indépendante de la variable N_n . On notera φ_X la fonction caractéristique de X_1 . On pose

$$S_n = \theta_n \sum_{j=1}^{N_n} X_j.$$

- 1) Calculer la fonction génératrice de la variable N_n .
- 2) Soit ψ une fonction borélienne bornée sur \mathbb{R} . Montrer que

$$E[\psi(S_n)] = E\left[\sum_{k=1}^{\infty} \mathbb{I}_{\{N_n = k\}} \psi(S_n)\right] = \sum_{k=1}^{\infty} E\left[\psi\left(\theta_n \sum_{j=1}^k X_j\right)\right] P(N_n = k).$$

3) Soit φ_{S_n} la fonction caractéristique de S_n . En utilisant les questions 1) et 2) montrer que, pour $t \in \mathbb{R}$,

$$\varphi_{S_n}(t) = \frac{\theta_n \varphi_X(t\theta_n)}{1 - (1 - \theta_n)\varphi_X(t\theta_n)}.$$

- 4) On suppose que X_1 suit la loi exponentielle de paramètre $\lambda > 0$. C'est-à-dire que sa loi a pour densité $\lambda \exp(-\lambda x) \mathbb{1}_{\mathbb{R}^+}(x)$. Calculer la fonction φ_{S_n} et en déduire que S_n suit aussi la loi exponentielle de paramètre λ .
- 5) On ne suppose plus que X_1 suit la loi exponentielle, mais l'on suppose que X_1 est intégrable d'espérance m > 0. Montrer que au voisinage de 0 on a

$$\varphi_X(t) = 1 + imt + o(t).$$

Montrer que la fonction φ_{S_n} converge, quand n tend vers l'infini, vers une limite à préciser. En déduire que S_n converge en loi vers la loi exponentielle de paramètre 1/m.