DEA de Mathématiques Appliquées Examen de Statistique Asymptotique 2000-2001

Epreuve du 2 Février 2001

Les deux exercices et le problème sont tous indépendants. Tous les documents sont autorisés. La durée de l'épreuve est 4 heures.

1 Propriétés L.A.N. d'un modèle exponentiel

Soit (x_i) une suite de points distincts de [0,1]. On suppose que la mesure empirique associée :

$$\nu_n(dx) = \frac{1}{n} \sum_{j=1}^n \delta_{x_j}(dx),$$

vérifie

$$\sqrt{n}\left(\nu_n(g) - \int_0^1 g(x)dx\right) = o(1) \quad (g \in C^1([0,1]).$$

Soit F une mesure de probabilité sur $\mathbb R$ dont la transformée de Laplace :

$$\exp[\psi(z)] = \int_{\mathbb{R}} e^{zy} F(dy) \ (z \in \mathbb{R}),$$

est définie sur \mathbb{R} . Soit Y_1, \ldots, Y_n des variables aléatoires indépendantes. On suppose que pour $i \in \mathbb{N}$, Y_i a pour loi

$$\exp[\tau^* f(x_i)y - \psi(\tau^* f[x_i])]F(dy).$$

Ici τ^* est un réel fixé et f est une fonction donnée continûment dérivable sur [0,1]. On note $P_{\tau^*}^n$ la loi de (Y_1,\ldots,Y_n) .

- a) Montrer que ν_n converge en loi vers la probabilité uniforme sur [0,1].
- b) Soit $g \in C^1([0,1])$ on pose,

$$Z_n(g) = \frac{1}{n} \sum_{j=1}^n g(x_j) Y_j.$$

Calculer l'espérance et la variance de $Z_n(g)$. En déduire que cette suite de variables aléatoires converge en probabilité (sous P_{τ}^n), vers une limite $J(g, \tau^*)$.

- c) Montrer que $\sqrt{n}[\mathbb{E}(Z_n[g]) J(g, \tau^*)]$ tend vers 0 quand n tend vers l'infini. Calculer la transformée de Laplace de $\sqrt{n}[Z_n[g] \mathbb{E}(Z_n[g])]$ et montrer qu'elle converge. En déduire que $\sqrt{n}[Z_n[g] J(g, \tau^*)]$ converge en distribution vers une loi gaussienne centrée de variance $\Delta^2(g, \tau^*)$ à préciser.
- d) Pour $h \in \mathbb{R}$, écrire le rapport de vraisemblance $\frac{dP_{\tau^*+h}^n}{dP_{\tau^*}^n}$. Développer ce rapport de vraisemblance et montrer que le modèle est L.A.N. On precisera soigneusement la vitesse et la variance limite associées au modèle.

e) On suppose que F est la loi de Poisson de paramètre 1 et que f(x) = x. On pose pour $z \in \mathbb{R}^*$

$$\Phi(z) = \frac{e^z - 1}{z},$$

et $\Phi(0) = 1$. Montrer que Φ' est une bijection de \mathbb{R} dans \mathbb{R}_*^+ . On pose pour $n \ge 1$ $\widehat{\tau}_n = \Phi'^{-1}(Z_n(f))$. Montrer que $\widehat{\tau}_n$ est un estimateur faiblement consistant de τ^* . Etudier sa vitesse de convergence en loi.

f) Peut-on penser que $\hat{\tau}_n$ est un estimateur optimal (dans un sens à préciser), de τ^* ?

2 Lois de Bernoulli

On considère X_1, X_2, \ldots, X_n des variables aléatoires i.i.d. de loi de Bernoulli de paramètre θ^* inconnu, $\theta^* \in]0,1[$. Comme on le sait, la moyenne empirique \overline{X}_n , de cet échantillon est un estimateur fortement consistant de θ^* . Dans la suite, cet estimateur pourra être utiliser, si nécessaire, comme estimateur préliminaire. Une autre expérience indépendante fournit les observations Y_1, Y_2, \ldots, Y_n , variables aléatoires i.i.d. de loi de Bernoulli de paramètre θ^{*2}

- 1) Soit \overline{Y}_n la moyenne empirique de l'échantillon Y_1,Y_2,\ldots,Y_n . Soit $p\in]0,1[$, On propose pour estimer θ^* l'estimateur empirique $\widehat{\theta}_n(p)=p\overline{X}_n+(1-p)\sqrt{\overline{Y}_n}$. Montrer que cet estimateur est fortement consistant et asymptotiquement gaussien. Préciser sa variance limite $\Delta^2(p,\theta^*)$. Suggérer une méthode de choix du paramètre p qui utilise la fonction $\Delta^2(p,\theta^*)$. A quelle valeur de \widehat{p}_n de p conduit cette méthode? Etudier les propriétés asymptotiques de $\widehat{\theta}_n(\widehat{p}_n)$. Ne pas caculer la variance limite. Indiquer seulement le cheminement pour obtenir cette variance.
- 2) En utilisant le développement :

$$\sqrt{1-u} = 1 - \frac{u}{2} - \frac{u^2}{8} + o(u^2), \ |u| \le 1,$$

montrer que l'on peut écrire

$$n(\sqrt{\overline{Y}_n} - \theta^*) = C_n(\theta^*) + D_n(\theta^*) + o_P(1),$$

avec C_n une variable centrée et $\mathbb{E}_{\theta^*}(D_n(\theta^*))$ qui ne dépend plus de n. Préciser C_n et D_n . Dans le critère de choix du paramètre p, on veut prendre en compte le biais. Pour cela, on pose

$$b(p, \theta^*) = (1 - p) \mathbb{E}_{\theta^*} |D_n(\theta^*)|.$$

On propose de choisir p qui minimise $b(p, \theta^*) + \Delta^2(p, \theta^*)$. Commenter la méthode puis construire l'estimateur $\tilde{\theta}_n$ associé.

- 3) Montrer que le modèle associé aux observations (X_i, Y_i) , $i = 1 \dots n$ est L.A.N. On précisera la vitesse et la variance asymptotique du modèle.
- 4) Déterminer $\hat{\theta}_n$ estimateur du maximum de vraisemblance de θ^* . Quel estimateur choisir parmi $\hat{\theta}_n(\hat{p}_n)$, $\tilde{\theta}_n$ et $\hat{\theta}_n$?

3 Problème : Chaîne de Markov à 2 états

Rappelons pour commencer quelques définitions et propriétés concernant les chaînes de Markov à valeurs dans un ensemble fini. Soit p un entier naturel strictement positif. Soit E_p l'ensemble des p premiers entiers naturels non nuls. Une suite de variables aléatoires $Y = (Y_n)_{n \in \mathbb{N}}$ à valeurs dans E_p est une chaîne de Markov de transition $\Pi = (\pi_{i,j})_{i,j \in E_p}$ si pour tout $n \in \mathbb{N}$ on a

$$\mathbb{P}(Y_{n+1} = j | Y_n = i) = \pi_{i,j}, \quad (i, j \in E_p). \tag{1}$$

 Π est une matrice à coefficients positifs et la somme des éléments d'une de ses lignes vaut toujours 1 (matrice stochastique). La loi initiale de la chaîne est le vecteur de probabilité $\nu^T = (\nu_1, \dots, \nu_p)$ avec

$$\mathbb{P}(Y_0 = i) = \nu_i, \quad (i \in E_p).$$

Soit Y un tel processus. On dit que Y est une chaîne irréductible si pour tout $i, j \in E_p$ il existe $n \in \mathbb{N}^*$ avec

$$\mathbb{P}(Y_n = j | Y_0 = i) > 0.$$

Lorsque la chaîne Y est irréductible on a les résultats suivants quelle que soit la loi initiale :

i) Existence et unicité d'une probabilité invariante

Il existe un unique vecteur de probabilité μ qui vérifie $\mu^T\Pi = \mu^T$. La suite Y converge en loi vers μ .

ii) Théorème ergodique

Soit P_n la probabilité empirique construite à partir de Y_0, \ldots, Y_{n-1} et f une application de E_p dans \mathbb{R} . La suite $(P_n(f))$ converge presque sûrement vers $\mathbb{E}_{\mu}(f) = \sum_{j=1}^p \mu_j f(j)$.

iii) Théorème central limite

Soit f une application de E_p dans \mathbb{R} On pose

$$\Pi f(x) = \mathbb{E}(f(Y_1)|Y_0 = x) \quad (x \in E_p).$$

On suppose qu'il exite une application \tilde{f} de E_p dans \mathbb{R} solution de l'équation suivante (équation de Poisson) :

$$f(x) - \mathbb{E}_{\mu}(f) = \tilde{f}(x) - \Pi \tilde{f}(x)$$
 (pour tout $x \in E_p$).

Dans ce cas, avec les mêmes notations que dans ii), $\sqrt{n}(P_n(f) - \mathbb{E}_{\mu}(f))$ converge en loi vers une loi normale centrée de variance

$$\sigma^2(f) = \mathbb{E}_{\mu} \left[\Pi \tilde{f}^2 \right] - \mathbb{E}_{\mu} \left[(\Pi \tilde{f})^2 \right].$$

Soit ϕ une fonction dérivable sur \mathbb{R} , de dérivée strictement positive sur \mathbb{R} . On suppose que

$$\lim_{\theta \to -\infty} \phi(\theta) = 0 \quad \text{ et } \quad \lim_{\theta \to +\infty} \phi(\theta) = 1.$$

Dans ce problème, on considère la famille paramétrique de chaîne de Markov sur E_2 de transition

$$\Pi(\theta) = \begin{pmatrix} \frac{1 - \phi(\theta)}{2} & \frac{1 + \phi(\theta)}{2} \\ \phi(\theta) & 1 - \phi(\theta) \end{pmatrix}, \quad (\theta \in \mathbb{R}).$$
(2)

Soit X_0 une variable aléatoire de loi de Bernoulli $\mathcal{B}(1/2)$. Pour $\theta \in \mathbb{R}$, soit \mathbb{P}_{θ} la loi (sur $E_2^{\mathbb{N}}$) de la chaîne de Markov $X = (X_n)_{n \in \mathbb{N}}$ de transition $\Pi(\theta)$. Lorsque la chaîne sera considérée dans un cadre statistique, on notera θ^* la *vraie* valeur du paramètre θ .

3.1 Quelques Généralités

Soit $\theta \in \mathbb{R}$ fixé.

- a) X est-elle une chaîne de Markov irréductible? Déterminer sa probabilité invariante $\mu(\theta)$.
- b) Montrer que pour $n \in \mathbb{N}$ on a

$$\Pi^{n}(\theta) = \frac{2}{1+3\phi(\theta)} \left(\begin{pmatrix} \phi(\theta) & \frac{1+\phi(\theta)}{2} \\ \phi(\theta) & \frac{1+\phi(\theta)}{2} \end{pmatrix} - \left(\frac{1-3\phi(\theta)}{2}\right)^{n} \begin{pmatrix} -\frac{1+\phi(\theta)}{2} & \frac{1+\phi(\theta)}{2} \\ \phi(\theta) & -\phi(\theta) \end{pmatrix} \right).$$

c) On pose $m(\theta) = \frac{2+4\phi(\theta)}{1+3\phi(\theta)}$. Soit $(Z_n)_{n\in\mathbb{N}}$ la chaîne de Markov de loi initiale $\mu(\theta)$ et de transition $\Pi(\theta)$. Pour $n\in\mathbb{N}$, on pose $\tilde{Z}_n=Z_n-m(\theta)$. Montrer que le processus $(\tilde{Z}_n)_{n\in\mathbb{N}}$ est centré et strictement stationnaire.

3.2 Estimation empirique de θ^*

Pour $n \geq 0$, on oberve X_0, \ldots, X_n . On se propose d'étudier le problème statistique d'estimation de θ^* . On pose pour $\theta \in \mathbb{R}$, $\delta = \phi(\theta)$ (et $\delta^* = \phi(\theta^*)$).

a) Montrer que la moyenne empirique \overline{X}_n construite à partir de X_0, \dots, X_n converge presque sûrement (sous θ^*), vers $\frac{2+4\delta^*}{1+3\delta^*}$. Quelle est la limite en loi de

$$\sqrt{n}\left(\overline{X}_n - \frac{2+4\delta^*}{1+3\delta^*}\right)?$$

- b) Construire à partir de la statistique \overline{X}_n un estimateur consistant asymptotiquement normal de δ^* .
- c) Bâtir un intervalle de confiance de risque $\alpha \in]0,1[$ pour $\theta^*.$

3.3 Estimateurs du maximum de vraisemblance

a) On considère le processus $(W_n)_{n\in\mathbb{N}^*}$ à valeurs dans E_4 défini par

$$W_n = \begin{cases} 1 & \text{si } (X_{n-1}, X_n) = (0, 0) \\ 2 & \text{si } (X_{n-1}, X_n) = (0, 1) \\ 3 & \text{si } (X_{n-1}, X_n) = (1, 0) \\ 4 & \text{si } (X_{n-1}, X_n) = (1, 1) \end{cases}$$

Montrer que $(W_n)_{n\in\mathbb{N}^*}$ est une chaîne de Markov irréductible et donner sa matrice de transition $\Lambda(\theta^*)$.

- b) Soit pour $n \geq 1$ et $\theta \in \mathbb{R}$, $L_n(\theta)$ la fonction de vraisemblance en θ associée aux observations X_0, \ldots, X_n . Exprimer $L_n(\theta)$ comme une fonction du processus $(W_n)_{n \in \mathbb{N}^*}$ et du paramètre δ . Déterminer l'estimateur du maximum de vraisemblance de δ^* puis celui de θ^* .
- c) Montrer que l'estimateur du maximum de vraisemblance de θ^* est fortement consistant. Etudier sa vitesse de convergence en loi.