Feuille d'exercices 5

- 1) Déterminer la fonction caractéristique de la loi de densité exponentielle double de densité $f(x) = \frac{1}{2}e^{-|x|}$. En déduire la fonction caractéristique de la loi de Cauchy (de paramètre 1), puis la somme de n Cauchy indépendantes. Commentaires?
- 2) Soit (X_n) des variables i.i.d. de loi de Bernoulli à valeurs dans $\{-1,1\}$ et de paramètre 1/2. Soit $Z_N = \sum_{n=1}^N 2^{-n} X_n$. Montrer que Z_N converge en loi, préciser la loi limite. En déduire $\prod_{n=1}^{\infty} \cos\left(\frac{x}{2^n}\right)$.
- 3) Calculer $\lim_{n \to \infty} e^{-n} \sum_{j=0}^{n} \frac{n^j}{j!}$.
- 4) Soit (X_n) des v.a. i.i.d. exponentielle de paramètre 1. Rappeler la loi de $S_n = \sum_{j=1}^n X_j$. Quelle est la fonction caractéristique de la loi de S_n . A l'aide de la convergence de $\frac{S_n n}{\sqrt{n}}$ retrouver la formule de Stirling.
- 5) Soit (X_n) des v.a. i.i.d. centrées de variance 1. On pose $S_n = X_1 + \cdots + X_n$. Montrer que $\frac{S_1 + \cdots + S_n}{\sqrt{n^3}}$ converge en loi vers une limite que l'on précisera.
- 6) Dans un programme de calcul, l'opérateur décide d'utiliser J chiffres significatifs après la virgule et d'arrondir tous les résultats d'opérations à cette configuration (donc à 1/2 10^{-J} près). On suppose qu'il effectue 10^6 opérations élémentaires successives, que les erreurs commises pour chacune sont indépendantes, de loi uniforme sur $[-1/2 \ 10^{-J}, 1/2 \ 10^{-J}]$ et que l'erreur sur le résultat final est la somme des erreurs commises sur chaque opération. Calculer la probabilité pour que l'erreur finale soit inférieure ou égale (en valeur absolue) à $1/2 \ 10^{-J+3}$.
- Soient X une variable aléatoire de densité

$$f(x) = \frac{1}{2x^2} \, 1_{[|x| \ge 1]}$$

et φ sa fonction caractéristique.

- Vérifier que φ est une fonction paire et montrer que

$$\lim_{t \to 0+} \frac{1 - \varphi(t)}{t} = \int_0^{+\infty} \frac{1 - \cos x}{x^2} dx = \frac{\pi}{2}.$$

- Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes ayant la même loi que X et soit, pour $n\geq 1$, $S_n=X_1+\cdots+X_n$. Exprimer en fonction de φ les fonctions caractéristiques φ_n des variables aléatoires S_n/n . En déduire que la suite (S_n/n) converge en loi et préciser la loi limite. Expliquer pourquoi la loi faible des grands nombres ne s'applique pas.