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Chapitre 1

IntroductionIn this �rst 
hapter, I brie
y present several works 
onsidered after my PhD defense 6 yearsago. All these works are emphasized with respe
t to the literature. Among this themes, I willjust 
ite some of them and fo
us on some other 
ontributions with more details in 
hapters 2,3 and 4. I will also provide few perspe
tives for further works.
1.1 High dimensional statistical problemsThe study of large dimensional estimation problems is one of the main 
hallenging questionsof nowadays statisti
al works. Let be given labelled observations ppX1, Y1, . . . , pXn, Ynqq, one im-portant task wishes to predi
t these labels given a new observation Xnew without the knowledgeof the joint model pX, Yq. When X has a low dimensional stru
ture, this question is now so-mewhat standard although in the opposite 
ase of large dimensional setting, this task is mu
hmore diÆ
ult. This framework arises in a large number of pra
ti
al problems su
h as signal andimage pro
essing for instan
e. They all present the similarity to fa
e the 
urse of dimensionalitywhi
h aims to learn the nature of an obje
t whi
h is des
ribed with a large number p of featureswhen only few samples n with n    p are available. I brie
y list the main ideas of methodshistori
ally proposed to over
ome the large dimensional diÆ
ulty.
1.1.1 State of the artThis problemati
 has re
eived a great interest during the twenty last years when one 
onsiderthat Y is a real random variable that must be predi
ted using a linear 
ombination of featuresof X. Several approa
hes have been developed to answer the question of this predi
tion when
p is larger than n. Ea
h of them usually aims to build an estimator f̂n,p that minimises a lossfun
tion L whi
h is generally quadrati


Lpfq � ErfpXq � Ys2,where the former expe
tation is 
omputed with respe
t to the unknown joint law of pX, Yq.
Penalized Methods The �rst histori
al penalized methods enable to pro
eed the estimationof f without any real feature sele
tion step and only aim to kill the varian
e of estimation whenone fa
es a too large dimensional dataset. This is for instan
e the 
ase when f is estimated bya linear model fpXq � tθX penalized by the L2-norm of the regressor θ. These methods hen
esolve the minimization of

Ln,p � }tθX � Y}2n � pnpθq (1.1)1



where }}n stands for the empiri
al norm. When pnpθq � λn}θ}22, we obtain the Ridge re-gression introdu
ed in [Hoerl and Kennard, 1975℄ that uses a Tikhonov approa
h (see e.g.[Tikhonov, 1943℄) and aims to regularize an ill-posed inverse problem, (whi
h is naturally the
ase when p ¡¡ n 
onsidering a linear model). This method has enabled to build more sophis-ti
ated L2-Hilbertian estimations using smoothing splines in Reprodu
ing Kernel Hilbert Spa
esfor instan
e des
ribed in [Wahba, 1990℄ for instan
e. The 
alibration of the penalization term isusually an important step and introdu
es a bias for small sample size but this bias disappearswhen n growths to �8, this is the 
ase when using the AIC or BIC 
riteria [Akaike, 1974℄ orthe so-
alled model sele
tion approa
h of [Barron et al., 1999℄.
Algorithmic methods It is also natural to refer to methods whi
h limit the over�tting e�e
tin large dimensional setting and are usually inspired from algorithmi
 ideas su
h as the CART orRandom Forests methods (see [Breiman et al., 1984℄ and [Breiman, 2001, Amit and Geman, 1997℄).In the CART method, the stopping 
riterion a
ts as a penalized term in regression or 
lassi�
a-tion to limit the number of leaves built by the algorithm and allows to avoid some over�tting.With algorithms su
h as Random Forests, it is the randomisation and averaging of un
orre-lated predi
tors whi
h enable to remove over�tting and [Biau et al., 2008℄ prove that one 
anobtain 
onsistent pro
edures using su
h approa
hes. This idea of agregating estimators has alsobeen exploited su

essfully in re
ent works of Tsybakov when fa
ing 
lassi�
ation tasks ( see[Tsybakov, 2004℄ for instan
e).
Multi-resolution analysis When f is des
ribed with a 
ountable family of 
oeÆ
ients, somemethods deal with the non parametri
 estimation of f assuming that the target belongs to afun
tional spa
e that des
ribes some regularity properties (in general, some Sobolev ir Besovspa
es are in for
e) and use a multi-resolution analysis of the data. The pioneering works of[Donoho et al., 1995, Donoho and Johnstone, 1995℄ des
ribe some thresholding methods in wa-velet basis whi
h enable to limit the number of wavelet 
oeÆ
ients and keep some statisti
alre
onstru
tion ability that 
an be adaptive to the nature of the underlying fun
tional spa
ewhere f lives. Moreover, it is possible to 
onvert these pro
edures into minimax ones with res-pe
t to the quadrati
 loss (see [Donoho and Johnstone, 1998℄). In these approa
hes, it is thusthe assumption on the fun
tional spa
e whi
h permits to solve statisti
ally the estimation of f.
Sparse methods During the last ten years, a large amount of works des
ribe the problemof estimating f with linear predi
tors 
omputed on observations X using new ideas introdu-
ed by Non-Negative Garotte method of [Breiman, 1995℄. This method has su

essively in-pired the Lasso approa
h [Efron et al., 2004℄ for whi
h the main idea is to use the geometri
stru
ture of the ℓ1 ball of dimension p. Indeed, the minimization of (1.1) when pnpθq9}θ}ℓ1will yield sparse solutions and obtain naturally feature sele
tion that enable to 
ontrol theover�tting of the estimation. Moreover, algorithms are available to �nd su
h minimizers usingsome 
onvex analysis tool. Several works use these ideas and one may mention among themthe Elasti
 Net [Zou and Hastie, 2005℄ whi
h uses a penalization term as a sum of ℓ1 and ℓ2norm, the Dantzig sele
tor [Candes and Tao, 2007℄ and a lot of generalization of the Lasso ([van de Geer and B�uhlmann, 2009, van de Geer, 2008, Bi
kel et al., 2009℄ whi
h is a 
learly nonexhaustive list). The 
onsisten
y of su
h pro
edures is asserted provided that su
h hypothesisare made on the stru
ture of f. Generally, f is assumed to be s-sparse and even if this assump-tion is 
learly not equivalent to the fun
tional spa
e hypothesis of the former paragraph, it is astru
tural assumption on the signal to be re
overed. Furthermore, the sample size may not bearbitrarily small sin
e in general one may assume that log p � n, and one may draw a parallel2



with the thresholding methods of the former paragraph that usually keep a number of wavelet
oeÆ
ients proportional to Cn.
Greedy algorithms At last, some algorithms [DeVore and Temlyakov, 1996℄ are originatedfrom the approximation theory and are known as Greedy Algorithms. These iterative me-thods in the deterministi
 
ase use a general di
tionary and build a sequen
e of approxi-mation of f whi
h are more and more a

urate. In the statisti
al 
ommunity, these algo-rithms are 
alled Boosting although the approximation theory 
ommunity refers to Mat
hingPursuit [Davis et al., 1994℄. Again, a large amount of re
ent works exist ([Binev et al., 2005,Donoho et al., 2006, Donoho et al., 2007℄) and des
ribe some ora
le properties of best approxi-mation using Lebesgue-type inequalities. The prin
ipal idea of these methods is to re
ursivelybuild estimations of the residual between f and its approximation using the best predi
tor in thedi
tionnary. This idea has been used in a noisy setting in the works of [B�uhlmann and Yu, 2003℄and su
h methods asso
iated to a good stopping 
riterion enable to �nd a sparse representationof f, even if the di
tionary possesses some 
orrelated predi
tors. At last, one should remarkthat indeed su
h method has been also used in the learning theory for 
lassi�
ation tasks (see[Freund and S
hapire, 1997℄ for instan
e) where the original idea was to sequentially build esti-mations whi
h fo
us on the hardest samples to be predi
ted, and then average all the estimationsusing a suitable stopping 
riterion.
1.1.2 PhD works on feature selection for supervised classificationIn my thesis[1℄ supervised by Laurent Younes, I worked on the problem of feature sele
tionfor supervised 
lassi�
ation in a large dimensional setting. Let be given a n sample pX1, . . . , Xnqdes
ribed by a large number p of features, we aim to sele
t few meaningful ones. The goal istwofold : improve the ability of 
lassi�
ation of the subset of features 
omparing to the wholeset of variables and also understand the meaning of important features. These two obje
tivesare important, one for a natural algorithmi
 eÆ
ien
y and the se
ond for the original framework(in geneti
 for instan
e, it may be important to understand what are the stru
turing genes of abiologi
al behaviour).Many works 
on
ern the problem of feature sele
tion for regression task but surprisingly,there exists s
ar
e re
exion about the same goal dedi
ated to a 
lassi�
ation problem. Usually,one 
an split the existing algorithms in two 
lasses : the �rst are "�lter methods" and �̂s a pre-pro
essing step before the 
lassi�
ation. They thus work with any method of dis
rimination andare generally using some heuristi
 
riterion to fo
us on a subset of features. One should 
onsult[Guyon et al., 2006℄ for a large list of su
h �lter approa
hes, most of them are not supported byany theoreti
al justi�
ation sin
e they are de
orrelated to any 
lassi�
ation algorithm and fewresults are available 
on
erning their 
onsisten
y. The se
ond approa
hes are wrappers ones andare based on an optimisation step dedi
ated to a 
lassi�
ation algorithm A. One of the mainavailable algorithm is the so-
alled Re
ursive Feature Elimination [Guyon et al., 2002℄ whi
hsequentially delete features with poor in
uen
e of the margin of 
lassi�
ation of a SVM using aba
kward strategy. One should also 
onsider some re
ent advan
es based on a ℓ1 penalized SVM[Bi et al., 2003, Zhu et al., 2003℄ exploiting some Lasso ideas.The method developed in my thesis belongs to the se
ond family of wrapper methods but isslightly di�erent from a method su
h as the RFE one sin
e the method works with any 
lassi�-
ation algorithm A. More pre
isely, if one denote D the di
tionnary of features available on the nsample X1, . . . Xn labelled by pY1, . . . Ynq, and if A is the supervised algorithm, we aim to mimi
 a! best subset " approa
h to �nd a good ω � D. Sin
e numbering all the subsets is numeri
ally3



untra
table, we have worked on designing a sto
hasti
 algorithm whi
h explore not exhausti-vely some subsets of D. Two theoreti
al papers have been written on this subje
t. The �rst [6℄des
ribes the algorithm and provide a 
omplete numeri
al study in signal pro
essing when Ais a Support Ve
tor Ma
hine 
lassi�er. The algorithm works as a meta-method and aims toweight features of D in order to minimize a 
lassi�
ation 
riterion. The method is sequentialand some ideas 
an be 
ompared to the Boosting methods (see [B�uhlmann and Yu, 2003℄ and[Freund and S
hapire, 1997℄) sin
e the algorithm de
rease the weights of some variables propor-tionately to the 
lassi�
ation error observed using a sampled subset of variables. Thus, it 
anbe 
onsidered as a boosting algorithm on the feature spa
e.The se
ond work [5℄ generalizes the method and proposes to build some tree-stru
turedfeatures with binary 
omposition of elements in D. He is largely inspired from the RandomForest algorithm [Breiman, 2001℄ and propose a sto
hasti
 reversible exploration of forests ofbinary trees.In this memory, I have 
hosen to shortly des
ribe the original feature sele
tion model (Op-timal Feature Weighting) as well as the sto
hasti
 algorithm developed to solve this model inparagraph 2.1 sin
e several developments have been motivated from this �rst work.
1.1.3 Biostatistic applicationsI have been naturally lead to work on real-data mi
roarrays 
lassi�
ation problems after Iarrived in Toulouse sin
e some resear
hers of the Institut National de Re
her
he Agronomiquewere looking for supervised 
lassi�
ation method whi
h also yield dimensionality redu
tion.With Kim-Anh Lê Cao, we aimed to extend the simulation on the OFW developed in my PhDusing di�erent algorithms A su
h as CART [2℄. We then 
onsider a multi-
lass framework [3℄ sin
eit was the natural framework for the INRA-datasets and 
onsider as well the numeri
al a

ura
yas the stability results and the biologi
al interpretations of the feature sele
tion method. Evenif from a mathemati
al point of view, this 
ollaboration was restri
ted to numeri
al simulations,I 
onsider it fruitful for several reasons des
ribed in paragraphs 1.2.3, 1.3 and 1.4.
1.2 Large dimensional estimation problemsI brie
y present my works after my PhD on statisti
al estimation in a large dimensionalsetting. All these works are 
on
erned with the inferen
e of some rare events 
omparing to thenumber of available experiments in the database. The several approa
hes are all algorithmi
 butsome of them provide also some theoreti
al developments (paragraphs 1.2.1 and 1.2.3), anotherone use an extended modelling step (paragraph 1.2.2) and �nally the last one is an industrial
ollaboration with some sto
hasti
 methods of rare events simulation (paragraph 1.2.4).
1.2.1 Sequential design of experimentsThis 
ollaboration with Serge Cohen and S�ebastie D�ejean deals with the framework of designof experiments for 
omplex 
omputer models. We 
an des
ribe the problem as follows : we aim toapproa
h a fun
tion f with as few measuring points as possible, to 
ompute an estimation f̂ sin
ein this framework, running the 
ode at a design point is generally 
ostly. When the estimationis linear, there exists some almost expli
it 
riterion that quantify the supposed eÆ
ien
y ofthe design to 
ompute f̂ and these 
riterion are usually based on the varian
e of f̂. One 
ouldrefer to pioneering works of [Kiefer and Wolfowitz, 1959, Fedorov, 1972℄ whi
h provide severaloptimality 
riterion for linear models. In our work, we de
ided to build sequential estimators of f4



and we 
hoosed to �nd the k�1-th design point xk�1 after the 
omputation of a noisy realisationof fpxkq). Hen
e, this sequential approa
h is similar to the method used in [Pronzato, 2000℄ butwe leave open the possibility to 
ontrol the bias of the model using a minimax approa
h alreadygiven in [Oyet and Wiens, 2000℄. Moreover, we propose to use a 
exible family of features whi
hrandomly vary all along the iteration of the algorithms following a sto
hasti
 algorithm. Itintrodu
es an alternative approa
h to the work of [Biswas and Chaudhuri, 2002℄ whi
h 
onsidersa ba
kward testing strategy to obtain a model sele
tion algorithm.Using a similar strategy of tree exploration des
ribed in [5℄, we have developed in [4℄ a newsto
hasti
 algorithm on a multi-resolution analysis to re
ursively �x new optimal design pointsfor the estimation of f. Moreover, we have proved a lo
alisation theorem of optimal designs fora parti
ular 
ase of multi-resolution S
hauder family whi
h yielded a very fast sequential algo-rithm. This theoreti
al result is not obvious sin
e there is from the wavelet nature of the family,no T -systems property is available (see [Dette and Studden, 1997℄) for su
h multi-resolutionfamily. This work is detailed in paragraph refhd :stat
omp.
1.2.2 Community graph recoveringWith Nathalie Villa, we developed in [7℄ a graph-
lustering algorithm in order to obtainan unsupervised 
lassi�
ation method for verti
es in a 
ommunity graph. Usually, a graph Gis given through the de�nition of its adja
en
y matrix W whi
h des
ribes the presen
e of oneoriented relation between two verti
es. Hen
e, 
lustering methods will generally depend only onthe stru
ture of W (see for instan
e the spe
tral analysis of [Newman, 2006℄). However, somegeneral methods may not be adapter to the natural (or expe
ted) partition stru
ture of thegraph. Our idea is to exploit some a priori empiri
al remarks of the 
ommunity graph stru
turesto build a 
orre
t model. Community graphs are known to be stru
tured around 
lusters wherethere exists a large number of links between ea
h vertex of the same 
luster and oppositely, thepresen
e of one link between two verti
es of two di�erent 
lusters is very unlikely.Let be given a non oriented symmetri
 adja
en
y matrix W with a vanishing diagonal, thedegree of ea
h node i is the number of verti
es related to i. More pre
isely, Wi,j �Wj,i � 1 if iand j are linked although Wi,j � Wj,i � 0 in the opposite situation. Of 
ourse, the degree of isatis�es di � °

Wi,j. For any 
lassi�
ation C1, . . . Ck of the set of verti
es, the Q-modularity isde�ned through
QpC1, . . . , Ckq � ķ

ℓ�1 ¸
i,jPCℓ

�
Wi,j � didj

2m

�
.We remark that a 
lustering C1, . . . Ck posses a large Q-modularity if one has a large numberof intra-
luster links. For numeri
al reasons, the exhaustive sear
h of best partitions is intra
tablefor graphs with a large size. In [7℄, we designed a sto
hasti
 simulated annealing in order tomaximise Q. In this work, we also developed a visual representation algorithm to show theobtained partition after the simulated annealing pro
edure. This step is almost as importantas the 
lustering one in order to obtain a good visualisation of the results. Note that a morere
ent work [Rossi and Villa, 2010℄ also exploits the Q-modularity whi
h is maximised with adeterministi
 simulated annealing via a mean �eld approximation.

1.2.3 Sparse multivariate regression and gene network recoveryMy �rst works with resear
hers of the Institut National de Re
her
he Agronomique andthe former study on graph 
lustering lead me to work on the problem of the estimation of anetwork of regulation genes and this �eld is important to obtain new lightning on biologi
al5



pro
esses of geneti
 diseases. The problem is as follows : two type of datas are 
omputed for asample of n subje
ts, the �rst one E 
orresponds to the expressions dataset and is a matrix ofsize n� p where p is the number of genes 
onsidered in the study. E quanti�es the amount ofexpression of ea
h gene on ea
h element of the dataset. The se
ond type of features are dis
retemarker variables of size n� p.An intera
tion between two genes is then des
ribed by the fa
t that one protein a
tivated byone gene a
ts or inhibits another genes. We des
ribe this intera
tion using a multivariate linearmodel
E � Eβ�Mα� ǫ, (1.2)where ǫ is the gap between the theoreti
al intera
tion and the real pro
ess, β is p � p matrixwith vanishing diagonal whi
h provides the stru
ture of the gene network. One aim to re
overboth α and β and the main diÆ
ulty in (1.2) is that the number n of samples is very small
omparing to the number of parameters 2p2 � p to predi
t .In [17℄, we �rst use some penalized regressions to infer α̂ and β̂ (Lasso, Elasti
 Net andDantzig sele
tor) and we �nally de
ided to use a multivariate Boosting approa
h. Su
h me-thods was already proposed in [Lutz and B�uhlmann, 2006℄ for the multivariate setting but su
hextension was mainly driven by theoreti
al proof 
onsiderations in order to adapt former resultsof [DeVore and Temlyakov, 1996℄ and [B�uhlmann, 2006℄ (for deterministi
 and noisy situations).Indeed, the method [Lutz and B�uhlmann, 2006℄ does not exploit all the multivariate nature ofthe data and does not spread in a natural way the e�ort of the boosting algorithm. In [17℄, wemodify the boosting algorithm in order to obtain a more natural adaptation to the multivariatesituation des
ribed in (1.2). Comparing to the �rst work [B�uhlmann and Yu, 2003℄, we intro-du
e a supplementary boosting step in order to 
hoose the 
oordinate to predi
t 1. Thus, we arelead to resume the study of this algorithm �rst in a deterministi
 
ase and then extend it to thenoisy realisti
 situation. This work is des
ribed in paragraph 2.3.

1.2.4 Extreme Value Theory and EstimationAt last, I have worked on a very 
on
rete industrial problem for Thales Alenia Spa
e andthe Cnes from 2009 to 2011 
on
erning an estimation for the Egnos-Galileo lo
alization system.The European Spatial Agen
y requires that Egnos-Galileo provides a lo
alization in a given
on�den
e region and in the opposite 
ase, returns a user alarm. Moreover, the probability thatthe system does not return an alarm although the obje
t is not in the 
on�den
e region shouldbe less than p � 10�7 for any period of 150 se
onds. Of 
ourse, the real histori
al position from2006 to 2009 are available as well as the lo
alization provided by Egnos-Galileo.Thus, the question whi
h may appear to be a rather trivial problem was to estimate theprobability of a true positive alarm in order to de
ide whether this probability is less than
p � 10�7 or not. Indeed, these events with su
h weak probability are rarely observed, even ifone gets a dataset that furnishes real and lo
alized position during three years and one 
annotredu
e the estimation to a simple empiri
al mean.Our �rst work [25℄ uses the Extreme Value Theory des
ribed by the so-
alled Fisher-Tippettlaw (1928) whi
h asserts that under te
hni
al independen
e 
onditions, the law of large valueof a n samples 
an be des
ribed and depends only on few parameters. More pre
isely, we haveused the Peak Over Threshold (POT) (see e.g. [Rassmussen, 1994, de Haan and Ferreira, 2006℄)approa
h to 
ompute an estimation of the true positive alarm for the Egnos-Galileo navigationsystem. This 
ollaboration with C�e
ile Mer
adier and Jean-Mar
 Aza��s yields a te
hni
al report[37℄ and a �rst software.1. That's why one 
an 
onsider this as a ! boost-boost "algorithm.6



A se
ond work has 
onsidered su
h rare events estimation using another point of view whi
h
onsists in the reinfor
ement by splitting algorithms the o

uren
es of su
h feared events (seethe sto
hasti
 methods des
ribed in [Lagnoux-Renaudie, 2009, Lagnoux, 2006℄). The prin
ipleof su
h estimation is to use hierar
hi
al dupli
ations of Monte-Carlo simulations in order togenerate more and more rare events. We have written a te
hni
al report [36℄ with Agn�es Lagnoux,C�e
ile Mer
adier and I and provided it to Thales Alenia Spa
e in order to draw fair 
omparisonswith their initial Petri network approa
h.A last work was 
on
erned by the development of an algorithm whi
h yield automati
 pro-
edures for the appli
ation of Extreme Value Theory approa
h des
ribed in [37℄. There weretwo main diÆ
ulties : the �rst one dealt with the non-stationary nature of the 
hronologi
alseries and was got round by the use of a Portmanteau test. The se
ond diÆ
ulty ta
kled thequestion of the 
alibration of a threshold parameter whi
h quanti�es when one has a large valueof the sample or not. To answer this subtle problem, we have used several algorithms su
h as[Drees and Kaufmann, 1998, Beirlant et al., 1999℄ but indeed we found that the more 
ompeti-tive one for this type of datasets were [de Sousa and Mi
hailidis, 2004℄ and exploits some resultson the law of 
umulative sums of large values of samples. From this last study, a te
hni
al note[35℄ and a �nal software has been written by Jean-Mar
 Aza��s and I, and Thales Alenia Spa
eis 
urrently introdu
ing these tool in the last upgrade of the Egnos-Galileo system.
1.3 Random deformation of signal processingMy initial work on mi
ro-array datasets leads me to the 
on
lusion that most of the time,a good modelling of the stru
ture of the data may largely improves a pure strength algorithmto fa
e a statisti
al problem. During my PhD, I have worked on handwritten digits re
ognitionproblems with Mnist and US Postal database. These data may be 
onsidered as a typi
al exampleof problem that 
an be fa
ed using a 
lassi�
ation algorithm su
h as SVM whi
h aims to predi
ta good obje
t for data that are around a mean expe
ted value, but that 
an also be 
onsideredas a realization of a more 
omplex sto
hasti
 pro
ess. In this part, we aim to model a sto
hasti
version of signal deformation in order to estimate generative parameters and then improve thesignal pro
essing task we 
an think of.
1.3.1 State of the art

Deformable models When I arrived in Toulouse, J�er�emie Bigot has just also 
omplete awork on a statisti
al method for landmarks registration between noisy images. We naturallystart a 
ollaboration around the framework of deformable models. We have tried to use thestu� already available in the deterministi
 setting and extend it to a noisy 
ase whi
h is a morenatural 
ase. We were inspired as well from the works of Alain Trouv�e and Laurent Younes ondi�eomorphisms built from ve
tor �elds and ordinary di�erential equation as the approa
h ofGrenander [Grenander, 1993a, Grenander and Miller, 2007℄.In a general way, the deformation model is des
ribed as follows : a mean referen
e pattern
fÆ is de�ned on Ω � R

d, and we observe some noisy realisations of
Yipxq � fipxq �Wipxq, �x P Ω, �i P t1 . . . nu. (1.3)The variables fi 
orrespond to a deformation of the referen
e form fÆ with a random deforma-tion although the Wi represent an additive measurement noise. Moreover, the deformations areassumed to belong to a group G of di�eomorphisms of Ω. Hen
e,�i P t1 . . . nu Dgi P G �x P Ω fipxq � fÆpgi.xq,7



where x ÞÑ gi.x refers to the a
tion of gi on Ω. One 
an then 
onsider two family of problems.The �rst one is 
onsidering the estimation of the deformation parameters gi and the se
ond
orresponds to the estimation of fÆ itself. My works intensively study this last problem inseveral situations. Most of the time, G is a �nite dimensional Lie group (rigid deformations) orin�nite dimensional (elasti
 deformations). One 
an immediately remark that a simple empiri
alaveraging whi
h does not take into a

ount the deformation e�e
ts, and this 
annot rea
h asatisfa
tory result as pointed by Figure 1.1.
Figure 1.1 { Empiri
al ! na��ve " mean between 5 images of a fa
e taken into the Olivettidatabase [Samaria et al., 1994℄.This blurring phenomenon shown by Figure 1.1 reveals that the 
omputation of fÆ as ifobservations belong to a 
at eu
lidean spa
e is not possible. More pre
isely, let us de�ne anHilbert spa
e H whi
h 
ontains the realisations pYiqiP1...n, the empiri
al mean is de�ned throughthe solution of the optimisation problem�Yn � arg min

fPH ņ

i�1 }Yi � f}2H. (1.4)When H is des
ribed by a eu
lidean distan
e and when the random deformations g P G are
oming from a law h, �Yn is estimating ~f de�ned by the 
onvolution~fpxq � EgPGfÆpg.xq � »
G

fÆpg.xqhpgqdg,and of 
ourse ~f � fÆ. One 
an then dedu
e the blurring e�e
t observed with the empiri
al mean.It is quite tempting to use some deformation-adapted metri
s on H to 
ompute an esti-mation with (1.4). This approa
h is proposed by [Joshi et al., 2004, Miller and Younes, 2001,Trouv�e and Younes, 2005℄ where H � L2pΩq and the distan
e is de�ned by�pf1, f2q P H2 dGpf1, f2q � inf
gPG"»Ωrf1pxq � f2pg.xqs2dx� λDpg, eq* , (1.5)where e is the identity of G, λ a regularizing parameter and D a distorsion measure between gand e whi
h quanti�es an amount of deformation for the element g.The use of a non eu
lidean metri
 su
h as the one given by (1.5) to 
ompute fÆ leads tothe 
on
ept of intrinsi
 Fr�e
het mean [Fr�e
het, 1948℄ of the distribution as well as the intrinsi
Fr�e
het mean of the n samples. The behaviour of su
h estimators based on (1.4) with observa-tions that belong to a �nite dimension Riemanian manifold are well known, see for instan
e a
omplete study in [Bhatta
harya and Patrangenaru, 2003, Bhatta
harya and Patrangenaru, 2005℄for 
onsisten
y results when n ÞÑ �8. These results are obtained with M-estimation strategy8




oupled with riemanian geometry and [Le, 1998, Le and Kume, 2000℄ have dedu
ed some 
onsis-ten
y result for Fre
het mean of planar 
urves dealing with the spe
ial situation of the Kendallspa
e of forms [Kendall, 1984℄.All these works are largely following a geometri
 point of view, and does not ta
kle thenatural extension to non parametri
 estimation for 
urves and images.
Non parametric statistical approach The estimation of fÆ in the model (1.3) has sur-prisingly re
eived few attention from a non parametri
 point of view. Pioneering work of[Kneip and Gasser, 1988℄ introdu
es the shape invariant model and proposes to approa
h fÆwhen d � 1 : observations are 
urves whi
h are parametrized by a known �nite number of
oeÆ
ients and g a
ts as a translation on Ω � R :�i P t1 . . . nu Dτi P G �x P Ω dYipxq � fÆpx� τiqdx� dWipxq.Some other works [Gasser and Kneip, 1992, Gasser and Kneip, 1995℄ study the semi-parametri

ase and exploit some ideas whi
h are 
onne
ted with Fr�e
het means. The obtained results de-pend both on the number of observed 
urves and on the sampling frequen
y of ea
h observed
urve. Methods proposed by[Wang and Gasser, 1997, Ramsay and Li, 2001, Liu and Muller, 2004℄
onsider more general d�eformations whi
h are not ne
essarily restri
ted to translations and ta
klethe problem the parametrisation of non rigid di�eomorphisms instead of studying an asymptoti
re
onstru
tion of fÆ when n ÞÑ �8.Regarding now the problem of the deformation parameters estimation, [Gamboa et al., 2007b℄and [Vimond, 2010℄ propose some semi-parametri
 approa
h to dedu
e from these estimations anestimator of fÆ when the sampling frequen
y of ea
h 
urve (number of points observed for ea
h
urve) is arbitrarily large. At last, [Bigot et al., 2010℄ generalizes this approa
h to a arbirarily
ompa
t Lie groups whi
h model rigid deformations.A very di�erent approa
h of [Allassoni�ere et al., 2007℄ uses a Bayesian point of view to 
om-pute an estimation of fÆ from the observations pYiqi�1...n and [Allassoni�ere et al., 2009℄ developsa sto
hasti
 algorithm based on SAEM in order to �nd the pro�le likelihood maximiser.Most of the above 
ited works does not study the 
onvergen
e rates obtained by their pro-
edures and sometimes, even the statisti
al 
onsisten
y is un
lear (espe
ially for the Bayesianestimators[Allassoni�ere et al., 2007, Allassoni�ere et al., 2009℄). It was thus quite natural to studythe 
onvergen
e rates of estimators of fÆ.
1.3.2 Randomly shifted curves modelThe simplest model of non parametri
 problem in deformable models is 
ertainly the follo-wing one : we observe a set of n 
urves pYiqiPr1;ns through a white noise model :�x P r0; 1s, �i � 1 . . . n dYipxq � fÆpx� τiqdx� σdWipxq, (1.6)where fÆ is the real fun
tion to re
over whi
h is supposed 1-periodi
. The noise level is given by
σ and pWiqiP1...n are n independent Brownian motions. At last, the random variables pτiqiP1...nare n translations independent and des
ribe the deformation pro
ess. We assume pτiqiP1...n tobe i.i.d. and independent from the pWiqiP1...n and we aim to estimate fÆ and understand in whatsituation the problem is statisti
ally easy or oppositely diÆ
ult.
Asymptotic study (n ÞÑ �8) We �rst build an estimation of fÆ for the model (1.6) in anasymptoti
 setting in [9℄. We propose an estimation of fÆ using a hard thresholding pro
edure9



in Meyer wavelet basis. The 
onsisten
y and the 
onvergen
e rates obtained are rather similarto some phenomenon en
ountered in statisti
al inverse problems obtained in de
onvolutionmodels[Johnstone et al., 2004, Carroll and Hall, 1988℄. Some additional te
hni
al diÆ
ulties aredue to the supplemental random shift τi for the thresholding pro
edure.Moreover, it is possible to 
ompute the minimax rate of 
onvergen
e for the L2 normwhen fÆ belongs to a Besov ball Bsp,qpAq. The striking point is that the statisti
al diÆ
ultyappears to be the same as the dire
t de
onvolution inverse problem even if we do not ob-serve some realisations of a white noise model on fÆ Æ g but ea
h observations 
orrespondsto the same 
urve fÆ randomly shifted but not 
onvolved by g. The lower bound 
omputa-tion relies on a te
hni
al adaptation of the so-
alled Assouad's Lemma des
ribed for instan
ein [Bretagnolle and Huber, 1979, Has 1minski�� and Ibragimov, 1990℄. Note also that the idea of[Birg�e, 1986℄ whi
h states that lower bound obtained through Assouad's Lemma 
an also bere
overed by the use of Fano's Lemma seems also true here even if one should also 
onsidermodify Fano's Lemma (see for instan
e [Ibragimov and Has 1minski��, 1981℄), at last, it appearsthat similar te
hni
al diÆ
ulties appears to operate the 
omputation of the lower bound usingFano's Lemma.
Oracle approach In [12℄, we provide a non asymptoti
 answer to estimate fÆ using the for-malism of ora
le inequalities. These work relies on the appli
ation of the Unbiased Risk Es-timation method already used in [Cavalier et al., 2002℄ for general inverse problems. In ourframework, the obtained additional term in the ora
le inequality depends on the σ2 (whi
h israther standard when one use a white noise model) and an additional term whi
h tradu
es theill posedness of the inverse problem when using a de
onvolution in a Fourier basis. Remarkat last that in [12℄, very similar tools to those used for the study of statisti
al inverse pro-blems with partially observed operators des
ribed for instan
e in [Cavalier and Raimondo, 2007,Cavalier and Hengartner, 2005℄.All these works rely on a somewhat questionable assumption that the law of the random shiftspτiqiP1...n is known. It is of 
ourse possible to des
ribe an approa
h whi
h uses the Fr�e
het meanapproa
h (see [Bhatta
harya and Patrangenaru, 2003℄ for instan
e), but the theoreti
al study ismu
h more diÆ
ult in the non parametri
 setting. These works are des
ribed in paragraph 3.2.1of 
hapter 3.
1.3.3 Estimation of randomly warped images with rigid or elastic deforma-

tionsWe 
an extend the model of randomly warped signals by enlarging the stru
ture of defor-mation sets whi
h a
t on the unknown signal fÆ. It is quite tempting to 
onsider a group Glarger than pR{Z,�q whi
h is the situation des
ribed above, and when fÆ is not yet a 
urve butan image. G may 
ontent for instan
e translations and rotations. We develop in [8℄ a se
ondasymptoti
 study whi
h generalizes the model of randomly shifted 
urves to the 
ase of a general
ompa
t Lie group G for rigid deformations. Our main tool are spe
tral analysis on Lie groupssu
h as Peter-Weyl theorem and Fourier transform whi
h has been already used in the statisti-
al de
onvolution work of [Koo and Kim, 2008, Kim, 1998, Yazi
i, 2004℄. Again, our statisti
alpro
edure 
arry out an optimal minimax rate by studying 
arefully in Assouad's lemma thelikelihood ratios with respe
t to the size of the Lie group G.At last, it is also possible to model more 
omplex deformations handling in�nite dimensionalgroups su
h as large di�eomorphisms group already des
ribed in the works of Trouv�e and Younes.We propose to generate elasti
 deformations using a parametrisation of ve
tor �elds and 
onsider10



the solution at time 1 of a di�erential 
ow using these ve
tor �elds. We then use standard M-estimation te
hniques (see e.g. [Van der Waart, 1998℄) to asymptoti
ally study the estimationof the mean pattern fÆ. Some results are provided in[11℄ as well as optimization methods to
ompute su
h estimators. These works are des
ribed in paragraph 3.3.5 and 3.2.2.
1.3.4 Constrained regressionIn a se
ondary importan
e, one 
an also use the former approa
h to build monotoni
 realfun
tions through the di�erential 
ows of ve
tor �elds in dimension 1. We use this simple remarkto build estimators in regression problems where the fun
tion is known to be monotone. This pro-blem has re
eived a spe
ial importan
e sin
e numerous pra
ti
al examples 
orrespond to this apriori information of isotoni
 regression. The work of [Hall and Huang, 2001, Dette et al., 2006,Dette and Pilz, 2006℄ 
onsider this problem using a standard kernel estimator proje
ted on thespa
e of monotone fun
tions.We 
hoose to avoid this proje
tion step sin
e it may introdu
e some arti�
ial artefa
ts andthe method presented in [10℄ uses the fa
t that all stri
tly non de
reasing fun
tions of r0; 1s (forinstan
e) may be written as solution at time 1 of some di�erential equation governed by a timeaÆne ve
tor �eld. This method is des
ribed in 3.1.3.
1.3.5 Intensitu estimation of a randomly shifted counting processes : the case

of Poisson processesAfter my works on randomly shifted 
urves, I have been approa
hed by resear
hers of theInstitut National de la Sant�e Et de la Re
her
he M�edi
ale in order to understand a spe
ialpro
ess of protein �xation along DNA. Datasets issued from Chip-Seq analysis 
ount the num-ber of 
ases whenever a protein is �xed at several pla
e of DNA on several 
hromosomes andbiologists have observed that in some 
ase, this �xation may not be so well lo
alized owing to abiologi
al perturbation at the initialization of the �xation pro
ess. This yields the resear
her touse a 
onvolution by a Gaussian kernel to smooth the data and then a 
urve alignment to obtaina "mean" pro�le of the 
ounting pro
ess. It would have been tempting to use our approa
h onrandomly shifted 
urves estimator des
ribed by (1.6) to deal with su
h data. Nevertheless, thenature of the dataset is really di�erent from white noise model and we propose in [16℄ a modelof randomly shifted 
ounting model using Poisson pro
esses with inhomogeneous intensity λi.Ea
h λi are supposed to be equal to a 
ommon intensity λ up to a random shift and this mo-del is largely inspired from (1.6). Note that su
h problemati
 appears also in the re
ent workof [Sansonnet, 2011℄ where in this situation shifts are observed as well as the mean empiri
alintensity and one aims to re
over λ.Our approa
h use intensively 
on
entration properties of [Reynaud-Bourret, 2003℄ for Pois-son pro
esses and our work belongs to the framework of Poissonian inverse problem also studiedfor instan
e in [Cavalier and Koo, 2002, Kola
zyk, 1999℄. Our estimation still relies on a multi-resolution analysis and we are able to build a minimax estimator using a suitable thresholdingpro
edure. Again, the main diÆ
ulty already, en
ountered in [9℄, is to obtain a suitable lowerbound of estimation that makes appearing the inverse problem nature of the model. Moreover,the theoreti
al adaptivity to the fun
tional spa
e where λ lives requires non trivial extension ofthe thresholding pro
edures used in [9℄. This works is brie
y des
ribed in paragraph3.5.3.11



1.4 Irreversible optimisation algorithmsThe motivation of these works 
ome from a (strange ?) modi�
ation of standard sto
hasti
gradient algorithm by Kim-Anh Lê Cao during the numeri
al studies des
ribed in [2℄ and [3℄.The original sto
hastique gradient algorithm 
an be written as follows :�k ¥ 0 Xk�1 � Xk � γkdk �?
γkζk, (1.7)where Xk stands for the position of the algorithm at iteration k, γk is the algorithm stepand dk is the random dire
tion of des
ent. These algorithms are 
ommonly used in sto
hasti

ontrol, signal and image pro
essing, game theory or Bayesian estimation . . . Under te
hni
al
onditions on dk and γk whi
h should be suÆ
iently slowly de
reasing, one may show thefollowing (informal) properties.{ If ζk � 0, 
lassi
al martingale tools (see e.g. [Du
o, 1997, Kushner and Yin, 2003℄) showthat the behaviour of pXkqk¥0 is similar to the dis
retisation of the ordinary di�erentialequation (up to a suitable time modi�
ation) :

dXt � �∇UpXtqdt.{ When ζk is a random Gaussian perturbation, the former result is no longer true andthe algorithm is a di�usion approximation due to the presen
e of ?γkζk and as soon as
Erdk|Fks � �∇UpXkq, pXkqk¥0 is a dis
retisation of the sto
hasti
 di�erential equation :

dXt � �∇UpXtqdt� dBt.A non exhaustive bibliography 
an be found in [Benveniste et al., 1990℄ or [Benaim, 1996℄for a more! dynami
al "des
ription of this approximation.The numeri
al modi�
ation used in [2℄ was to build a sto
hasti
 algorithm whi
h is notMarkov : �k ¥ 0 ~Xk�1 � ~Xk � γk°j¤k βjdj°
j¤k βj �?

γkζk. (1.8)Su
h numeri
al s
heme is strongly linked to9xptq � � » t
0

rps, tqDpxpsqqds.provided te
hni
al 
onditions on dk,D and γk. The following several studies has been motivatedby optimisation pro
edures based on this last di�erential equation, ordinary or sto
hasti
 ones.
1.4.1 Averaged memory differential equation

Past works My �rst work on this theme has 
onsidered the family of di�erential equationswhi
h should be the limit of (1.8). The limiting di�erential equation has then been written witha! memory gradient " : 9xptq � ��
1

kptq » t0 hpsq∇Upxpsqqds
 dt, (1.9)where U is a 
oer
ive potential de�ned on R
d. It is possible to rely this equation with se
ondorder di�erential equation with damping using a suitable time parametrization (detailed in[Cabot, 2009℄) : :yptq � aptq 9yptq �∇Upyptqq � 0, (1.10)12



where y � x � τ, and τ is solution of 9τ2 � kpτq{hpτq. The damping e�e
t is a � 9kh�k 9h
2k1{2h3{2 � τ.On the se
ond order form, (1.10) the di�erential equation generalizes several known equations.Among them, the �rst most famous one is the Bessel equation for the spe
ial 
ase aptq � 1{tand Upxq � x2 whose solutions are proportional to J0 up to a suitable initialisation 
ondition.We then obtain the asymptoti
 behaviour xptq � Ct�1{4 
osp2?t� π{4q.In the 
onvex optimization 
ommunity, spe
ial 
ases of su
h euqations was already knownand studied when a is a positive 
onstant. In su
h 
ase, one re
overs the Heavy Ball with Fri
-tion system des
ribed in [Polyak, 1987℄ and [Antipin, 1994℄ whi
h already study the optimizingproperties of su
h traje
tories. This study has then been extended to a general framework ofdissipative equations by[Hale, 1988, Haraux, 1991℄ : they show that su
h dynami
al systemswith 
onstant damping 
onverge towards some 
riti
al points of U under te
hni
al 
onditionssu
h as analyti
 or 
onvex for very large x properties. At last, [Ben Hassen and Haraux, 2011℄and [Haraux, 2007℄ use some damping linked with :y in order to improve su
h optimization pro-perties sin
e adapting this damping to the position and speed of the parti
le xptq may be ofinterest.

Contributions We des
ribe in [13℄ very pre
isely the behaviour of our damped se
ond orderequation when the time t be
omes arbitrarily large for equations (1.9) or (1.10), as well as thebehaviour of Upxptqqt¥0. Our main assumptions is the 
onvexity of U for large x and the emptyinterior of the set of 
riti
al points of U. Moreover, we prove some one-dimensional result whi
hare not easily transposable to larger dimensions. At last, we study in [14℄ some more pathologi
alsituation where U possesses some 
at part (non empty interior of the set of 
riti
al points). Weprovide some details on this ! unordinary " di�erential equation in paragraph4.1.
1.4.2 Memory diffusion

Link with reinforced stochastic process The sto
hasti
 algorithm (1.8) when ζk is aGaussian random variable is a numeri
 approximation of the sto
hasti
 pro
ess
dXt � ��

1

kptq » t0 9kpsq∇Upxpsqqds
 dt� σdBt. (1.11)sin
e the sto
hasti
 algorithm is 
orrupted by a Brownian in
rement ?γkdζk. It is thus naturalto study su
h sto
hasti
 di�erential equation (1.11).The main diÆ
ulty in (1.11) 
omes from its non Markov nature sin
e the pro
ess inter-a
ts with all its past through the time averaging of ∇Upxsq, 0 ¤ s ¤ t. Thus, su
h pro-
ess belongs to the large informal 
lass of self-intera
ting di�usion. First histori
al examplewas introdu
ed by [Coppersmith and Dia
onis, 1987℄ for random walks and then extensivelystudied by[Pemantle, 1992℄ for the des
ription of the dynami
 of Brownian polymer, see also[Cranston and Le Jan, 1995℄ for a des
ription of su
h type of 
ontinuous pro
esses.Among the 
ontinuous time pro
esses, self-intera
ting ones are generally 
oming from a
onvolution between a drift fun
tional and the o

upation measure whi
h may be normalised(see for instan
e the work of [Bena��m et al., 2002℄) or not (see e.g.[Durrett and Rogers, 1992℄).The drift term at time t is usually an averaging pro
ess whi
h is 
omputed from the seve-ral values of pXt � Xsq0¤s¤t. From a te
hni
al point of view, [Bena��m et al., 2002℄ makes anextensive use of asymptoti
 pseudo-traje
tory of random dynami
al system �rst introdu
edby[Bena��m and Hirsh, 1996℄. In some sense, su
h study should have been possible in our frame-work even if the situation in[Bena��m et al., 2002℄ is 
ompa
t although the pro
ess (1.11) mayexplore R
d. At last, we should also refer to re
ent works of [Kurtzman, 2009℄ that deal with non13




ompa
t manifolds by a supplementary addition of a 
on�ning non-intera
tive potential in thedrift term.
Links with hypo-elliptic processes In[15℄, we propose to study the pro
ess (1.11) by aspa
e enlargement method ot obtain a Markov pro
ess. The pri
e to pay is then the ne
essity tohandle a strong degenera
y of the random system on the "enlarged" 
oordinate. Let us denotepYtqt¥0 the pro
ess given by the drift in (1.11) at time t, if we set r � 9k{k, we then obtain theequivalent 
oupled evolution : #

dXt � �Ytdt� σdBt.
dYt � rptqp∇UpXtq � Ytqdt. (1.12)Su
h equations (1.12) then fall into the framework of hypo-ellipti
 pro
esses. A large num-ber of theoreti
al advan
es o

urred this last years, among them one should refer to those of[Hel�er and Nier, 2005℄ or [Villani, 2009℄ whi
h are interested into the evolution of su
h evolu-tions for large time t.One of the main diÆ
ulty for the study of 
onvergen
e to steady regimes of hypo-ellipti
evolutions is the la
k of 
lassi
al fun
tional inequalities for instan
e asso
iated to the Γ2 
rite-rion [Bakry and �Emery, 1985℄. One famous example of su
h situation is the evolution guided bythe Fokker-Plan
k kineti
 equations whi
h has re
eived a large amount of interest as attestedby the large number of referen
es on the subje
t,e.g. [Risken, 1989, E
kmann and Hairer, 2003,H�erau and Nier, 2004℄) ta
kle this problem by studying 
arefully the spe
trum of the under-lying operator although other works ([Desvillettes and Villani, 2001, Dolbeault et al., 2009℄)build some 
oer
ive norms whi
h stand for Lyapunov fun
tion of the dynami
al system inorder to use a Gronwall lemma. At last, note that Lyapunov fun
tions should be 
onsidered as apowerful 2 sin
e a strong link between the existen
e of su
h fun
tions and fun
tional inequalitieshas been underlined in [Bakry et al., 2008℄ even if su
h approa
h is just an intermediary stepto obtain 
onvergen
e to steady regimes for hypo-ellipti
 systems.At last, the hypo-ellipti
 framework introdu
es additional diÆ
ulty whi
h mainly 
on
ernsthe existen
e and regularity of Ptpz0, .q where z0 is the initializing point of the pro
ess attime t � 0. The answers are generally given by the use of Hormander works and his fa-mous sum of squares theorem. From the pioneering works of [H�ormander, 1967℄, we 
an �ndlots of theoreti
al advan
es that 
ome from partial di�erential equation su
h as the works of[Kohn, 1978, Tr�eves, 1980℄, or from Malliavin 
al
ulus (see e.g. [Kusuoka and Stroo
k, 1987,Cattiaux, 1992, Hairer, 2011℄).In a similar way, under 
ontrollability results, it is possible to obtain some sharp estimationsof Ptpz0, .q using Malliavin 
al
ulus as pointed by [Delarue and Menozzi, 2010, Bally and Kohatsu-Higa, 2010℄or fun
tional Harna
k inequalities (see e.g.[Pas
u

i and Polidoro, 2006, Polidoro, 1997℄). Of
ourse, these 
ontrollability assumptions are not so mu
h surprising sin
e they are alreadyne
essary to obtain some positivity result for the semi-group using the Support theorem of[Stroo
k and Varadhan, 1972℄. One should also refer to [Ben Arous and L�eandre, 1991℄ whi
hstates a ne
essarily and suÆ
ient 
ondition under an assumption of boundedness of the drift
oeÆ
ients for su
h positivity.

Contributions In our work [15℄, we provide some stability result for average gradient di�usionsystems whi
h are des
ribed by equations (1.12). Under rather te
hni
al assumptions on U (Ushould mainly be 
onvex for large |x| with a growing assumption Upxq{|x| Ñ �8), we show that2. The most one ? 14



the asymptoti
 behaviour of the pro
ess de�ned through (1.12) relies prin
ipally on the longtime behaviour of rptq � 9kptq{kptq. In parti
ular, we prove the stability of su
h pro
ess whenthe memory of the pro
ess is not too long, and oppositely that the pro
ess should explode whenthe memory is too large.Main diÆ
ulties 
on
ern �rst the hypo-ellipti
ity of (1.12) (thus its 
ontrollability), and alsoits stability whi
h relies on the 
onstru
tion of a non-trivial Lyapunov fun
tion that enable tobound the pro
essus both in position and speed. At last, it is possible to obtain 
onvergen
e ratesin total variation of the o

upation measures invoking Lyapunov type argument asso
iated toregularity estimates of the semi-group and using the approa
h developed by[Down et al., 1995℄.These rates are quite expli
it thanks to the re
ent works of [Dou
 et al., 2009℄. I will detail in4.2 the study of equations (1.11)-(1.12).
1.4.3 Link with kinetic Fokker-Planck equationsThe averaged gradien di�usion written on the 
oupled form (1.12) is from an aestheti
 pointof view rather similar to the Fokker-Plan
k kineti
 equation#

dXt � Vtdt.
dVt � p�∇UpXtq � Vtqdt� σdBtdt. (1.13)There is yet a signi�
ant di�eren
e between two su
h pro
esses sin
e 
on
erning Fokker-Plan
k kineti
 pro
esses (1.13), the stationary measure is expli
itely known although no formulais available for the averaged gradient system (ex
ept in que quadrati
 
ase Upxq � a|x|2). In su
hparti
ular 
ase (1.12) is a Gaussian pro
ess and one 
an easily identify its stationary measure.Nevertheless, equations (1.12) and (1.13) do not seem to be equivalent at one glan
e.Sin
e the deterministi
 pro
ess (1.9) possesses interesting optimizing properties and that iswhy we were lead to study a noisy version by a Gaussian noise (whi
h will be arbitrarily small inthe sequel). More thant the stability of the averaged gradient system, the exa
t 
omputation ofthe  L2 norm 
an be very instru
tive to understand whether if (1.12) 
an be 
ompared positivelyto other sto
hasti
 optimisation methods.

Contributions In [15℄, we were able to give only partial responses on the 
onvergen
e rate tosteady regime (only rate within total variation distan
e are obtained), thus we study in [19℄ theexa
t 
omputation of the L
2 norm and of the spe
trum of the kineti
 Fokker-Plan
k operatorwhi
h des
ribes (1.13) sin
e these 
omputations are a little bit easier than those 
on
erning(1.12). We �rst 
ompute exa
tly the L

2 norm in spe
ial 
ase of potential U in the simplest 
ase
U � ax2{2, and U � 0 on the torus T � r0; 1s for pro
esses des
ribed by (1.13). Our approa
his di�erent from the one used in [Dolbeault et al., 2009℄ or [Villani, 2009℄ whi
h use a di�erentde
omposition of the kineti
 Fokker-Plan
k operator Su
h results are detailed in paragraph 4.3.
1.4.4 Averaged diffusion with small parameterThe exa
t 
omputation of L

2 norm in the above paragraph is not so inno
ent sin
e ourobje
tive is indeed to develop an optimization algorithm based on the averaged gradient systemto optimise U. This optimisation 
ould be dedu
ed from a simulated annealing using either(1.12) or (1.13) by letting σptq ÞÝÑ 0 as t ÞÝÑ �8. In the sequel, sin
e σ will be
ome small,we will 
hange our notation and denote him σ � ǫ to stress the small size of the di�usionparameter. 15



Simulated annealing algorithm Con
erning the standard ellipti
 di�usion in R
n :

dXt �a
ǫptqdBt �∇UpXtqdt, (1.14)it is well known that su
h pro
ess 
an a
hieve a global minimization of (see [Mi
lo, 1992℄ forinstan
e) provided ǫptq ÞÝÑ 0 with a suitable rate. The eÆ
ien
y of su
h algorithm dependsboth on1. the 
onvergen
e rate of Ptpz0, .q towards its steady regime µǫ when ǫ is 
onstant2. the 
onvergente rate of µǫ towards µ8 when ǫ ÞÑ 0.Espe
ially, this balan
e between these two 
onvergen
e rates enable to �nd an optimal de
reasingrate for the simulated annealing pro
ess (the more the pro
ess 
onverges rapidly to its steadyregime when ǫ is 
onstant, the more we 
an fast de
rease ǫptq ÞÝÑ 0 and the best is thealgorithm).More pre
isely, when ǫ is 
onstant, one 
an expe
t in the di�usive ellipti
 
ase that thepro
ess 
onverges exponentially fast to the steady regime µǫ so that

VarµǫpPǫt pfq � µǫpfqq ¤ expp�ApǫqtqVarpµǫpfqq, (1.15)where Apǫq plays a key role in the 
alibration of the temperature s
heme t ÞÑ ǫptq. Indeed,[Mi
lo, 1992, Chiang et al., 1987, Royer, 1989℄ show that there exists an optimal d� ¡ 0 su
hthat ǫptq � c{lnptq ensures the 
onvergen
e of the simulated annealing (1.14) when c ¡ d�towards the global minimum minRn U. This 
onstant d� 
orresponds to the elevation of U (see[Mi
lo, 1992℄ for a pre
ise de�nition of d�) but is not known during pra
ti
al simulations. Hen
e,it is ne
essary to obtain a estimation of d� for whi
h admissible temperature s
hemes will bebuit, thus the 
alibration of a suÆ
iently large Apǫq is important for the simulated annealingpro
edure.Considering now the approa
h of [Bakry et al., 2008℄, it is proved that as soon as someappropriate Lyapunov fun
tion exists, one 
an �nd a Poin
ar�e inequality with a 
onstant CPwhi
h is not optimal 3. Moreover, 
onvergen
e rates 
an bounbed by
VarµǫpPǫt pfq � µǫpfqq ¤ expp�2{CPtqVarpµǫpfqq.Su
h approa
h 
an provide an admissible valule for the simulated annealing but this valueseems to be 
learly not optimal sin
e CP is too large. At last, it would be possible to dire
tlystudy the asymptoti
 behaviour of the spe
trum of the Markov operator Lǫ that des
ribesthe evolution of (1.14) for small values of parameter ǫ (see for instan
e se
tion 7 of 
hapter6 in [Freidlin and Wentzell, 1984℄ for 
ompa
t manifolds that 
ontains a stable equilibrium ofthe dynami
al system). Of 
ourse, when ǫ ÞÝÑ 0, the smallest eigenvalue of �Lǫ behaves asexpp�∆V{ǫ2q where ∆V is an expli
it 
onstantthat depends on the quasi-potential dedu
edfrom the large deviations of (1.14). But again, this 
onstant is not a

essible from a pra
ti
alpoint of view sin
e it requires the whole knowledge of U and the 
alibration of ǫptq 
annot bededu
ed online from this approa
h.

Second order models Rather than try to estimate almost unsu

essfully the former 
onstant
Apǫq (also denoted dÆ in some works) in inequality (1.15), it is possible to think about someother models instead of �rst order 
lassi
al ones su
h as (1.14) and build another di�usion whi
hnaturally 
onverges to steady regime faster, and thus for whi
h the 
onstant ~Apǫq is 
ertainlygreater.3. in general, CP is too large 16



It is tempting to use se
ond oder models sin
e they may possess larger ability to explorethe state spa
e (ph�enomenon already observed in the deterministi
 setting for the dynami
alsystme (1.9)). Moreover, [Dia
onis et al., 2010b℄ have proved that one 
an rea
h with se
ondorder Markov 
hains better 
onvergen
e rates to steady regime using a non symetri
 evolution,whi
h is also the 
ase in Fokker-Plan
k equations and averaged gradient system. In [20℄, westudy the behaviour of averaged gradient di�usion with small parameter. The �rst step is toidentity a 
lear asymptoti
 of the invariant measure νǫ of (1.11) when ǫ be
omes small sin
ethis behaviour guide the 
onvergen
e of the pro
ess (1.11) to global minima of U. 4In[20℄, we study the 
ase of the se
ond order model (1.11) whi
h is restri
ted to be homoge-neous, whi
h is the simplest 
ase, with memory maps hptq � kptq � eλt and we obtain a LargeDeviation Prin
iple when ǫ Ñ 0 for pνǫqǫ¥0. Ex
ept the quadrati
 
ase Upxq � ax2{x, thereis no expli
it formula of νǫ and thus the quasi-potential whi
h should derive from the LargeDeviation Prin
iple may be un
lear. We provide in[20℄ suÆ
iant 
onditions on the potential U(and 
ertainly not optimal ones) for whi
h νǫ is 
on
entrated on global minimum of U. Theseworks are des
ribed in paragraph 4.4.

4. In a sense, it would have been mu
h more simpler to study the kineti
 Fokker Plan
k equations sin
e thestationary measure asso
iated to (1.13) is expli
it mǫpx, vq9e�rUpxq�v2{2s{ǫ2 and when ǫ ÞÝÑ 0, the behaviour ofthe marginal on x is obvious using the Lapla
e. 17
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Chapitre 2

Statistical modelling and high
dimensional estimationIn this 
hapter, we des
ribe some advan
es on estimation problems when samples pXi, Yiqi�1...nare available, where ea
h Xi is des
ribed by p features whi
h form a di
tionnary D � pg1, . . . , gpq.Random variables Yi are either a label of the 
lass in whi
h Xi is living for 
lassi�
ation task,or simply an element of Rd for regression problems. Our study will handle the 
ase p ¡¡ n forwhi
h standard estimation methods are not eÆ
ient owing to the 
urse of dimensionality.
2.1 Stochastic algorithm for feature selectionsIn the supervised 
lassi�
ation framework, we 
onsider any 
lassi�
ation algorithm denoted
A in the sequel and we aim to �nd a best subset of features, i.e. G � D, su
h that the predi
tivepower of A using features of G is ! optimal ".
2.1.1 Model descriptionWe will denote ÂG,n the 
lassi�
ation produ
ed by the algorithm A using samples pXi, Yiqi�1...nand a
tive variables G. The predi
tion error of ÂG,n is

qpÂG,nq � PpX,YqrÂG,n � Ys,and an ideal approa
h would be to sele
t
GÆ � arg min

G�D
qpÂG,nq. (2.1)Of 
ourse, su
h optimization (2.1) is numeri
ally D. Moreover, the joint law pX, Yq is unknownand it is impossible to exa
tly re
over q, only estimations using the training set are available andwe will denote su
h estimationq̂ (see [6℄ for more details on the bootstrap strategy to 
omputesu
h estimation).Our suboptimal approa
h to study (2.1) is to weight ea
h elements of D using a dis
reteprobability P whi
h will be the obje
t to re
over. Let us denote an integer k smaller than n,for a given P we de�ne a mean energy that quanti�es the error of A when features are sampleda

ording to P :

EpPq � ¸
GPDk

q̂pÂG,nqPbkpGq. (2.2)When P is 
lose to minimizer of E , the dis
rete probability put large weights on features in
D whi
h enable A to perform well and thus these features are meaningful for the 
lassi�
ation19



task. It is thus natural to attempt to minimize E with respe
t to P. Remark that indeed E is a
k-th order polynomial on variable P but its 
oeÆ
ient are unknown.
2.1.2 Gradien descent algorithmWe propose in[6℄ to minimize E using a sequential strategy of gradient des
ent, whi
h maybe perturbed by a small di�usive term.The general s
heme is des
ribed by Figure2.1.pXi, YiqiP1...n Di
tionnary DSample de G P Dk following P

bkCompute q̂pÂG,nq Update weights P

Figure 2.1 { Iterative s
heme to learn P.For any point P that belongs to the simplex SD of dis
rete probability measures on D, one
an 
ompute the eu
lidean gradient of E :�g P D ∇EpPqpgq � ¸
GPFk

CpG, gqPbkpGq
Ppgq q̂pÂG,nq, (2.3)where CpG, gq is the number of o

urren
es of g in G. If we denote πD the proje
tion on thesupporting hyperplane HD of SD, su
h optimization algorithm E may be as follows :

dPt � �πD p∇EpPtqqdt. (2.4)The small parameter di�usion asso
iated to this gradient des
ent would be de�ned as the follo-wing 
onstrained sto
hasti
 di�erential equation
dPt � �πD p∇EpPtqqdt� σDdBt � dZt. (2.5)We will denote πS the proje
tion on the simplex SD sin
e this proje
tion is ne
essary to buildour learning algorithm. In equation (2.5), pBtqt¥0 is a Brownian motion on R

p whose 
ova-rian
e matrix σD is de�ned through the proje
tion on HD and dZt is a jump pro
ess whi
h
onstrains the pro
ess pPtqt¥0 to be a dis
rete probability distribution on D. We won't pro-vide enough te
hni
al details to properly state existen
e and uniqueness of solutions of (2.5).These results are given in [5℄ and intensively use the Skorokhod map des
ribed for instan
ein[Dupuis and Ramanan, 1999℄.
2.1.3 Stochastic gradient approximationOur idea is to use only one 
omputation of q̂pÂG,nq at ea
h step of the algorithm, this pointis not so obvious sin
e equation (2.3) shows that the exa
t 
omputation of ∇EpPq requires toexplore all subsets if size k in D. Indeed, by looking 
arefully to the nature of E and ∇E , it ispossible to observe that

πD p∇EpPqq � EP

�
πD

�
CpG, .qq̂pÂG,nq

Pp.q 
�
.20



It is then possible to produ
e two sto
hasti
 algorithms whi
h approa
h the behaviours of (2.4)and (2.5), and it makes possible to learn some optimal P. Let be given some positive stepspαjqjPN su
h that pH0q �8̧
j�1 αj � �8 and Dν ¡ 0 �8̧

j�1α1�νj   �8,we 
an de�ne a learning algorithm of pPjqj¥0 (des
ribed by Algorithm (1)).
Algorithm 1 Feature sele
tion using a sto
hasti
 gradient algorithm (approximation of (2.4)).
Require: Di
tionary D, Algorithm A, Dataset pXi, YiqiP1...n, integers k Ps0;nr and J.
Ensure: P minimiser of E

P0 � UD, uniform law on D.
j� 0

while j   J doSample Gj in Dk a

ording to P
bk
jCompute ÂGj,n as well as an estimation of the 
lassi�
ation error q̂pÂGj,nqUpdate the weights Pj�1 as�g P D Pj�1pgq � πS � πD �

Pj � αj�CpGj, .qq̂pÂGj,nq
Pj

�� pgq
j� j� 1

end whileIf we 
onsider now the aÆne time interpolation pPinterpt qt¥0 of pPjqj¥0 at times
τj �

i̧¤jαi,it is possible to use standard results of Robbins-Monro method and show the following result(see e.g.[Kushner and Yin, 2003℄ or [Benaim, 1996℄) :
Theorem 2.1.1 (Convergence of OFW (Optimal Feature Weighting)) The interpola-ted pro
ess pPinterpt qt¥0 is an asymptoti
 pseudo-traje
tory of the di�erential equation (2.4).Moreover, the algorithm 
onverges to a lo
al minimum of E.It is also possible to obtain a similar result for the di�usion approximation of the sto
hasti
algorithm (these results may be found in[5℄). This more exploratory algorithm is des
ribed byAlgorithme (2).Again, if we denote p�Pinterpt qt¥0 as the 
ontinuous time aÆne interpolation of p�Pjqj¥0 attimesτj, 
lassi
al methods of sto
hasti
 approximation of[Kushner and Yin, 2003℄ or [A. Benveniste and Priouret, 1987℄lead to a tightness result for p�Pinterpt qt¥0 and an identi�
ation pro
edure shows the followingresult.
Theorem 2.1.2 (Convergence of the diffusive OFW) The sto
hasti
 pro
ess p�Pinterpt qt¥0weakly 
onverges towards the unique invariant measure of (2.5). It is also the 
ase forp�PjqjPN.The main te
hni
al diÆ
ulty of the proof relies on the underlying tightness result when aproje
tion on the simplex SD o

urs.Figure2.2 represents as an example some subsets of features sele
ted by using OFW on afa
es dataset whi
h is predi
ted by a SVM algorithm.21



Algorithm 2 Feature sele
tion using the sto
hasti
 di�usive approximation of (2.5).
Require: Di
tionary D, Algorithm A, Dataset pXi, YiqiP1...n, integers k Ps0;nr and J, varian
e
σ2.

Ensure: �P minimiser of E�P0 � UD, uniform law on D.
j� 0

while j   J doSample Gj in Dk a

ording to �PbkjCompute ÂGj,n as well as an estimation of the 
lassi�
ation error q̂pÂGj,nqSample p independent random variables pξjpgqqgPD � N p0, 1qbpUpdate the weights Pj�1 as�g P D �Pj�1pgq � πS � πD ��Pj � αj�CpGj, .qq̂pÂGj,nq�Pj ��?
αjσξj

� pgq
j� j� 1

end while

Figure 2.2 { Main binary edge dete
tors sele
ted by OFW on a fa
e re
ognition problem.
2.2 Sequential stochastic algorithm for design of experimentsIn this paragraph, we des
ribe a new sto
hasti
 method for building optimal design of ex-periments in order to �nd ! good "adaptive designs for the statisti
al regression problem. Forsake of simpli
ity, we will only 
onsider the 
ase of an unknown fun
tion η whi
h is de�ned on
Ω � r0; 1sd and we aim to produ
e a sequential method that �nds a �nite number of pointssuitable to build a regression of η as good as possible on Ω. In the sequel, we des
ribe our ap-proa
h with d � 1 but this 
an be easily generalizes to larger dimension, as well as the asso
iatedtheoreti
al results. 22



2.2.1 FrameworkWe assume that η belongs to an homogeneous Besov spa
e with unknown regularity s 1. Weaim to predi
t η as a �nite linear 
ombination of elements taken in the di
tionary pΛj,kqjPN,k�0...2j�1 �
D. Here, D is a multi-resolution analysis expanded on a wavelet de
omposition and we observeonly noisy version of the signal η through the 
omputation of f

fpxq � ηpxq � σξpxq, (2.6)where ξpxq is a normalized Gaussian noise and σ2 is the varian
e of this noise whi
h is unknown.We want to �nd optimal points of measurement in Ω (2.6) for whi
h the predi
tion of η will beoptimal.Our method proposes to use iteratively some simple linear models 
omputed on a smallsubsets of elements in D and the main diÆ
ulty at step n is to �nd an optimal design xn
omputed with a sub-di
tionary Dn. For some rather trivial reasons linked to the framework ofdesign of experiments, 2, we impose that
xn�1 � xn Y tζn�1u. (2.7)We asso
iate to ea
h linear model η̂xn,Dn a 
riterion whi
h measures the quality of approximationand that 
orresponds to the mean integrated square error

Jpη̂xn,Dn , ηq � »
Ω

Erη̂xn,Dnpuq � ηpuqs2du.
η may be de
omposed on Dn and its orthogonal and one 
an write the above 
riterion followinga bias varian
e tradeo� :

Jpη̂xn,Dn , ηq � }Eη̂xn,Dn � ηDn}2Ω � }ηDc
n
}2Ω � σ2Tr�µ1,1pDnqqM�1

xn,Dn

	
.Event if the bias term is intra
table, it is possible to 
ompute a pessimisti
 estimation followinga minimax approa
h that depends on a parameter τ ¡ 0 whi
h quanti�es the size of the biasthat 
annot be 
ompressed using only elements of Dn}Eη̂xn,Dn � ηDn}2Ω � }ηDc

n
}2Ω ¤ sup}ν}2

Dc
n
¤τ }Eη̂xn,Dn � νDn}2Ω � }νDc

n
}2Ω :� BÆxn,Dn,τ.These simple fa
ts yields 
onsidering the balan
ed minimax 
riterion

JÆpη̂xn,Dn , ηq :� BÆxn,Dn,1 � λTr�µ1,1pDnqqM�1
xn,Dn

	
, (2.8)where λ � σ2τ�2 is a parameter whi
h penalizes the varian
e of the estimation.

2.2.2 Algorithm of sequential design of experimentsIn [4℄, we propose to use a sequential algorithm that builds xn and upgrades Dn : xn aimsto 
ontrol the varian
e of estimation although Dn optimizes the bias of the linear model. The
omputation of ζn�1 (see equation (2.7) relies on the optimization of JÆpη̂xn,Dn , ηq and Dn�1 isobtained by the addition or deletion of one sons to Dn following a Metropolis-Hastings strategyso that |Dn�1∆Dn| � 1. This method is des
ribed in Algorithm 3.1. Remark that in our framework, the "adaptive" nature of the algorithm has no 
ommon point with the
lassi
al sense of adaptive estimation in mathemati
al statisti
s.2. Ea
h measurement of η is 
onsidered as a 
ostly task and we do not want to throw out one measurementon
e it has been done 23



Algorithm 3 Sequential design of experiments algorithm.
Require: Di
tionary D0, parameter λ P r0;�8s, number of available measures n.
Ensure: xn and DnInitialize x0 by minimizing (2.8).Compute f through measurements (2.6) and run a linear model η̂x0,D0

.
j� 0

while j   n doUpdate Dj�1 following the random 
hoi
e{ Addition of one son or parent of the most meaninful element of Dj{ Deletion of the less meaningful element in Dj{ Leave Dj un
hangedCompute ζj�1 by the minimization of (2.8).Measure fpζj�1q through (2.6) and upgrade the linear model η̂xj�1,Dj�1
.

j� j� 1
end whileThe main idea is thus to 
ouple a forward/ba
kward sto
hasti
 feature sele
tion to an adap-tive 
hoi
e of design of experiments. The pre
ise des
ription of the transition Dj ÞÑ Dj�1 is alittle bit bothersome and 
an be found in [4℄ where numerous details are given about this up-grade. Indeed, su
h upgrade depends on the former measure and the performan
e of the linearmodel η̂xj�1,Dj�1

at step j.
2.2.3 ResultsIn the former algorithme, the optimization step to 
ompute ζj�1 is the main numeri
aldiÆ
ulty. In general, no expli
it lo
alization result is available to minimize (2.8), even in anadaptive sequential approa
h. In [4℄, we show a positive lo
alization result whi
h is almostexpli
itto 
ompute ζj�1 in the restri
tive 
ase when only the varian
e term is present in the
riterion (2.8), thus λ is equals to �8 and for the very spe
ial 
ase of the triangle S
hauderbasis. This result is des
ribed by the following theorem.
Theorem 2.2.1 For any sub di
tionary ~D of D � pΛj,kqj�0����8,k�0...2j�1, let be given apreliminary design of experiment x, then the optimal design xY ζ for the 
riterion

Tr
�
µ1,1p ~DqM�1

xYζ, ~D	is obtained when ζ belongs to the set of 
riti
al points of ~D, i.e.
ζÆ P YΛP ~D arg maxΛ.This theorem is very important from a numeri
al point of view sin
e it enables to build xj�1using at the most |Dj�1| 
omputations of the tra
e of the information matrix.Moreover, when Dj remains �xed all along the iteration of the algorithm, it is possible toshow a 
onsisten
y result on the 
oeÆ
ient of the linear model for any multi-resolution analysis.

Theorem 2.2.2 For any sub di
tionary ~Dof D � pΛj,kqj�0����8,k�0...2j�1, if η � η ~D �pη� η ~Ddenotes the de
omposition of η on ~D, when λ � �8, there exists C ¡ 0 su
h that}η ~D � η̂xn, ~D} ¤ C
 logn
n
.24



Even if the lo
alization property (Theorem 2.2.1) 
on
erns only a spe
ial multi-resolutionanalysis, it is still possible to use other basis su
h as Meyer wavelet basis. On a parti
ularexample, one should noti
e the stri
king good performan
es of the algorithm as pointed inFigure (2.3) sin
e only about ten points are suÆ
ient to 
at
h the main information in η. In[4℄, we also provide a numeri
al 
omparisons with penalized methods (lasso) or thresholding inwavelet basis whi
h stand that our method behave well 
omparing to some other te
hniques.

Figure 2.3 { Regression obtained by the sequential algorithm on the ! Motor
y
le " datasetwith 5 points (a), 15 points (b), 25 (
), 35 (d), 45 (e), 55 (f). Continuous 
urve : true signal,Dashed 
urve : interpolation with linear model on sub di
tionary of Meyer basis.
2.3 Multivariate boosting, application to gene network recoveryAs pointed in the introdu
tory paragraph, the gene network estimation 
an be modelled asa multivariate regression. Let be given an Hilbert spa
e H, we aim to approa
h f � pf1, . . . fmq P
Hbm :� Hm using a sequen
e pGkqk¥0. In this view, a di
tionary of size p denoted D 
ontains ele-ments of H and satis�es SpanD � H. In order to be 
onsistent with real statisti
al appli
ations,25



the family D is assumed to be non orthogonal in H.
2.3.1 Brief description of Boosting algorithms

Deterministic setting L
2-Boosting deterministi
 algorithms work as follows : the sequen
e

Gk of approximation of f is initialized with G0 � 0 and Gk is dedu
ed from Gk�1 by an improve-ment of predi
tion using a suitable unique predi
tor of D. Of 
ourse, one needs to de�ne exa
tlya suitable 
riterion to sele
t the 
orre
t feature and the way the predi
tion is improved. The
L
2-Boosting method is des
ribed in Algorithm 4 for the parti
ular 
ase of the Weak GreedyAlgorithm even if there exists a lot of variations around this boosting method.

Algorithm 4 Weak Greedy Algorithm (Cadre d�eterministe)[DeVore and Temlyakov, 1996℄
Require: Di
tionary D, Fun
tion f P H to approa
h.
Ensure: Shrinkage parameter ν Ps0, 1s, Maximal iteration NPredi
tor G0 � 0H and Residual R0 � f.
k� 0

while k   N doChoose ϕk P D whi
h is suÆ
iently 
orrelated with Rk |xRk, ϕky| ¥ νmaxgPD |xRk, gy|Update the predi
tion
Gk�1 � Gk � xRk, ϕkyϕkand the residuals

Rk�1 � f�Gk�1 � Rk � xRk, ϕkyϕk
k� k� 1

end whileOf 
ourse, the eÆ
ien
y of su
h algorithms depends on the ! size " of f. We 
an �nd inthe works of [DeVore and Temlyakov, 1996℄ the 
onvergen
e rate of Gk towards f, the size offun
tion f is given through the 
onstant B in the result below :
Theorem 2.3.1 ([DeVore and Temlyakov, 1996]) Let B ¡ 0 and assume that f P ApD, Bqwith

ApD, Bq � $&%f �
ģjPD ajgj su
h that }a}1 ¤ B,.- .There exists CB that only depends on B for whi
h the residual Rk satis�es}Rk}H ¤ CBp1� ν2kq� ν

2p2�νq .The e�e
t of size of the shrinkage parameter ν is to slow down the 
onvergen
e rate whi
h isthus optimal when ν � 1 where one re
overs an approximation rate of k�1{6. Event if ν   1seems useless in the deterministi
 framework, it is indeed an important feature of the algorithmfor its appli
ation in a noisy setting as pointed in the next paragraph.
Random framework The approa
h of [B�uhlmann, 2006℄ is to show the stability of the L

2-Boosting in a noisy setting when one observes a n-sample pX1, Y1q, . . . pXn, Ynq i.i.d. where�i P t1 . . . nu Yi � fpXiq � ǫi,26



with the assumption that f still may be de
omposed in SpanD. If one denotes H the Hilbertspa
e L
2pPq where P is the unknown law of the design X, we 
annot a

ess with our n sampleto some empiri
al features of f. We de�ne the empiri
al s
alar produ
t and norm as�ph1, h2q P H2 xh1, h2ypnq � 1

n

ņ

i�1h1pXiqh2pXiq et }h1}2pnq � xh1, h1ypnq.The WGA may be extended to a noisy setting and is des
ribed by Algorithm5 3.
Algorithm 5 Weak Greedy Algorithm (Noisy setting)[B�uhlmann, 2006℄
Require: Di
tionary D, pXi, YiqiPt1...nu
Ensure: Shrinkage parameter ν Ps0, 1s, Maximal iteration NnPredi
tor G0 � 0H and Residual R0 � f.
k� 0

while k   Nn doChoose ϕk P D whi
h is suÆ
iently 
orrelated with the ! observed "residual :��xY �Gk, ϕkypnq�� ¥ νmax
gPD ��xY �Gk, gypnq��Update the predi
tion

Gk�1 � Gk � xY �Gk, ϕkyϕkand the theoreti
al unobserved residuals
Rk�1 � Rk � xRk, ϕkypnqϕk � xǫ,ϕkypnqϕk.

k� k� 1
end while

2.3.2 Boost-Boost Algorithm for multivariate regression (deterministic case)

Generalization of [Lutz and Bühlmann, 2006] In the multivariate setting, there are m
oordinatesf to predi
t and a natural extension of the former algorithm may 
onsider (for ins-tan
e in the deterministi
 
ase) a new sequen
e of predi
tors/residuals initialized with G0 �
0Hm , R0 � f and whose iteration at step k aims to �nd ik P t1 . . . mu and ϕk P D su
h that���xRikk , ϕky��� ¥ ν max

iPt1...mu,gPD ���xRik, gy��� .Su
h 
hoi
e of 
oordinate and predi
tor has been 
onsidered in [Lutz and B�uhlmann, 2006℄ in anoisy setting. The main advantage of su
h extension is that it shortens theoreti
al 
ompli
ations
on
erning both deterministi
 and noisy 
ases whi
h are thus simple adaptations of the univa-riate boosting. Indeed, su
h 
hoi
e for ik does not take into a

ount the size of the residuals onea
h 
oordinate. This may a�e
t the eÆ
ien
y of the boosting algorithm in the noisy settingsin
e we 
annot use an in�nite 
redit of iterations to predi
t ea
h 
oordinate : the maximaliteration Nn theoreti
ally depends on the size n and in pra
ti
al situations one stops the itera-tions following AIC. It is thus important to well 
hoose the 
oordinate to predi
t ik to obtainan eÆ
ient algorithm.3. Let us stress a minor mistake in [B�uhlmann, 2006, Lutz and B�uhlmann, 2006℄ where theoreti
al residuals
Rk � f � Gk (whi
h are unobserved) are used to de�ne the sequential predi
tors ϕk instead of the empiri
alresiduals Y �Gk whi
h are only available to de�ne the algorithm.27



Boost-Boost algorithm for multivariate regressions We develop for multivariate regres-sion a booting algorithm whi
h spreads its e�ort on all the 
oordinates of Hm all along the itera-tions in order to avoid the la
k des
ribed above 
on
erning the approa
h of [Lutz and B�uhlmann, 2006℄.We propose to sele
t the 
oordinate ik with two di�erent methods whi
h are des
ribed in Algo-rithm 6.
Algorithm 6 Boost-Boost Algorithm (Deterministi
 
ase)[17℄
Require: Di
tionary D, fun
tion f P H to approa
h.
Ensure: Shrinkage parameters µ, γ and ν in s0, 1s, Maximal iteration NPredi
tor G0 � 0H and Residual R0 � f.
k� 0

while k   N doCoordinate ik to boost}Rkpfikq}2 ¥ µ max
1¤i¤m}Rkpfiq}2 [L2 norm of the residuals℄ (2.9)or

p̧

j�1xRkpfikq, gjy2 ¥ µ max
1¤i¤m p̧

j�1xRkpfiq, gjy2. [Sum of 
orrelations with D℄ (2.10)Choi
e ϕk P D suÆ
iently 
orrelated with the residual Rk : |xRk, ϕky| ¥ νmax
gPD |xRk, gy|Update

Gikk�1 � Gikk � γxRikk , ϕkyϕk and �i � ik Gik�1 � Gik.Update the residuals
R
ik
k�1 � Rikk � γxRikk , ϕkyϕk and �i � ik Rik�1 � Rik.

k� k� 1
end whileHen
e, these algorithms pro
eed as follows : we �rst seek the best 
oordinate ik (the one whi
his the most informative for the predi
tion) and then use the best predi
tor ϕk for this 
hoi
e of
oordinate. It is still possible to obain a 
onvergen
e result for the boost-boost algorithm basedon the L

2 norm of the residuals as de�ned by (2.9). Again, this rate depends on the size of fand of the shrinkage parameters µ, γ and ν introdu
ed in Algorithm 6.
Theorem 2.3.2 (Boost-Boost Algorithm (deterministic case and L

2 norm of residuals))Let f � pf1, . . . fmq P Hm su
h that all 
oordinates fj P ApD, Bq. Then, for all k ¥ m, Algo-rithm 6 whi
h uses (2.9) 
onverges : there exists CB ¡ 0 whi
h only depends on B su
hthat�i P t1, . . . ,mu, }Rkpfiq} ¤ µ� 1
2ν

� νp2�γq
2�νp2�γq pγp2 � γqq� �νp2�γq

2p2�νp2�γqq CB� k
m


� νp2�γq
2p2�νp2�γqq

.The proof is a te
hni
al extension of the proof of [DeVore and Temlyakov, 1996℄, the ideais to remark with a large number of iterations, one 
oordinate is suÆ
iently 
hosen and thissele
ted 
oordinate through (2.9) enable a global 
ontrol of the residuals.About the se
ond boost-boost algorithm that uses the sum of 
orrelations with D to �nd ik(equation (2.10)), it may also be analysed with an assumption on the 
oheren
e of the di
tionary28



D de�ned as
ρ � sup

i�j,giPD,gjPD |xgi, gjy|,whi
h may be related to the S sparsity of ea
h fj :
fj � p̧

i�1ajigi with }aj.}0 ¤ S.It is then possible to obtain the following result.
Theorem 2.3.3 (Boost-Boost algorithm (deterministic case, sum of correlations with D))Let f � pf1, . . . fmq P Hm su
h that ea
h 
oordinate fj P ApD, Bq is S sparse, we assume mo-reover that ρpp1 � ν�1qS � 1q   1. Then there exists Cρ,S,B whi
h depends only on the size
B and the 
oheren
e ρ su
h that for all k ¥ 1,�i P t1, . . . ,mu, }Rkpfiq} ¤¤ µ� 1

2ν
�νp2�γq
2�νp2�γq pγp2� γqq �νp2�γq

2p2�νp2�γqq Cρ,S,B � k
m


� νp2�γq
2p2�νp2�γqq

.Some link between the 
oheren
e of D and the sparsity of f has already been pointed for theapproximation of f using Boosting algorithms by several works ([Temlyakov and Zheltov, 2011,Tropp, 2004℄ for instan
e). More pre
isely, the assumption ρp2δ� 1q   1 (obtained when ν � 1for instan
e) ensures that all along the iteration of the boosting algorithm, the residual Rk is atthe most S sparse. In fa
t, the sparsity of the residual is non in
reasing all along the iterations ofthe boosting and the Boosting algorithm does not use some "wrong" elements of the di
tionary.The importan
e of su
h assumption here is thus not really surprising.
2.3.3 Boost-Boost Algorithm for multivariate noisy regressionsIt is still possible to adapt the former boost-boost methods des
ribed by Algorithm 6 in therealisti
 noisy setting. Using the notations introdu
ed in paragraph 2.3.1 
on
erning empiri
aldata, the boost-boost method is developed by Algorithm7.One should remark that for the L

2 norm of residuals, no shrinkage 
an be used for µat leastfrom a theoreti
al point of view. It is still possible to show the statisti
al 
onsisten
y followingthe ideas given in [B�uhlmann, 2006℄. The main idea is to 
onsider a ! phantom "algorithm whi
hwould work in a deterministi
 setting with the several sele
tions made by its sto
hasti
 version.Note that indeed, one may 
onsider a di
tionary D whi
h is 
omposed of a set of variables pnwhi
h may in
rease with the number of samples n in the dataset. Several assumption are neededto obtain statisti
al 
onsisten
y.The �rst assumption is a te
hni
al hypothesis both on the stru
ture of the design X andthe di
tionary D. This te
hni
al 
ondition is ne
essary to obtain uniform Law of Large Numberresults.
Assumption 1 (HD) For any 
hoi
e of predi
tor g in the di
tionary D, the random va-riable gpXq has a normalized se
ond order moment and is essentially bounded�j P t1 . . . pnu ErgjpXq2s � 1 and sup

1¤j¤pn,nPN}gjpXq}8   8.The next hypothesis de�nes the exa
t very large dimension setting where it is possible toestimate something in the model as soon as log p    n.29



Algorithm 7 Boost-Boost algorithm (random 
ase)[17℄
Require: Di
tionary D, fun
tion f P H to estimate.
Ensure: Shrinkage parameters µ, γ and ν in p0, 1s, Maximal iteration NnPredi
tor Ĝ0 � 0H and Residual R0 � f.
k� 0

while k   N doChoi
e of the 
oordinate ik to boost}Y � Ĝikk }2pnq ¥ max
1¤i¤m}Y � Ĝik}2pnq [ L2 norm of the residuals℄ (2.11)or

p̧

j�1xY � Ĝikk , gjy2pnq ¥ µ max
1¤i¤m p̧

j�1xY � Ĝikk , gjy2pnq. [Sum of 
orrelations with D℄ (2.12)Choi
e of ϕk P D suÆ
iently 
orrelated with the empiri
al residual Yik � Ĝikk :���xYik � Ĝikk , ϕky���pnq ¥ νmax
gPD ���xYik � Ĝikk , gy���pnqUpdate the predi
tor

Ĝ
ik
k�1 � Ĝikk � γxRikk , ϕkyϕk et �i � ik Ĝik�1 � Ĝik.Update the unobserved residuals

R
ik
k�1 � Rikk � γxRikk , ϕkypnqϕk � xǫik , ϕkypnqϕk et �i � ik Rik�1 � Rik.

k� k� 1
end while

Assumption 2 (Hpn
) The number of regressors pn in D satis�es

pn � O
nÑ�8�exppCn1�ξq	 ,for some ξ Ps0, 1r and a 
onstant 0   C   8.The main assumption 
omes from a sparse stru
ture of the signal f to re
over. It is des
ribedby the next hypothesis and is obviously true as soon as the sparsity index remains �xed when

n is growing to �8.
Assumption 3 (Hf) The fun
tion f � pf1, . . . , fmq to predi
t is spanned in Hm�j P t1 . . . mu fj � pņ

i�1γpjqi gjand ea
h 
oordinate fj is S sparse with S independent from n, whi
h implies that thesequen
e pγpjqi qnPN,1¤j¤m,1¤i¤pn satis�es�1 ¤ j ¤ m sup
nPN pņ

i�1 |γpjqi |   8.30



At last, the next hypothesis is on the noise stru
ture : we must have a suÆ
iently large orderbounded moment to use thresholding argument 
oupled with Bernstein's inequality to sharply
ontrol the di�eren
e between x, y and x, ypnq.
Assumption 4 (Hǫ) The random variables whi
h model the noise pεℓqℓ�1...n are i.i.d. 
en-tered in R

m and of 
ovarian
e Idm, independent on the pXℓqℓ�1...n su
h thatsup
1¤j¤m,nPNE|εpjq|s   8,for any s ¡ 2

ξ
where ξ is given in assumption 2.This assumption is satis�ed as soon as the tail of the noise distribution is of Gaussian or Lapla
enature.At last, the next assumption is on the magnitude of the a
tive 
oeÆ
ients in view to obtaina 
onsisten
y result for the support re
overy problem.

Assumption 5 (HS) The a
tive 
oeÆ
ients in the S sparse representation of ea
h 
oor-dinate fi satisfy : |γpjqi | ¥ n�κξ,with κ   1{2.We now state the support re
overy result of the Boost-Boost algorithms.
Theorem 2.3.4 (Boost-Boost support recovery) The next three points are satis�ed withlarge probability :

iq Suppose that assumptions 1-4 are ful�lled (pHDq, pHpn
q, pHf q, pHǫq) ,and that ea
h
oordinate fj is S sparse with ρpp1 � ν�1qS � 1q   1. Then there exists a maximal expli
itvalue γ� of the shrinkage parameter γ and a growing number of stopping iterations pknqnPNsu
h that for any 0   γ   γ�, the Boost-Boost algorithm based on the L

2 norm of residualsonly sele
ts "good" 
oeÆ
ients.
iiq Assume moreover that the hypothesis (5) HS holds, then there exists a maximalvalue κ�pγ, Sq su
h that if κ ¤ κ�pγ, Sq, Boost-Boost algorithm re
overs the support of f.
iiiq If one supposes the strongest hypothesis that pn � o

nÑ�8 p?nq, the result still holdsfor the Boost-Boost algorithm based on the sum of 
orrelations with D (for a di�erentvalue of γ�).This last result were known for other kind of sparse re
onstru
tion algorithm. The threshold
n�ξ{2 
orresponds to the minimal value of the amplitude of a
tive variables. Below this threshold,it seems impossible to 
onsistently estimate the support of f. When su
h hypothesis is notsatis�ed, it is however to show that only "good" variables are built by the Boost-Boost algorithm.This point is not true in general for other sparse algorithms and is provided here by the shrinkingparameter γ whi
h allows to obtain thus a slightly stronger result. Note that for the Boost-Boostalgorithm based on the L

2 norm of residuals, γ� � 13{18 for instan
e, and this value is lowerfor the other Boost-Boost algorithm owing to poorer 
on
entration properties of the sum of
orrelations with D of residuals.Su
h result permits to obtain the next theorem, and we should note that the hypothesis (5)
HS is not yet ne
essary to obtain su
h 
onsisten
ies.31



Theorem 2.3.5 (Boost-Boost consistency) Suppose that assumptions 1-4 are ful�lled (pHDq, pHpn
q, pHf q, pHǫq) ,and that ea
h 
oordinate fj is S sparse with ρpp1�ν�1qS� 1q   1,then there exists a suÆ
iently slow in
reasing number of iteration pknqnPN whose limit is�8 su
h that the Boost-Boost algorithm based on the L

2 norm of residuals satis�es�i P t1, . . . ,mnu, E}f� Ĝknpfq}2 � oP
nÑ�8p1qas soon as γ   γ�. If one suppose the strongest hypothesis that pn � o

nÑ�8 p?nq, the resultstill holds for the Boost-Boost algorithm based on the sum of 
orrelations with D :�i P t1, . . . ,mnu, E}f� Ĝknpfq}2 � oP
nÑ�8p1q.We should remark that the number of variables may growth exponentially fast with the numberof samples thanks to a uniform law of large numbers and the assumption pHǫq. However, notealso that the number of iterations kn is of a logarithmi
 order in n. Hen
e, this result (whi
his 
omparable to the one of [B�uhlmann, 2006℄) is quite weak 
omparing to other results onpenalized regressions su
h as the Lasso. We refer to[17℄ for some te
hni
al details on the proofof these last theorems.

2.3.4 Numerical resultsWe brie
y des
ribe in this paragraph numeri
al results obtained via boosting algorithmsand refer to [17℄ or [18℄ for further details.The �rst simulation study 
on
erns a toy dataset already used in [Lutz and B�uhlmann, 2006℄.We observe a response matrix Y of size n � m and features are des
ribed in X whi
h is a
n � p matrix. The model used to generate data is Y � Xθ � ǫ where ǫ is a Gaussian noise
N p0, Inq. Moreover, some 
orrelations are introdu
ed between ea
h pair of variables pgj, gkq(when 1 ¤ j, k ¤ pq so that ρpgj, gkq � 0.9|k�j|. Ea
h 
olumn of θ will be s-sparse.The se
ond simulation studies more pre
isely the 
ase of gene network inferen
e of size p�p(p genes in the network). Ea
h expression level of the genes is given for the n observationspEiq1¤i¤n P R

p�n. The network is assumed to be self-regulated so that the following model
E � Eθ � ǫ with θ the unknown matrix of regulation we aim to re
over. Of 
ourse, we imposethat the diagonal of θ is null to avoid trivial regression. We also assume that ǫ is a Gaussiannoise N p0, Inq.The last simulation is similar to the �rst one but we use di�erent sparsity index for ea
h
oordinate of θ. Moreover, we introdu
e signi�
antly larger 
orrelations (�0.9) than the oneswhi
h are present on the �rst data.The pre
edent Figures show the evolution of the a

ura
y of the algorithms with respe
tto their power of re
overy. Thus, on the abs
issa, one 
an see the rate of 
oeÆ
ients whi
h arere
overed by the methods as well as the ordinate is showing the rate of good predi
tions. Thus,they present performan
es on the support re
overy and do not provide any 
on
lusion on the
L
2 error performed by the regressions. One should �nd in [17℄ 
omplementary results.The two �rst datasets show that in 
urrent situations, all boosting algorithms behave in asimilar way and their numeri
al performan
es is at the least as good as the ones of 
lassi
almethods su
h as Random Forest or Bootstrap Lasso. Moreover, our numeri
al studies let usthink that Bayesian networks inferen
e are a little bit less eÆ
ient than the methods used above(this is not shown in the last Figures but may be �nd in [17℄ or [18℄). At last, one should remarkthat the �rst toy dataset is not a large dimensional one sin
e the size of the feature spa
e is 40and we observe 50 samples. 32
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all of re
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tion, in ordinate : the pre
ision.
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issa : the re
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onstru
tion, in ordinate : the pre
ision.In the more extreme 
ase where 
orrelations are � 9

10 in the last third dataset (Figure 2.6), weremark that the boost-boost sum of 
orrelations is quite more eÆ
ient than the two other boos-33
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es of the 3 boosting methods on the third model of regression withhighly 
orrelated variables with m � 4. Here p � 250, n � 50 as well as m � 4 and s �p30, 100, 100, 100q. On the abs
issa : the re
all of re
onstru
tion, in ordinate : the pre
ision.ting algorithms and spreads the stress of the �rst iterations well 
omparing to other methods.Moreover, we should note that to keep a satisfa
tory a

ura
y, the algorithm only obtain a re
allof 5{100 ( !) but this kind of result is obtained in the framework of the very high dimensionsin
e n � 50 although the size of the feature spa
e is of the order of thousand.
2.3.5 Future worksEven though theoreti
al results seem satisfa
tory, the numeri
al abilities of the boostingmethods for very high dimensional setting are a little bit disapointing as soon as the sparsityindex S is not so small (this phenomenon is illustrated by Figure 2.6). This is slightly an expe
tedfeature of su
h methods when we 
onsider the theoreti
al results of Theorem 2.3.4 sin
e weshould have a balan
e between S, p, n, γ and κ. It would be quite fair to use also some Bayesianinferen
e approa
hes to deal with su
h problems. One should 
onsider for instan
e the re
entworks of [Castillo and van der Vaart A., 2012℄ whi
h provides some interesting enlightenmentson how to use su
h approa
hes for regression in large dimensional setting.
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Chapitre 3

Statistical deformable models and
signal processingIn this 
hapter, I will provide a stru
tured summary of the problems I studied and thesolutions I found in the �eld of deformable statisti
al models. We aim to propose new methodsof estimation in signal and image pro
essing studied in a fun
tional framework. Hen
e, theunknown obje
ts to estimate belong to an abstra
t spa
e H whi
h will be
ome more pre
iselatter.
3.1 Deformation modelThese problems are all 
on
erned by observations whi
h are 
orrupted by twi
e sour
e ofnoise : the �rst one is a random deformation of a ! mean "shape fÆ and the se
ond noise is anadditive measurement noise. Ea
h one of the n observations is des
ribed through�i � 1 . . . n Yi � fi � εi, (3.1)where εi is the additive measurement noise, fi is the randomly warped shape whi
h belongs to
H and Yi are the �nal noisy observation. If H is a set of maps de�ned on Ω, ea
h fi are de�nedfollowing the ideas of [Grenander, 1993a℄ by the following equation :�x P Ω,�i � 1 . . . n fipxq � pfÆ � Ziqrgi.xs. (3.2)Here Zi is a photometri
 variation and gi is the a
tion of deformation on Ω. If Zi a
ts in a linearway, it is not the 
ase for the a
tion of gi whi
h is an inje
tion of Ω into Ω. In the sequel, I willrestri
t the study to the 
ase Zi � 0 sin
e no amplitude variations have been 
onsidered in myworks.
3.1.1 Rigid deformationRoughly speaking, one 
an disso
iate two di�erent 
lasses of homeomorphi
 deformations of
Ω, rigid ones and elasti
 ones. Rigid deformations are the simplest ones and 
orrespond to a�nite dimensional Lie group whi
h a
ts on Ω. One typi
al example is the 
ase where Ω � R

dwhere we 
onsider a group of translations. In this simple 
ase, observations are then given by�x P Ω,�i � 1 . . . n fipxq � fÆpx� τiq,where τi are random parameters of ea
h translation to obtain fi. The a
tion of G 
an be sum-marized as g.x � x� g for all x in Ω. 35



Of 
ourse, su
h situation may generalizes to more 
omplex models of deformation of Ω whenthe group G has a larger dimension to obtain both rotations, translations, homoth�eties, . . .
3.1.2 Elastic deformationThe se
ond 
lass of bije
tive transformation is 
learly mu
h more 
omplex and enables tode�ne some ! elasti
 "deformations of Ω. These models are introdu
ed via 
ows of di�erentialequations by[Miller and Younes, 2001, Trouv�e and Younes, 2005℄.In order to model su
h bije
tive deformations of Ω, the idea is as follows : let vi a 
ontinuousmap CpΩ,Ωq and ǫ a small non negative real, the appli
ation φ1 � Id � ǫvi is always anhomeomorphism as well as φp � φp�1 � � � � � φ1 whi
h also reminds bije
tive. Finally, if oneremarks that

φp � φp�1
ǫ

� vppφp�1q,the natural generalization of small deformations Id� ǫv depends on a family pvtqtPr0;1s of 
onti-nuous maps in CpΩ,Ωq used to 
onsider�t P r0; 1s dφt

dt
� vtpφtq{ (3.3)Indeed, (3.3) admits a unique solution pφtqtPr0;1s given an initialization φ0 � IdΩ as soon as³1

0
}vs}ds   �8. Moreover, for all time t, φt is an homeomorphism from Ω to φtpΩq. In orderto keep the surje
tivity of su
h deformations of Ω, it is enough to impose φt to be the identityon BΩ. This last point is true as soon as �t P r0; 1s,�x P BΩvtpxq � 0.Hen
e, we have in our hands two very di�erent ways to model randomly warped observations

fi from an initial mean pattern fÆ. Of 
ourse, in some pra
ti
al 
ases, the se
ond model of elasti
deformation is more appropriate than the �rst one, and of 
ourse mu
h more theoreti
al diÆ
ultto study.
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Figure 3.1 { Example of one dimensional homeomorphims φ1 of r0; 1s (on the right) generatedby time homogeneous ve
tor �elds v (on the left).
3.1.3 Isotonic (constrained) regressionMy �rst statisti
al work on this �elds 
on
erns a simple remark that o

urs in dimension 1.Indeed, a di�eomorphism of R is ne
essarily monotone. Thus, we use this last point to parame-trise any monotone fun
tions as the solution at time 1 of an O.D.E. and plug this parametrisationin a regression setting. This yields in [10℄ a new way to handle monotone regession.The link between monotone fun
tions and di�eomorphisms generated through O.D.E. isdetailed below. If one denotes I any interval of R, we de�ne HmpIq the Sobolev spa
e

HmpIq � tf : IÑ R, fpm�1q is 
ontinuous on I and »
I

|fpmqpxq|2dx   �8u,and one has the following parametrisation of monotone fun
tions for I � r0, 1s (for instan
e).36



Theorem 3.1.1 If ~H � Spant1, xu � HmpRq and m ¥ 2. For all non de
reasing f P
Hmpr0, 1sq, de�ne the traje
tory

φtpxq � tfpxq � p1� tqx,�t P r0, 1s.Then, there exists a ve
tor �eld pvftqtPr0,1s su
h that vft P ~H,�t P r0; 1s and
f � φ1 � φ0 � » 1

0

vftpφtqdt.Moreover, for all t P r0, 1s,one has
vftpφtpxqq � fpxq � x for all x P r0, 1s. (3.4)Our idea is now to 
ompute an estimation of f (whi
h 
orresponds to φ1) by an estimation ofpvtqt¥0, and the use of (3.3) in order to obtain a naturally monotone estimate of φ1. For all

t P r0; 1s, Theorem 3.1.1 shows that vt ! maps " tfpxq � p1� tqx to fpxq � x.From a statisti
al point of view, we observe a sample of n datas px1, y1q, . . . pxn, ynq su
hthat
yi � fpxiq � ǫi,and pǫiqiPt1...nu are 
entered random variables of varian
e σ2. We look for a monotone f̂n su
hthat its quadrati
 risk de�ned by

Rpf̂n, fq � 1

n

ņ

i�1rf̂npxiq � fpxiqs2,is weak. Our strategy is to use a plug-in tri
k : we �rst 
ompute an un
onstrained estimator f̂0nof f, and then we ! monotonise " to obtain f̂cn whi
h inherits of the same theoreti
al asymptoti
properties of f̂0n. This step repla
es for us the ! proje
tion "step of 
lassi
al works on isotoni
regression. In this view, we 
ompute an estimation vn,λ � pvn,λt qtPI of pvtqt¥0 su
h that t P r0; 1s,
vn,λt belongs to ~H :�x P I vn,λt pxq � at1 � at2x� htpxq, where ht P H.If we 
onsider on ~H a Reprodu
ing Kernel Hilbert Spa
e stru
ture des
ribed through a kernel
K, a suitable way to �nd vn,λt is to solve the optimization problem

vn,λt � arg min
vP ~H 1

n

ņ

i�1rpf̂0npxiq � xiq � vptf̂0npxiq � p1� tqxiqs2 � λ}ht}2K. (3.5)It is then possible (see Theorem 5.1 in [10℄) to obtain under some te
hni
al assumptions on Kand the penalization 
oeÆ
ient λn that with large probability :
Rpf̂cn, fq ¤ CpRpf̂n, fq � λnq.This result may also be extended to the quadrati
 risk on r0; 1s.

Theorem 3.1.2 If f P HmpIq satis�es f 1 ¡ 0 on I and if one 
hooses λn � 1{n, then f̂cn builtfrom the un
onstrained f̂0n introdu
ed in[Spe
kman, 1985℄, is monotone and asymptoti
allyoptimal in the minimax sense :
Rnpf̂cn, fq � Opn�2m{p2m�1qq.37



Figures (3.2), (3.3) and (3.4) are used in the experimental study presented in [10℄ and they allshow the eÆ
ien
y of the monotonisation of the un
onstrained estimator through the di�erential
ow of ve
tor �elds. One should also remark that the works presented in [10℄ may also beextended to larger dimensions for landmarks mat
hing problems.
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(d)Figure 3.2 { Signal m1 : Dashed line unknown f, (a) Dataset with SNR � 3, (b) Un
onstrainedestimator f̂0n, (
) Dette et al. estimator, (d) Monotonised estimator f̂cn from f̂0n.
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(d)Figure 3.3 { Signal m2 : Dashed line unknown f, (a) Dataset with SNR � 3, (b) Un
onstrainedestimator f̂0n, (
) Dette et al. estimator, (d) Monotonised estimator f̂cn from f̂0n.
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(d)Figure 3.4 { Signal m3 : Dashed line unknown f, (a) Dataset with SNR � 3, (b) Un
onstrainedestimator f̂0n, (
) Dette et al. estimator, (d) Monotonised estimator f̂cn from f̂0n.
3.2 Deformable model with known deformation lawIn this se
tion, I provide some details on the estimation of f in the random deformationmodel des
ribed by equation (3.1) when one uses a white noise Gaussian model and ea
h fi arede�ned by (3.2). We aim to pre
isely des
ribes what happens when the number of samples ngrowths to �8. We assume in this se
tion the deformation law g known. This assumption isthe most important one of the paragraphs below.38



3.2.1 Randomly shifted curvesThis model is of the 
ourse mu
h most simple from a te
hni
al point of view 
ompared toits generalizations (more 
omplex deformation, poissonian noise) but already presents the mainideas of the estimation 
onsidered also in[8℄ and [16℄.We assume fi to simply be a realization of a random translation applied to the unknown fwhi
h is assumed 1-periodi
. Hen
e, we 
onsider the model�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx�τjqdx�ǫdWjpxq wherepτjqjPt1...nui.i.d. � g. (3.6)
Deconvolution Approach Model (3.6) may be studied by 
onsidering a Fourier basis pekqkPZon whi
h ea
h Brownian motion Wipxq may be de
omposed using independent gaussian 
oeÆ-
ients. More pre
isely�j P t1 . . . nu �k P Z θj,k :� xYj, eky � xf, ekye�i2πkτj � ǫǫj,k,where pǫj,kqj,k are i.i.d. N p0, 1q.The method to build an estimation of f is now 
lear when one knows Fourier 
oeÆ
ientspγkqkPZ of g : we 
an approa
h Fourier 
oeÆ
ients of f following the simple remark�k P Z ckpfq :� xf, eky � xf Æ g, ekyxg, eky � 1

n

°n
j�1 θj,k
γk

. (3.7)Su
h equality is true as soon as γk � 0 and the Strong law of Large Number should permitto well approa
h f. Indeed, the inversion of γk may be
ome dangerous when k is large sin
eRiemann-Lebesgue Lemma would guaranties that γk ÞÑ 0 when k Ñ �8 and g is regular.We fa
e here a 
lassi
al phenomenon en
ountered in ill-posed inverse problems, whi
h is ratherlogi
al owing to our estimation method using a de
onvolution approa
h : we aim to invert the
onvolution operator for whi
h γk are eigenvalues.We should also remark that this inverse problem framework might not be the natural wayto study (3.6) sin
e we arti�
ially expanded the problem in a Fourier analysis to obtain (3.7).We will show in the sequel that a
tually, the nature of estimation (3.6) as an inverse problem
annot be avoided.
Thresholding estimation and reconstruction rates on Besov space In this model, we
ompute the 
onvergen
e rate for the mean quadrati
 risk : for any estimator f̂, we de�ne thisrisk as

Rpf̂, fq � E}f̂� f}22.It is possible to build an estimator f̂n from a multi-resolution analysis. More pre
isely, if pψj,kqj,kand pφj,kqj,k are the s
aling and mother fun
tions of Meyer wavelet de
omposition at s
ale j andlo
ation k, we will build f̂n aŝ
fn � 2

j
0�1
ķ�0 ĉj0,kφj0,k � j̧¥j0 2j�1̧j�0 β̂j,kψj,k,where ĉ and β̂ must be estimate from the observations. The 
omplete des
ription of su
h estima-tion is rather te
hni
al and we will omit the details in this manus
ript (they 
an be found in[9℄).The main idea is to limit the size of j0 and j1 whi
h depends on n and ν the regularity index of

g. Then, we keep only 
oeÆ
ients whose size is greater than a threshold whi
h is data-driven.We prove in [9℄ a 
onvergen
e rate of su
h thresholding estimator. In a simpli�ed versionpresented here, this theorem is as follows. 39



Theorem 3.2.1 Let f P Bs2,2 unknown of regularity index s unknown too, and assume thatthe known Fourier 
oeÆ
ients of g satisfyD pCmin, Cmaxq �k P Z Cmin|ℓ|�ν ¤ |γℓ| ¤ Cmax|ℓ|�ν. (3.8)The thresholding estimator f̂Hn des
ribed in[9℄ is 
onsistent andsup
fPPBs

2,2

Rpf̂Hn , fq � O

�
n

�2s
2s�2ν�1 log

2s
2s�2ν�1

	
.The former estimator is based on a Hard Thresholding te
hnique and is adaptive to theunknown regularity s of f, this adaptivity is obtained by the use of wavelet de
omposition.The main property of su
h multi-resolution analysis is that Meyer wavelets are band limitedin Fourier analysis. Thus, our estimator is obtained through a preliminary estimation of allFourier 
oeÆ
ients of f whi
h are next plugged into the Meyer basis, we then obtain a bestapproximation of f.At last, we also remark that the 
onvergen
e rate n �2s

2s�2ν�1 obtained in Theorem3.2.1 is
lassi
al in statisti
al de
onvolution regression when the 
urves are the realisation of f Æ g
orrupted by a white noise :�j P t1 . . . nu �x P r0; 1s dYjpxq � f Æ gpxqdx� ǫdWjpxq.It is quite natural to obtain similar 
onvergen
e rates sin
e we use the same inversion of 
onvo-lution operator in (3.7) as a preliminary estimation whi
h is plugged in the 
omputation of theMeyer wavelet 
oeÆ
ients.
Minimax rate of convergence In non parametri
 statisti
s, a standard method to measurethe eÆ
ien
y of an estimation method is to 
ompute a lower bound of estimation and one expe
tsthat this lower bound mat
hes asymptoti
ally the upper bound rea
hed by the estimator. Thislower bound is des
ribed through the Minimax rate of 
onvergen
e when one uses n observationsto 
ompute an estimation in a 
lass of fun
tion F . We then de�ne

RnpFq � inf
f̂n

sup
fPF Rpf̂n, fq,where f̂n explores all possible measurable fun
tions of the data. Hen
e, RnpFq represents thebest a
hievable rate for the worst fun
tion to estimate in the 
lass F .Usually, the 
omputation of lower bounds is mu
h harder than the study of the upper boundof the risk with a suitable estimator. One is attempted to study a Likelihood ratio between twohypothesis whi
h must be far enough from a metri
 point of view (with L2 norm for instan
e)and rather near from a statisti
al point of view. One should refer to three 
lassi
al methods toobtain su
h results. The most popular one is 
ertainly the use of Fano's Lemma (introdu
edin [Ibragimov and Has 1minski��, 1981℄), but sometimes other methods su
h as Assouad's Lemmaor Le Cam's method are more tra
table. In [9℄, we ta
kle the problem of the lower bound for

RnpFq when F is Besov spa
eBs2,2 using Assouad's Lemma whi
h is written below. One shouldrefer to [Tsybakov, 2003℄ for a large des
ription of several variations around this lemma.
Lemma 3.2.1 (Assouad’s Lemma ([Bretagnolle and Huber, 1979])) Let be given a setof fun
tions pfθqθPΘ whi
h forms a 
ube Θ �  

θ � pθ1, . . . θdq P t�1ud(. We denote Λpfθ 1 , fθqthe likelihood ratio for n observations. Assume that for any 
ouple of hypotheses pfθ, fθ 1qsu
h that }θ� θ 1}0 � 1, the likelihood is bounded by
PY1,...Yn pΛpfθ 1 , fθq ¥ βq ¥ 1� α,40



for a suitable β ¡ 0 and α P p0, 1q, theninf
θ̂PΘ sup

θPΘ Rpfθ̂, fθq ¥ d

2
p1� αqpτ^ 1q.This lemma tradu
es the amount of diÆ
ulty to �nd the good fθ when two hypotheses arestatisti
ally 
losed ea
h others (greater than β ¡ 0) with a probability far enough from 0.If one expe
ts a simple use of su
h Lemma when observations are 
oming from a dire
t
onvolution of f with g, there still exists a lot of work to extend the use of su
h Lemma to themodel (3.6). We give in[9℄ a pre
ise meaning to the likelihood ratio between two hypothesesfor the model (3.6) using a 
onditional argument 
oupled with the Girsanov formula/ For anymeasurable ψ of the data Y , we 
an write

EY�fθrψpYqs � » 1
0

gpαqEY�fθrψpYq|τ � αqsdα � » 1
0

EY�f0rψpYqexf�α
θ
,dYy�}f}2{2|τ � αqsgpαqdα.There exists an intri
ate way to simplify this expression : if one 
onsiders the null hypothesis f0(vanishing f), the law of Y under this null hypothesis does not depend on the random shifts αthus

EY�fθrψpYqs � EY�f0 �ψpYq » 1
0

exf�α
θ
,dYy�}fθ}2{2qgpαqdα� .The likelihood ratio between the two hypotheses pfθ, fθ 1q is thus de�ned as

EY�fθrψpYqs � EY�fθ 1 �������ψpYq ³1
0
exf�α

θ
,dYy�}fθ |2{2qgpαqdα³1

0
exf�α

θ 1 ,dYy�}fθ 1 }2{2qgpαqdαlooooooooooooooooomooooooooooooooooon
:�Λpfθ,fθ 1 q

������� . (3.9)We obtain in[9℄ a lower bound of Λpfθ, fθ 1q in probability for a parti
ular 
ase of 
ube whi
hbelongs to Bs2,2, and the following result holds.
Theorem 3.2.2 Let A ¡ 0 and Fourier 
oeÆ
ients of g satisfy3.8). If ν ¡ 1{2 and s ¡
2ν� 1, there exists C that only depends on A and s su
h that

RnpBs2,2pAqq ¥ Cn� 2s
2s�2ν�1 when nÑ �8.This result shows that the upper bound obtained using an inverse problem point of view isoptimal when nÑ �8 up to a logarithmi
 fa
tor. Hen
e, the model (3.6) should be 
onsideredas an inverse problem with a known noisy operator (that 
omes from the random translationwhose law g is known). From a te
hni
al point of view, the lower bound is obtained using third'sorder Taylor expansion in the likelihood ratio and 
on
entration results su
h as Bernstein'sinequality.At last, remark that Fano's Lemma may also be used instead of Assoud's Lemma even if itsusage does not seem shorter to obtain a 
onvenient lower bound. Indeed, starting from (3.9),the Kullba
k-Leibler divergen
e between fθ and fθ 1 may be written as

KLpfθ, fθ 1q � EY�fθ log rΛpfθ, fθ 1qs .In the dire
t 
onvolution situation, the simplest model is written as�i P t1 . . . nu �x P I d~Yipxq � f Æ gpxqdx� ǫdWipxq,41



and the Kullba
k divergen
e may be simpli�ed as�KLpfθ, fθ 1q � EY�fθ log � ~Λpfθ, fθ 1q� ,where ~Λpfθ, fθ 1q � expfθ�fθ 1qÆg,dYy�}fθ 1Æg}2{2�}fθÆg}2{2.In our random shift framework (3.6), the algebrai
 simpli�
ation ! Logarithmi
 - Exponential "is impossible owing to the likelihood ratio formula given by (3.9). It is yet possible to use Jensen'sinequality whi
h yields
KLpfθ, fθ 1q ¤ log �EY�fθ ³1

0
exf�α

θ
,dYy�}fθ|2{2qgpαqdα³1

0
exf�α

θ 1 ,dYy�}fθ 1 }2{2qgpαqdα� .But indeed, dealing with this last term is then equivalent to handle a modi�
ation of Assouad'sLemma !
Remark 3.2.1 Even if our upper bound te
hnique is rather 
lassi
al, this is not the 
asefor the result 
on
erning the lower bound : the key argument is the identi�
ation of someelements in F su
h that the law of Y is independent from the hidden parameters (herethe random shifts). Su
h a strategy should 
ertainly enable to fa
e some very di�erentproblems of lower bound 
omputation following the strategy of invariant hypothesis to thehidden parameters of the model.
3.2.2 Random deformation through Lie group actionIt is possible to des
ribe a natural generalization of the equation (3.6) when deformationsare mu
h 
omplex and model geometri
al transformations su
h as rotations, translations, . . . indimension larger thant 1. This framework 
an have an interest for biomedi
al imaging 
ensoredusing Radon transform, or in roboti
s when a robot take several photos of the same s
ene butwith small variations in the pose of the 
amera regarding its theoreti
al position.In [8℄, we propose a model whi
h des
ribes su
h generalization : denote G a Lie group oftransformations, 
ompa
t and semi-simple. We are interested in the estimation of f P L

2pGqwhi
h denotes the Hilbert spa
e of 
omplex valued, square integrable fun
tions on the group Gwith respe
t to the Haar measure dg in the following deformable model�i P t1 . . . nu �g P G dYipgq � fpτ�1i .gqdg� ǫdWipgq o�u pτiqiPt1...nui.i.d. � h.(3.10)Again, h is the known law of deformations whi
h a
t on G. Indeed, one 
an use the sameformalism as above following a spe
tral analysis of the problem. Owing to the 
ompa
tnessof G Peter-Weyl produ
es for any element of L
2pGq a Fourier expansion parametrised by theirredu
ible representations of G whi
h are 
ountable. A Fourier re
onstru
tion formula is thenstill valid L

2 �g P G fpgq �
π̧PĜdπTr pπpgqcπpfqq ,where Ĝ denotes the set of irredu
ible representations of G, dπ is the dimension of the repre-sentation π, and cπpfq is the squared matrix whi
h plays the same role as standard Fourier
oeÆ
ients of f for the eigenve
tor π of the Lapla
e Beltrami operator on G with eigenvalue λπ.As a 
onsequen
e, 
ompute an estimation of f is again equivalent to �nd a suitable way toapproa
h Fourier 
oeÆ
ients on low frequen
y of f, and threshold the largest ones. To obtain42



a suitable frequen
ies-thresholding , an assumption on the regularity ν of h is ne
essary whenthe asymptoti
 de
reasing power s of Fourier 
oeÆ
ients of f is known 
onnue. Let us denote�π P Ĝ pcπpfq � 1

n

ņ

j�1 cπpYjqcπphq�1,we build the following estimator f̂Tn with the thresholds that omit some large frequen
ies π :
f̂Tn � ¸

πPĜT

dπTr pπpgq pcπpfqq .Sin
e the frequen
y is quantify by the eigenvalue of π, ĜT is naturally introdu
ed as the setof representations whose eigenvalue λπ e is lower than T . Moreover, we 
an also use the gene-ralisation of Sobolev spa
es using the above Harmoni
 analysis if we de�ne for any A ¡ 0 theset
HspAq � $&%f P L

2pGq | }f}22 �
π̧PĜ λsπdπ}cπpfq}2 ¤ A,.- .Standard methods of Fourier analysis enable to produ
e an eÆ
ient way to threshold frequen
ieswhen s is known and f P HspAq. This yields the following theorem.

Theorem 3.2.3 Assume h known with regularityν and f P HspAq where s is known andsu
h thats ¡ dimpGq{2. Then, for Tn � n 2
2s�2ν�dimG , there exists K1 ¥ 0 that satis�eslim sup

nÑ�8 sup
fPHspAqn 2s

2s�2ν�dimGRpf̂Tnn , fq ¤ K1.It is still possible to study the likelihood ratios in a similar way as it was already done in(3.9) and then obtain a lower bound for the minimax risk.
Theorem 3.2.4 Assume h with regularity ν and s ¡ 2ν � dimpGq, therefore there exists
K2 ¥ 0 su
h that lim inf

nÑ�8 inf
f̂PL2pGq sup

fPHspAqn 2s
2s�2ν�dimGRpf̂Tnn , fq ¥ K2.

Remark 3.2.2 One should remark that Theorem 3.2.3 is weaker than the upper boundgiven by Theorem3.2.1. Indeed, we only obtain a non adaptive estimator in Theorem3.2.3 sin
e s is assumed to be known. This is due to the Fourier thresholding althoughwe rea
hed adaptivity in Theorem 3.2.1 using wavelet expansions. It would be possibleto obtain an adaptive estimator for the model (3.10) using the so-
alled [Lepski, 1991℄method, whi
h possesses a very simple prin
iple but with an extensive 
omputational 
ostin pra
ti
e.
3.2.3 Finite horizon approachThe former mathemati
al studies only provide answers in an asymptoti
 setting for defor-mable models. It is however possible to give study this model when the number of 
urves nremains �xed. In[12℄, we still study the model :�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx� τjqdx� ǫdWjpxq o�upτjqjPt1...nui.i.d. � g, (3.11)43



and the quadrati
 risk keeping an extensive use of Fourier analysis. When k is �xed, we pro
eedto a preliminary estimation of ckpfq with simple empiri
al mean of pθj,kqj�1...n. We then usesome �ltering method through positive �lters pλkqkPZ in order to 
ompute θ̂pλq. More pre
isely,�k P Z θ̂pλqk � λk

γk

1

n

ņ

j�1θj,k.The quadrati
 risk of estimation may then be de
omposed in
Rpfθ̂pλq, fq �

ķPZpλk � 1q2|ckpfq|2looooooooooomooooooooooon
Biais

� ǫ2
n
ķPZ λ2k|γk|2looooomooooon
V1

� 1

n
ķPZ �λ2k|ckpfq|2� 1|γk|2 � 1
�looooooooooooooooooomooooooooooooooooooon

V2

.The bias term is standard but the varian
e term not sin
e it is 
omposed of two terms : the�rst one 
omes from the white noise model in inverse problems and the se
ond tradu
es thee�e
t of the random translations : we divide (3.7) by γk instead of the theoreti
al unobserved~γk � 1
n

°n
j�1 e�i2πkτj to re
over ckpfq whi
h yields an additional varian
e term.In fa
t, |ckpfq|2 is unknown an also R thus it is not possible to optimize the 
hoi
e of λ toobtain a 
orre
t inferen
e on f. However, it is possible to build an estimation |Θ̂k|2 of |ckpfq|2 andthen follow the Unbiased Risk Estimation) in our framework. We �rst de�ne for any α P r0; 1s

UαpY, λq �
ķPZpλ2k � 2λkq|γk|�2|Θ̂k|2 � ǫ2

n
ķPZ λ2k|γk|�2 � α log2 n

n
ķPZ λ2k|γk|�4|Θ̂k|2.If we 
onsider the restri
tive 
lass of symmetri
 and monotones in |k| �lters :

Λmon :� #
λ � pλkqkPZ : λk � λ�k,

ķPZ λ2k   �8, 1 ¥ λ0 ¥ . . . ¥ λm ¥ . . . ¥ 0+ ,it is possible to 
ompute the ! optimal " �lters
λ̂α � arg min

λPΛmon

UαpY, λq.This optimal �lter θ̂pλ̂αq then satis�es an ora
le inequality a

ording to the next Theorem.
Theorem 3.2.5 Assume that Fourier 
oeÆ
ients of g satisfy the property (3.8), then thereexists γ1 P p0, 1q su
h that for all γ P p0, γ1q,
Eθ}θ̂pλ̂αq � c.pfq}2 ¤ p1� hγ,nq inf

λPΛmon

�
Rpfθ̂pλq, fq � α log2 n

n
ķPZ λ2k|γk|�2|ckpfq|2�� Γγ,n,ǫ2pcpfq, αqwhere hγ,n Ñ 0 when γ Ñ 0 and n Ñ �8, and Γγ,n,ǫ2pcpfq, αq is an expli
it fun
tion ofpγ,n, ǫ2q and pcpfq, αq.The des
ription of the map Γ is rather te
hni
al and we refer to [12℄ for more details. Thisfun
tion Γ possesses essentially two kinds of terms : one term has a de
reasing property of order

ǫ2{n and the other one of order log2 n{n. One sould also note that α tradu
es a balan
e in theSignal to Noise Ratio (see the numeri
al study in [12℄) and should be 
hosen near 0 for large ǫand in the opposite 
ase quite large when the SNR in
reases.44



3.3 Deformable model with unknown deformation law

3.3.1 StatementsParagraphs of Se
tion 3.2 des
ribed some result on the estimation of f when the law ofdeformations is known for problems su
h as (3.6) or (3.10) and 
on
erning the asymptoti

nÑ �8 and when the noise level ǫ is a �xed parameter. In some 
ases, the knowledge of g maybe satisfa
tory sin
e in some image pro
essing problems, some 
alibration of 
ensor may be doneto estimate g before real measurements on the dataset. This may be the 
ase for instan
e if one
onsiders tomographi
 images obtained through Randon transform if one de
ides to estimate
g on preliminary patients. This may also be the 
ase for the 
alibration of a 
amera whi
h ismoving around a theoreti
al position. However, this framework may not be suitable for otherpra
ti
al examples when we do not have any 
ontrol on a prepro
essing step. Hen
e, some worksshould also be developed in the 
ase where g is unknown to estimate f.We 
an number at least two motivations for this study. We may be interested in the estima-tion of the way data are generated and thus we would make some des
riptive statisti
s in su
hmodels. We may also try to �nd the deformation parameters whi
h are unobserved and thenobtain an estimation of the signal f himself. Loosely speaking, if one observes�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx� τjqdx� ǫdWjpxq o�upτjqjPt1...nui.i.d. � g,the simplest method to 
ompute f should 
onsider an estimation pro
edure of the deformationparameters pτ̂jqjPt1...nu, and then invert these deformations τ̂j on ea
h signal Yj in order toestimate f by a simple empiri
al mean :

f̂np.q � 1

n

ņ

j�1Yjp.� τ̂jq. (3.12)In the sequel, we are interested by the two following questions :{ Is it possible to re
over the deformation parameters ?{ Is it possible to re
over f without any knowledge on g ?
Remark 3.3.1 One should pre
ise that our asymptoti
 study is not 
on
erned by thesemi-parametri
 problem when 
urves pYiqiPt1...nu are observed on a grid whi
h may moreand more a

urate. One should refer to several re
ent works of [Gamboa et al., 2007b℄,[Bigot et al., 2009℄ and [Vimond, 2010℄) in this isssue. Remark that formally, make anasymptoti
 study when the sampling frequen
y of the grid is growing is equivalent to anasymptoti
 study where ǫÑ 0 in model (3.6).
3.3.2 Frechet mean to estimate fOne may 
onsider a global non parametri
 estimation of f using Fr�e
het mean of randomvariables Z1, . . . , Zn whi
h do not belong to a ve
torial spa
e V . This fa
t is 
onsistent with theremark that Z,Z 1 may be 
onsidered as identi
al in our model if one 
an �nd a transformationin a group H whi
h send exa
tly Z on Z 1. In [Fre
het, 1948℄, the eu
lidean mean is extended togeneral metri
 spa
es through an impli
it 
riterion : 
onsider a distan
e d de�ned on a manifold
M, the Fr�e
het mean of n observations pZiqiPt1...nu of M is given by

ẐFn � arg min
ZPM 1

n

ņ

m�1d2pZ,Zmq.45



In our framework of randomly shifted 
urves, H � R is the group of translation a
ting on
f P L2pr0, 1sq by

τ � fpxq � fpx� τq, for x P r0, 1s and τ P H.Let be given n observations Y1, . . . , Yn through (3.6), the Fr�e
het mean under the a
tion of His then
f̂Fn � arg min

fPL2pr0,1sq 1n ņ

m�1 min
τmPR� » 10 |fpxq � Ympx� τmq|2dx.If one 
onsiders the Fourier 
oeÆ
ients of the data (denoted θm,ℓ at frequen
e ℓ for observation

m), and if we use ℓ0 as a threshold frequen
y, the estimation pθ̂kq�ℓ0¤k¤ℓ0 is thenpθ̂�ℓ0 , . . . , θ̂ℓ0q � arg minpθ�ℓ0
,...,θℓ0 qPR2ℓ0�1

1

n

ņ

m�1 min
τmPR ¸|ℓ|¤ℓ0 |θm,ℓe2iℓπτm � θℓ|2. (3.13)Thus, Fr�e
het mean is then obtained by Fourier re
onstru
tion f̂Fn,ℓ0pxq � °|ℓ|¤ℓ0 θ̂ℓe�2iℓπx. Atlast, remark that (3.13) possesses an expli
it solution θ̂ℓ � 1

n

°n
m�1 θm,ℓe2iℓπτ̂m , and thuspτ̂1, . . . , τ̂nq � arg minpτ1,...,τnqPRn

1

n

ņ

m�1 ¸|ℓ|¤ℓ0 �����θm,ℓe2iℓπτm � 1

n

ņ

q�1 θq,ℓe2iℓπτq �����2loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
:�Mnpτ1,...τnq . (3.14)To sum up, the Fr�e
het mean 
omputation is equivalent to the minimisation of the 
riterionde�ned in equation (3.14), whi
h may be solved by a gradient des
ent algorithm.

3.3.3 Estimation of the parameter of deformationsRemind that (3.6) is equivalent in the Fourier basis to
θm,ℓ � cℓpfqe�i2πℓτ�m � ǫzℓ,m, ℓ P Z for m � 1, . . . , n, (3.15)where zℓ,m are i.i.d. NC p0, 1q and τ�m,m � 1, . . . , n are the true translation parameters sampledwith the unknown law g. Problem (3.15) is 
learly not uniquely identi�able sin
e for any τ0 P R,one may 
onsider θℓei2πℓτ0 instead of θℓ and τ�m � τ0 instead of τ�m without any modi�
ation ofthe data. We thus introdu
e the two following identi�ability 
onditions :

Assumption 6 (Hg) g is 
entered and 
ompa
tly supported by T � r� 1
4 ,
1
4 s.

Assumption 7 (Hf) f is su
h that c1pfq � 0.From assumption pHgq, we restri
t our estimations to a set of n empiri
ally 
entered para-meters (τ̂1, . . . , τ̂nq. We thus introdu
e
T n � tpτ1, . . . , τnq P T n tels que ņ

m�1 τm � 0u,where the frequen
y threshold ℓ0 remains �xed. We then look at τ � pτ1, . . . , τnq P T n whi
hoptimises Mnpτq sin
e this is the only requirement to build the Fr�e
het mean f̂Fn. One 
an thenexpe
t to re
over the deformation parameters.46



Theorem 3.3.1 Assume that pHgq and pHfq are in for
e, and de�ne
τ̂ � arg min

τPT n

Mnpτq.For any t ¡ 0, one has
P

�
1

n

ņ

m�2pτ̂m � τ�mq2 ¥ Cpf, ℓ0, ǫ, n, t, gq� ¤ 3 expp�tq, (3.16)where Cpf, ℓ0, ǫ, n, t, gq � 4max �C1pf, ℓ0q�aC2pǫ, n, ℓ0, tq � C2pǫ, n, ℓ0, tq	 , C3pt, n, gq�. Notethat C1pf, ℓ0q is a non negative 
onstant that only depends on f and the threshold ℓ0, while
C2pǫ, n, ℓ0, tq � ǫ2p2ℓ0 � 1q � 2ǫ2
2ℓ0 � 1

n
t� 2ǫ2

n
t,and

C3pt, n, gq � �

2ǫ2g

t

n
� t

12n

�2 o�u ǫ2g � »
T

τ2gpτqdτ.Theorem 3.3.1 provides then an upper bound in probability to the a

ura
y of the estimationof deformation parameters τ̂ 
omparing to the true ones τ�m,m � 2, . . . , n. The minimum of
Mnpτq is 
omputed on T n, thus τ̂1 � �°n

m�2 τ̂m. Hen
e, when n Ñ �8, Cpf, ℓ0, ǫ, n, t, gqwhi
h is used in (3.16) 
onverges towards 4C1pf, ℓ0q �ǫ2p2ℓ0 � 1q � ǫ?2ℓ0 � 1� and we 
annotobtain with this bound a 
onsistent estimation. Indeed limnÑ�8 1
n

°n
m�2pτ̂m � τ�mq2 � 0 inprobability seems impossible and (3.16) rather suggests that there exists C ¡ 0 su
h that

1
n

°n
m�2pτ̂m � τ�mq2 ¡ Cǫ2p2ℓ0 � 1q with a positivie probability. Thus, the a

ura
y of τ̂ shoulddepend on the noise level ǫ2 and the threshold ℓ0.

3.3.4 Lower bound of reconstructionEn supposant que f est de 
lasse C1pr0, 1sq, il est possible de donner une borne inf�erieurede re
onstru
tion des param�etres de d�eformation qui dit en substan
e que (3.16) est presqueoptimale et que si le niveau du bruit ǫ est maintenu 
onstant, alors il n'est pas possible d'estimerles pτ�mqm�1...n même en r�ep�etant les observations (n ÞÑ �8). Plus pr�e
is�ement, on suppose
Assumption 8 (H̃g) The unknown law g is 
ompa
tly supported on T with lim

τÑinf T gpτq �lim
τÑsupT

gpτq � 0.
Assumption 9 (H̃f) f satis�es }f 1}22 � °

ℓPZp2πℓq2|cℓpfq|2   �8.It is then possible to show the following result.
Theorem 3.3.2 Let X � pθm,ℓqℓPZ,m�1,...,n be the set of Fourier 
oeÆ
ients observed in
X � ℓ2pZqbn and denote τ̂n � τ̂npXq P X any measurable fun
tion of X. Assume that p~Hfqand p~Hgq hold, then we have

E

�
1

n

ņ

m�1pτ̂nm � τ�mq2� ¥ ǫ2}f 1}22 � ǫ2Ipgq ,where Ipgq is the Fisher information
Ipgq � »

T

� BBτ log gpτq
2 gpτqdτ.47



The proof of Theorem 3.3.2 uses a van Trees inequality whi
h 
an be viewed as a BayesianCramer-Rao inequality bay�esienne. When n Ñ �8, E
�
1
n

°n
m�1pτ̂nm � τ�mq2� 
annot 
onvergeto 0 and it explains the upper bound obtained by Theorem 3.3.1. Note also that it is possibleto weaken the assumption f P C1pr0, 1sq by 
onsidering estimators τ̂n,ℓ0 built from θm,ℓ for

m � 1, . . . , n et |ℓ| ¤ ℓ0 in model (3.15). In this 
ase, the lower bound is then
E

�
1

n

ņ

m�1pτ̂n,ℓ0m � τ�mq2� ¥ ǫ2°|ℓ|¤ℓ0p2πℓq2|θℓ|2 � ǫ2 ³T � BBτ log gpτq�2 gpτqdτ.
3.3.5 Mean pattern recognition with deformable modelsThe Fr�e
het mean approa
h des
ribed above may be extended to the 
ase of images whi
hare 
orrupted by general deformations that belong to a Lie group. We des
ribe in [11℄ a mo-del of elasti
 deformations whi
h are 
oming from 
ows of di�eomorphism des
ribed by (3.3).If we 
onsider the set of grey levelled images de�ned on Ω � R

2, a pattern I is just an ap-pli
ation I : Ω ÞÝÑ R. We aim to interpret our Fr�e
het mean as a simple M-estimator (seefor instan
e[Van der Waart, 1998℄ for further details on these estimators) based on a spe
ial
ontrast.First, we propose to use a parametrisation of di�eomorphisms using the approa
h developedby [Trouv�e and Younes, 2005℄ for homogeneous ve
tor �elds in equation (3.3). Without lossof generality, we �x Ω � r0, 1s2 and impose a parametri
 stru
ture on v : r0, 1s2 ÞÑ R
2 thatsatis�es vBr0,1s2 � 0. Hen
e, if pe1, . . . eKq is a �nite family of basis fun
tions from r0; 1s2 to R

2,vanishing on Br0, 1s2, we obtain a random ve
tor �eld va by a simple generation of 2K 
oeÆ
ientspa11, . . . a1Kq � pa21, . . . a2Kq for whi
h #
v1a � °K

j�1 a1j e1k
v2a � °K

j�1 a2j e2kLet be given va, a random di�eomorphism is then obtained using simply solution at time 1of (3.3) whi
h will be denoted Φ1va . Su
h 
onstru
tion 
an be extended to a random imagedeformable model. If PA is a 
ompa
tly supported law in r�A,As with A ¡ 0 and if K denotesany positive integer, we de�ne our model of randomly warped image as�p P r0, 1s2 Iǫ,a � I� �Φ1vappq � ǫppq, (3.17)where ǫ is an additive noise independent from the 
oeÆ
ients a � Pb2KA . We 
onsider now
n realisations sampled independently of (3.17) whi
h are denoted Iǫi,ai . VA will be the set ofrea
hable ve
tor �elds with 
oeÆ
ients that live in r�A,As2K . For a given image Z de�ned onr0, 1s2, the following 
ontrast fun
tion fpa, ǫ, Zq uses a pixel dis
retisation P of r0, 1s2 :

fpa, ǫ, Zq � min
vPVA |Iǫ,a � Z �Φ1v|2P .Hen
e, f 
orresponds to the minimal ℓ2pPq 
ost when Z is mat
hed on Iǫ,a using VA. The mean
ontrast fun
tion is then

FpZq � »
fpa, ǫ, ZqdbPpa, ǫq,and the Fr�e
het intrinse
 mean Iǫ,a is Q� � arg minZPZ FpZq. If Pn denotes the empiri
al measureof the data, it is also possible to de�ne the empiri
al 
ontrast by

FnpZq � »
fpa, ǫ, ZqdPnpa, ǫq � 1

n

ņ

j�1 min
vjPVA |Iǫj,aj � Z �Φ1vj |2P . (3.18)48



The Fr�e
het mean of the data as the minimizer Q̂n � arg minZPZ FnpZq. The main advantageis that one 
an 
ompute Q̂n although Q� is intra
table sin
e the law of the deformation isunknown.Of 
ourse, some minimization pro
edure su
h as equation (3.18) may yield very di�erentestimators from I� and the 
ontrast Fn should be regularized. In [11℄, we then add to Fn apenalisation term that aims to 
ontrol the smoothness of Z as well as the amount of deformationwhi
h is allowed to warp images. It is then possible to obtain a.s. 
onvergen
e properties of theseFr�e
het mean Q̂n towards Q�.One should remark that we do not know at on
e if I� belongs to Q�, thus our methodprovides only a very partial answer on this model.
3.4 Numerical results

3.4.1 Randomly shifted curve modelWe �rst provide few numeri
al experiments on the problem re
overing f when data are issuedfrom the random shift model. Four test fun
tions f are studied ( see Figures 3.5(a)-3.8(a)) andwe observe n � 200 noisy and randomly shifted 
urves using a Lapla
e law whose density isgiven by gpxq � 1?
2σ

exp��?2 |x|
σ

	 with σ � 0.1. A sub-sample of 10 
urves are given in Figures3.5(b)- 3.8(b) for ea
h mean pattern. At last, we provide a result of simple averaging for theestimation of f in Figures 3.5(
)- 3.8(
). We immediately remark the poor performan
e whi
hbuild estimate the 
onvolution by g and is far from being satisfa
tory.Fourier 
oeÆ
ients of g are given by γℓ � 1
1�2σ2π2ℓ2 , whi
h 
orresponds to an order ofinverse problem ν � 2. In Figures 3.5(d)(e) -3.8(d)(e), we provide the estimation of f using ourinverse problem point of view : two thresholding methods are tested f̂Hn and are des
ribed inparagraph 3.2.1 (these two methods are mu
h more detailed in [9℄). At last, the estimationsobtained without the knowledge of g are given in Figures 3.5(f) -3.8(f) using the Fr�e
het meandes
ribed in paragraph 3.3.2 (estimation f̂Fn). We immediately remark the eÆ
ien
y of the twolast methods, espe
ially the one even when g is unknown and when one should approa
h itsFourier 
oeÆ
ient.
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(f)Figure 3.5 { Fun
tion "Wave". (a) True fun
tion f, (b) Sample of 10 
urves among n � 200,(
) Empiri
al mean, De
onvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�e
het mean49
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(f)Figure 3.6 { Fun
tion HeaviSine. (a) True fun
tion f, (b) Sample of 10 
urves among n � 200,(
) Empiri
al mean, De
onvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�e
het mean
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(f)Figure 3.7 { Fun
tion Blo
ks. (a) True fun
tion f, (b) Sample of 10 
urves among n � 200, (
)Empiri
al mean, De
onvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�e
het mean
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(f)Figure 3.8 { Fun
tion Bumps. (a) True fun
tion f, (b) Sample of 10 
urves among n � 200,(
) Empiri
al mean, De
onvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�e
het mean
3.4.2 Fréchet mean of imagesWe provide now some numeri
al experiments on the approa
h des
ribed in paragraph 3.3.5.For the 
lassi
al Lena image, Figure 3.9 illustrates some deformations enabled by the model of50



di�erential 
ow of di�eomorphisms where ak are uniformly sampled on r�A,As. The amountof deformation is de�ned through the size of A and the use B-spline enables to lo
alise thedeformation e�e
ts.
Figure 3.9 { Random deformation of Lena with A � 0.1 et A � 0.5.At last, we show the warping result using Fr�e
het means 
oupled with the a
tion of di�eo-morphisms 
ows and 
ompare to the eu
lidean mean on two famous dataset : the Mnist oneof handwritten digits (see Figure 3.10 for the e�e
t of the algorithm [11℄ on digit "2") and theOlivetti fa
es one (see Figure 3.11 for some examples of fa
es warping).
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25Figure 3.10 { Empiri
al mean (bottom left), �rst iteration mean Zp1qÆ and third one Zp3q of thealgorithm des
ribed in [11℄.Our method also permits to develop a 
lustering algorithm for warped images. We refer to[11℄ for further details on these experiments.
3.5 Further developments

3.5.1 Shape constrained regressionThe estimator of 
onstrained monotone regression appears to be really eÆ
ient regardingother estimators found on this topi
. It would be useful to develop a software for a largerdi�usion.Moreover, one may wonder if a similar approa
h using di�eomorphisms derived from ve
-tor �elds may be extended to the 
ase of 
onvex or 
on
ave regression whi
h is another shape
onstrained regression problem whi
h is 
ommonly en
ountered in some pra
ti
al problems.This may have some interests in �nan
e [Ait-Sahalia and Duarte, 2003℄ for sto
k-options pri-
ing, in e
onoi
s [Allon et al., 2007℄ where the supply and demand are supposed 
on
ave fun
-tions, or in biology [Ratkowsky, 1983℄, in respone surfa
e estimation for optimisation tasks51
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110Figure 3.11 { Examples of Fr�e
het mean obtained on 3 fa
es of the Olivetti database. Firstline : empiri
al mean, se
ond line : Fr�e
het mean.[Ho�mann et al., 2006℄ . . . If the estimation should be 
onsidered on R
d, it would be 
onvenientto 
onsider a time evolution initialized with φ0pxq � |x|2 and dφt

dt
� vtpφtq where vt wouldpreserve the 
onvexity all along the time evolution.At last, from a theoreti
al point of view, the 
onvergen
e obtained in Theorem 3.1.2 may
ertainly re�ned. Indeed, we prove in [10℄ only a 
onvergen
e in probability of an estimator pvn,λt qto the optimal theoreti
al ve
tor �eld vt by M-estimation te
hniques. We should 
onsider nowsome more pre
ise results of M-estimation for in�nite dimensional obje
ts following Donsker
lasses results (see for instan
e[van der Vaart and Wellner, 1996℄). Their main interest wouldbe to obtain statisti
al testing pro
edures for shape hypothesis.

3.5.2 Bayesian estimation with unknown operatorIn order to simplify the problem, I will limit this paragraph to the randomly shifted 
urvesmodel given by (3.6) :�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx� τjqdx� ǫdWjpxq o�upτjqjPt1...nui.i.d. � g,where g is unknown. We have seen in Theorem 3.3.2 that we 
annot re
over the deformationparameters τj without any asymptoti
 assumption on the noise level ǫÑ 0, whi
h signi�
antlyharms the 
han
e of 
onsisten
y pro
edures as Fr�e
het mean estimation of f des
ribed by (3.13)and (3.14). However, it does not seem impossible to approa
h f without any individual defor-mation parameter estimation, using in this view a Bayesian point of view.This is for instan
e the approa
h used in [Allassoni�ere et al., 2007℄ and [Allassoni�ere et al., 2009℄where the unknown law g is assumed des
ribed by several parameters whi
h are estimatedby Bayesian statisti
s. Note that their work does not assert the statisti
al 
onsisten
y when
n Ñ �8 although it would be a very interesting and instru
tive problem for a generalizationto non parametri
 family of law g.Indeed, if one refers to pioneered works of[Ibragimov and Has 1minski��, 1981, Le Cam, 1973℄on Bayesian 
onsisten
y, there is some suÆ
ient 
onditions to ensure su
h asymptoti
 goodbehaviour. Roughly speaking, and in a parametri
 setting at start, assume pX1, . . . Xnq to be52



i.i.d. realisations of Pθ0 where θ0 P Θ � R
d is unknown, Bayesian estimator of θ0 depends on aprior q whi
h is a probabilisti
 distribution of Θ. Assume moreover that ea
h pPθqθPΘ possessessome density ppθqθPΘ with respe
t to a 
ommon referen
e measure on X (spa
e where ea
h Xiis living), Bayesian estimator is then de�ned as

θ̂Bn � arg min
θPΘ »

Θ

Lpu� θqpθpX1, . . . , Xnqqpuqdu,where L is a loss fun
tion, vanishing at 0Rd (indeed Lpxq � |x|p for any p ¡ 0 is the typi
al 
ase).The striking Theorem 5.2 of 
hapter 1 in [Ibragimov and Has 1minski��, 1981℄ asserts 
onsisten
yprovided the likelihood ratios between two hypothesis is suÆ
iently regular when θ varies,be
omes small when θ is far from θ0 and the prior q is a 
ontinuous stri
tly positive densityon Θ. Moreover, one should note that this is the smoothness of this likelihood ratio arount θ0whi
h des
ribes the 
onvergen
e rate of θ̂Bn : the more 
at is the likelihood ratio, the less rateare fasts. This smoothness on likelihood ratio may be des
ribed by separability 
onditions onHellinger distan
es or Kullba
k-Leibler divergen
es 1. At last, this Bayesian estimator may beinterpreted as a spe
ial 
ase of perturbed Lapla
e method for integrals where the main modeof integrands is 
onvergent and the posterior distribution of θ given pX1, . . . Xnq be
omes aGaussian distribution whose varian
e depends on the Fisher information at θ0 divided by the
onvergen
e rate (?n usually) : these results are des
ribed by Bernstein-von Mises Theorem(des
ribed in [Le Cam, 1973℄ or [Van der Waart, 1998℄).In a non parametri
 framework, the situation seems more intri
ate. Some re
ent advan
esextend the parametri
 results of [Le Cam, 1973℄ and [Ibragimov and Has 1minski��, 1981℄ on pos-terior distributions using some 
overing arguments and uniform lower bound of Hellinger dis-tan
es related to other distan
e intrinsi
 distan
e on Θ. We may 
ite, among a large amount oflitterature, the works of [Ghosal et al., 2008, Ghosal, 2000, Rousseau, 2010℄. The main idea isto 
onstru
t growing sieves with n and entropy 
ontrols.Of 
ourse in our model (3.6), the additional problem already present in the frequentistapproa
h, is still here sin
e observations depend on the hidden parameters pτiqi�1...n sampledfollowing g. If one 
onsider the simplest 
ase of estimating only one Fourier 
oeÆ
ient θ0 of f,the observations are given by �i P t1 . . . nu θi � e2iπτiθ0 � ǫi.If q denotes a prior on Θ and r a prior on the L1pS1q (spa
e of density on the one dimensionalsphere parametrised by e2iπτ), it is possible to model a Bayesian estimation problem for pθ0, gq :pθ̂Bn, ĝBnq � arg min
θPΘ,gPL1pS1q »Θ�L1pS1q Lpu� θ; v� gqpθ,gpX1, . . . XnqIu,vpX1, . . . , Xnqdqpuqdrpvqwhere Iu,vpX1, . . . , Xnq is the likelihood ratio with given priors q, r. Some method to fa
e thisin�nite mixture problem may adapt the approa
h of [Rousseau, 2010℄ (for instan
e).A �rst step to obtain good behaviour of the Bayesian posterior and estimators should beto establish suÆ
ients 
ondition that ensure identi�ability of the model, both for the unknown

f and the unknown density g. Su
h result 
ould be obtained using the link between the totalvariation distan
e between dVT pPf,g,P~f,~gq and the Lapla
e transform Lpg � ~gq and the Fourierexpansion of f and ~f. Next, it is ne
essary to bound from above the 
overing numbers of thelaw Pf,g with respe
t to the Hellinger distan
e (or Kullba
k Leibler or total variation distan
e)but this may not be derived from a "standard" inequality between these distan
es and somedistan
e on f, ~f, g, ~g. It is thus ne
essary to work on the in�nite mixture of Gaussian laws.1. Indeed, only Kullba
k-Leibler divergen
e is ne
essary, whi
h is a slightly weaker 
ondition.53



3.5.3 Randomly shifted Poissonian noiseIn [16℄, we extend our asymptoti
 study on randomly shifted 
urves 
orrupted with a whitenoise to the 
ase where observations are issued from a 
ounting pro
ess whi
h is modelledby a Poisson pro
ess whose inhomogeneous intensity λ is unknown and should be estimated.Observations are then obtained with several 
ounting pro
esses de�ned on r0, 1s N1, . . . Nn withintensities λp. � τ1q, . . . , λp. � τnq. Of 
ourse, pτiqi�1...n are i.i.d. observations sampled with gwhi
h is assumed to be known at the moment. Su
h model may des
ribe a random phenomenonobserved on Chip-Seq datasets. We prove in [16℄ that one may re
over λ with some 
onvergen
erate similar to the one obtained in the white noise model. More pre
isely, we obtain the followingtheorem.
Theorem 3.5.1 Assume g known and that satis�es the inverse problem order ν hypothesis(3.8), we de�ne moreover

Λ0 � !
λ P L2pr0, 1sq; λptq ¥ 0 pour tout t P r0, 1s) .Let A ¡ 0 and assume that λ has a smoothness parameter s su
h that s ¡ 2ν � 1. Hen
e,there exists C0 ¡ 0 (independent of n) su
h that for n suÆ
iently largeinf
λ̂n

sup
λPBs

2,2
pAq�Λ0

Rpλ̂n, λq ¥ C0n� 2s
2s�2ν�1 ,where the minimum is 
omputed over all estimators λ̂n P Λ0 (i.e. measurable fun
tions ofpro
esses Ni, i � 1, . . . , n with values in Λ0).The proof of this lower bound is again dependent on a pre
ise 
ontrol of the likelihood ratiobetween hypothesis λ and λ � h 
oupled with an Assouad's like lemma. This likelihood ratiomay be written using a Girsanov formula for Poisson pro
esses using again a ! null "hypothesis,whi
h is an hypothesis invariant by any random shift. Here, the null hypothesis 
orresponds toa 
onstant intensity ρ de�ned on r0, 1s. If pλ1, λ2q are two intensities su
h that λ1 ¥ ρ ¡ 0 and

λ2 ¥ ρ ¡ 0, and for an observed 
ounting pro
ess N, the likelihood is
Λpλ1, λ2qpNq � » 1

0

exp �� » 1
0

µ1pt� αqdt� » 1
0

log�1� µ1pt� αq
ρ



dNt

�
gpαqdαq» 1

0

exp �� » 1
0

µ2pt� αqdt� » 1
0

log�1� µ2pt� αq
ρ



dNt

�
gpαqdαqwhere µ1 � λ1 � ρ and µ2 � λ2 � ρ.Finally, we propose an adaptive estimator λ̂hn based on hard thresholding methods whi
h isasymptoti
ally optimal up to a logarithmi
 term O

�� logn
n

	 2s
2s�2ν�1


. This estimator is pre
iselydes
ribed in[16℄.At last, we should note that su
h model seems to be the good statisti
al framework for Chip-Seq data whi
h are 
ounting pro
esses 
ensored with some rigid geographi
al deformation e�e
tson the DNA. Hen
e, experimenters a
tually use some warping pro
edures before analysing thedata. The kind of estimator we propose 
ould then deal automati
ally with su
h problem.
3.5.4 Statistical testing problemsAt last, it would be of interest to extensively use the likelihood ratio stru
ture presentedabove to build statisti
al tests on the hypothesis : two sampled 
urves follow the same randomly54



shifted white noise model or not. This may be possible following the last works on these models,and maybe 
ould be extended to a Poissonian noise instead of Gaussian one. A �rst su

essfulapproa
h would 
ertainly exploits the work of [Fromont et al., 2011℄ whi
h studies an almostidenti
al question in a simpler 
ase studied.
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Chapitre 4

Non reversible optimisation
algorithmsIn this 
hapter, I will detail my works derived from the following dynami
al system9xt � �1

t

» t
0

∇Upxuqdu,where U is a real potential de�ned on R
d and 
oher
ive for large value of x : lim|x|ÞÑ�8Upxq ��8. Remind �rs that su
h di�erential equation 
omes from a numeri
al modi�
ation des
ribedin paragraph 1.4 where one aims to �nd minimum of U. Without loss of generality, we willassume that minRd U ¡ 0, and U is at least C2pRdq and 
onvex suÆ
iently far from ORd

1 :lim inf
xÑ8 xx,∇Upxqy ¡ 0.Moreover, the minimum of U is assumed to be lo
ated at point 0 : Up0q � minU.

4.1 Gradient descent with memory model

4.1.1 Physical interpretationLet be given h and k two smooth non negative and in
reasing fun
tions, we 
onsider theordinary di�erential equation on R
d9xt � � 1

kptq » t0 hpuq∇Upxuqdu. (4.1)A parti
ular natural 
ase will be k � ³
h for large times t. Using a simple 
hange of variables

t ÞÑ τptq, it is possible to 
onvert (4.1) to a se
ond order di�erential equation.
Proposition 4.1.1 Let τ solution of 9τ �a

kpτq{hpτq and x solution of the memory gradientdes
ent (4.1), then z � x � τ is solution of:zpsq � γpsq 9zpsq �∇Upzpsqq � 0, (4.2)where a is a damping fun
tion given by γpsq � � 9kh�k 9h
2h3{2k1{2	 � τpsq.1. We will des
ribe su
h 
ondition as a mean-reverting property for the di�erential equation (4.1)57



Fun
tion γ des
ribes the amount of damping in a dynami
al system of an heavy ball whi
h isrolling on a graph of potential U, and submitted to a fri
tion additional for
e. For some spe
ial
ase of fun
tions h and k, we re
over some parti
ular 
ase of the so-
alled dynami
al systemHeavy Ball with Fri
tion and (4.1) is thus its natural generalization.From this short physi
al des
ription, we 
an expe
t the dynami
al system (4.2) to rea
hstable 
riti
al points of U and maybe the amount of inertia of the ball enables the traje
tory to
ross some lo
al maxima, whi
h is impossible for standard gradient des
ent.First, it is possible to assert the stability of traje
tories of o.d.e. (4.2) using quite standardLyapunov fun
tion E des
ribed below as soon as U satis�es an 
onvex-type at in�nity 
ondition.
4.1.2 Behaviour of the dynamical system (4.2), convex caseWe assume that U satis�es a generalization of 
onvexity des
ribed by the following 
ondition 2 :pH1Uq : Dθ ¡ 0 �x P R

d Upxq �Up0q ¤ θx∇Upxq, xy.
Influence of damping γ The damping e�e
t of γ is important and should be understoodas follows : if γ de
reases fast to 0, the traje
tory (4.2) then possesses an in�nite number ofos
illations that 
annot be insigni�
ant sin
e the dynami
al system seems to be almost des
ribedby :x�ω2∇Ux � 0. This phenomenon is des
ribed by the next result.
Proposition 4.1.2 Let us denote Eptq � Upxptqq � 9xptq2

2 , then 9Eptq � �γptq| 9xptq|2 and solu-tions of (4.2) are de�ned and bounded on R�. Moreover,�t ¡ 0 Eptq �minU ¥ pEp0q �minpUqqe� ³t0 γpsqds.Hen
e, even if U is 
onvex, if γ P L
1pR�q the traje
tory 
annot 
onverge.The last proposition yields us 
onsider some damping e�e
t γ R L

1pR�q and it is possible togive a suÆ
ient 
ondition for 
onvergen
e of pUpxtqqt¥0.
Proposition 4.1.3 Assume that pH1Uq is true.

iq If γ is a smooth C1 and non in
reasing fun
tion, then» �8
0

γpsqrEpsq �minUsds   �8.
iiq Moreover, if ³�8

0
γpsqds � �8 (slow vanishing damping 
ase), then lim Eptq � minU.

iiiq If there exists m ¡ 0 su
h that γptq ¥ m{t for t large enough, then
Epsq �minpUq � o� 1

taptq
 .
ivq At last, assume arg minpUq � t0u, then the traje
tory 
onverges.Remark that this last property does not provide some 
onvergen
e result of the traje
toryitself, this might not be the 
ase when arg minU is an open set of Rd. In su
h situation, it ispossible to provide an almost minimal hypothesis.2. This 
ondition holds as soon as U is 
onvex with θ � 1 for instan
e.58



Theorem 4.1.1 Assume that d � 1 and U satis�es pH1Uq with rα,βs � arg minU. If γ issu
h that Dk   1 » �8
0

e�k ³s0 γpuqduds   8,then the traje
tory solution of (4.2) 
onverges. Oppositely, if γ satis�es» �8
0

e� ³s0 γpuqduds � 8,the traje
tory does not 
onverge, ex
ept in trivial 
ases of initialisation in arg minpUq.It is also possible to show a similar result for larger dimensions, su
h details are omitted hereowing to their rather te
hni
al prerequisite des
ribed in [13℄. The key assumption to assert
onvergen
e or not of the traje
tory is the 
ondition ³�8
0

e� ³s0 γpuqduds � 8. At last, we shouldremark from a te
hni
al point of view that the proof depends on a Lyapunov fun
tion whi
henables to 
ontrol both position and speed of the traje
tory, su
h 
ontrol is not possible withfun
tion E as pointed by Proposition 4.1.2). This new Lyapunov fun
tion uses E and someadditional 
rossed term between position and speed. Su
h use of 
rossing term is quite 
lassi
alwhen one 
onsiders dissipative system (see some results in [Haraux, 1991℄ for instan
e). Theseadditional terms have also been intensively used in works on hypo
oer
ive P.D.E. or probabilisti
models.
4.1.3 Behaviour of the dynamical system (4.2), non convex caseWe address the typi
al generi
 situation where U satis�es the following assumption.p~HUq : U possesses a �nite number of m 
riti
al points su
h that Upx1q   Upx2q � � �   UpxmqUnder this last hypothesis, when γ R L

1pR�q, it is possible to show a 
onvergen
e result onthe traje
tory (whi
h is slightly weaker than a 
lassi
al 
onvergen
e) for the multi-dimensional
ase.
Theorem 4.1.2 Assume that p~HUq holds, then there exists a unique xi su
h that�ε ¡ 0 lim

TÑ�8 1T |tt ¤ T |xptq � xi| ¡ εu| � 0.This ergodi
 result may be written aslim
TÑ8 1T » T

0

xptqdt � xi.For the very spe
ial 
ase of dimension 1, it is possible to rea
h a stronger result but its proof isvery spe
i�
 to the one dimensional 
ase (it 
onsists in 
onsidering the lengths of time invervalswhere | 9xptq| ¡ 0).
Theorem 4.1.3 Assume that all 
riti
al points of U are non degenerated, i.e. U"pxiq � 0and suppose that γ is lower bounded as follows γptq ¥ c

1�t o�u c ¡ 0. Then
iq For any initialisation point, solutions of (4.2) satisfy limtÑ8 xptq � xÆ exists andbelongs to tx1, . . . xmu.
iiq If T denotes the set of time 
hanges of 9x, then|T | � �8 ðñ xÆis a lo
al minimum of U.
iiiq The set of initialisation points su
h that xÆ is a lo
al minimum is open and densein R. 59



Hen
e, we do not have obtained satisfa
tory result on the 
onvergen
e towards the globalminimum of U, it was thus quite natural to be interested by some noisy perturbation of thedynami
al system (4.1).
4.2 Memory average gradient diffusion

4.2.1 Average diffusion modelWe des
ribe in this paragraph a natural generalization of (4.1) when the dynami
al systemis 
orrupted by a standard Brownian motion. We still 
onsider two in
reasing maps h and kwhi
h are non negatives. If σ is an invertible squared 
ovarian
e matrix of size d and pBtqt¥0a d-dimensional Brownian motion, the dynami
al system is then des
ribed by the followingsto
hasti
 di�erential equation
dXt � � 1

kptq �» t0 hpuq∇UpXuqdu
dt� σdWt, (4.3)We de�ne pYtqt¥0 the instantaneous drift of pXtq,
Yt � 1

kptq » t0 hpsq∇UpXsqds,and we remark that dYt � ph{kqptqp∇UpXtq�Ytqdt. Hen
e, (4.3) is a kineti
 di�erential system
2d-dimensional, it is also an inhomogeneou Markov pro
ess des
ribed by :#

dXt � σpXtqdWt � Ytdt.
dYt � rptqp∇UpXtq � Ytqdt, (4.4)where rptq � h

k ptq is C1.In the sequel, I will only dis
uss on the 
ase h � 9k even if it is also possible to extendsome of these results to more general memory 
ases. It is easy to 
he
k that pXt, Yt, tqt¥0 is anhomogeneous Markov pro
ess whose generator A a
ts on f P C2KpRd � R
d � R�q following :

Afpx, y, tq � �xy,∇xfy � rptqx∇Upxq � y,∇yfy � 1

2
Tr�σ�pxqD2xfpx, yqσpxq	 � Btf. (4.5)We will assume that U satis�es the assumption pHUq given by :

Assumption 10 (HU) lim|x|Ñ�8Upxq � �8 lim inf|x|Ñ�8xx,∇Upxqy ¡ 0, Tr �σ�D2Uσ� ¤ CU.This assumption is true for a wide 
lass of potentials U : for instan
e Upxq �8 C1|x|p with
D2Upxq �8 C2|x|p�2 sati�es pHUq as soon as }σpxq} � Op|x|q. This is also the 
ase for weakerin
reasing U : Upxq �8 C1 ln |x| and D2Upxq �8 C2|x|�2 with }σpxq} � Op1� |x|q also satis�espHUq.
Proposition 4.2.1 Assume that pHUq holds, then there exists a unique strong solutionof (4.4). Moreover, if pX0, Y0q is su
h that ErUpX0q � |Y0|2s   �8, then for any T ¡ 0sup

tPr0,T sErUpXtq � |Yt|2s   �8.60



The proof relies on a 
ontrol within a �nite time of traje
tories and uses a Gronwall Lemma onthe 
lassi
al Lyapunov fun
tion de�ned as :
Epx, y, tq � Upxq � |y|2

2rptq . (4.6)We will study in the sequel the regularity of the semi-group asso
iated to pXt, Yt, tqt¥0 as wellas the 
onvergen
e to steady regime (when one steady regime exists). For sake of simpli
ity, wewill note z0 � px0, y0q P R
d �R

d the initialisation point (random or not) of the di�usion.
4.2.2 Hypo-ellipticityThe random pro
ess (4.4) is totally degenerated on 
oordinate Y, thus existen
e of densityand regularity properties of Ptpz0, .q is not so 
lear. We next provide two important results inorder to obtain irredu
ibility of the Markov pro
ess 3.
Existence and regularity of the density with respect to the Lebesgue measure The�rst result 
on
erns the existen
e of density with respe
t to the Lebesgue measure and uses theset EU de�ned as

EU � !
x P R

d, det�D2Upxq	 � 0), et MU � R
dzEU. (4.7)We then assume that :

Assumption 11 (HHypo) σ and U are C8 and there exists ε0 ¡ 0 su
h that σσ� ¥ ε0Id,(uniform ellipti
ity of σ over R
d). Moreover, the manifold MU is su
h that dimpMUq ¤

d� 1.The ve
tor �elds that 
orrespond to the di�usion part and the drift part in (4.4) are
Lσpxqpfq � 1

2

ḑ

j�1x∇xpσjqpxq, σjpxqpfqy.where �j P t1 . . . du : σjpxq � ḑ

i�1σijpxqBxi . (4.8)and
LDpt, x, yq � �xy,∇xy � rptqx∇Upxq � y,∇yy.

Proposition 4.2.2 Assume that pHHypoq holds, then for any z0 P R
d � R

d and any t ¡ 0,
Ptpz0, .q is absolutely 
ontinuous w.r.t. the Lebesgue measure on R

d � R
d. Moreover, forany t ¡ 0 and z0 P R

d � R
d, z ÞÑ ptpz0, zq is C8 over R

d � R
d where ptpz0, .q is the densityof Ptpz0, .q.This proposition uses the fa
t that the dimension of the Lie algebra spanned by Bt � pLD �

Lσq, σ1, . . . , σd is 2d� 1 under assumption pHHypoq, it is thus possible to use H�ormander theo-rem. This proposition does not give any result on the smoothness of pz0, zq ÞÑ ptpz0, zq, thisappli
ation should 
ertainly be 
ontinuous if one assume moreover that ve
tor �elds possess atthe most polynomial growth and this question 
ould be ta
kled using Malliavin 
al
ulus or Har-na
k inequality (see for instan
e[Hairer, 2011℄ or [Pas
u

i and Polidoro, 2006℄) but this pointhas been get rounded and still remains open sin
e I have note studied this question.3. Irredu
ibility is espe
ially important when the pro
ess is homogeneous in order to obtain uniqueness ofinvariant measures. 61



Minoration of ptpz0, .q Positiveness of ptpz0, .q (de�ned in the paragraph above) is indeedrather di�erent from the use H�ormander 
ondition to obtain smooth density w.r.t. Lebesguemeasure. In fa
t, a minoration of ptpz0, zq tradu
es that a suÆ
ient amount of traje
tories of(4.4) starting at point z0 
an rea
h neighbourhoods of z. It is thus a problem of 
ontrol fortraje
tories de�ned by the following di�erential system (4.9).# 9xptq � σpxptqqϕptq � yptq.9yptq � rptqp∇Upxptqq � yptqqdt, (4.9)Controllability of su
h di�erential system will be dis
ussed in detail in the last se
tion ofthis 
hapter, but this 
ontrollability is already important here. It is 
lear that starting fromany z0 of Rd � R
d, one 
an rea
h any arbitrary point on 
oordinate x, but this is largely more
ompli
ated on the 
oordinate y sin
e the 
ontrol ϕ only a
ts on xptq and not on yptq. Indeed,we should 
onsider the initial problem and remark that yptq 
an still be written as

yptq � y0 � 1

kptq » t0 9kpsq∇Upxpsqq. (4.10)Hen
e, if ∇U is bounded, y 
annot exit from Bpy0, }∇U}8q and equation (4.10) naturally stimu-lates us to assume that ∇U is surje
tive inRd. Following su
h idea, we then obtain the followingresult.
Proposition 4.2.3 Assume that pHHypoq is true and that lim|x|Ñ�8 Upxq|x| � �8, then the twofollowing points are satis�ed.(i) For any T ¡ 0 and z0 P R

d � R
d, if O � R

d � R
d is an arbitrary open set, then

PT pz0,Oq ¡ 0. Hen
e, for allz0 P R
2d, pT pz0, .q is λ2d- a.s. positive and there exists at themost a unique invariant measure for pXt, Ytqt¥0 when rptq ÞÝÑ r8 P p0;�8q.(ii) Assume r to be a positive 
onstant and that there exists a minimum x� of U su
h that

D2Upx�q is invertible, then if we denote z� � px�, 0q, one 
an �nd T ¡ 0 su
h that for any
ompa
t K of R2d, one 
an �nd νK ¡ 0 and αpT, Kq ¡ 0 su
h that�z0 P K, PT pz0, .q ¥ αpT, Kqλ2dp.X Bpz�, νKqq.The �rst point uses the 
ontrollability of the di�erential system (4.9) and the Fen
hel-Legendre transform of U : if lim|x|Ñ�8 Upxq|x| � �8, for any v in R
d, the map Fvpxq � xv, xy�Upxqhas a maximumand thus ∇U is surje
tive. In order to rea
h any open set O of R

d � R
d, wethen build a traje
tory in three parts : the �rst one bring x to xpηq, the se
ond part remains
onstant in 
oordinate x between η and T�η then the last part bring the traje
tory into ΠxpOq.Of 
ourse, we must �nd xpηq so that the time spent between η and T � η on this point enables

ypT � ηq to rea
h ΠypOq. Su
h point xpηq exists owing to the surje
tivity of ∇U. This strategypermits to show the approa
hed 
ontrollability of the di�erential system (4.9).The se
ond point is 
ru
ial in order to show that 
ompa
t sets are petite sets for the appli-
ation of Meyn and Tweedie estimates. The proof relies on a stronger result on the 
ontrolledsystem (4.9) whi
h stands for the exa
t small 
ontrollability around the equilibrium z�. Thisis ensured by the non degenera
y of D2Upx�q whi
h implies the full rank Kalman 
onditionfor the linearised system around z� (one may �nd further details in[Coron, 2007℄ for instan
e).This last 
ondition should be repla
ed by any other suÆ
ient 
onditions whi
h implies the exa
tlo
al 
ontrollability near z�. This 
ontrollability result is then suÆ
ient to obtain enough massaround z� to obtain lower bound on pt following the argument of[Delarue and Menozzi, 2010℄.62



4.2.3 Steady regimes (r8 ¡ 0)
Short range memory We des
ribe in this part some results on the asymptoti
 behaviour ofpXt, Ytq when the memory (des
ribed by appli
ation t ÞÑ rptq) is not too long. Su
h situation isidenti�ed through the limit behaviour of r at �8. Su
h steady regime 
orresponds to rptq ÞÝÑ
r8 Ps0,�8s. We thus assume the following hypothesis on r.
Assumption 12 (Hr) The map r possesses a non negative limit r8 when t ÞÝÑ �8 (where r8 � �8 is admissible). Moreover, we assume that r varies slow enough near �8 :lim

t ÞÑ�8 r 1ptqr2ptq � 0.This last assumption is en
ountered in the two following situations :{ kptq � exppλtq and rptq � r8 � λ thus pXzt, Yzt qt¥0 is homogeneous Markov.{ kptq � expptαq with α ¡ 1 and in this 
ase r8 � limtÑ�8 rptq � �8.
Lyapunov function The stability of the pro
ess is guaranteed as soon as ∇U possesses en-ough repelling for
e to imply a tightness property. This is tradu
ed by the following somewhatte
hni
al hypothesis.
Assumption 13 (H̃U) There exists m P p0, r8q and ε P p0, r8 �mq su
h thatlim sup|x|Ñ�8 ��mxx,∇Upxqy � 1

2
Tr�σ�pxqpD2Upxq � pm� εqIdqσpxq	
 � �8.(H̃U) is stronger thatn assumption (H̃U) but is not too restri
tive. If σ is independent from

x, (H̃U) holds for potentials Upxq �|x|Ñ�8 |x|q as soon as q ¡ 0 and it is even true when
Upxq �|x|ÞÑ�8 lnp|x| � 1qβ with β ¡ 1 . σ may also vary, but it should not be too large when
x ÞÑ 8 :{ For polynomial growth of U : Upxq �|x|Ñ�8 |x|q with q ¡ 0, this assumption is true for}σpxqσ�pxq} � op|x|q^2q and |x| Ñ �8.{ For logarithmi
 growth of U : Upxq �|x|Ñ�8 lnp|x| � 1qβ with β ¡ 1, this assumption istrue if }σpxqσ�pxq} � oplnp|x| � 1qβ�1q when |x| Ñ �8.The key point is now to build a Lyapunov fun
tion whi
h permits to 
ontrol the dynami
alsystem both on 
oordinate x and y. One should remark that the former 
lassi
al fun
tion Ede�ned by Epx, y, tq � Upxq � |y|2

2rptq does not satisfy su
h requirements sin
e only 
oordinate yis bounded :
AEpx, y, tq � �y2�1� r 1ptq

2r2ptq
� 1
2
Tr

�
σ�pxqD2Upxqσpxq	 .However, it is possible to slightly modify this fun
tion by the addition of a 
rossed term ! po-sition - speed "to obtain also information on 
oordinate x. For a given 
ouple pmε, εq des
ribedin (H̃U), we de�ne

Vpx, y, tq � Upxq � |y|2
2rptq �mε

� |x|2
2

� xx, yy
ρptq 


, (4.11)where ρ is a real fun
tion solution of the o.d.e.
ρptq � �» �8

t

kptq
kpsqds
�1

.Fun
tion V des
ribes a real repelling for
e on 
oordinates x and y sin
e for t large enough
AVpx, y, tq ¤ �C1xx,∇Upxqy � 1

2
Tr

�
σ�pxqD2Upxqσpxq	 �C2|y|2.63



Occupation measures For z0 P R
d � R

d, we 
onsider the two family of o

upation mea-sures pνz0t pω,dx, dyqqt¥1 and pµz0t pdx, dyqqt¥1 de�ned as follows : for any bounded measurable
ontinuous f : Rd � R
d Ñ R, we denote :

ν
z0
t pω, fq � 1

t

» t
0

fpXz0s , Yz0s qds,and
µ
z0
t pfq � 1

t

» t
0

ErfpXz0s , Yz0s qsds � Erνz0t pω, fqs.It is possible to show ergodi
ity of pµz0t qt¥0 :
Theorem 4.2.1 Assume that (H̃U) and (Hr) hold with r8 P R

�� Y t�8u, for any z0 �P
R
d �R

d, pµz0t qt¥1 is tight. If µ8 denotes any a

umulation point of pµztqt¥1 when tÑ �8,one has(i) If r8 � �8, the �rst marginal (on 
oordinate x) of µ8 is an invariant measure ofthe Kolmogorov pro
ess
dXt � �∇UpXtqdt� σpXtqdBt.(ii) If rptq tÑ�8ÝÝÝÝÑ r8   �8, µ8 is an invariant distribution of the homogeneous Markovpro
ess solution of (4.4) with rptq � r8, �t ¥ 0.It is also possible to obtain a 
onvergen
e result on the random o

upation measures pνz0t pω,dx, dyqqt¥1under the following slightly stronger hypothesis.

Assumption 14 (ȞU) There exists a P p0, 1s, β P R and α ¡ 0 su
h thatpiq � xx,∇Upxqy ¤ β� α�Upxq _ |x|2	a ,�x P R
dpiiq p1� Trpσσ�qpxqq�1� |∇Upxq|2

Upxq � }D2Upxq} � |||D3Upxq|||
 |x|Ñ�8� oppUpxq _ |x|2qaq.Under su
h 
ondition, it is possible to show similar results on pνz0t pω,dx, dyqqt¥1 whi
h aredes
ribed in [15℄.
Stationary measures and convergence rates It is possible to des
ribe the nature of theequilibrium of the pro
ess pXt, Ytq in the 
ase0   r8   �8.
Proposition 4.2.4 Assume that pHrq, pHHypoq and (H̃U) are true and suppose that rptq �
r8 P R

��. If lim|x|Ñ�8 Upxq|x| � �8, then there exists a unique invariant measure ν su
h that{ (i) ν is absolutely 
ontinuous w.r.t. the Lebesgue measure, with density pr8 whi
h is
C8pRd � R

d,R�q. Moreover, pr8 is the unique probability measure solution ofxy,∇xpr8y � 1

2
Tr�σ�D2xpr8σq	� r8 rxy�∇Upxq,∇ypr8y � pr8s � 0. (4.12){ (ii) If d � 1, Upxq � x2{2 and σpxq � σ ¡ 0 �x P R, and rptq � r8 Ps0;�8r, then pr8is a Gaussian measure 
entered with 
ovarian
e matrix

Σ2pr8q � σ2

2

�
r8�1
r8 1

1 1

�
.64



Remark 4.2.1 The situation is quite simple when r8 � �8 sin
e Theorem 4.2.1 showsthat the limiting behaviour of the memory di�usion is similar to the Kolmogorov one,but when r8 P p0,�8q the limiting invariant measure is non standard sin
e even in theGaussian 
ase, the density pr8 is a twisted Gaussian. The more r8 is near 0, the morelonger is the memory whi
h leads to an explosive varian
e of pr8. In the general 
ase, theP.D.E. satis�ed by pr8 does not seem to possess expli
it solutions.At last, it is possible to des
ribe 
onvergen
e rate results of Ptpz0, .q when tÑ �8.In the homogeneous 
ase rptq � r8, it is possible to use the approa
h of [Down et al., 1995℄.
Theorem 4.2.2 Assume that r is homogeneous : rptq � r8 ¡ 0 and that hypo-ellipti
assumptions of proposition 4.2.3, ii) are true. If U satis�es (ȞU) for some a P p0, 1s, thenfor any p ¥ 1 and t ¥ 0 :suptf,|f|¤1u |Pr8t pz0, fq � νpfq| ¤ Ca,p,r8Vp8pz0q#expp�γp,r8tq if a � 1

t�p�a�1
1�a if a P p0, 1q.where z � px, yq, V8 is a positive fun
tion de�ned as V8pzq � Upxq� r8

2

���x� y
r8 ���2, γp,r8 and

Ca,p,r8 are expli
it non negarive 
onstants that does not depend on z0 and t.Remark that it is also possible to give some 
onvergen
e rates when r8 � �8 using some
oupling argument to the di�usion dXt � �∇UpXtqdt�σpXtqdBt. Further details may be foundin [15℄.
4.2.4 Explosion (r8 � 0)When the memory fun
tion r satis�es limt ÞÑ�8 rptq � r8 � 0, we have a long memory inthe pro
ess. Su
h typi
al 
ase is kptq � p1 � tqα for any α ¡ 0 or when kptq � ep1�tqα with
0   α   1.
Under-quadratic potential We have obtained a quite pre
ise result in the under-quadrati

ase of potential U. This result is summarized in the following theorem.
Theorem 4.2.3 Assume that there exists C su
h that |∇U|2 ¤ Cp1 � Uq and λ0 ¡ 0 forwhi
h Trpσ�D2Uσqpxq ¥ λ0 ¡ 0. If r8 � 0 and for t large enough r 1ptq� 2r2ptq ¥ 0, then forany z0 lim sup

tÑ�8 rptqEr|Xz0t |2s ¡ 0.Moreover, there exists a sequen
e ptnqn¥1 su
h that Er|Xz0tn|2s Ñ �8.This theorem may be applied for instan
e when the weighting memory is uniform all alongthe traje
tory before t : Yt � 1
1�t ³t0∇UpXsqds. Hen
e, to obtain a stable pro
ess with a longrange memory, it is ne
essary to redu
e the volatility of the random dynami
al system. Thisphenomenon may be explained by the analogy with the phisi
al interpretation of the HBFmodel. More details are given in the introdu
tion of [15℄.65



Quadratic potential It is also possible to obtain a very pre
ise behaviour when U is quadra-ti
. If one 
onsiders the result of proposition 4.2.4 iiq, we may remark that when r8 ÞÑ 0, the
ovarian
e matrix be
omes ! in�nite "on 
oordinate x. Sin
e pXt, Ytqt¥0 is a Gaussian pro
ess, ifthere exists an invariant measure, this latter one should also be Gaussian, whi
h yields �nallya non existen
e result.Moreover, we assume Upxq � x2{2, d � 1 and that the memory is polynomial : kptq � p1�tqα(thus rptq � α{p1�tq). All information is given in fptq � ErX2t s, gptq � ErY2t s and hptq � ErXtYts.Itô's formula shows that pSq$''''&''''% f 1ptq� 1� 2hptq
g 1ptq� 2rptqrhptq � gptqs
h 1ptq��gptq � rptqrfptq � hptqs.We then obtain the following theorem.

Theorem 4.2.4 Assume d � 1, Upxq � x2{2 and kptq � p1� tqα with α ¡ 1{2, one has :i) For any z0, pXz0t , Yz0t qt¥0 is asymptoti
ally 
entered.ii) The pro
ess pXz0t , Yz0t qt¥0 satis�eslim
tÑ8EY2t � α

2α� 1, and EX2t � t

2α� 1 when tÑ �8.iii) �

2α� 1
t

Xt,



2α� 1
α

Yt

�
Lùñ N p0, I2q when tÑ �8.

4.3 Particular case of kinetic Fokker-Planck evolutions

4.3.1 ModelWhen we have thought about average di�usion (4.4), we were mainly interested in propertiesthat may naturally be used for optimization appli
ations. Thus, the main questions of �rstinterest for su
h appli
ations are behaviour of invariant measures with small parameters, andthe nature of the evolution of the norm }Pt�µ8}L2pµ8qý when t goes to �8. It is important towell estimate the 
onstants whi
h des
ribe the exponential 
onvergen
es to equilibrium in orderto obtain the best simulated annealing as possible. Results des
ribed in [15℄ are in some sensequite unsatisfa
tory sin
e we only have results in total variation norm and 
onstants may not beso good for su
h parti
ular kineti
 equation. In [19℄, we study a situation whi
h is more known :the kineti
 Fokker-Plan
k evolution. Su
h equations are de�ned through the semi-group pPtqt¥0givent by #
dXt � σpVtqdt.
dVt � �∇UpVtq � adWt,

(4.13)where a is a non negative parameter and Wt a standard Brownian motion. Even if there doesnot exists a linear 
hange of variables whi
h permits to dedu
e results on (4.4) from (4.13) 4,these equations are quite similar, at least from a visual point of view. It was thus natural to
onsider the 
omputation of the norms}Pt � µ8}L2pµaqý where µa is the stationary measure ofFokker-Plan
k kineti
 semi-group(4.13) whi
h is expli
it here (
ontrary to the one of (4.4)).4. In the Gaussian 
ase, one 
an write (4.4) using a di�erent parametrisation to obtain dXt � Ytdt and
dYt � �pXt � Ytqdt� dWt 66



4.3.2 Norm computation L2pµaqý for U � 0.In [19℄, we provide some exa
t results for the norm L
2pµaqý when 
onsidering the Fokker-Plan
k kineti
 semi-group in very parti
ular 
ases.The �rst toy model is redu
ed to the state spa
e T � R for the "position � speed" where

T :� R{p2πZq. Let be given any a ¡ 0, the operator of interest is
La � yBx � aB2y � yBy, (4.14)whi
h is a parti
ular 
ase of(4.13) when U � 0 and the position lives in a 
ompa
t set. It isquite easy to see that Ppaqt 
onverges towards µa � λ b γa where λ is the uniform law on Tand gammaa is the Gaussian distribution 
entered with varian
e a. After some quite te
hni
aldevelopments, it is possible to 
ompute the evolution of the norm.

Theorem 4.3.1 For any a ¡ 0 and t ¥ 0, we have}Ppaqt � µa}L2pµaqý � max�expp�tq, exp ��a�t� 21� expp�tq
1� expp�tq
�
 , (4.15)where }.}L2pµaqý is the operator norm in L

2pµaq.The proof relies on a natural de
omposition of the generator La on a basis of L2pµaq obtainedby a tensor produ
t of trigonometri
 polynomials in 
oordinate x and Hermite polynomials in
oordinate y. We then identify some in�nite dimensional orthogonal subspa
es whi
h are stableby La, denoted Vpp¥0 in this formal des
ription. La a
t on ea
h Vpp¥0 as an in�nite tri-diagonalanti-symmetri
 matrix. We should note that this is this anti-symmetry whi
h represents a seriousproblem for the 
omputation of the norm of La sin
e eigenvalues of La are no longer orthogonalin L
2pµaq.The key point whi
h permits to 
ompute both eigenvalues and eigenve
tors of La on ea
h

Vp is to de
ompose the operator in D � ca,pS � ca,pSÆ and then use the Lie algebra spannedby D,S et SÆ whi
h is three dimensional here. This important property enables the 
omplete
omputation of the spe
trum of La in this pre
ise 
ase, the eigenvalues are all reals for any valueof a, as well as all asso
iated eigenve
tors. Instead of more details on the 
omputations whi
hare extremely te
hni
als 5, let us 
omment on some numeri
al 
on
lusions brought by Theorem4.3.1.
4.3.3 Qualitative behaviour, U � 0It is above all interesting to look at the asymptoti
 behaviour of the norm 
omputed byTheorem4.3.1 for small and large times. When t ÞÑ 0�,ln�}Ppaqt � µa}L2pµa{cqý	 � � a

12
t3p1� op1qq. (4.16)This shows that the norm de
reases very slowly at the beginning of the evolution and the power3 should be 
onsidered as the �rst order of hypo-
oer
ivity of operator La. Moreover, when tgrowth to �8, � ln�}Ppaqt � µa}L2pµa{cqý	 � "

apt� 2�Ope�tqq , if a ¤ 1
t , if a ¡ 1,5. Commented as "nearby overkill" by some reader67



whi
h stands for the 
onvergen
e to equilibrium of the semi-group pPpaqt qt¥0. This bound isof 
ourse 
oherent with former bounds obtained in general studies for kineti
 Fokker-Plan
kequations but 
onstants here are expli
it. Using a s
aling argument, it is possible to dedu
efrom Theorem 4.3.1 the following 
orollary :
Corollary 4.3.1 For any a, c ¡ 0 and b P Rzt0u, we 
onsider

La,b,c :� byBx � aB2y � cyBy (4.17)whi
h admits for invariant measure µa{c, then the semi-group pPpa,b,cqt qt¥0 satis�es�t ¥ 0, }Ppa,b,cqt � µa{c}L2pµa{cqý � max�expp�ctq, exp ��ab2
c3

�
ct� 21� expp�ctq

1� expp�ctq
�
 .In parti
ular, the 
onvergen
e to equilibrium is given bylim
t ÞÑ�8�1t ln�}Ppa,b,cqt � µa{c}L2pµa{cqý	 � min�c, ab2

c2



.It is quite tempting to 
ompare this 
onvergen
e rate to the usual one obtained with the Heatkernel pQpaq

t qt¥0 on T generated by the operator Ka :� aB2x. Ka uses at ea
h time the sameamount of randomness as La,b,c (where b P R and c ¡ 0 whi
h are tuning parameters). Sin
e Kais self-adjoint in L
2pλq and admits a spe
tral gap of a, we have�t ¥ 0, }Qpaq

t � λ}L2pλqý � expp�atq.Thus, if one 
onsiders a Monte Carlo method to simulate the uniform law λ, it would be usefulto 
hoose the hypo-
oer
ive simulation pPpa,b,cqt qt¥0 instead of pQpaq
t qt¥0 with the 
hoi
e c ¡ aand b{c ¡ 1 and then proje
t the simulations on the �rst 
oordinate. Of 
ourse, this is justan example sin
e the simulation of a Brownian motion is 
learly more 
ostly than a simplesimulation of a uniform law but it shows that equilibrium 
onvergen
e rates 
an be improvedby the use of non reversible dynami
s. Works of [Dia
onis et al., 2010b℄ has already shown su
hphenomenon in a framework of se
ond order Markov 
hains.

4.3.4 Hypo-coercive Ornstein-Uhlenbeck process.We now des
ribe brie
y the results on the hypo-
oer
ive Ornstein-Uhlenbe
k pro
ess de�nedon R� R through ~La :� yBx ��axBy � B2y � yBy. (4.18)The stationary measure is still expli
it here and given by ~µa :� γ1{abγ1. We are going to studythe semi-group evolution p~Ppaqt qt¥0 in L
2p~µaq. The idea is again to 
ompute the e�e
t of ~La ona basis of L

2p~µaq obtained by the tensor produ
t of Hermite polynomials in variables x and
y. We �rst identify orthogonal subspa
es whi
h are stable by ~La and let us denote them ~Vp.On these spa
es, ~La may be de
omposed in a similar way as it was also the 
ase when U � 0,~La � ~D � ~ca,p~S � ~ca,p~SÆ on ~Vp. This enables the exa
t 
omputation of the eigenve
tors andeigenvalues of ~La on ea
h 
haque ~Vp and next on the whole spa
e L

2p~µaq. Here, the spe
trumpossesses a di�erent behaviour a

ording to the position of a with respe
t to 1/4 : if a   1{4,the spe
trum is real and ~La is diagonalisable in a non orthonormal basis of L2p~µaq. If a ¡ 1{4,the same property still holds even if the spe
trum is not real. At last, if a � 1{4, ~La is no longerdiagonalisable and has Jordan blo
ks of all order. At last, ~Ppaqt � ~µa 
an be 
omputed in L
2p~µaq.68



Theorem 4.3.2 For all a ¡ 0 and t ¥ 0, one has}~Ppaqt � ~µa}L2pµa{cqý � Captq exp��1�ap1� 4aq�
2

t

�
, (4.19)where }.}L2pµa{cqý is the operator norm in L

2p~µaq and Captq is given by{ If a P p0, 1{4q, denote θ :� ?
1� 4a and

Captq :�gfffee�θt � 1� θ2
2θ2

p1� e�θtq2 � 1� e�2θt
2

��1� 1

θ

d
1� pθ�2 � 1q�eθt � 1

eθt � 1
2�
.{ If a P p1{4,�8q, denote θ :� ?
4a� 1i and

Captq :�d
1� |eθt � 1|

2|θ|2 �|eθt � 1| �b|eθt � 1|2 � 4|θ|2
.{ If a � 1{4,
Captq :�gffe

1� t2

2
� td1��

t

2


2
.Again, if t is small enough, the de
reasing power is three (see [19℄ for pre
ise 
omputations)although when t ÞÑ �8, we get an exponential 
onvergen
e whose rate depends on the positionof a regarding 1{4. If a ¡ 1{4, the map Captq os
illates with a period Ta � 2π{?4a� 1, whi
hyields a null derivative of the 
onvergen
e rate of }~Ppaqt � ~µa} ea
h times kTa, k P N. One 
analso extend there results to the generator~La,b,c,d :� byBx � axBy � cB2y � dyByfor whi
h ~µa,b,c,d :� γbc{padq b γc{d is an invariant measure. The hypo-
oer
ivity obtained isgiven by�t ¥ 0, }~Ppa,b,c,dqt � ~µa,b,c,d}L2p~µa,b,c,dqý � Cab{d2pdtq exp��1�ap1� 4abd�2q�

2
dt

�
.As above, it is interesting to 
ompare this rate with the one obtained by the semi-groupp ~Qpa,b,c,dq

t qt¥0 whose generator is ~Ka,b,c,d :� cB2x � da
b
xBx. This generator impulses the sameamount of randomness per unit time as the hypo-
oer
ive generator ~La,b,c,d and ~Ka,b,c,d is selfadjoint for γbc{padq (whi
h is the marginal on 
oordinate x of ~µa,b,c,d). After a res
aling step,~Ka,b,c,d is an Ornstein-Ulhenbe
k generator with spe
tral gap da{b. The exponential 
onvergen
erate of p ~Qpa,b,c,dq

t qt¥0 towards γbc{padq is then da{b. Thus, if one 
hooses
a

b
  1

2

�
1�d�

1� 4ab
d2


�� ,it is still better to use an hypo-
oer
ive semi-group p~Ppa,b,c,dqt qt¥0 than the use of standardp ~Qpa,b,c,dq
t qt¥0 for the simulation of γbc{padq. Hen
e, the same 
on
lusion (as the one given in theparagraph above) still holds. 69



4.4 Average diffusion with small parameterWe now 
ome ba
k to the average gradient di�usion des
ribed by eqrefsde and fo
us onsmall perturbations of this dynami
al system. We �rst ta
kle the problem of perturbations oftraje
tories and then study the question somewhat more intri
ate of perturbations of invariantmeasures. We shall restri
t this problem to the homogeneous Markov 
ase whi
h 
orresponds tothe memory fun
tion kptq � eλt des
ribed in the paragraph above :#
dXt � εdWt � Ytdt,
dYt � λp∇UpXtq � Ytqdt. (4.20)Remind that z will refer to the 
ouple px, yq as well as pZεtqt¥0 will denote the 
oupledpro
ess pXεt , Yεt qt¥0 with a level ε of noise asso
iated to (4.20). In the sequel, we will denote by

νε the unique invariant measure of (4.20) (uniqueness is satis�ed under assumption 11 denoted
HHypo), pPεt pz, .q will be its asso
iated semi-group and at last Aε is the generator of (4.20).
4.4.1 Large deviations of finite time trajectoriesOf 
ourse, the limiting behaviour of (4.20) when εÑ 0 is strongly related to the behaviourof the deterministi
 dynami
al system obtained when ε � 0 whi
h is here# 9xptq � �yptq.9yptq � λp∇Upxptqq � yptqq. (4.21)This link between (4.20) and (4.21) will be obtained through optimal solutions of the 
ontrolledproblem already pointed for the minoration of the density ptpz0, zq. We de�ne on R

d � R
d thedrift ve
tor �eld bpzq � p�y, λr∇Upxq � ysq, the 
ontrolled problem asso
iated to (4.20) 
omesdown to study for any ϕ P H

1
0 (whi
h stands for the Cameron-Martin spa
e) the behaviour of

zϕ :� pzϕptqqt¥0 and ~zϕ :� p~zϕptqqt¥0, that satisfy9zϕ :� bpzϕq �� 9ϕ
0


 et 9~zϕ :� �bp~zϕq �� 9ϕ
0



. (4.22)Under the assumption 14 (denoted pH̃Uq in se
tion 4.2), it is possible to show non explosion of
ontrolled traje
tories within a �nite time horizon. Moreover, we establish a preliminary result ofLarge Deviation Prin
iple (L.D.P.) within �nite time, even if the di�usion is totally degeneratedon 
oordinate y.

Proposition 4.4.1 Assume that U satis�es assumption pH̃Uq, then for any z P R
d and allsequen
e pzεqε¡0 Ñ z when ε Ñ 0, the Markov pro
ess Zε � pXpεq, Ypεqq satis�es a L.D.P.on CpR�,R2dq (endowed with the uniform 
onvergen
e on 
ompa
t sets topology). The rateis ε�2 and the good rate fun
tion Iz is de�ned for any absolutely 
ontinuous fun
tion

z � pzptqqt¥0 whi
h satis�es zp0q � z by
Izpzq � 1

2
inf

ϕPH1
0
|z�zϕ

» 8
0

| �ϕpsq|2ds.In parti
ular, for all t ¥ 0 and z P R
2d, pPεt pzε, .qqε¡0 satis�es a L.D.P. with rate ε�2 andgood rate fun
tion Iz,t de�ned for all z, z 1 P R

2d by
Iz,tpz 1q � inf

zPZtpz,z 1q Izpzq (4.23)70



where Ztpz, z 1q is the set of absolutely 
ontinuous traje
tories z that leads z to z 1 in �nitetime t.The main diÆ
ulty for the proof of su
h proposition is to show a 
ontra
tion prin
iple, this isstronly related to the non explosion of 
ontrolled traje
tories. This last point is obtained using aperturbation of Gronwall's Lemma for the Lyapunov fun
tion Epx, yq � Upxq�|y|2{p2λ. Remarkthat it may be viewed as an example of extensions of S
hilder's Theorem whi
h is generalizedin [Azen
ott, 1980℄.
4.4.2 Large deviations sub-sequences of pνεqεÞÑ0The large deviation property on stationary measures pνεqεÞÑ0 next depends on several 
ondi-tions. The �rst one is an exponential tightness property on pνεqεÞÑ0. This property is obtainedby 
onsidering hitting times of 
ompa
t sets for the pro
ess pZεtqt¥0 when ε ÞÑ 0. The expe
-tation of fun
tions of hitting times are also estimate using Lyapunov fun
tions. In view of thistightness property, the standard Lyapunov fun
tion Epx, yq evoked above is not suÆ
ient andone should use a fun
tion whi
h globally 
ontrols both 
oordinates x and y in (4.20). The tri
kstill 
omes to use an appli
ation built from Vpx, yq already de�ned (4.11), more pre
isely if wedenote ~Vεpx, yq � exp�

δε�2Vppx, yq	 ,a good tuning of 
oeÆ
ients δ and p permits to obtain the following 
ontra
tion
Aε ~Vε ¤ δε�2pβ� αVpq.We 
an then dedu
e the following result.

Proposition 4.4.2 Assume that U is su
h that pH̃Uq holds, then there exists a 
ompa
t Bof R2d, su
h that the hitting time τε of B satis�es :
iq For any 
ompa
t K, lim supεÑ0 supzPK Ezrpτεq2s   8.
iiq D δ su
h that for any 
ompa
t K, lim supεÑ0 supzPK supt Ezr|Zpεqt^τε| δ

ε2 sε2   �8.
iiiq For any 
ompa
t K su
h that KX B � H, lim infεÑ0 infzPK Ezrτεs ¡ 0.We then 
an dedu
e the main result of this paragraph whi
h establishes a L.D.P. up to asub-sequen
e pεnqnPN and an Hamilton-Ja
obi equation satis�ed by the good rate fun
tion.
Theorem 4.4.1 Assume that pH̃Uq holds, then pνεqεPp0,1s is exponentially tight. Moreover,for any sub-sequen
e pεnqnPN along whi
h a L.D.P. holds 6 with rate ε�2n , the good ratefun
tion W satis�es�t ¥ 0 �z P R

d � R
d Wpzq � inf$'&'%ϕ P H

1
0

zϕp0q � z �
1

2

» t
0

| 9ϕ|2 �Wp~zϕptqq� . (4.24)This theorem provides only a partial existen
e of a L.D.P. for the sequen
e pνεqε¥0 sin
e theobtained rate fun
tions solutions of (4.24) may not be all the same. Indeed, this Hamilton-Ja
obiequation (des
ribed here in the variational form of optimal 
ontrol of dynami
al programmingprin
iple) does not present some uniqueness property of its solution, and thus we 
annot dedu
eany uniqueness property of W from (4.24). The main goal of the next paragraph is to providesuÆ
ient 
onditions to obtain a L.D.P. along all the sequen
e pνεqε¥0.6. Su
h sub-sequen
e will be refered as a LD-
onvergent sub-sequen
e71



4.4.3 Freidlin & Wentzell estimates

Equilibrium of the vector field We now assume the main hypothesis whi
h is ne
essary toobtain further results on the dynami
al system (4.4).
Assumption 15 (HD) The set of 
riti
al points of U is dis
rete (thus �nite), and theHessian of U is invertible on all these 
riti
al points.We will denote in the sequel txÆ1, . . . xÆℓ u the set of these 
riti
al points of U. The elementaryproperty whi
h permits to identify equilibriums of (4.21) whi
h uses the ve
tor �eld �b is asfollows
Proposition 4.4.3 Under the assumption pHDq,equilibriums of (4.21) are tzÆ1, . . . , zÆℓ u :�tpxÆ1, 0q, . . . , pxÆell, 0qu. The stable points are the ones for whi
h xÆi is a lo
al minimum of U.Under this assumption pHDq, it is possible to extend equation(4.24) to an in�nite horizon,hen
e the good rate fun
tion W is indeed solution of :�z P R

d � R
d Wpzq � min

1¤i¤ℓ inf$'&'%ϕ P H
1
0

zϕp0q � z, zϕp�8q � zÆi �
1

2

» t
0

| 9ϕ|2 �WpzÆi q� . (4.25)The proof of su
h equality relies on dynami
al argument of the ve
tor �eld �b : non explosionof traje
tories in in�nite horizon, 
ompa
tness of traje
tories and ω-limit sets. In parti
ular,the proof of (4.25) still does not use any uniqueness argument for W. However, the importantpoint in formula (4.25) is to remark that the fun
tion W de�ned on R
d�R

d depends ex
lusivelyon its values WpzÆi q taken in equilibrium points of �b. These values WpzÆi q are provided by theFreidlin & Wentzell estimates.
Freidlin & Wentzell theorey The idea is to exploit an expli
it representation of the in-variant measures pνεqε¥0 obtained through a skeleton 
hain built from the hitting and exitingtimes of neighbourhoods of equilibriums. We extend this due to [Has'minskii, 1980℄ (whi
h isa key poinf of the approa
h of [Freidlin and Wentzell, 1984℄), to our hypo-ellipti
 
ase using
ontrol arguments of traje
tories to ensure that the skeleton representation 
orresponds to a�nite measure proportional to νε.
Proposition 4.4.4 Let us denote ~µε the unique invariant measure of the skeleton Markov
hain that lives in Yℓi�1gi, the the measure de�ned for any Borelian set A of Rd � R

d by
µεpAq :� »Bg ~µBgε pdzqEz » τ1pBgq

0

1Zz,ε
s PAdsis an invariant measure �nite and proportional to the invariant distribution νε.Next, we show that Freidlin & Wentzell estimates 
an be applied to our skeleton 
hain. Forany 
ouple of points ξ1 and ξ2, we de�ne the optimal 
ontrol 
ost with �nite time T to rea
h

ξ2 from ξ1 as
IT pξ1, ξ2q :� inf$'&'%ϕ P H

1
0

zϕp0q � ξ1, zϕpTq � ξ2 1

2

» T
0

| 9ϕpsq|2ds,72



zÆ1� �
zÆ2 �
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Figure 4.1 { Representation of neighbourhoods gi of equilibriums points and pro
ess pZz,εt qt¥0,the skeleton 
hain is des
ribed by the transition of Zz,ε
τ1pBgq ÞÑ Zz,ε

τ2pBgq whi
h belong to Yℓi�1gi.and the optimal 
ontrol 
ost is Ipξ1, ξ2q :� infT¥0 IT pξ1, ξ2q. In a similar way,~IpzÆi , zÆj q :� inf
T¡0 inf "1

2

» T
0

| 9ϕpsq|2ds,ϕ P H
1
0, zϕp0q � zÆi , zϕpTq � zÆj ,�s P r0, T s, zϕpzÆi , sq R Yk�i,jgk* .It is then possible to use a L.D.P. on traje
tories of �nite horizon and the exa
t lo
al 
ontrollabi-lity near ea
h zÆi to obtain sharp approximations of the transitions of the skeleton 
hain using Iwhen ε is small enough (see [20℄ and [Freidlin and Wentzell, 1984℄) . We 
an prove the followingresult.

Proposition 4.4.5 Assume that U satis�es the assumptions pHDq, pH̃Uq and pHHypq,then :
iq For any 
ouple pi, jq P t1 . . . ℓu2, ~IpzÆi , zÆj q   �8 and there exists only one 
ommuni-
ation 
lass of gi for the skeleton 
hain.
iiq Moreover, for any γ ¡ 0, one 
an �nd ρ0 and ρ1 (size of neighbourhoods of zÆi forthe de�nition of the skeleton 
hain) su
h that 0   ρ1   ρ0 and for whi
h a suÆ
ientlysmall ε yields�pi, jq P t1 . . . ℓu2 �x P Bgi 0   e�ε�2r~IpzÆi ,zÆj q�γs ¤ ~Pεpx, Bgjq ¤ e�ε�2r~IpzÆi ,zÆj q�γs.

4.4.4 Large Deviation Principle for invariant measures pνεqε¥0The above estimation permits to 
ompute a sharp approximation of the stationary measureof the skeleton Markov 
hain using the notion of tiu-Graphs. Remind brie
y that for any i Pt1, . . . , ℓu, Gpiq is the set of oriented graphs with verti
es tzÆ1, . . . , zÆℓ u and su
h that(i) All vertex zÆj � zÆi is the starting point of exa
tly one edge.(ii) The graph does not 
ontain any 
y
le.(iii) For any zÆj , there exists a unique path of oriented edges starting at zÆj whi
h rea
hes zÆi .73



At last, the estimation of µε for the skeleton Markov 
hain dedu
ed from proposition 4.4.5asso
iated to the "link" formula of νε given by proposition 4.4.4 permet alors de 
on
lure ler�esultat suivant.
Theorem 4.4.2 Under assumptions pHHypoq, pHDq and pH̃Uq, for any pεnq LD-
onvergentsub-sequen
e, the good rate fun
tion W satis�es�i P t1 . . . ℓu WpzÆi q � min

gPGpiq ¸pzÆmÑzÆnqPg IpzÆm, zÆnq � min
gPGpiq ¸pzÆmÑzÆnqPg~IpzÆm, zÆnq. (4.26)Moreover, W is uniquely de�ned by (4.26) and�z P R

d � R
d Wpzq � min

1¤i¤ℓ inf$'&'%ϕ P H
1
0~zϕp0q � z, ~zϕp�8q � zÆi �

1

2

» 8
0

| 9ϕ|2 �WpzÆi q� ,thus pνεqε¥0 satis�es a Large Deviation Prin
iple.
4.4.5 Quasi-potential for a double-well potentialThe variation of the quasi-potential W (rate fun
tion of the L.D.P.) given in the paragraphabove by Theorem 4.4.2 is simple when U is 
onvex, but it is far from being also the 
ase ina more general situation. We are going to study the parti
ular 
ase of a potential de�ned on
R whi
h is not 
onvex and possesses a double well. This potential U is typi
ally des
ribed inFigure 4.2.
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Figure 4.2 { Double-well potentiel U with 2 minima x1   x2 and one lo
al maximum x�.We then aim to 
ompute the quasi-potential asso
iated to the L.D.P. obtained for the pro
ess(4.4), its formal expression is quite simple sin
e only L2 
osts of 
ontrol to transit between
zÆ1 :� px1, 0q and zÆ2 :� px2, 0q are ne
essary (owing to the simpli
ity of i-graphs). Withoutloss of generality, we assume that Upx1q   Upx2q and we wish to 
ompute a lower bound of
WpzÆ2q � IpzÆ1, zÆ2q as well as an upper bound of WpzÆ1q � IpzÆ2, zÆ1q.74



Upper and lower bound in the standard case In standard 
ase of simulated annealing, thedrift term 
orresponds to the opposite of a gradient and the 
ontrol problem is non degeneratedand written as 9z � �∇Upzq � ϕ. One may remark that the parti
ular 
hoi
e ϕpzq � 2∇Upzqenables to rea
h a lo
al maxima xÆ from a lo
al minimum x1 with a 
ost equals to 2rUpxÆq �
Upx1qs. Then, a 
ontinuity argument of the 
ost permits to obtain an identi
al 
ost between x1and x2, and the following upper bound easily follows

Ipx1, x2q ¤ 2rUpxÆq �Upx1qs.Moreover, a simple argument lead to a mat
hing lower bound : for any traje
tory pztqt¥0 startingat x1 whi
h leads to x2 ne
essary rea
hes x� 7| 9ϕ|2 � | 9z�∇U|2 ¥ 2x 9z,∇Upzqy.and we then obtain that the 
ontrol 
ost is bounded from below by 2rUpxÆq �Upx1qs.
Upper and lower bound in the average gradient system Indeed, it is possible to ex-pand the former results to a slightly more general 
ase of drifts (see for instan
e the works of[Sheu, 1986℄) but the problem is largely open for a general drift given by bpx, yq � p�y, λp∇Upxq�
yq. In order to �nd a good traje
tory whi
h drives zÆ2 to zÆ1, we have been inspired by the standard
ase and we exploit the idea to "invert" the drift in view to go ba
k in time. This is tradu
edby the following di�erential equation

dXt � 1

eλt

» t
0

λeλs∇UpXsqds. (4.27)Sin
e the 
ontrol ϕ only a
ts on the �rst 
oordinate, it is quite natural to 
hoose 9ϕ � 2y sin
e ityields the desired di�erential equation des
ribed by (4.27). This method thus �nds a traje
torywith a 
ost identi
al to the one obtained in the standard 
ase.
Proposition 4.4.6 For the double-well potential des
ribed above, we have

WpzÆ1q � IpzÆ2, zÆ1q ¤ 2rUpxÆq �Upx2qs.Finding a suitable lower bound of Wpz2q is 
learly a mu
h more diÆ
ult task and may beta
kled by 
onsidering either 
ontrolled traje
tory with 
ontrols whi
h a
t on x and y, or ina more natural way by limiting the 
ontrol to a
t only on the x 
oordinate. We immediatelyremark that :
IT pzÆ1, zÆ2q � inf$''''&''''%ϕ P H

1
0

zϕp0q � zÆ1
zϕpTq � zÆ2 1

2

» T
0

| 9ϕpsq|2ds ¥ inf$''''&''''%ϕ,ψ P H
1
0

zϕ,ψp0q � zÆ1
zϕ,ψpTq � zÆ2 1

2

» T
0

| 9ϕpsq|2 � | 9ψpsq|2ds
where zϕ,ψ is a x{y 
ontrolled traje
tory by ϕ and ψ. In the sequel, we only provide theapproa
h developed for the degenerated 
ontrol problems whi
h only a
ts on 
oordinate x, theother approa
h may be des
ribed in [20℄ and provides interesting results and quite more generalresults (on U) than the ones detailed here. Note that the lower bound here are better for the7. In larger dimension, one should 
onsider the minimal elevation ne
essary to 
limb the hill between x1 and
x2 75



degenerate 
ontrol but the needed assumptions are slightly restri
tive. For any ϕ 
ontrolledtraje
tory , we have | 9ϕ|2 � | 9x� y|2 � 9x2 � y2 � 2 9xy,and we aim to bound this quadrati
 form in px, y, 9xq from below by the derivative along thetraje
tory zϕ of a suitable fun
tion of x and y. The prin
iple is thus similar to the one used inthe standard approa
h when we used | 9ϕ|2 ¥ 2x 9z,∇Upzqy. Thus, we wish to �nd Lpx, yq su
hthat 9x2 � y2 � 2 9xy ¥ x∇Lpx, yq, p 9x, 9yqy. (4.28)We resear
hed map L is of the form
Lα,β,γpx, yq :� αUpxq � βy2{2� γyU 1pxq,and it is quite intri
ate to remark that su
h fun
tion may be used both to obtain 
ompa
tnessresults in large time, and also may yield some lower bound of L2 
ontrol 
ost between two points

zÆ1 and zÆ2. We then obtain the following result.
Proposition 4.4.7 For any α P r0, 2s, there exists an expli
it mpα, λq su
h that }U"}8 ¤
mpαq implies that one 
an �nd βpαq and γpαq so that (4.28) holds. For this 
hoi
e, wehave

IT pzÆ1, zÆ2q ¥ αrUpxÆq �Upx1qs.We will instantaneously remark that this proposition 
annot rea
h a lower bound greater thantwi
e the elevation of U between x1 and x2, whi
h is 
oherent with the result of 4.4.6. Thesetwo results 
ombined with Theorem 4.4.2 permits to give the �nal result on the behaviour of νεtowards the global minimum of U.
Theorem 4.4.3 Under assumptions pHHypoq, pHDq and pH̃Uq, if U is a double-well real va-lued potential (des
ribed as above) with Upx1q   Upx2q and su
h that }U"}8 ¤ m�

2
UpxÆq�Upx2q
UpxÆq�Upx1q , λ	,then lim

εÞÑ0νε � δx1 .At last, remark that when λ 
omes larger, the average gradient system uses a shorter rangememory and the bound on }U"}8 in the former result is mu
h more permissive. This phenomenonis illustrated in Figure 4.3 whi
h shows for several values of λ the evolution of α whi
h is themultipli
ative 
oeÆ
ient of UpxÆq �Upx1q that depends on }U"}8.
4.5 Further developments

4.5.1 Hypo-coercivity of the memoru gradient diffusion, simulated annealingThe �rst forth
oming work would 
on
ern some hypo-
oer
ivity results and thus how ob-tain an upper bound of its semi-group in L
2pνq. This points has not been addressed sin
e ourresults was obtained using [Down et al., 1995℄ te
hniques, whi
h yield total variation results.It would be interesting to �nd a stronger result. An in
iden
e angle to go towards su
h resultshould 
ertainly use the Lyapunov fun
tion in order to obtain some Poin
ar�e-like inequality.Su
h method has already been exploited in the 
ase of kineti
 Fokker-Plan
k equations (see forinstan
e a brief exposition of su
h method in [Villani, 2006℄). An additional diÆ
ulty in the 
aseof memory gradient di�usion is the non expli
it nature of its invariant distribution and onlyimpli
it relations are known through a P.D.E. satis�ed by ν.76
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Figure 4.3 { Evolution of α multipli
ative 
oeÆ
ient of the elevation of U with respe
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The se
ond natural point would 
ontinue the annealing study in view of a real simulatedannealing pro
edure, ε should now be
ome an evanes
ent fun
tion of t. Numeri
al experiments(not shown in this memory) has pointed that it was possible to use a temperature s
heme
εptq � c{ log t and obtain a 
onvergen
e of pZεptqt qt¥0 towards the global minimum of U inthe 
ase of a double-well potential, provided that the "hill" between the two wells is enoughundershot (see assumptions of Theorem 4.4.3). Moreover, there still also exists other numeri
alhints whi
h would prove that the 
onstant c may be 
hosen lower than the limiting one in the
ase of the standard simaulted annealing pro
edure. At last, an optimisation with respe
t to λfor the memory simulated annealing seems to be important. There is no theoreti
al response onall su
h points at the moment.
4.5.2 Controllability result on the memory systemAnother important 
lass of problem is the nature of 
ontrollability results we may obtainfor the system 4.22. We show in our study that under hypothesis of non degenera
y near 
ri-ti
al points of U and growing 
onditions at 8, the approa
hed 
ontrollability is true. Even ifthe growing 
ondition seems imperative on U, it seems to be more dis
ussable regarding theassumption of non degenera
y. Indeed, there exists a large amount of methods to avoid theuse of the Kalman linearisation method, see for instan
e Sussman 
onditions in [Coron, 2007℄to obtain lo
al exa
t 
ontrollability, or �xed point te
hniques (an example may be found in[Beau
hard and Zuazua, 2009℄).At last, from a numeri
al point of view, it seems 
hallenging to develop algorithms forthe 
omputation of optimal 
ontrol 
osts to obtain W. A starting 
ollaboration with numeri
alspe
ialists of 
ontrollability has lead us to 
onsider the Pontryagin maximum prin
iple to obtainnumeri
al results.
4.5.3 Non reversible simulationsCon
lusions drawn by the paragraph 4.3 should stimulate the interest of se
ond order simu-lations (se
ond order Markov 
hains, kineti
 equations) in order to obtain faster 
onvergen
erates to steady regime than the one obtained by �rst order dynami
al systems. This point is nottrue of 
ourse in full generality, and should be 
ompleted by generi
 examples. This is not the
ase at the moment regarding for instan
e the very partial results obtained in the 
ase of kineti
Fokker-Plan
k equations. If su
h phenomenon holds, it would be of �rst interest for sto
hasti
algorithms whi
h uses MCMC simulations or Bayesian algorithms.
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