Big Data

Feuille 1 (Risque empirique/Risque de population)

Le compromis entre complexité des modèles et nombre de données est au centre de la problématique de l'apprentissage statistique. Dans ce TD/TP, nous allons illustrer cette problématique sur un problème jouet de reconnaissance de forme (ou de discrimination).

Le problème est le suivant: on considère un ensemble $A \subset [0,1]^2$. On suppose que X est une variable uniforme sur $[0,1]^2$ et que la classe Y de X est donnée par $Y = \mathbf{1}_A(X)$ où $\mathbf{1}_A(x) = 1$ si $x \in A$ et -1 sinon. On dispose d'un l-échantillon d'apprentissage

$$((x_1,y_1),\ldots,(x_l,y_l))$$

de loi (X,Y). Il s'agit au vu de cet échantillon de choisir une fonction $\widehat{h}:[0,1]^2\to\{-1,1\}$ pour laquelle la classe Y de X est bien prédite par $\widehat{h}(X)$.

On définit une famille de modèles $(\mathcal{F}_p)_{p\in\mathbb{N}}$ de la façon suivante: pour tout $p\in\mathbb{N}^*$, on considère le découpage en p^2 "carreaux" $(c_{ij})_{1\leq i,j\leq p}$ de $[0,1]^2$ où

$$c_{ij} \doteq \left[\frac{i-1}{p}, \frac{i}{p}\right] \times \left[\frac{j-1}{p}, \frac{j}{p}\right].$$

La famille \mathcal{F}_p est alors définie comme la famille des classifieurs $g = \mathbf{1}_C$ pour lesquel C est constitué d'une réunion finie (éventuellement vide) de carreaux c_{ij} .

On définit le risque empirique et le risque de population à l'aide de la fonction de perte $L(y, y') = \overline{\mathbf{1}}_{y \neq y'}$, avec

$$\overline{\mathbf{1}}_C = \left\{ \begin{array}{l} 1 & \text{, si } C \text{ est vraie} \\ 0 & \text{, sinon.} \end{array} \right.$$

On a donc, pour tout $g \in \mathcal{F}_p$,

$$R_{\text{emp}}(g) = \frac{1}{l} \sum_{i=1}^{l} \overline{\mathbf{1}}_{g(x_i) \neq y_i}$$
 et $R(g) = E(\overline{\mathbf{1}}_{g(X) \neq Y}).$

On note

$$\widehat{R}_p^* \doteq \min_{g \in \mathcal{F}_p} R_{\text{emp}}(g) \,.$$

Exercice 1.

- (1) Calculer le cardinal de \mathcal{F}_p .
- (2) Pour tout $1 \le i, j \le p$, on note

$$\widehat{l}_{ij}^+ \doteq \sum_{k=1}^l \overline{\mathbf{1}}_{x_k \in c_{ij}, y_k = 1}$$
 et $\widehat{l}_{ij}^- \doteq \sum_{k=1}^l \overline{\mathbf{1}}_{x_k \in c_{ij}, y_k = -1}$.

- (a) Calculer $E(\widehat{l}_{ij}^+)$ et $E(\widehat{l}_{ij}^-)$.
- (b) On note

$$\widehat{C}_p \doteq \bigcup_{i,j \mid \widehat{l}_{ij}^+ \ge \widehat{l}_{ij}^-} c_{ij}.$$

Montrer que $R_{\text{emp}}(\mathbf{1}_{\widehat{C}_p}) = \widehat{R}_p^*$, i.e. $\mathbf{1}_{\widehat{C}_p}$ minimise le risque empirique dans \mathcal{F}_p . (3) Montrer que pour tout $\epsilon > 0$,

$$P(|R(\mathbf{1}_{\widehat{C}_p}) - \widehat{R}_p^*| > \epsilon) \le \sum_{g \in \mathcal{F}_p} P(|R(g) - R_{\text{emp}}(g)| > \epsilon).$$

En déduire que $P(|R(\mathbf{1}_{\widehat{C}_p}) - \widehat{R}_p^*| > \epsilon) \to 0$ lorsque l tend vers $+\infty$.

(4) Déterminer $\mathbf{1}_{C_p^*} \in \mathcal{F}_p$ tel que $R(\mathbf{1}_{C_p^*}) = R_p^*$ où

$$R_p^* = \inf_{g \in \mathcal{F}_p} R(g) .$$

- (5) Montrer que $P(|R(\mathbf{1}_{\widehat{C}_p}) R_p^*| > \epsilon) \to 0$ lorsque l tend vers $+\infty$. On montre ainsi la consistance de la minimisation du risque empirique sur la famille \mathcal{F}_p .
- (6) On sait (par l'inégalité de Hoeffding) que si Z_1, \dots, Z_m sont m variables indépendantes à valeurs dans [0, 1], alors

$$P(\left|\frac{S_m}{m} - E\left(\frac{S_m}{m}\right)\right| > \epsilon) \le 2\exp(-2m\epsilon^2),$$

où $S_m \doteq \sum_{i=1}^m Z_i$.

On considère un nouvel échantillon de taille m, $(X'_i, Y'_i)_{1 \le i \le m}$ indépendant de l'échantillon d'apprentissage. On note alors pour tout $C \subset [0, 1]^2$,

$$R_{\text{test}}(\mathbf{1}_C) \doteq \frac{1}{m} \sum_{i=1}^m \overline{\mathbf{1}}_{\mathbf{1}_C(X_i') \neq Y_i'}$$
.

(a) Montrer que pour tout $m \ge -\frac{\log(\eta/2)}{2\epsilon^2}$, on a

$$P(|R_{\text{test}}(\mathbf{1}_C) - R(\mathbf{1}_C)| > \epsilon) \le \eta$$
.

- (b) On pose $m_0(\eta, \epsilon) = \lceil -\frac{\log(\eta/2)}{2\epsilon^2} \rceil$ où $\lceil x \rceil$ désigne le plus petit entier plus grand ou égal à x. Calculer la valeur de m_0 pour $\eta = 0.05$ et $\epsilon = 0.02$.
- (c) Expliquer pourquoi on a

$$P(|R_{\text{test}}(\mathbf{1}_{\widehat{C}_n}) - R(\mathbf{1}_{\widehat{C}_n})| > \epsilon) \le \eta. \tag{1}$$

(d) On considère la valeur de m_0 définie par $\eta = 0.05$ et $\epsilon = 0.02$. Expliquer dans quelle mesure on peut considérer $R_{\text{test}}(\mathbf{1}_{\widehat{C}_p})$ comme une approximation acceptable de $R(\mathbf{1}_{\widehat{C}_p})$.

Expérience 1. On veut ici implémenter en python le calcul de \widehat{C}_p et mesurer la différence entre le risque $R_{\text{emp}}(\mathbf{1}_{\widehat{C}_p})$ évalué sur l'échantillon et le risque de population $R(\mathbf{1}_{\widehat{C}_p})$.

L'ensemble A de départ est construit comme un ensemble de niveau d'une fonction $f_{g,s}$ définie par

$$f_{g,s}(x) = \sum_{i=1}^{n} \exp(-\frac{|x - g_i|^2}{2s_i^2}),$$

où $g = (g_i)_{1 \le i \le n}$ est une famille de points tirés au hasard uniformément dans le carré $[0.2, 0.8]^2$ et $s = (s_i)_{1 \le i \le n}$ est une famille de paramètres positifs tirés au hasard uniformément dans l'intervalle [0, a]. On définit alors

$$A \doteq \{ x \in [0,1]^2 \mid f_{g,s}(x) > \frac{1}{2} \}$$

Le jeu sur le nombre n de points et sur la valeur de a permet de construire des ensembles A de formes variées.

- (1) Écrire une fonction Y=intens(X1,X2,g,s) qui retourne la classe Y des points de [0,1]² dont les deux coordonnées sur chacun des axes sont données respectivement par les tableaux X1 et X2
- (2) Écrire une fonction [g,s]=ensalea(n,a,flag) qui retourne un tirage de g et s en fonction de n et a. Si la variable flag vaut 1 alors un affichage grossier de A est effectué.

Dans la suite, on pourra choisir n = 4 et a = 0.3 qui donnent des ensembles A raisonnables

- (3) En utilisant la fonction [g,s]=ensalea(4,0.3,1), sélectionner un ensemble A à votre convenance.
- (4) Construire la fonction [X1, X2, Y]=echant(1,g,s) retournant une réalisation d'un l-échantillon d'apprentissage $(X_i, Y_i)_{1 \le i \le l}$ où $X_i = (X1(i), X2(i))$ et $Y_i = Y(i)$

- (5) Construire la fonction [B,Re] = estens(X1,X2,Y,p) qui pour tout échantillon d'apprentissage [X1, X2, Y] et toute valeur de $p \in \mathbb{N}^*$ renvoie une matrice B de taille $p \times p$ et un scalaire Re définis par:
 - B(i,j)=1 si $\hat{l}_{ij}^+ \geq \hat{l}_{ij}^-$ et 0 sinon.
 - ullet Re= \widehat{R}_p^*

Notons que B code l'ensemble des c_{ij} qui participent à la construction de \widehat{C}_p . Faire en sorte d'afficher le résultat afficher votre résultat.

- (6) Construire la fonction R=testens(B,m,g,s) approximant la valeur de $R(\mathbf{1}_{\widehat{C}_p})$ par $R_{\text{test}}(\mathbf{1}_{\widehat{C}_p})$ sur un échantillon $(X_i',Y_i')_{1\leq i\leq m}$ indépendant de l'échantillon d'apprentissage $(X_i,Y_i)_{1\leq i\leq l}$.
- (7) Pour chaque valeur de $l \in \{100, 500, 1000, 10000\}$:
 - tracer sur un même graphique les courbes $p \to \widehat{R}_p^*$ et $p \to R_{\text{test}}(\mathbf{1}_{\widehat{C}_p})$ (on pourra considérer les valeurs de p entre 2 et 60).
 - Calculer \widehat{p} minimisant $p \to R_{\text{test}}(\mathbf{1}_{\widehat{C}_p})$, où $m = m_0$ est donné dans la question (6b) de l'exercice 1.
- (8) Commenter:
 - l'évolution des deux courbes à l fixé, p variant
 - l'évolution de \widehat{p} en fonction de l
 - l'évolution de $R_{\mathrm{test}}(\mathbf{1}_{\widehat{C}_{\widehat{n}}})$ en fonction de l, à p fixé.

En particulier comment cette expérience illustre

- le compromis entre complexité des modèles et taille de l'échantillon d'apprentissage.
- la consistance de la minimisation du risque empirique sur la famille \mathcal{F}_p .