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1 Introdution

Plasmas, whih are gases of harged partiles, and harged partile beams

an be desribed by a distribution funtion f(t; x; v) dependent on time t,

on position x and on veloity v. The funtion f represents the probability of

presene of a partile at position (x; v) in phase spae at time t. It satis�es

the so-alled Vlasov equation

�f

�t

+ v � r

x

f + F (t; x; v) � r

v

f = 0: (1)

The fore �eld F (t; x; v) onsists of applied and self-onsistent eletri and

magneti �elds:

F =

q

m

(E

self

+E

app

+ v � (B

self

+B

app

));

wherem represents the mass of a partile and q its harge. The self-onsistent

part of the fore �eld is solution of Maxwell's equations

�
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2

�E

�t

+r�B = �

0

j; r � E =

�

�

0

;

�B

�t

+r�E = 0; r �B = 0:

The oupling with the Vlasov equation results from the soure terms �

and j suh that:

�(t; x) = q

Z

R

d

f(t; x; v) dv; j = q

Z

R

d

f(t; x; v)v dv:

We then obtain the nonlinear Vlasov-Maxwell equations. In some ases, when

the �eld are slowly varying the magneti �eld beomes negligible and the

Maxwell equations an be replaed by the Poisson equation where:

E

self

(t; x) = �r

x

�(t; x); �"

0

�

x

� = �: (2)

The numerial resolution of the Vlasov equation is usually performed

by partile methods (PIC) whih onsist in approximating the plasma by a
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�nite number of partiles. The trajetories of these partiles are omputed

from the harateristi urves given by the Vlasov equation, whereas self-

onsistent �elds are omputed on a mesh of the physial spae. This method

allows to obtain satisfying results with a few number of partiles. However,

it is well known that, in some ases, the numerial noise inherent to the

partile method beomes too important to have an aurate desription of

the distribution funtion in phase spae. Moreover, the numerial noise only

dereases in

p

N , when the number of partiles N is inreased. To remedy to

this problem, methods disretizing the Vlasov equation on a mesh of phase

spae have been proposed. A review of the main methods for the resolution

of the Vlasov equation is given in these proeedings [5℄.

The major drawbak of methods using a uniform and �xed mesh is that

their numerial ost is high, whih makes them rather ineÆient when the

dimension of phase-spae grows. For this reason we are investigating here

a method using an adaptive mesh. The adaptive method is overlayed to a

lassial semi-Lagrangian method whih is based on the onservation of the

distribution funtion along harateristis. Indeed, this method uses two steps

to update the value of the distribution funtion at a given mesh point. The

�rst one onsists in following the harateristi ending at this mesh point

bakward in time, and the seond one in interpolating its value there from

the old values at the surrounding mesh points. Using the onservation of the

distribution funtion along the harateristis this will yield its new value

at the given mesh point. This idea was originally introdued by Cheng and

Knorr [2℄ along with a time splitting tehnique enabling to ompute exatly

the origin of the harateristis at eah frational step. In the originalmethod,

the interpolation was performed using ubi splines. This method has sine

been used extensively by plasma physiists (see for example [4, 6℄ and the ref-

erenes therein). It has then been generalized to the frame of semi-Lagrangian

methods by E. Sonnendr�uker et al. [8℄. This method has also been used to

investigate problems linked to the propagation of strongly nonlinear heavy

ion beams [9℄.

In the present work, we have hosen to introdue a phase-spae mesh

whih an be re�ned or dere�ned adaptively in time. For this purpose, we

use a tehnique based on multiresolution analysis whih is in the same spirit

as the methods developed in partiular by S. Bertoluzza [1℄, A. Cohen et al.

[3℄ and M. Griebel and F. Koster [7℄. We represent the distribution funtion

on a wavelet basis at di�erent sales. We an then ompress it by eliminat-

ing oeÆients whih are small and aordingly remove the assoiated mesh

points. Another spei� feature of our method is that we use an advetion in

physial and veloity spae forward in time to predit the useful grid points

for the next time step, rather than restrit ourselves to the neighboring points.

This enables us to use a muh larger time step, as in the semi-Lagrangian

method the time step is not limited by a Courant ondition. One the new

mesh is predited, the semi-Lagrangian methodology is used to ompute the
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new values of the distribution funtion at the predited mesh points, using

an interpolation based on the wavelet deomposition of the old distribution

funtion. The mesh is then re�ned again by performing a wavelet transform,

and eliminating the points assoiated to small oeÆients.

This paper is organized as follows. In setion 2, we reall the tools of

multiresolution analysis whih will be needed for our method, preizing what

kind of wavelets seem to be the most appropriate in our ase. Then, we

desribe in setion 3 the algorithm used in our method, �rst for the non

adaptive mesh ase and then for the adaptive mesh ase. Finally we present

a few preliminary numerial results.

2 Multiresolution analysis

The semi-Lagrangian method onsists mainly of two steps, an advetion step

and an interpolation step. The interpolation part is performed using for ex-

ample a Lagrange interpolating polynomial on a uniform grid. Thus interpo-

lating wavelets provide a natural way to extend this proedure to an adaptive

grid in the way we shall now shortly desribe.

For simpliity, we shall restrit our desription to the 1D ase of the whole

real line. It is straightforward to extend it to periodi boundary onditions

and it an also be extended to an interval with Dirihlet boundary onditions.

The extension to higher dimension is performed using a tensor produt of

wavelets and will be addressed at the end of the setion.

For any value of j 2 Z, we onsider a uniform grid G

j

of step 2

�j

. The

grid points are loated at x

j

k

= k2

�j

. This de�nes an in�nite sequene of

grids that we denote by (G

j

)

j2Z

, and j will be alled the level of the grid.

In order to go from one level to the next or the previous, we de�ne a pro-

jetion operator and a predition operator. Consider two grid levels G

j

and

G

j+1

and disrete values (of a funtion) denoted by (

j

k

)

k2Z

and (

j+1

k

)

k2Z

.

Even though we use the same index k for the grid points in the two ases,

there are of ourse twie as many points in any given interval on G

j+1

as on

G

j

. Using the terminology in [3℄, we then de�ne the projetion operator

P

j

j+1

: G

j+1

! G

j

;



j+1

2k

7! 

j

k

;

whih is merely a restrition operator, as well as the predition operator

P

j+1

j

: G

j

! G

j+1

;

suh that 

j+1

2k

= 

j

k

;



j+1

2k+1

= P

2N+1

(x

j+1

2k+1

);
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where P

2N+1

stands for the Lagrange interpolation polynomial of odd degree

2N + 1 entered at the point (x

j+1

2k+1

).

Using the just de�ned predition operator, we an onstrut on G

j

a

subspae of L

2

(R) that we shall denote by V

j

, a basis of whih being given

by ('

j

k

)

k2Z

suh that '

j

k

(x

j

k

0

) = Æ

kk

0

where Æ

kk

0

is the Kroneker symbol. The

value of '

j

k

at any point of the real line is then obtained by applying, possibly

an in�nite number of times, the predition operator.

In the wavelets terminology the '

j

k

are alled saling funtions. We shall

also denote by ' = '

0

0

. Let us notie that

'

j

k

(x) = '(2

j

x� k):

It an be easily veri�ed that the saling funtions satisfy the following prop-

erties:

{ Compat support: the support of ' is inluded in [�2N � 1; 2N + 1℄.

{ Interpolation: by onstrution '(x) is interpolating in the sense that '(0) =

1 and '(k) = 0 if k 6= 0.

{ Polynomial representation: all polynomials of degree less or equal to 2N+1

an be expressed exatly as linear ombinations of the '

j

k

.

{ Change of sale: the ' at a given sale an be expressed as a linear ombi-

nation of the ' at the sale immediately below:

'(x) =

2N+1

X

�2N�1

h

l

'(2x� l):

Moreover the sequene of spaes (V

j

)

j2Z

de�nes a multiresolution analysis

of L

2

(R), i.e. it satis�es the following properties:

{ : : : � V

�1

� V

0

� V

1

� : : : � V

n

� : : : � L

2

(R).

{ \V

j

= f0g, [V

j

= L

2

(R).

{ f 2 V

j

$ f(2 �)V

j+1

.

{ 9' (saling funtion) suh that f'(x� k)g

k2Z

is a basis of V

0

and f'

j

k

=

2

j=2

'(2

j

x� k)g

k2Z

is a basis of V

j

.

As V

j

� V

j+1

, there exists a supplementary of V

j

in V

j+1

that we shall

all the detail spae and denote by W

j

:

V

j+1

= V

j

�W

j

:

The onstrution of W

j

an be made in the following way: an element of

V

j+1

is haraterized by the sequene(

j+1

k

)

k2Z

and by onstrution we have



j

k

= 

j+1

2k

. Thus, if we de�ne d

j

k

= 

j+1

2k+1

� P

2N+1

(x

j+1

2k+1

), where P

2N+1

is

the Lagrange interpolation polynomial by whih the value of an element of

V

j

at the point (x

j+1

2k+1

) an be omputed, d

j

k

represents exatly the di�erene

between the value in V

j+1

and the value predited in V

j

. Finally, any element
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of V

j+1

an be haraterized by the two sequenes (

j

k

)

k

of values in V

j

and (d

j

k

)

k

of details in W

j

. Moreover this strategy for onstruting W

j

is

partiularly interesting for adaptive re�nement as d

j

k

will be small at plaes

where the predition from V

j

is good and large elsewhere, whih gives us a

natural re�nement riterion. Besides, there exists a funtion  , alled wavelet

suh that f 

j

k

= 2

j=2

 (2

j

x� k)g

k2Z

is a basis of W

j

.

In pratise, for adaptive re�nement we set the oarsest level j

0

and the

�nest level j

1

, j

0

< j

1

, and we deompose the spae orresponding to the

�nest level on all the levels in between:

V

j

1

= V

j

0

�W

j

0

�W

j

0

+1

� � � � �W

j

1

�1

:

A funtion f 2 V

j

1

an then be deomposed as follows

f(x) =

+1

X

l=�1



j

0

l

'

j

0

l

(x) +

j

1

�1

X

j=j

0

+1

X

l=�1

d

j

l

 

j

l

(x);

where the (

j

0

l

)

l

are the oeÆients on the oarse mesh and the (d

j

l

)

l

the

details at the di�erent level in between.



j+1

2k

1

+2;2k

2

+1



j

k

1

;k

2



j+1

2k

1

;2k

2

+1



j+1

2k

1

+1;2k

2

+1



j+1

2k

1

+1;2k

2

+2



j

k

1

;k

2

+1



j

k

1

+1;k

2

+1



j+1

2k

1

+1;2k

2



j

k

1

+1;k

2

Fig. 1. Mesh re�nement in 2D.

In two dimensions, the predition operator whih de�nes the multireso-

lution analysis is onstruted by tensor produt from the 1D operator. In

pratise three di�erent ases must be onsidered (see �gure 1 for notations):

1. Re�nement in x (orresponding to points 

j+1

2k

1

+1;2k

2

and 

j+1

2k

1

+1;2k

2

+2

): we

use the 1D predition operator in x for �xed k

2

.

2. Re�nement in v (orresponding to points 

j+1

2k

1

;2k

2

+1

and 

j+1

2k

1

+2;2k

2

+1

): we

use the 1D predition operator in v for �xed k

1

.

3. Re�nement in v (orresponding to point 

j+1

2k

1

+1;2k

2

+1

): we �rst use the

1D predition operator in v for �xed k

1

to determine the points whih

are neessary for applying the 1D predition operator in x for �xed k

2

whih we then apply.
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The orresponding wavelet bases are respetively of type  (x)'(v), '(x) (v)

and  (x) (v) where ' and  are respetively the saling funtion and the 1D

wavelet. We then obtain a 2D wavelet deomposition of the following form:

f(x; v) =

X

k

1

;k

2

�



j

0

k

1

;k

2

'

j

0

k

1

(x)'

j

0

k

2

(v) +

j

1

�1

X

j

0

�

d

row;j

k

1

;k

2

 

j

k

1

(x)'

j

k

2

(v)

+ d

ol;j

k

1

;k

2

'

j

k

1

(x) 

j

k

2

(v) + d

mid;j

k

1

;k

2

 

j

k

1

(x) 

j

k

2

(v)

�

�

: (3)

3 The algorithms

We want to numerially solve the Vlasov equation (1) given an initial value

of the distribution funtion f

0

.

We start by desribing the method based on an interpolation using the

wavelet deomposition of f in the non adaptive ase. Then we overlay an

adaptive algorithm to this method.

For those two algorithms, we �rst pik the resolution levels for the phase-

spae meshes, from the oarsest j

0

to the �nest j

1

. Although these levels

ould be di�erent in x and v, we onsider here for the sake of oniseness and

larity that they are idential.

We also ompute our saling funtion on a very �ne grid so that we an

obtain with enough preision its value at any point.

3.1 The non adaptive algorithm

We are working in this ase on the �nest level orresponding to j

1

keeping

all the points.

Initialization: We deompose the initial ondition in the wavelet basis

by omputing the oeÆients 

k

1

;k

2

of the deomposition in V

j

0

for the oarse

mesh, and then adding the details d

j

k

1

;k

2

in the detail spaes W

j

for all the

other levels j = j

0

; : : : ; j

1

� 1. We then ompute the initial eletri �eld.

Time iterations:

{ Advetion in x: We start by omputing for eah mesh point the origin

of the orresponding harateristi exatly, the displaement being v

j

�t.

As we do not neessarily land on a mesh point, we ompute the values of

the distribution funtion at the intermediate time level, denoted by f

�

, at

the origin of the harateristis by interpolation from f

n

. We use for this

the wavelet deomposition (3) applied to f

n

from whih we an ompute

f

n

at any point in phase spae.
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{ Computation of the eletri �eld: We ompute the harge density

by integrating f

�

with respet to v, then the eletri �eld by solving the

Poisson equation (this step vanishes for the linear ase of the rotating

ylinder where the advetion �eld is exatly known).

{ Advetion in v: We start by omputing exatly the origin of the har-

ateristi for eah mesh point, the displaement being E(t

n

; x

i

)�t. As we

do not neessarily land on a mesh point, we ompute the values of the

distribution funtion at the intermediate time level, denoted by f

n+1

, at

the origin of the harateristis by interpolation from f

�

. We use for this

the wavelet deomposition of f

�

given by (3) used at the previous step.

3.2 The adaptive algorithm

In the initialization phase, we �rst ompute the wavelet deomposition of

the initial ondition f

0

, and then proeed by ompressing it, i.e. eliminating

the details whih are smaller than a threshold that we impose. We then

onstrut an adaptive mesh whih, from all the possible points at all the

levels between our oarsest and �nest, ontains only those of the oarsest

and those orresponding to details whih are above the threshold. We denote

by

~

G this mesh.

{ Predition in x: We predit the positions of points where the details

should be important at the next time split step by advaning in x the

harateristis originating from the points of the mesh

~

G. For this we use an

expliit Euler sheme for the numerial integration of the harateristis.

Then we retain the grid points, at one level �ner as the starting point,

surrounding the end point the harateristi.

{ Constrution of mesh

^

G: From the predited mesh

~

G, we onstrut

the mesh

^

G where the values of the distribution at the next time step

shall be omputed. This mesh

^

G ontains exatly the points neessary for

omputing the wavelet transform of f

�

at the points of

~

G.

{ Advetion in x: As in the non adaptive ase.

{ Wavelet transform of f

�

: We ompute the 

k

and d

k

oeÆients at the

points of

~

G from the values of f

�

at the points of

^

G.

{ Compression:We eliminate the points of

~

G where the details d

k

are lower

than the �xed threshold.

{ Computation of the eletri �eld: As in the non adaptive ase.

{ Predition in v: As for the predition in x.

{ Constrution of mesh

^

G: As previously. This mesh

^

G ontains exatly

the points neessary for omputing the wavelet transform of f

n+1

at the

points of

~

G determined in the predition in v step.

{ Advetion in v: As in the non adaptive ase.

{ Wavelet transform of f

n+1

: We ompute the 

k

and d

k

at the points of

~

G from the values of f

n+1

at the points of

^

G.

{ Compression:We eliminate the points of

~

G where the details d

k

are lower

than the �xed threshold.
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4 Numerial results

We show here our �rst results obtained with the adaptive method. We on-

sider �rst a linear problem, namely the test ase of the rotating ylinder

introdued by Zalesak [10℄ to test advetion shemes. Then we onsider a

lassial nonlinear Vlasov-Poisson test ase, namely the two stream instabil-

ity.

4.1 The slit rotating ylinder

We onsider the following initial ondition:

f(0; x; v) =

�

1 if

p

x

2

+ v

2

< 0:5 and if x < 0 or jvj > 0:125;

0 else:

The omputational domain is [�0:5; 0:5℄� [�0:5; 0:5℄.

The advetion �eld is (v;�x), whih orresponds to the Vlasov equation

with an applied eletri �eld E

app

(x; t) = �x and without self-onsistent �eld.

Figure 2 represents the evolution of the rotating ylinder on a half turn with

a oarse mesh of 16� 16 points and 4 adaptive re�nement levels. We notie

that the ylinder is well represented and that the mesh points onentrate

along the disontinuities.

4.2 The two-stream instability

We onsider two streams symmetri with respet to v = 0 and represented

by the initial distribution funtion

f(0; x; v) =

1

p

2�

v

2

exp(�v

2

=2)(1 + � os(k

0

x));

with � = 0:25, k

0

= 0:5, and L = 2�=k

0

. We use a maximum of N

x

= 128

points in the x diretion, and N

v

= 128 points in the v diretion with v

max

=

7, and a time step�t = 1=8. The solution varies �rst very slowly and then �ne

sales are generated. Between times of around t ' 20 !

�1

p

and t ' 40 !

�1

p

,

the instability inreases rapidly and a hole appears in the middle of the

omputational domain. After t = 45 !

�1

p

until the end of the simulation,

partiles inside the hole are trapped. On �gure 3 we show a snapshot of the

distribution funtion at times t = 5 !

�1

p

and t = 30 !

�1

p

for a oarse mesh of

16 � 16 points and 3 levels of re�nement. The adaptive method reprodues

well the results obtained in the non adaptive ase.

5 Conlusion

In this paper we have desribed a new method for the numerial resolution of

the Vlasov equation using an adaptive mesh of phase-spae. The adaptive al-

gorithm is based on a multiresolution analysis. It performs qualitatively well.
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Fig. 2. Rotating ylinder: evolution for a oarse mesh of 2

4

�2

4

points and 4 adap-

tive re�nement levels. Snapshots of the ylinder and the orresponding adaptive

mesh: (upper) after one time step, (lower) after 1/2 turn.

Fig. 3. Two stream instability for a oarse mesh of 2

4

� 2

4

, and 3 adaptive re�ne-

ment levels, (left) at time t = 5!

�1

p

, (right) at time t = 30!

�1

p

.
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However, there is a large overhead due to the handling of the adaptive mesh

whih has not been optimized yet. The performane of the ode needs to be

improved before we an reommend this tehnique for atual omputations.

We are urrently working on optimizing the ode and trying di�erent kinds

of wavelets, as well as obtaining error estimates for the adaptive method.
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