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1 Introdu
tion

Plasmas, whi
h are gases of 
harged parti
les, and 
harged parti
le beams


an be des
ribed by a distribution fun
tion f(t; x; v) dependent on time t,

on position x and on velo
ity v. The fun
tion f represents the probability of

presen
e of a parti
le at position (x; v) in phase spa
e at time t. It satis�es

the so-
alled Vlasov equation

�f

�t

+ v � r

x

f + F (t; x; v) � r

v

f = 0: (1)

The for
e �eld F (t; x; v) 
onsists of applied and self-
onsistent ele
tri
 and

magneti
 �elds:

F =

q

m

(E

self

+E

app

+ v � (B

self

+B

app

));

wherem represents the mass of a parti
le and q its 
harge. The self-
onsistent

part of the for
e �eld is solution of Maxwell's equations

�

1




2

�E

�t

+r�B = �

0

j; r � E =

�

�

0

;

�B

�t

+r�E = 0; r �B = 0:

The 
oupling with the Vlasov equation results from the sour
e terms �

and j su
h that:

�(t; x) = q

Z

R

d

f(t; x; v) dv; j = q

Z

R

d

f(t; x; v)v dv:

We then obtain the nonlinear Vlasov-Maxwell equations. In some 
ases, when

the �eld are slowly varying the magneti
 �eld be
omes negligible and the

Maxwell equations 
an be repla
ed by the Poisson equation where:

E

self

(t; x) = �r

x

�(t; x); �"

0

�

x

� = �: (2)

The numeri
al resolution of the Vlasov equation is usually performed

by parti
le methods (PIC) whi
h 
onsist in approximating the plasma by a
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�nite number of parti
les. The traje
tories of these parti
les are 
omputed

from the 
hara
teristi
 
urves given by the Vlasov equation, whereas self-


onsistent �elds are 
omputed on a mesh of the physi
al spa
e. This method

allows to obtain satisfying results with a few number of parti
les. However,

it is well known that, in some 
ases, the numeri
al noise inherent to the

parti
le method be
omes too important to have an a

urate des
ription of

the distribution fun
tion in phase spa
e. Moreover, the numeri
al noise only

de
reases in

p

N , when the number of parti
les N is in
reased. To remedy to

this problem, methods dis
retizing the Vlasov equation on a mesh of phase

spa
e have been proposed. A review of the main methods for the resolution

of the Vlasov equation is given in these pro
eedings [5℄.

The major drawba
k of methods using a uniform and �xed mesh is that

their numeri
al 
ost is high, whi
h makes them rather ineÆ
ient when the

dimension of phase-spa
e grows. For this reason we are investigating here

a method using an adaptive mesh. The adaptive method is overlayed to a


lassi
al semi-Lagrangian method whi
h is based on the 
onservation of the

distribution fun
tion along 
hara
teristi
s. Indeed, this method uses two steps

to update the value of the distribution fun
tion at a given mesh point. The

�rst one 
onsists in following the 
hara
teristi
 ending at this mesh point

ba
kward in time, and the se
ond one in interpolating its value there from

the old values at the surrounding mesh points. Using the 
onservation of the

distribution fun
tion along the 
hara
teristi
s this will yield its new value

at the given mesh point. This idea was originally introdu
ed by Cheng and

Knorr [2℄ along with a time splitting te
hnique enabling to 
ompute exa
tly

the origin of the 
hara
teristi
s at ea
h fra
tional step. In the originalmethod,

the interpolation was performed using 
ubi
 splines. This method has sin
e

been used extensively by plasma physi
ists (see for example [4, 6℄ and the ref-

eren
es therein). It has then been generalized to the frame of semi-Lagrangian

methods by E. Sonnendr�u
ker et al. [8℄. This method has also been used to

investigate problems linked to the propagation of strongly nonlinear heavy

ion beams [9℄.

In the present work, we have 
hosen to introdu
e a phase-spa
e mesh

whi
h 
an be re�ned or dere�ned adaptively in time. For this purpose, we

use a te
hnique based on multiresolution analysis whi
h is in the same spirit

as the methods developed in parti
ular by S. Bertoluzza [1℄, A. Cohen et al.

[3℄ and M. Griebel and F. Koster [7℄. We represent the distribution fun
tion

on a wavelet basis at di�erent s
ales. We 
an then 
ompress it by eliminat-

ing 
oeÆ
ients whi
h are small and a

ordingly remove the asso
iated mesh

points. Another spe
i�
 feature of our method is that we use an adve
tion in

physi
al and velo
ity spa
e forward in time to predi
t the useful grid points

for the next time step, rather than restri
t ourselves to the neighboring points.

This enables us to use a mu
h larger time step, as in the semi-Lagrangian

method the time step is not limited by a Courant 
ondition. On
e the new

mesh is predi
ted, the semi-Lagrangian methodology is used to 
ompute the
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new values of the distribution fun
tion at the predi
ted mesh points, using

an interpolation based on the wavelet de
omposition of the old distribution

fun
tion. The mesh is then re�ned again by performing a wavelet transform,

and eliminating the points asso
iated to small 
oeÆ
ients.

This paper is organized as follows. In se
tion 2, we re
all the tools of

multiresolution analysis whi
h will be needed for our method, pre
izing what

kind of wavelets seem to be the most appropriate in our 
ase. Then, we

des
ribe in se
tion 3 the algorithm used in our method, �rst for the non

adaptive mesh 
ase and then for the adaptive mesh 
ase. Finally we present

a few preliminary numeri
al results.

2 Multiresolution analysis

The semi-Lagrangian method 
onsists mainly of two steps, an adve
tion step

and an interpolation step. The interpolation part is performed using for ex-

ample a Lagrange interpolating polynomial on a uniform grid. Thus interpo-

lating wavelets provide a natural way to extend this pro
edure to an adaptive

grid in the way we shall now shortly des
ribe.

For simpli
ity, we shall restri
t our des
ription to the 1D 
ase of the whole

real line. It is straightforward to extend it to periodi
 boundary 
onditions

and it 
an also be extended to an interval with Diri
hlet boundary 
onditions.

The extension to higher dimension is performed using a tensor produ
t of

wavelets and will be addressed at the end of the se
tion.

For any value of j 2 Z, we 
onsider a uniform grid G

j

of step 2

�j

. The

grid points are lo
ated at x

j

k

= k2

�j

. This de�nes an in�nite sequen
e of

grids that we denote by (G

j

)

j2Z

, and j will be 
alled the level of the grid.

In order to go from one level to the next or the previous, we de�ne a pro-

je
tion operator and a predi
tion operator. Consider two grid levels G

j

and

G

j+1

and dis
rete values (of a fun
tion) denoted by (


j

k

)

k2Z

and (


j+1

k

)

k2Z

.

Even though we use the same index k for the grid points in the two 
ases,

there are of 
ourse twi
e as many points in any given interval on G

j+1

as on

G

j

. Using the terminology in [3℄, we then de�ne the proje
tion operator

P

j

j+1

: G

j+1

! G

j

;




j+1

2k

7! 


j

k

;

whi
h is merely a restri
tion operator, as well as the predi
tion operator

P

j+1

j

: G

j

! G

j+1

;

su
h that 


j+1

2k

= 


j

k

;




j+1

2k+1

= P

2N+1

(x

j+1

2k+1

);
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where P

2N+1

stands for the Lagrange interpolation polynomial of odd degree

2N + 1 
entered at the point (x

j+1

2k+1

).

Using the just de�ned predi
tion operator, we 
an 
onstru
t on G

j

a

subspa
e of L

2

(R) that we shall denote by V

j

, a basis of whi
h being given

by ('

j

k

)

k2Z

su
h that '

j

k

(x

j

k

0

) = Æ

kk

0

where Æ

kk

0

is the Krone
ker symbol. The

value of '

j

k

at any point of the real line is then obtained by applying, possibly

an in�nite number of times, the predi
tion operator.

In the wavelets terminology the '

j

k

are 
alled s
aling fun
tions. We shall

also denote by ' = '

0

0

. Let us noti
e that

'

j

k

(x) = '(2

j

x� k):

It 
an be easily veri�ed that the s
aling fun
tions satisfy the following prop-

erties:

{ Compa
t support: the support of ' is in
luded in [�2N � 1; 2N + 1℄.

{ Interpolation: by 
onstru
tion '(x) is interpolating in the sense that '(0) =

1 and '(k) = 0 if k 6= 0.

{ Polynomial representation: all polynomials of degree less or equal to 2N+1


an be expressed exa
tly as linear 
ombinations of the '

j

k

.

{ Change of s
ale: the ' at a given s
ale 
an be expressed as a linear 
ombi-

nation of the ' at the s
ale immediately below:

'(x) =

2N+1

X

�2N�1

h

l

'(2x� l):

Moreover the sequen
e of spa
es (V

j

)

j2Z

de�nes a multiresolution analysis

of L

2

(R), i.e. it satis�es the following properties:

{ : : : � V

�1

� V

0

� V

1

� : : : � V

n

� : : : � L

2

(R).

{ \V

j

= f0g, [V

j

= L

2

(R).

{ f 2 V

j

$ f(2 �)V

j+1

.

{ 9' (s
aling fun
tion) su
h that f'(x� k)g

k2Z

is a basis of V

0

and f'

j

k

=

2

j=2

'(2

j

x� k)g

k2Z

is a basis of V

j

.

As V

j

� V

j+1

, there exists a supplementary of V

j

in V

j+1

that we shall


all the detail spa
e and denote by W

j

:

V

j+1

= V

j

�W

j

:

The 
onstru
tion of W

j


an be made in the following way: an element of

V

j+1

is 
hara
terized by the sequen
e(


j+1

k

)

k2Z

and by 
onstru
tion we have




j

k

= 


j+1

2k

. Thus, if we de�ne d

j

k

= 


j+1

2k+1

� P

2N+1

(x

j+1

2k+1

), where P

2N+1

is

the Lagrange interpolation polynomial by whi
h the value of an element of

V

j

at the point (x

j+1

2k+1

) 
an be 
omputed, d

j

k

represents exa
tly the di�eren
e

between the value in V

j+1

and the value predi
ted in V

j

. Finally, any element
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of V

j+1


an be 
hara
terized by the two sequen
es (


j

k

)

k

of values in V

j

and (d

j

k

)

k

of details in W

j

. Moreover this strategy for 
onstru
ting W

j

is

parti
ularly interesting for adaptive re�nement as d

j

k

will be small at pla
es

where the predi
tion from V

j

is good and large elsewhere, whi
h gives us a

natural re�nement 
riterion. Besides, there exists a fun
tion  , 
alled wavelet

su
h that f 

j

k

= 2

j=2

 (2

j

x� k)g

k2Z

is a basis of W

j

.

In pra
tise, for adaptive re�nement we set the 
oarsest level j

0

and the

�nest level j

1

, j

0

< j

1

, and we de
ompose the spa
e 
orresponding to the

�nest level on all the levels in between:

V

j

1

= V

j

0

�W

j

0

�W

j

0

+1

� � � � �W

j

1

�1

:

A fun
tion f 2 V

j

1


an then be de
omposed as follows

f(x) =

+1

X

l=�1




j

0

l

'

j

0

l

(x) +

j

1

�1

X

j=j

0

+1

X

l=�1

d

j

l

 

j

l

(x);

where the (


j

0

l

)

l

are the 
oeÆ
ients on the 
oarse mesh and the (d

j

l

)

l

the

details at the di�erent level in between.




j+1

2k

1

+2;2k

2

+1




j

k

1

;k

2




j+1

2k

1

;2k

2

+1




j+1

2k

1

+1;2k

2

+1




j+1

2k

1

+1;2k

2

+2




j

k

1

;k

2

+1




j

k

1

+1;k

2

+1




j+1

2k

1

+1;2k

2




j

k

1

+1;k

2

Fig. 1. Mesh re�nement in 2D.

In two dimensions, the predi
tion operator whi
h de�nes the multireso-

lution analysis is 
onstru
ted by tensor produ
t from the 1D operator. In

pra
tise three di�erent 
ases must be 
onsidered (see �gure 1 for notations):

1. Re�nement in x (
orresponding to points 


j+1

2k

1

+1;2k

2

and 


j+1

2k

1

+1;2k

2

+2

): we

use the 1D predi
tion operator in x for �xed k

2

.

2. Re�nement in v (
orresponding to points 


j+1

2k

1

;2k

2

+1

and 


j+1

2k

1

+2;2k

2

+1

): we

use the 1D predi
tion operator in v for �xed k

1

.

3. Re�nement in v (
orresponding to point 


j+1

2k

1

+1;2k

2

+1

): we �rst use the

1D predi
tion operator in v for �xed k

1

to determine the points whi
h

are ne
essary for applying the 1D predi
tion operator in x for �xed k

2

whi
h we then apply.
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The 
orresponding wavelet bases are respe
tively of type  (x)'(v), '(x) (v)

and  (x) (v) where ' and  are respe
tively the s
aling fun
tion and the 1D

wavelet. We then obtain a 2D wavelet de
omposition of the following form:

f(x; v) =

X

k

1

;k

2

�




j

0

k

1

;k

2

'

j

0

k

1

(x)'

j

0

k

2

(v) +

j

1

�1

X

j

0

�

d

row;j

k

1

;k

2

 

j

k

1

(x)'

j

k

2

(v)

+ d


ol;j

k

1

;k

2

'

j

k

1

(x) 

j

k

2

(v) + d

mid;j

k

1

;k

2

 

j

k

1

(x) 

j

k

2

(v)

�

�

: (3)

3 The algorithms

We want to numeri
ally solve the Vlasov equation (1) given an initial value

of the distribution fun
tion f

0

.

We start by des
ribing the method based on an interpolation using the

wavelet de
omposition of f in the non adaptive 
ase. Then we overlay an

adaptive algorithm to this method.

For those two algorithms, we �rst pi
k the resolution levels for the phase-

spa
e meshes, from the 
oarsest j

0

to the �nest j

1

. Although these levels


ould be di�erent in x and v, we 
onsider here for the sake of 
on
iseness and


larity that they are identi
al.

We also 
ompute our s
aling fun
tion on a very �ne grid so that we 
an

obtain with enough pre
ision its value at any point.

3.1 The non adaptive algorithm

We are working in this 
ase on the �nest level 
orresponding to j

1

keeping

all the points.

Initialization: We de
ompose the initial 
ondition in the wavelet basis

by 
omputing the 
oeÆ
ients 


k

1

;k

2

of the de
omposition in V

j

0

for the 
oarse

mesh, and then adding the details d

j

k

1

;k

2

in the detail spa
es W

j

for all the

other levels j = j

0

; : : : ; j

1

� 1. We then 
ompute the initial ele
tri
 �eld.

Time iterations:

{ Adve
tion in x: We start by 
omputing for ea
h mesh point the origin

of the 
orresponding 
hara
teristi
 exa
tly, the displa
ement being v

j

�t.

As we do not ne
essarily land on a mesh point, we 
ompute the values of

the distribution fun
tion at the intermediate time level, denoted by f

�

, at

the origin of the 
hara
teristi
s by interpolation from f

n

. We use for this

the wavelet de
omposition (3) applied to f

n

from whi
h we 
an 
ompute

f

n

at any point in phase spa
e.
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{ Computation of the ele
tri
 �eld: We 
ompute the 
harge density

by integrating f

�

with respe
t to v, then the ele
tri
 �eld by solving the

Poisson equation (this step vanishes for the linear 
ase of the rotating


ylinder where the adve
tion �eld is exa
tly known).

{ Adve
tion in v: We start by 
omputing exa
tly the origin of the 
har-

a
teristi
 for ea
h mesh point, the displa
ement being E(t

n

; x

i

)�t. As we

do not ne
essarily land on a mesh point, we 
ompute the values of the

distribution fun
tion at the intermediate time level, denoted by f

n+1

, at

the origin of the 
hara
teristi
s by interpolation from f

�

. We use for this

the wavelet de
omposition of f

�

given by (3) used at the previous step.

3.2 The adaptive algorithm

In the initialization phase, we �rst 
ompute the wavelet de
omposition of

the initial 
ondition f

0

, and then pro
eed by 
ompressing it, i.e. eliminating

the details whi
h are smaller than a threshold that we impose. We then


onstru
t an adaptive mesh whi
h, from all the possible points at all the

levels between our 
oarsest and �nest, 
ontains only those of the 
oarsest

and those 
orresponding to details whi
h are above the threshold. We denote

by

~

G this mesh.

{ Predi
tion in x: We predi
t the positions of points where the details

should be important at the next time split step by advan
ing in x the


hara
teristi
s originating from the points of the mesh

~

G. For this we use an

expli
it Euler s
heme for the numeri
al integration of the 
hara
teristi
s.

Then we retain the grid points, at one level �ner as the starting point,

surrounding the end point the 
hara
teristi
.

{ Constru
tion of mesh

^

G: From the predi
ted mesh

~

G, we 
onstru
t

the mesh

^

G where the values of the distribution at the next time step

shall be 
omputed. This mesh

^

G 
ontains exa
tly the points ne
essary for


omputing the wavelet transform of f

�

at the points of

~

G.

{ Adve
tion in x: As in the non adaptive 
ase.

{ Wavelet transform of f

�

: We 
ompute the 


k

and d

k


oeÆ
ients at the

points of

~

G from the values of f

�

at the points of

^

G.

{ Compression:We eliminate the points of

~

G where the details d

k

are lower

than the �xed threshold.

{ Computation of the ele
tri
 �eld: As in the non adaptive 
ase.

{ Predi
tion in v: As for the predi
tion in x.

{ Constru
tion of mesh

^

G: As previously. This mesh

^

G 
ontains exa
tly

the points ne
essary for 
omputing the wavelet transform of f

n+1

at the

points of

~

G determined in the predi
tion in v step.

{ Adve
tion in v: As in the non adaptive 
ase.

{ Wavelet transform of f

n+1

: We 
ompute the 


k

and d

k

at the points of

~

G from the values of f

n+1

at the points of

^

G.

{ Compression:We eliminate the points of

~

G where the details d

k

are lower

than the �xed threshold.
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4 Numeri
al results

We show here our �rst results obtained with the adaptive method. We 
on-

sider �rst a linear problem, namely the test 
ase of the rotating 
ylinder

introdu
ed by Zalesak [10℄ to test adve
tion s
hemes. Then we 
onsider a


lassi
al nonlinear Vlasov-Poisson test 
ase, namely the two stream instabil-

ity.

4.1 The slit rotating 
ylinder

We 
onsider the following initial 
ondition:

f(0; x; v) =

�

1 if

p

x

2

+ v

2

< 0:5 and if x < 0 or jvj > 0:125;

0 else:

The 
omputational domain is [�0:5; 0:5℄� [�0:5; 0:5℄.

The adve
tion �eld is (v;�x), whi
h 
orresponds to the Vlasov equation

with an applied ele
tri
 �eld E

app

(x; t) = �x and without self-
onsistent �eld.

Figure 2 represents the evolution of the rotating 
ylinder on a half turn with

a 
oarse mesh of 16� 16 points and 4 adaptive re�nement levels. We noti
e

that the 
ylinder is well represented and that the mesh points 
on
entrate

along the dis
ontinuities.

4.2 The two-stream instability

We 
onsider two streams symmetri
 with respe
t to v = 0 and represented

by the initial distribution fun
tion

f(0; x; v) =

1

p

2�

v

2

exp(�v

2

=2)(1 + � 
os(k

0

x));

with � = 0:25, k

0

= 0:5, and L = 2�=k

0

. We use a maximum of N

x

= 128

points in the x dire
tion, and N

v

= 128 points in the v dire
tion with v

max

=

7, and a time step�t = 1=8. The solution varies �rst very slowly and then �ne

s
ales are generated. Between times of around t ' 20 !

�1

p

and t ' 40 !

�1

p

,

the instability in
reases rapidly and a hole appears in the middle of the


omputational domain. After t = 45 !

�1

p

until the end of the simulation,

parti
les inside the hole are trapped. On �gure 3 we show a snapshot of the

distribution fun
tion at times t = 5 !

�1

p

and t = 30 !

�1

p

for a 
oarse mesh of

16 � 16 points and 3 levels of re�nement. The adaptive method reprodu
es

well the results obtained in the non adaptive 
ase.

5 Con
lusion

In this paper we have des
ribed a new method for the numeri
al resolution of

the Vlasov equation using an adaptive mesh of phase-spa
e. The adaptive al-

gorithm is based on a multiresolution analysis. It performs qualitatively well.
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Fig. 2. Rotating 
ylinder: evolution for a 
oarse mesh of 2

4

�2

4

points and 4 adap-

tive re�nement levels. Snapshots of the 
ylinder and the 
orresponding adaptive

mesh: (upper) after one time step, (lower) after 1/2 turn.

Fig. 3. Two stream instability for a 
oarse mesh of 2

4

� 2

4

, and 3 adaptive re�ne-

ment levels, (left) at time t = 5!

�1

p

, (right) at time t = 30!

�1

p

.
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However, there is a large overhead due to the handling of the adaptive mesh

whi
h has not been optimized yet. The performan
e of the 
ode needs to be

improved before we 
an re
ommend this te
hnique for a
tual 
omputations.

We are 
urrently working on optimizing the 
ode and trying di�erent kinds

of wavelets, as well as obtaining error estimates for the adaptive method.
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