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Abstrat. A numerial method for the diret simulation of the axisym-

metri Vlasov equation is introdued. It is based on a modi�ed formu-

lation of the Vlasov equation using the invariane of the anonial an-

gular momentum. This leads in partiular to a straightforward and very

eÆient parallel algorithm. Then it is applied to simulations of a RMS-

mathed semi-Gaussian beam and a perturbed thermal equilibrium.

1 Introdution

Eulerian diret Vlasov simulation of spae harge dominated beams has proven to

be an eÆient alternative to PIC methods as it is ompletely devoid of numerial

noise. It enables in partiular to get a better insight into phenomena happening

at the edge of the beam where the distribution funtion is very small. These

regions are generally desribed by too few partiles in PIC simulations.

We shall desribe a three-dimensional r, v

r

, v

�

axisymmetri transverse solver

involving fewer dimensions than a omparable artesian solver, whih would be

four dimensional in phase spae, enabling us to use a larger number of grid

points.

The method is based on the use of the anonial angular momentum whih is

invariant, and thus only appears as a parameter in the equations. Thanks to the

use of this invariant, a straightforward very eÆient parallelization is ahieved.

The ode is then validated on two test-ases involving heavy ions, the evolu-

tion of a transverse spae-harge wave in a RMS-mathed semi-Gaussian beam

and the formation of a halo in a beam where a perturbation from a Maxwell-

Boltzmann thermal equilibrium is introdued.

The outline of the paper is as follows : We shall �rst reall the axisymmetri

Vlasov equation and its properties. Then, we present the disretization of the

axisymmetri Vlasov equation. And �nally we present numerial results for the

ases of a semi-Gaussian beam and a perturbed thermal equilibrium.



2 The axisymmetri Vlasov equation

We onsider an axisymmetri beam uniform in the longitudinal diretion. It

an be represented by the axisymmetri Vlasov equation, whih desribes the

evolution of a speies of harged partiles under applied and self-onsistent �elds,

and reads
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where the distribution funtion f is a funtion of radial position r, veloity

(v

r

; v

�

) and time t. We assume here that the applied magneti �eld is longitu-

dinal and uniform, i.e. B = (0; 0; B

z

), where B

z

(t) only depends on time. The

assoiated vetor potential then has only a non vanishing A

�

omponent the

value of whih is A

�

=

r
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. The self-onsistent eletri �eld E

s

(t; r), deriving

from a salar potential �

s

is given by the axisymmetri Poisson equation whih

reads
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The harateristi urves of the axisymmetri Vlasov equation are the solu-

tions of the following di�erential system
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Classial invariants of the axisymmetri Vlasov equation (1) are the Hamil-

tonian
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and the anonial angular momentum
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Let us make use of this last invariant, as suggested in [3℄, to simplify equation

(1). Denoting by I =
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m
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This new formulation of the axisymmetri Vlasov equation is partiularly well

adapted to parallelization as the variable I only plays the role of a parameter.



3 Disretization of the axisymmetri Vlasov equation

We use a grid in phase spae (r; v

r

; I). Yet it is neessary to take partiular are

of the I diretion. Indeed, when the self onsistent eletri �eld is linear, as for

the K-V distribution funtion, the harateristi urves assoiated to Eq. (6),

along whih the distribution funtion is onstant, are of the form
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= onst:

Hene it is neessary to ontrol the ratio I=r, therefore we disretize the I di-

retion so that

I = �! r

2

:

We then use the onservation of the distribution funtion along the hara-

teristis to devise the numerial algorithm whih will be based on the semi-

Lagrangian methodology [5℄. The new values are omputed at the grid points in

two steps: (i) ompute the origin of the harateristi ending at the grid point

one time step bak, (ii) interpolate the value of the distribution funtion there,

whih is also the new value at the grid point, from the old values at the sur-

rounding grid points. This method is not subjet to a Courant ondition on the

time step whih would be very restritive near the axis r = 0.

In the axisymmetri Vlasov equation the I

2

=r

3

fator ats like a repulsion

potential with respet to the total eletri �eld. This potential is largest near the

axis, where the eletri �eld is negligible. As usual for axisymmetri problems,

the major diÆulty in the disretization of the Vlasov equation in ylindrial

oordinates lies in the handling of the equation near the axis r = 0. The most

natural method would onsist in separating the free transport part whih an be

solved expliitly from the self-onsistent part. However, numerial errors would

be generated near the axis and propagate inside the domain, and our goal here is

to devise a very preise numerial method for whih this is unaeptable. So, we

shall go with a lassial operator splitting method, and split between advetion

in r and advetion in v

r

.

On the time interval [t

n

; t

n+1

℄ we proeed as follows: the distribution funtion

at time t

n

is given by f

n

(r; v

r

; I), we �rst ompute f

�

suh that
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We then ompute the self-onsistent eletri �eld E

s

from the intermediate ap-

proximation f

�

(�t; r; v

r

; I). Then f

��

suh that,
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Finally, f

n+1

(r; v

r

; I) = f

��

(�t; r; v

r

; I).

The disretization of equation (7) requires to apply arti�ial boundary on-

ditions. Atually, for this equation, at r = 0 and for v

r

> 0, the partile ux

is inoming, whereas partiles with veloity v

r

< 0 leave the omputational do-

main. Thus, we need to model how the partiles ross the axis r = 0. This an

be done by imposing speular reetion onditions:

f(0; v

r

; I) = f(0;�v

r

; I); 8 v

r

> 0:

The numerial resolution of transport equations (7) and (8) is then performed

using a semi-Lagrangian method with a ubi Hermite interpolation, using the

values of the funtion and its derivative at the end points of the interval. Let us

desribe it in details for equation (7). On an interval [r

i

; r

i+1

℄, we approximate

the derivative of the distribution funtion at eah grid point by a fourth order

�nite di�erene sheme:
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The polynomial reonstrution is then given on eah interval [r

i

; r

i+1

℄ by the

ubi polynomial interpolating the distribution funtion and its derivatives on

the grid
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This formula allows to evaluate the distribution funtion anywhere on the grid.

It only remains to use the harateristi urves whih an be solved expliitly on

eah split step to ompute the distribution funtion at the grid points at time

t

n+1

.

4 Numerial results

4.1 Semi-Gaussian beam

We want to study here the evolution of an axisymmetri semi-Gaussian beam.

Therefore we solve the Vlasov-Poisson in ylindrial oordinates, with an ap-

plied uniform and onstant longitudinal magneti �eld B

z

. Then the distribu-

tion satis�es the Vlasov equation 6. The initial distribution funtion desribing

a semi-Gaussian beam in is given by
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. The magneti �eld

B

z

and the thermal veloity v

th

are omputed from RMS quantities, so that the

beam is equivalent to a mathed K-V beam.



The beam partiles are singly ionized potassium (Z = 1, m = 39:1 amu).

The density n

0

is omputed from the urrent I=0.2 A and the beam veloity

along the z-axis

v

z

= 

s



2

� 1



2

;  = 1 +

q

m 

2

K;

where K is the beam kineti energy K = 8: 10

4

eV. Finally the beam radius is

a=0.02 m and the tune depression is !=!

0

= 1=4.

We observe a spae harge wave starting from the edge of the beam, prop-

agating inwards and �nally being reeted on the axis r = 0. The initial self-

onsistent �eld is linear within the beam. The variations are relatively weak

but suÆient to strongly perturb the density (Fig. 1). Solving the axisymmet-

ri equation allows us to eliminate one diretion and thus to use a �ner mesh

than in the artesian ase and desribe the distribution funtion more preisely.

Moreover our new formulation of the Vlasov equation onserves the invariant

I = r v

�

+

q B

z

2m

r

2

.

This method gives very satisfying results for the present test ase. The results

are omparable to those obtained with a artesian ode, as presented in [6℄, for

the same resolution and the ode is muh faster. Moreover it is possible to go to

muh �ner resolutions and then diminish the numerial damping.

Number of proessors 2D Cartesian solver PFC Axisymmetri Solver

4 proessors 178 min 59 min

8 proessors 89 min 27 min

Table 1. Computational time for a 2D� 2D artesian and axisymmetri solvers.

4.2 Perturbed thermal beam

We start now from a dimensionlessMaxwell-Boltzmann distribution (q = m = 1)

f
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where H is the dimensionless Hamiltonian obtained from (4), oupled with the

Poisson equation
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When � is di�erent from zero or one, there are no analytial solutions of Pois-

son's equation (10). Therefore, we approximate the potential �

s

using a �nite
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Fig. 1. Semi-Gaussian beam. Snapshots of slies of: (1) density N(t; r), (2) �rst mo-

ment in v

r

, (3) �rst moment in v

�

, (4) total fore �eld E

s

(t; r)�

�

q B

z

2m

�

2

r inside the

beam at times z=0, 0.32, 0.48, 0.64, 0.96 m.



di�erene method : let (r
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The parameter � is then determined by the tune-depression. Thus, we obtain a

steady-state solution of the self-onsistent Vlasov-Poisson system. The density

is then inreased by 50%. The beam parameters are the following : partiles are

singly ionized potassium (Z = 1, m = 39:1 amu), urrent is I = 0:2 A, energy K

= 8: 10

4

eV and radius r

max

= 0:01 m. We �rst display snapshots of the RMS

quantities
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whih allows us to ompute the emittane in ylindrial oordinates.
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Fig. 4 displays the evolution of the beam density, through slie plots on a log-

arithmi sale. It appears that, for a tune depression !=!

0

= 1=2, a plateau is

formed at a density of around one thousandth of the ore density. The snapshots

are taken at times when the RMS value v

r

rms

is at an extremum as it is there

where the halo an be best observed [4℄. Our beam has a radius of 0.01 m and

the dimension of the plateau is approximatively of 0.025 m, whih orresponds

to the maximal radius predited by the empirial formula given in T.P. Wangler

et al. [7℄ whih is 0.0241 m.
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Fig. 2. (1) r

rms

, (2) v

r

rms

, (3) v

�

rms

(4) �

x

for an axisymmetri Maxwell-Boltzmann

beam.

5 Conlusion

In this paper, we propose a new axisymmetri solver for the Vlasov equation. The

formulation using invariants allows us to do staighforward and eÆient parallel
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omputations. The auray of the sheme is suh that it is possible to observe

halo formations and to get a good desription of the distribution funtion in

the phase spae. These results are promising to treat more omplex problems in

aelerator physis.
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