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Abstra
t. A numeri
al method for the dire
t simulation of the axisym-

metri
 Vlasov equation is introdu
ed. It is based on a modi�ed formu-

lation of the Vlasov equation using the invarian
e of the 
anoni
al an-

gular momentum. This leads in parti
ular to a straightforward and very

eÆ
ient parallel algorithm. Then it is applied to simulations of a RMS-

mat
hed semi-Gaussian beam and a perturbed thermal equilibrium.

1 Introdu
tion

Eulerian dire
t Vlasov simulation of spa
e 
harge dominated beams has proven to

be an eÆ
ient alternative to PIC methods as it is 
ompletely devoid of numeri
al

noise. It enables in parti
ular to get a better insight into phenomena happening

at the edge of the beam where the distribution fun
tion is very small. These

regions are generally des
ribed by too few parti
les in PIC simulations.

We shall des
ribe a three-dimensional r, v

r

, v

�

axisymmetri
 transverse solver

involving fewer dimensions than a 
omparable 
artesian solver, whi
h would be

four dimensional in phase spa
e, enabling us to use a larger number of grid

points.

The method is based on the use of the 
anoni
al angular momentum whi
h is

invariant, and thus only appears as a parameter in the equations. Thanks to the

use of this invariant, a straightforward very eÆ
ient parallelization is a
hieved.

The 
ode is then validated on two test-
ases involving heavy ions, the evolu-

tion of a transverse spa
e-
harge wave in a RMS-mat
hed semi-Gaussian beam

and the formation of a halo in a beam where a perturbation from a Maxwell-

Boltzmann thermal equilibrium is introdu
ed.

The outline of the paper is as follows : We shall �rst re
all the axisymmetri


Vlasov equation and its properties. Then, we present the dis
retization of the

axisymmetri
 Vlasov equation. And �nally we present numeri
al results for the


ases of a semi-Gaussian beam and a perturbed thermal equilibrium.



2 The axisymmetri
 Vlasov equation

We 
onsider an axisymmetri
 beam uniform in the longitudinal dire
tion. It


an be represented by the axisymmetri
 Vlasov equation, whi
h des
ribes the

evolution of a spe
ies of 
harged parti
les under applied and self-
onsistent �elds,

and reads
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where the distribution fun
tion f is a fun
tion of radial position r, velo
ity

(v

r

; v

�

) and time t. We assume here that the applied magneti
 �eld is longitu-

dinal and uniform, i.e. B = (0; 0; B

z

), where B

z

(t) only depends on time. The

asso
iated ve
tor potential then has only a non vanishing A

�


omponent the

value of whi
h is A

�

=

r

2

B

z

. The self-
onsistent ele
tri
 �eld E

s

(t; r), deriving

from a s
alar potential �

s

is given by the axisymmetri
 Poisson equation whi
h

reads
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The 
hara
teristi
 
urves of the axisymmetri
 Vlasov equation are the solu-

tions of the following di�erential system
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Classi
al invariants of the axisymmetri
 Vlasov equation (1) are the Hamil-

tonian
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and the 
anoni
al angular momentum
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Let us make use of this last invariant, as suggested in [3℄, to simplify equation

(1). Denoting by I =

P

m

and making the 
hange of variable (r; v
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This new formulation of the axisymmetri
 Vlasov equation is parti
ularly well

adapted to parallelization as the variable I only plays the role of a parameter.



3 Dis
retization of the axisymmetri
 Vlasov equation

We use a grid in phase spa
e (r; v

r

; I). Yet it is ne
essary to take parti
ular 
are

of the I dire
tion. Indeed, when the self 
onsistent ele
tri
 �eld is linear, as for

the K-V distribution fun
tion, the 
hara
teristi
 
urves asso
iated to Eq. (6),

along whi
h the distribution fun
tion is 
onstant, are of the form

!
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= 
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Hen
e it is ne
essary to 
ontrol the ratio I=r, therefore we dis
retize the I di-

re
tion so that

I = �! r

2

:

We then use the 
onservation of the distribution fun
tion along the 
hara
-

teristi
s to devise the numeri
al algorithm whi
h will be based on the semi-

Lagrangian methodology [5℄. The new values are 
omputed at the grid points in

two steps: (i) 
ompute the origin of the 
hara
teristi
 ending at the grid point

one time step ba
k, (ii) interpolate the value of the distribution fun
tion there,

whi
h is also the new value at the grid point, from the old values at the sur-

rounding grid points. This method is not subje
t to a Courant 
ondition on the

time step whi
h would be very restri
tive near the axis r = 0.

In the axisymmetri
 Vlasov equation the I

2

=r

3

fa
tor a
ts like a repulsion

potential with respe
t to the total ele
tri
 �eld. This potential is largest near the

axis, where the ele
tri
 �eld is negligible. As usual for axisymmetri
 problems,

the major diÆ
ulty in the dis
retization of the Vlasov equation in 
ylindri
al


oordinates lies in the handling of the equation near the axis r = 0. The most

natural method would 
onsist in separating the free transport part whi
h 
an be

solved expli
itly from the self-
onsistent part. However, numeri
al errors would

be generated near the axis and propagate inside the domain, and our goal here is

to devise a very pre
ise numeri
al method for whi
h this is una

eptable. So, we

shall go with a 
lassi
al operator splitting method, and split between adve
tion

in r and adve
tion in v

r

.

On the time interval [t

n

; t

n+1

℄ we pro
eed as follows: the distribution fun
tion

at time t

n

is given by f

n

(r; v

r

; I), we �rst 
ompute f

�

su
h that
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We then 
ompute the self-
onsistent ele
tri
 �eld E

s

from the intermediate ap-

proximation f

�

(�t; r; v

r

; I). Then f

��
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Finally, f

n+1

(r; v

r

; I) = f

��

(�t; r; v

r

; I).

The dis
retization of equation (7) requires to apply arti�
ial boundary 
on-

ditions. A
tually, for this equation, at r = 0 and for v

r

> 0, the parti
le 
ux

is in
oming, whereas parti
les with velo
ity v

r

< 0 leave the 
omputational do-

main. Thus, we need to model how the parti
les 
ross the axis r = 0. This 
an

be done by imposing spe
ular re
e
tion 
onditions:

f(0; v

r

; I) = f(0;�v

r

; I); 8 v

r

> 0:

The numeri
al resolution of transport equations (7) and (8) is then performed

using a semi-Lagrangian method with a 
ubi
 Hermite interpolation, using the

values of the fun
tion and its derivative at the end points of the interval. Let us

des
ribe it in details for equation (7). On an interval [r

i

; r

i+1

℄, we approximate

the derivative of the distribution fun
tion at ea
h grid point by a fourth order

�nite di�eren
e s
heme:
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The polynomial re
onstru
tion is then given on ea
h interval [r

i

; r

i+1

℄ by the


ubi
 polynomial interpolating the distribution fun
tion and its derivatives on

the grid
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This formula allows to evaluate the distribution fun
tion anywhere on the grid.

It only remains to use the 
hara
teristi
 
urves whi
h 
an be solved expli
itly on

ea
h split step to 
ompute the distribution fun
tion at the grid points at time

t

n+1

.

4 Numeri
al results

4.1 Semi-Gaussian beam

We want to study here the evolution of an axisymmetri
 semi-Gaussian beam.

Therefore we solve the Vlasov-Poisson in 
ylindri
al 
oordinates, with an ap-

plied uniform and 
onstant longitudinal magneti
 �eld B

z

. Then the distribu-

tion satis�es the Vlasov equation 6. The initial distribution fun
tion des
ribing

a semi-Gaussian beam in is given by
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. The magneti
 �eld

B

z

and the thermal velo
ity v

th

are 
omputed from RMS quantities, so that the

beam is equivalent to a mat
hed K-V beam.



The beam parti
les are singly ionized potassium (Z = 1, m = 39:1 amu).

The density n

0

is 
omputed from the 
urrent I=0.2 A and the beam velo
ity

along the z-axis

v

z

= 


s




2

� 1




2

; 
 = 1 +

q

m 


2

K;

where K is the beam kineti
 energy K = 8: 10

4

eV. Finally the beam radius is

a=0.02 m and the tune depression is !=!

0

= 1=4.

We observe a spa
e 
harge wave starting from the edge of the beam, prop-

agating inwards and �nally being re
e
ted on the axis r = 0. The initial self-


onsistent �eld is linear within the beam. The variations are relatively weak

but suÆ
ient to strongly perturb the density (Fig. 1). Solving the axisymmet-

ri
 equation allows us to eliminate one dire
tion and thus to use a �ner mesh

than in the 
artesian 
ase and des
ribe the distribution fun
tion more pre
isely.

Moreover our new formulation of the Vlasov equation 
onserves the invariant

I = r v

�

+

q B

z

2m

r

2

.

This method gives very satisfying results for the present test 
ase. The results

are 
omparable to those obtained with a 
artesian 
ode, as presented in [6℄, for

the same resolution and the 
ode is mu
h faster. Moreover it is possible to go to

mu
h �ner resolutions and then diminish the numeri
al damping.

Number of pro
essors 2D Cartesian solver PFC Axisymmetri
 Solver

4 pro
essors 178 min 59 min

8 pro
essors 89 min 27 min

Table 1. Computational time for a 2D� 2D 
artesian and axisymmetri
 solvers.

4.2 Perturbed thermal beam

We start now from a dimensionlessMaxwell-Boltzmann distribution (q = m = 1)

f
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where H is the dimensionless Hamiltonian obtained from (4), 
oupled with the

Poisson equation
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When � is di�erent from zero or one, there are no analyti
al solutions of Pois-

son's equation (10). Therefore, we approximate the potential �

s

using a �nite
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Fig. 1. Semi-Gaussian beam. Snapshots of sli
es of: (1) density N(t; r), (2) �rst mo-

ment in v

r

, (3) �rst moment in v

�

, (4) total for
e �eld E

s

(t; r)�

�

q B

z

2m

�

2

r inside the

beam at times z=0, 0.32, 0.48, 0.64, 0.96 m.



di�eren
e method : let (r
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The parameter � is then determined by the tune-depression. Thus, we obtain a

steady-state solution of the self-
onsistent Vlasov-Poisson system. The density

is then in
reased by 50%. The beam parameters are the following : parti
les are

singly ionized potassium (Z = 1, m = 39:1 amu), 
urrent is I = 0:2 A, energy K

= 8: 10

4

eV and radius r

max

= 0:01 m. We �rst display snapshots of the RMS

quantities
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whi
h allows us to 
ompute the emittan
e in 
ylindri
al 
oordinates.
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Fig. 4 displays the evolution of the beam density, through sli
e plots on a log-

arithmi
 s
ale. It appears that, for a tune depression !=!

0

= 1=2, a plateau is

formed at a density of around one thousandth of the 
ore density. The snapshots

are taken at times when the RMS value v

r

rms

is at an extremum as it is there

where the halo 
an be best observed [4℄. Our beam has a radius of 0.01 m and

the dimension of the plateau is approximatively of 0.025 m, whi
h 
orresponds

to the maximal radius predi
ted by the empiri
al formula given in T.P. Wangler

et al. [7℄ whi
h is 0.0241 m.
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x

for an axisymmetri
 Maxwell-Boltzmann

beam.

5 Con
lusion

In this paper, we propose a new axisymmetri
 solver for the Vlasov equation. The

formulation using invariants allows us to do staighforward and eÆ
ient parallel
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omputations. The a

ura
y of the s
heme is su
h that it is possible to observe

halo formations and to get a good des
ription of the distribution fun
tion in

the phase spa
e. These results are promising to treat more 
omplex problems in

a

elerator physi
s.
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