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1 Introdution

This paper is devoted to the numerial simulation of problems in Plasma Physis and partile

beams propagation. The main interest of this topi is the study of ontrolled fusion, whih

seems to be a promising solution for future energy prodution. Roughly speaking, there exist two

approahes to realize ontrolled fusion. The �rst one is magneti on�nement, where the plasma

or harged partiles are ontained in a �nite region using magneti �elds. Charged partiles travel

in helial paths around the magneti �eld lines and this on�nes their motion. The seond method

is inertial on�nement, whih onsists in produing nulear fusion by shooting at a Deuterium and

Tritium target with a partile or laser beam.

A model whih an be used in many ases for the study of plasma as well as of beam propagation

is the Vlasov equation oupled with the Maxwell or Poisson equations to ompute the self onsistent

�elds. It desribes the evolution of a system of partiles under the e�ets of external and self-

onsistent �elds. The unknown f(t; x; v), depending on the time t, the position x, and the veloity

v, represents the distribution of partiles in phase spae for eah speies. The numerial resolution

of the Vlasov equation is usually performed by Partile-In-Cell (PIC) methods whih approximate

the plasma by a �nite number of partiles. Trajetories of these partiles are omputed from

harateristi urves given by the Vlasov equation, whereas self-onsistent �elds are omputed

on a mesh of the physial spae. This method yields satisfying results with a relatively small

number of partiles. However, it is well known that the numerial noise inherent to the partile

method beomes, in some ases, too important to get an aurate desription of the distribution

funtion. Moreover, the numerial noise only dereases in 1=

p

N , when the number of partiles N

is inreased.

To remedy this problem, methods disretizing the Vlasov equation on a mesh of phase spae

have been proposed. Among them, the �nite volume type method (or �ux balane method)

onsists in averaging the distribution funtion on phase spae disrete volumes. These unknowns

are updated by onsidering inoming and outgoing �uxes leading to mass onservation. We will

onsider the Positive and Flux Conservative method (PFC) [4, 5℄, whih is not only onservative,

but also preserves the positivity and the maximum value of the distribution funtion. The sheme

was implemented up to third order auray. Thus, disretizations by suh methods are really

interesting to get a good desription of the plasma or partile beam evolution. Unfortunately,

these methods require a big amount of memory and omputational time, beause the unknowns are

omputed on phase spae meshes. Indeed, even if we restrit ourselve to the study of partile beams

in the four dimensional transverse plane i.e. the orthogonal diretion to the beam propagation

diretion (negleting variation in (z,v

z

)), a reasonable hoie to get an aurate approximation

of the partile beam is to onsider at least 100 points in eah diretion of the four dimensional
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phase spae (x,y,v

x

,v

y

), whih means 100

4

points (1 GB of memory). In this ase, it is neessary

to develop parallel algorithms.

The outline of the paper is as follows : We shall �rst reall the Vlasov equation and the PFC

shemes whih is used to approximate the solution. Then, we present a �rst parallel algorithm in

order to redue the omputational ost of the approximation of the Vlasov equation in 4D or 6D.

A seond algorithm is based on overlapping of ommuniations by alulation, whih is enabled

to highly redue the omputational time. Finally, we present numerial results illustrating the

e�ieny of the new parallel algorithm.

2 The Positive and Flux Conservative (PFC) method

The evolution of the density of partiles f(t; x; v)dx dv in the phase spae (x; v) 2 IR

d

� IR

d

,

d = 1; ::; 3; is given by the normalized Vlasov equation,

�f

�t

+ div

x

(v f) + div

v

(E(t; x) f) = 0: (1)

where the self eletri �eld E is omputed using the Poisson equation, i.e.

E(t; x) = �r

x

�(t; x); ��

x

�(t; x) = �(t; x); (2)

where the harge density � is de�ned by

�(t; x) =

Z

IR

d

f(t; x; v)dv: (3)

The time disretization of (1) is based on the following splitting algorithm on �t = [t

n

; t

n+1

℄

knowing an approximate solution f

n

at time t

n

1. Solve a free transport equation on �t

8

>

>

<

>

>

:

�f

(1)

�t

+ div

x

�

v f

(1)

�

= 0;

f

(1)

(0; x; v) = f

n

(x; v):

(4)

2. Compute the eletri �eld E(t

n+1=2

; x) at time t

n+1=2

by substituting f

(1)

(�t; x; v) in the

Poisson equation and in (3).

3. Solve on �t the equation

8

>

>

<

>

>

:

�f

(2)

�t

+ div

v

�

E(t

n+1=2

; x) f

(2)

�

= 0;

f

(2)

(0; x; v) = f

(1)

(�t; x; v):

(5)

and set f(t

n+1

; x; v) = f

(2)

(�t; x; v).

Using this proedure the algorithm boils down to solve equations (4) and (5) on a phase spae mesh

(x; v) 2 IR

4

. To this aim, we introdue a �nite set of mesh points (x

i

= (x

i

; y

i

))

i2f0;::;n

x

g

and (v

j

=

(v

xj

; v

yj

))

j2f0;::;n

v

g

of the omputational domain. We will denote by �x = x

i+1

� x

i

= y

i+1

� y

i

the spae step, �v = v

xj+1

�v

xj

= v

yj+1

�v

yj

the veloity step and by C

i;j

= [x

i

; x

i+1

℄� [v

j

; v

j+1

℄

the ontrol volume. Assume the values of the distribution funtion f , stored in matrix (F

n

i;j

)

i;j

,

are known at time t

n

= n�t. We �nd the new values at time t

n+1

by suessively solving (4) and

(5) on eah ontrol volume C

i;j

from time t

n

to time t

n+1

. Using the PFC sheme desribed in

[4℄, we get a �rst approximation F

(1)

i;j

of equation (4) from the values F

n

i;j

F

(1)

i;j

= Q

(1)

�x;�v

(F

n

0;j

; F

n

1;j

; ::; F

n

n

x

�1;j

): (6)
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Let us mention that the omputation of F

(1)

i;j

only depends on row values of F

n

.

From these new values, we approximate the eletri �eld on the physial spae mesh (x

i

)

i2f0;::;n

x

g

from the disrete spae harge

�

n+1=2

i

= �v

X

j

F

(1)

i;j

using a Fast Fourier Transform (FFT). Finally, we get the solution at time t

n+1

by approximating

equation (5),

F

n+1

i;j

= Q

(2)

�x;�v

(F

(1)

i;0

; F

(1)

i;1

; ::; F

(1)

i;n

v

�1

): (7)

In this ase, the approximation of F

n+1

i;j

only requires olumn values of F

(1)

.

We refer to [4℄ for more details about disrete operators Q

(1)

�x;�v

and Q

(2)

�x;�v

, whih respetively

approximate equations (4) and (5) with a very good auray.

2.1 The parallel algorithm

This part is devoted to designing parallel algorithms to solve the Vlasov equation for eah time

step using the numerial method presented before. The aim is onstrut a parallel algorithm to

redue the omputational time. One method only onsists in optimizing ommuniations, we refer

for example to [6, 3℄, where authors desribe an e�ient implementation of the transposition.

Another approah, whih seems to be more e�ient when we treat large data size, is to perform

ommuniations and omputations at the same time. It is referred as omputation/ommuniation

overlapping [1℄.

2.2 A �rst parallel algorithm

Let us denote by F

n

the matrix (F

n

i;j

)

i;j

, where i represents the index of the physial spae mesh

and j the index of the veloity spae. We note that the big amount of work is performed during

steps (6) and (7). Therefore, we will fous on the parallelization of these omputations. To do

this we observe, as mentionned before, that the operator Q

(1)

(resp. Q

(2)

) only ats on rows of

(F

n

i;j

) (resp. on olumns of (F

(1)

i;j

)). Thus, for the �rst step if data are distributed by row on

eah proessor, then no ommuniations are required. Similarly, for the seond step a storage by

olumn does not involve any ommuniation at all. The link between two steps is done through a

transposition of F

(1)

.

Following this idea, we �rst present a simple parallel algorithm [2℄, starting with one dimen-

sional band distribution F

n

along v-diretion.

Algorithm 1:

For eah time step �t

1. Compute the matrix F

(1)

using Q

(1)

�x;�v

from values F

n

. The storage by rows avoids loal

ommuniations for this step.

2. Distribute the matrix F

(1)

into the matrix transposed F

(1)

T

in order to get a one dimensional

band distribution along x-diretion.

3. Integrate F

(1)

T

to get the disrete harge density � and ompute the eletrial �eld E

4. Apply Q

(2)

�x;�v

to F

(1)

T

for solving equation (7) over a time step of �t. The storage by

olumns avoids loal ommuniations for this step.

5. Redistribute matries F

n+1

T

into matrix F

n+1

in order to get a one dimensional band

distribution along v-diretion.
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End.

In this ase, we notie that with our parallel algorithm, ommuniations only our during the

two data redistributions phases. In other words, the algorithm falls into phases of omputations

without any ommuniation and phases of ommuniations without any omputation.

Improving this algorithm is partiularly interesting beause ommuniation phases are very

time-onsuming due to the very large amount of data, whih are transmitted. Indeed, ommuni-

ations onsist in a transposition that is a global exhange of data among all proessors. It is well

known that this operation is one of the most demanding ommuniations tasks.

Figure 1 illustrates the ommuniations required during the �rst redistribution phase on a

4-proessors arhiteture. Eah proessor holds a band of matrix F

n

and assuming the band is

subdivised into 4 bloks, it must send one blok of data to eah other proessor and reeive one

blok of data from eah other proessor. This transposition task is ostly. It is important to

improve our algorithm.

P2

P3

P1

P0 (0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

P2

P3

P1

P0 (0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

Figure 1: The data exhange pattern to transpose a data matrix on a four proessors system.

2.3 Algorithm improvement

As seen previously, an interesting feature of the PFC method is that it indues a simple parallel

algorithm where ommuniations and omputations are performed in well distint phases. It makes

lear that the only mehanism that must be used to signi�antly improve our algorithm, onsists

in performing some omputations while some data are ommuniated.

Let us desribe the overlapping method from a simple example, where the suessive tasks are

arried out by two proessors P

0

and P

1

. On the one hand, proessor P

0

�rst sends some data,

say D

01

, to proessor P

1

and then performs some omputations, say C

0

. On the other hand,

proessor P

1

�rst performs some omputations, say C

1

, and then waits for reeiving data D

01

.

Therefore, ommuniation of D

01

an be learly ahieved by the system while P

0

omputes C

0

and P

1

omputes C

1

.

This mehanism an be used during steps (1)-(2) and (4)-(5) of Algorithm 1 in order to

exhange bloks of data while others are omputed.

Let us �rst fous on steps (1)-(2) of Algorithm 1, we will denote by p the number of proes-

sors whih are used. Then, we subdivide matrix F

(1)

into p � p bloks (B

k;l

)

k;l

(see Fig. 2.3).

Proessor k �rst omputes bloks B

k;l

, l = 0; ::; p� 1 and then sends blok B

k;l

to proessor l, for

all l 2 f0; ::; p�1gnfkg. These tasks an be performed in any order provided a blok is omputed

before it is send. The overlapping of ommuniations depends on the order in whih these tasks

are arried out. To get the best overlapping, the send of a blok must be initiated just after its

omputation and omputation of blok B

k;k

be performed in last. Finally, steps (4)-(5) an be

ahieved by following the same idea.
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P1

P2

P0

P3

B
00

B
01

B
02

B
03

B
10

B
11

B
12

B
13

B
20

B
21

B
22

B
23

B
30

B
31

B
32

B
33

Figure 2: Blok subdivision of the data matrix F

(1)

.

Algorithm 2:

For eah time step �t; for eah proessor k

1. For eah l = 1; ::; p� 1,

- ompute the blok B

k;(k+l)%p

orresponding to matrix F

(1)

using Q

(1)

�x;�v

from values

F

n

.

- send the blokB

k;(k+l)%p

to proessor (k+l)%p. This ommuniation will be overlapped

by the omputation of the next blok B

k;(k+l+1)%p

.

- initialize the reeption of blok B

(k�l)%p;k

from proessor (k � l)%p.

End.

Compute blok B

k;k

orresponding to matrix F

(1)

.

2. Reeived bloks are stored in matrix F

(1)

T

, whih is integrated to get the disrete harge

density �. The eletrial �eld E is omputed from �.

3. For eah l = 1; ::; p� 1,

- ompute the blok B

k;(k+l)%p

orresponding to matrix F

n+1

T

using Q

(2)

�x;�v

from values

F

(1)

T

.

- send the blokB

k;(k+l)%p

to proessor (k+l)%p. This ommuniation will be overlapped

by the omputation of the next blok B

k;(k+l+1)%p

.

- initialize the reeption of blok B

(k�l)%p;k

from proessor (k � l)%p.

End.

Compute blok B

k;k

orresponding to matrix F

n+1

T

.

End.

We used MPI to implement algorithms, presented before, where non bloking sends and reeives

are done by funtions MPI_Issend and MPI_Irev. We hoose the synhronous ommuniation

mode in order to avoid temporary opy of data.

3 Numerial results

This part is devoted to omparison of the two parallel algorithms for the Vlasov equation. We

onsider the numerial simulation in the transverse plane of beam propagation using three di�erent

meshes of phase spae. Calulations are done on a SGI O2K omputer with 64 proessors. First,

we only use 16 points in eah diretion, whih means that the total number of points of the matrix

F

n

is 16

4

. We ompute the solution with 2, 4, 8 and 16 proessors. Then, we onsider the same
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physial problem using more re�ned meshes of 32

4

and 64

4

total number of points. In Table 1,

we present the total omputational time using Algorithm 1, whereas results obtained by the

Algorithm 2 are listed in Table 2.

nbpros 16

4

points 32

4

points 64

4

points

2 14 221 4154

4 8.41 94 2040

8 5.75 50 1011

16 2.43 32 531

32 X 20 283

Table 1: Total time of omputation using Algorithm 1.

nb pros 16

4

points 32

4

points 64

4

points

2 8.4 123 4124

4 5.75 62.5 1528

8 2.81 35.5 558

16 2.06 26 308

32 X 18 207

Table 2: Total time of omputation using Algorithm 2.

From these results, we an observe that the seond algorithm based on overlaping of ommu-

niations by alulation always redues the omputational ost. Moreover, when the data size is

inreasing, the best e�ieny is reahed for larger and larger number of proessors. For exam-

ple, with 32

4

points, the seond algorithm is the most e�ient with only 4 proessors, but using

32

4

, the maximum e�ieny is reahed for 8, et. However, for a �xed number of unknowns,

the performane of two algorithms is very losed when we use a very large number of proessors.

Indeed, for large number of proessors, many messages of small size are sent, whih indues high

ommuniation ost.

4 Conlusion

In this paper, we proposed a new algorithm based on ommuniation overlapping by alulation.

Numerial results show the e�ieny of this method ompared to a basi algorithm. Nevertheless,

due to the high number of exhanges, the e�ieny highly depends on data size and on number

of proessors. In fat, we an onjeture that when the number of proessors is very large, the

�rst algorithm without overlapping is more e�ient, beause few messages are sent by ombining

small messages into larger ones. Thus, both algorithm an be used depending on data size and

number of proessors, whih are available.
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