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1 Introdu
tion

This paper is devoted to the numeri
al simulation of problems in Plasma Physi
s and parti
le

beams propagation. The main interest of this topi
 is the study of 
ontrolled fusion, whi
h

seems to be a promising solution for future energy produ
tion. Roughly speaking, there exist two

approa
hes to realize 
ontrolled fusion. The �rst one is magneti
 
on�nement, where the plasma

or 
harged parti
les are 
ontained in a �nite region using magneti
 �elds. Charged parti
les travel

in heli
al paths around the magneti
 �eld lines and this 
on�nes their motion. The se
ond method

is inertial 
on�nement, whi
h 
onsists in produ
ing nu
lear fusion by shooting at a Deuterium and

Tritium target with a parti
le or laser beam.

A model whi
h 
an be used in many 
ases for the study of plasma as well as of beam propagation

is the Vlasov equation 
oupled with the Maxwell or Poisson equations to 
ompute the self 
onsistent

�elds. It des
ribes the evolution of a system of parti
les under the e�e
ts of external and self-


onsistent �elds. The unknown f(t; x; v), depending on the time t, the position x, and the velo
ity

v, represents the distribution of parti
les in phase spa
e for ea
h spe
ies. The numeri
al resolution

of the Vlasov equation is usually performed by Parti
le-In-Cell (PIC) methods whi
h approximate

the plasma by a �nite number of parti
les. Traje
tories of these parti
les are 
omputed from


hara
teristi
 
urves given by the Vlasov equation, whereas self-
onsistent �elds are 
omputed

on a mesh of the physi
al spa
e. This method yields satisfying results with a relatively small

number of parti
les. However, it is well known that the numeri
al noise inherent to the parti
le

method be
omes, in some 
ases, too important to get an a

urate des
ription of the distribution

fun
tion. Moreover, the numeri
al noise only de
reases in 1=

p

N , when the number of parti
les N

is in
reased.

To remedy this problem, methods dis
retizing the Vlasov equation on a mesh of phase spa
e

have been proposed. Among them, the �nite volume type method (or �ux balan
e method)


onsists in averaging the distribution fun
tion on phase spa
e dis
rete volumes. These unknowns

are updated by 
onsidering in
oming and outgoing �uxes leading to mass 
onservation. We will


onsider the Positive and Flux Conservative method (PFC) [4, 5℄, whi
h is not only 
onservative,

but also preserves the positivity and the maximum value of the distribution fun
tion. The s
heme

was implemented up to third order a

ura
y. Thus, dis
retizations by su
h methods are really

interesting to get a good des
ription of the plasma or parti
le beam evolution. Unfortunately,

these methods require a big amount of memory and 
omputational time, be
ause the unknowns are


omputed on phase spa
e meshes. Indeed, even if we restri
t ourselve to the study of parti
le beams

in the four dimensional transverse plane i.e. the orthogonal dire
tion to the beam propagation

dire
tion (negle
ting variation in (z,v

z

)), a reasonable 
hoi
e to get an a

urate approximation

of the parti
le beam is to 
onsider at least 100 points in ea
h dire
tion of the four dimensional
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phase spa
e (x,y,v

x

,v

y

), whi
h means 100

4

points (1 GB of memory). In this 
ase, it is ne
essary

to develop parallel algorithms.

The outline of the paper is as follows : We shall �rst re
all the Vlasov equation and the PFC

s
hemes whi
h is used to approximate the solution. Then, we present a �rst parallel algorithm in

order to redu
e the 
omputational 
ost of the approximation of the Vlasov equation in 4D or 6D.

A se
ond algorithm is based on overlapping of 
ommuni
ations by 
al
ulation, whi
h is enabled

to highly redu
e the 
omputational time. Finally, we present numeri
al results illustrating the

e�
ien
y of the new parallel algorithm.

2 The Positive and Flux Conservative (PFC) method

The evolution of the density of parti
les f(t; x; v)dx dv in the phase spa
e (x; v) 2 IR

d

� IR

d

,

d = 1; ::; 3; is given by the normalized Vlasov equation,

�f

�t

+ div

x

(v f) + div

v

(E(t; x) f) = 0: (1)

where the self ele
tri
 �eld E is 
omputed using the Poisson equation, i.e.

E(t; x) = �r

x

�(t; x); ��

x

�(t; x) = �(t; x); (2)

where the 
harge density � is de�ned by

�(t; x) =

Z

IR

d

f(t; x; v)dv: (3)

The time dis
retization of (1) is based on the following splitting algorithm on �t = [t

n

; t

n+1

℄

knowing an approximate solution f

n

at time t

n

1. Solve a free transport equation on �t

8

>

>

<

>

>

:

�f

(1)

�t

+ div

x

�

v f

(1)

�

= 0;

f

(1)

(0; x; v) = f

n

(x; v):

(4)

2. Compute the ele
tri
 �eld E(t

n+1=2

; x) at time t

n+1=2

by substituting f

(1)

(�t; x; v) in the

Poisson equation and in (3).

3. Solve on �t the equation

8

>

>

<

>

>

:

�f

(2)

�t

+ div

v

�

E(t

n+1=2

; x) f

(2)

�

= 0;

f

(2)

(0; x; v) = f

(1)

(�t; x; v):

(5)

and set f(t

n+1

; x; v) = f

(2)

(�t; x; v).

Using this pro
edure the algorithm boils down to solve equations (4) and (5) on a phase spa
e mesh

(x; v) 2 IR

4

. To this aim, we introdu
e a �nite set of mesh points (x

i

= (x

i

; y

i

))

i2f0;::;n

x

g

and (v

j

=

(v

xj

; v

yj

))

j2f0;::;n

v

g

of the 
omputational domain. We will denote by �x = x

i+1

� x

i

= y

i+1

� y

i

the spa
e step, �v = v

xj+1

�v

xj

= v

yj+1

�v

yj

the velo
ity step and by C

i;j

= [x

i

; x

i+1

℄� [v

j

; v

j+1

℄

the 
ontrol volume. Assume the values of the distribution fun
tion f , stored in matrix (F

n

i;j

)

i;j

,

are known at time t

n

= n�t. We �nd the new values at time t

n+1

by su

essively solving (4) and

(5) on ea
h 
ontrol volume C

i;j

from time t

n

to time t

n+1

. Using the PFC s
heme des
ribed in

[4℄, we get a �rst approximation F

(1)

i;j

of equation (4) from the values F

n

i;j

F

(1)

i;j

= Q

(1)

�x;�v

(F

n

0;j

; F

n

1;j

; ::; F

n

n

x

�1;j

): (6)
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Let us mention that the 
omputation of F

(1)

i;j

only depends on row values of F

n

.

From these new values, we approximate the ele
tri
 �eld on the physi
al spa
e mesh (x

i

)

i2f0;::;n

x

g

from the dis
rete spa
e 
harge

�

n+1=2

i

= �v

X

j

F

(1)

i;j

using a Fast Fourier Transform (FFT). Finally, we get the solution at time t

n+1

by approximating

equation (5),

F

n+1

i;j

= Q

(2)

�x;�v

(F

(1)

i;0

; F

(1)

i;1

; ::; F

(1)

i;n

v

�1

): (7)

In this 
ase, the approximation of F

n+1

i;j

only requires 
olumn values of F

(1)

.

We refer to [4℄ for more details about dis
rete operators Q

(1)

�x;�v

and Q

(2)

�x;�v

, whi
h respe
tively

approximate equations (4) and (5) with a very good a

ura
y.

2.1 The parallel algorithm

This part is devoted to designing parallel algorithms to solve the Vlasov equation for ea
h time

step using the numeri
al method presented before. The aim is 
onstru
t a parallel algorithm to

redu
e the 
omputational time. One method only 
onsists in optimizing 
ommuni
ations, we refer

for example to [6, 3℄, where authors des
ribe an e�
ient implementation of the transposition.

Another approa
h, whi
h seems to be more e�
ient when we treat large data size, is to perform


ommuni
ations and 
omputations at the same time. It is referred as 
omputation/
ommuni
ation

overlapping [1℄.

2.2 A �rst parallel algorithm

Let us denote by F

n

the matrix (F

n

i;j

)

i;j

, where i represents the index of the physi
al spa
e mesh

and j the index of the velo
ity spa
e. We note that the big amount of work is performed during

steps (6) and (7). Therefore, we will fo
us on the parallelization of these 
omputations. To do

this we observe, as mentionned before, that the operator Q

(1)

(resp. Q

(2)

) only a
ts on rows of

(F

n

i;j

) (resp. on 
olumns of (F

(1)

i;j

)). Thus, for the �rst step if data are distributed by row on

ea
h pro
essor, then no 
ommuni
ations are required. Similarly, for the se
ond step a storage by


olumn does not involve any 
ommuni
ation at all. The link between two steps is done through a

transposition of F

(1)

.

Following this idea, we �rst present a simple parallel algorithm [2℄, starting with one dimen-

sional band distribution F

n

along v-dire
tion.

Algorithm 1:

For ea
h time step �t

1. Compute the matrix F

(1)

using Q

(1)

�x;�v

from values F

n

. The storage by rows avoids lo
al


ommuni
ations for this step.

2. Distribute the matrix F

(1)

into the matrix transposed F

(1)

T

in order to get a one dimensional

band distribution along x-dire
tion.

3. Integrate F

(1)

T

to get the dis
rete 
harge density � and 
ompute the ele
tri
al �eld E

4. Apply Q

(2)

�x;�v

to F

(1)

T

for solving equation (7) over a time step of �t. The storage by


olumns avoids lo
al 
ommuni
ations for this step.

5. Redistribute matri
es F

n+1

T

into matrix F

n+1

in order to get a one dimensional band

distribution along v-dire
tion.
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End.

In this 
ase, we noti
e that with our parallel algorithm, 
ommuni
ations only o

ur during the

two data redistributions phases. In other words, the algorithm falls into phases of 
omputations

without any 
ommuni
ation and phases of 
ommuni
ations without any 
omputation.

Improving this algorithm is parti
ularly interesting be
ause 
ommuni
ation phases are very

time-
onsuming due to the very large amount of data, whi
h are transmitted. Indeed, 
ommuni-


ations 
onsist in a transposition that is a global ex
hange of data among all pro
essors. It is well

known that this operation is one of the most demanding 
ommuni
ations tasks.

Figure 1 illustrates the 
ommuni
ations required during the �rst redistribution phase on a

4-pro
essors ar
hite
ture. Ea
h pro
essor holds a band of matrix F

n

and assuming the band is

subdivised into 4 blo
ks, it must send one blo
k of data to ea
h other pro
essor and re
eive one

blo
k of data from ea
h other pro
essor. This transposition task is 
ostly. It is important to

improve our algorithm.

P2

P3

P1

P0 (0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

P2

P3

P1

P0 (0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

Figure 1: The data ex
hange pattern to transpose a data matrix on a four pro
essors system.

2.3 Algorithm improvement

As seen previously, an interesting feature of the PFC method is that it indu
es a simple parallel

algorithm where 
ommuni
ations and 
omputations are performed in well distin
t phases. It makes


lear that the only me
hanism that must be used to signi�
antly improve our algorithm, 
onsists

in performing some 
omputations while some data are 
ommuni
ated.

Let us des
ribe the overlapping method from a simple example, where the su

essive tasks are


arried out by two pro
essors P

0

and P

1

. On the one hand, pro
essor P

0

�rst sends some data,

say D

01

, to pro
essor P

1

and then performs some 
omputations, say C

0

. On the other hand,

pro
essor P

1

�rst performs some 
omputations, say C

1

, and then waits for re
eiving data D

01

.

Therefore, 
ommuni
ation of D

01


an be 
learly a
hieved by the system while P

0


omputes C

0

and P

1


omputes C

1

.

This me
hanism 
an be used during steps (1)-(2) and (4)-(5) of Algorithm 1 in order to

ex
hange blo
ks of data while others are 
omputed.

Let us �rst fo
us on steps (1)-(2) of Algorithm 1, we will denote by p the number of pro
es-

sors whi
h are used. Then, we subdivide matrix F

(1)

into p � p blo
ks (B

k;l

)

k;l

(see Fig. 2.3).

Pro
essor k �rst 
omputes blo
ks B

k;l

, l = 0; ::; p� 1 and then sends blo
k B

k;l

to pro
essor l, for

all l 2 f0; ::; p�1gnfkg. These tasks 
an be performed in any order provided a blo
k is 
omputed

before it is send. The overlapping of 
ommuni
ations depends on the order in whi
h these tasks

are 
arried out. To get the best overlapping, the send of a blo
k must be initiated just after its


omputation and 
omputation of blo
k B

k;k

be performed in last. Finally, steps (4)-(5) 
an be

a
hieved by following the same idea.
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P1

P2

P0

P3

B
00

B
01

B
02

B
03

B
10

B
11

B
12

B
13

B
20

B
21

B
22

B
23

B
30

B
31

B
32

B
33

Figure 2: Blo
k subdivision of the data matrix F

(1)

.

Algorithm 2:

For ea
h time step �t; for ea
h pro
essor k

1. For ea
h l = 1; ::; p� 1,

- 
ompute the blo
k B

k;(k+l)%p


orresponding to matrix F

(1)

using Q

(1)

�x;�v

from values

F

n

.

- send the blo
kB

k;(k+l)%p

to pro
essor (k+l)%p. This 
ommuni
ation will be overlapped

by the 
omputation of the next blo
k B

k;(k+l+1)%p

.

- initialize the re
eption of blo
k B

(k�l)%p;k

from pro
essor (k � l)%p.

End.

Compute blo
k B

k;k


orresponding to matrix F

(1)

.

2. Re
eived blo
ks are stored in matrix F

(1)

T

, whi
h is integrated to get the dis
rete 
harge

density �. The ele
tri
al �eld E is 
omputed from �.

3. For ea
h l = 1; ::; p� 1,

- 
ompute the blo
k B

k;(k+l)%p


orresponding to matrix F

n+1

T

using Q

(2)

�x;�v

from values

F

(1)

T

.

- send the blo
kB

k;(k+l)%p

to pro
essor (k+l)%p. This 
ommuni
ation will be overlapped

by the 
omputation of the next blo
k B

k;(k+l+1)%p

.

- initialize the re
eption of blo
k B

(k�l)%p;k

from pro
essor (k � l)%p.

End.

Compute blo
k B

k;k


orresponding to matrix F

n+1

T

.

End.

We used MPI to implement algorithms, presented before, where non blo
king sends and re
eives

are done by fun
tions MPI_Issend and MPI_Ire
v. We 
hoose the syn
hronous 
ommuni
ation

mode in order to avoid temporary 
opy of data.

3 Numeri
al results

This part is devoted to 
omparison of the two parallel algorithms for the Vlasov equation. We


onsider the numeri
al simulation in the transverse plane of beam propagation using three di�erent

meshes of phase spa
e. Cal
ulations are done on a SGI O2K 
omputer with 64 pro
essors. First,

we only use 16 points in ea
h dire
tion, whi
h means that the total number of points of the matrix

F

n

is 16

4

. We 
ompute the solution with 2, 4, 8 and 16 pro
essors. Then, we 
onsider the same
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physi
al problem using more re�ned meshes of 32

4

and 64

4

total number of points. In Table 1,

we present the total 
omputational time using Algorithm 1, whereas results obtained by the

Algorithm 2 are listed in Table 2.

nbpro
s 16

4

points 32

4

points 64

4

points

2 14 221 4154

4 8.41 94 2040

8 5.75 50 1011

16 2.43 32 531

32 X 20 283

Table 1: Total time of 
omputation using Algorithm 1.

nb pro
s 16

4

points 32

4

points 64

4

points

2 8.4 123 4124

4 5.75 62.5 1528

8 2.81 35.5 558

16 2.06 26 308

32 X 18 207

Table 2: Total time of 
omputation using Algorithm 2.

From these results, we 
an observe that the se
ond algorithm based on overlaping of 
ommu-

ni
ations by 
al
ulation always redu
es the 
omputational 
ost. Moreover, when the data size is

in
reasing, the best e�
ien
y is rea
hed for larger and larger number of pro
essors. For exam-

ple, with 32

4

points, the se
ond algorithm is the most e�
ient with only 4 pro
essors, but using

32

4

, the maximum e�
ien
y is rea
hed for 8, et
. However, for a �xed number of unknowns,

the performan
e of two algorithms is very 
losed when we use a very large number of pro
essors.

Indeed, for large number of pro
essors, many messages of small size are sent, whi
h indu
es high


ommuni
ation 
ost.

4 Con
lusion

In this paper, we proposed a new algorithm based on 
ommuni
ation overlapping by 
al
ulation.

Numeri
al results show the e�
ien
y of this method 
ompared to a basi
 algorithm. Nevertheless,

due to the high number of ex
hanges, the e�
ien
y highly depends on data size and on number

of pro
essors. In fa
t, we 
an 
onje
ture that when the number of pro
essors is very large, the

�rst algorithm without overlapping is more e�
ient, be
ause few messages are sent by 
ombining

small messages into larger ones. Thus, both algorithm 
an be used depending on data size and

number of pro
essors, whi
h are available.
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