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Abstract. We develop a multi-dimensional hybrid discontinuous Galerkin method for multi-scale
kinetic equations. This method is based on moment realizability matrices, a concept introduced by
D. Levermore, W. Morokoff and B. Nadiga in [32] and used in [26] for one dimensional problem. The
main issue addressed in this paper is to provide a simple indicator to select the most appropriate model
and to apply a compact numerical scheme to reduce the interface region between different models. We
also construct a numerical flux for the fluid model obtained as the asymptotic limit of the flux of the
kinetic equation. Finally we perform several numerical simulations for time evolution and stationary
problems.
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1. Introduction

Many physical problems, such as micro-electro-mechanical systems, involve boundary layers or
transitional regimes which cannot be solved by using standard fluid models. Hence a kinetic model is
needed to accurately describe complex phenomena occurring around the boundary. However, a kinetic
description is computationally very expensive to simulate and we desire to use it only locally in space.
An interesting approach is to design hybrid kinetic/fluid schemes, with domain decomposition which
can automatically and accurately identify fluid and kinetic zones. In this case we only solve the kinetic
model in a minimized area around the kinetic boundary layers or shocks, while take advantage of the
low computational cost of numerical methods for the fluid system elsewhere.

Taking into account of collisions, the multi-scale kinetic equation for the description of particle
dynamics in a dilute gas is given by

(1.1)


∂f

∂t
+ v · ∇xf =

1

ε
Q(f),

f(0,x,v) = f0(x,v),

with x ∈ Ω ⊂ Rdx ,v ∈ R3. The open set Ω is a bounded Lipschitz-continuous domain in Rdx and
supplied with some boundary conditions, whereas the particle distribution function f := f(t,x,v)
depends on time and phase space variables (x,v) ∈ Ω×R3 and the initial datum f0 is a non-negative
function. The parameter ε > 0 is the dimensionless Knudsen number, which is defined as the ratio
of the mean free path of particles over a typical length scale such as the size of the spatial domain.
It measures the rarefaction of the gas, namely, the gas is in a rarefied or kinetic regime if ε ∼ 1 and
in a dense or fluid regime if ε � 1. The collision operator Q(f) may be given by the full Boltzmann
operator [13, 14]

(1.2) Q(f)(v) =

∫
R3

∫
S2
B(|v − v?|, cos θ)(f ′? f

′ − f? f) dσdv?,

where we used the shorthand f = f(v), f∗ = f(v∗), f
′

= f(v′), f
′
∗ = f(v

′
∗). The velocities of the

colliding pairs (v,v∗) and (v′,v′∗) are related by

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗

2
− |v − v∗|

2
σ.

The collision kernel B is a non-negative function which by physical arguments of invariance only
depends on |v − v∗| and cos θ = û · σ, where û = (v − v∗)/|v − v∗|. A simpler choice is the BGK
operator [9] given by

(1.3) Q(f)(v) = ν(ρ, T )
(
M[f ]− f),

or a modified ES-BGK operator [3]

(1.4) Q(f)(v) = ν(ρ, T )
(
G[f ]− f),

where ν is a collision frequency. In the ES-BGK operator, G(f) is a Gaussian defined as

G[f ] =
ρ√

det(2πT )
exp

(
−(v − u)T −1(v − u)

2

)
,

with a corrected stress tensor

T := (1− β)T I + βΘ, ρΘ =

∫
R3

(v − u)⊗ (v − u) f dv,

where I is the identity matrix. The parameter β ∈ (−∞, 1) is used to modify the value of the Prandtl
number through the formula

0 < Pr =
1

1− β
≤ +∞.

The correct Prandtl number for a monoatomic gas of hard spheres is equal to 2/3 for β = −1/2,
whereas the classical BGK operator has a Prandtl number equal to 1 for β = 0. We refer to [26] for
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more discussions about these collision operators. These Boltzmann-like collision operators share the
fundamental properties of conserving mass, momentum and energy, that is

(1.5)

∫
R3

Q(f)(v)m(v) dv = 0TR5 ,

where m(v) = (1,v, 12 |v|
2)T and super index T denotes the transpose of the corresponding vector. The

equilibrium of the collision operator, when Q(f) = 0, is given by the local Maxwellian distribution
function M[f ], which is defined as :

M[f ] :=
ρ

(2πT )3/2
exp

(
− |v − u|2

2T

)
.

The density ρ, mean velocity u and temperature T are macroscopic moments of the distribution
function f , which can be computed as

ρ =

∫
R3

f(v) dv, u =
1

ρ

∫
R3

vf(v) dv, T =
1

3ρ

∫
R3

|v − u|2f(v) dv.

There are already several works about hybrid methods for multi-scale kinetic equations in the
literature, which mostly rely on the same domain decomposition technique. I. Boyd, G. Chen and
G. Candler [11] first proposed a macroscopic criterion based on the local Knudsen number, they pass
from a hydrodynamic description to a kinetic one when the quantity is below a (problem-dependent)
threshold. It was practically used by V. Kolobov et. al. [31] with a discrete velocity model of direct
numerical solution (DNS) for the Boltzmann equation and a gas-kinetic scheme for the hydrodynamic
part, and recently by P. Degond and G. Dimarco [22] with a Monte Carlo solver for the kinetic equation
and a finite volume method for the macroscopic ones. Another hydrodynamic breakdown indicator
based on the viscous and heat flux of the Navier-Stokes equations is introduced by S. Tiwari [41] and
has been used with various deterministic kinetic and hydrodynamic solvers [23, 42, 43, 1, 18]. Recently,
F. Filbet and T. Rey [26] proposed a domain decomposition indicator based on moment realizability
matrices, a concept first introduced by D. Levermore, W. Morokoff and B. Nadiga [32]. They have
shown that criteria from/to hydrodynamic to/from kinetic are both needed, and finite volume schemes
for both the Boltzmann equation and the hydrodynamic equations are explored. This criterion has
lately been used by T. Xiong and J.-M. Qiu [46] to form a hierarchy high order discontinuous Galerkin
schemes for the BGK equation under a micro-macro decomposition framework.

However, this criterion requires some computational effort since it is based on the comparison of
local eigenvalues on each cell, hence the cost is not negligible in high dimension. Furthermore, high
order finite volume schemes often need wide stencils. This may easily be done in 1D in space [26],
however, it is not very convenient or robust to be generalized to multi-dimensional problems, as it
would require each region as wide as the stencil along each space dimension. It will cause some trouble
when switching from one region to the other dynamically with time evolution.

The aim of this paper is to develop a hybrid discontinuous Galerkin scheme, which extends the work
in [26] in high dimension. The well recognized discontinuous Galerkin method [30], due to its advan-
tages of compactness, h-p adaptivity, high efficiency on parallelization, and flexibility on complicated
geometries, has been widely applied to physical and engineering problems. For compressible Euler
or Navier-Stokes systems, F. Bassi and S. Rebay first introduced a discontinuous Galerkin method
with macroscopic numerical flux such as Godunov flux for the advection and a primal formulation
with centered numerical flux for the diffusion [7, 6, 8]. It has provided a good framework for solv-
ing the compressible Navier-Stokes system and many works are followed, e.g. a positivity preserving
high order discontinuous Galerkin scheme recently proposed by X. Zhang [47]. Some other type of
discontinuous Galerkin schemes can be referred to [34, 35, 19] and many references therein. For the
kinetic Boltzmann, ellipsoidal statistical BGK equations, A. Alexeenko et al. [2] proposed a high order
explicit Runge-Kutta discontinuous Galerkin method, with Newton’s iteration solving the nonlinear
collisional source term. It has recently been generalized to 2D in space by W. Su et al. in [40]. On
the other hand, to take care of the stiff collisional term and avoid a stringent time step size, T. Xiong
et al. [45] proposed a high order asymptotic preserving nodal discontinuous Galerkin method coupled
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with an implicit-explicit scheme for the BGK equation. There are also some other works which would
like to build a connection from the kinetic equation to the hydrodynamic system, and discontinuous
Galerkin methods for compressible Navier-Stokes equations with kinetic flux-vector splitting are pro-
posed, such as the kinetic flux-vector splitting flux following Chapman-Enskog velocity distribution
function [20, 16], or gas-kinetic schemes mimicking a Hilbert expansion [33, 36], etc.

In this paper, we propose a simplified indicator, based on [26], to determine the kinetic and fluid
regions and develop a discontinuous Galerkin method, which is well suited to couple the kinetic and
fluid model at the interface. Due to the compactness of the discontinuous Galerkin method, the
interface coupling condition for two different regions in the hybrid discontinuous Galerkin scheme only
requires consistent numerical fluxes defined at the cell interfaces. For the domain decomposition, it
allows isolated hydrodynamic or kinetic cells, which will be very convenient especially when extended to
high-dimensional space problems and/or on unstructured meshes. We will solve the kinetic equation in
the kinetic region with a discontinuous Galerkin scheme under the asymptotic preserving framework
[25], while solving the compressible Navier-Stokes equations, which can be (formally) obtained by
Chapman-Enskog expansion [13, 15, 17, 5], by following the discontinuous Galerkin scheme of F. Bassi
and S. Rebay [6]. We apply an upwind numerical flux for the kinetic solver, while to be consistent,
especially in order to match the numerical fluxes at the cell interface between two different regions, we
define a flux for the hydrodynamic solver obtained as the asymptotic limit of the kinetic flux. Let us
emphasize that this particular hydrodynamic flux has already been introduced in [20] as a kinetic flux
splitting scheme. Furthermore, we will simplify the computation of the moment realizability criterion
for domain decomposition, by extracting some main derivatives in the moment realization matrix. For
illustration in our numerical example, we take the BGK equation and reduce the 3D in velocity by the
technique of Chu reduction [21]. Our new proposed hybrid discontinuous Galerkin scheme will be more
robust on h-p adaptivity, parallelization, and on high dimensional problems with unstructured meshes.
We will perform some numerical tests on some physical relevant problems with shocks or boundary
layers, such as flow caused by evaporation and condensation, 2D Riemann problem as well as 2D ghost
effect. The results will demonstrate the efficiency and effectiveness of our proposed approach.

The rest of the paper is organized as follows. In Section 2, we recall the hydrodynamic limit
of the multi-scale kinetic equation based on Chapman-Enskog expansion, and describe the domain
decomposition from moment realizability criterion. In Section 3, a discontinuous Galerkin scheme
for the kinetic equation and a discontinuous Galerkin scheme for the compressible Navier-Stokes
equations will be formed, and consistent numerical fluxes for the interface coupling condition between
two different regions are stated. Numerical tests are followed in Section 4. Conclusion and future
work are made in Section 5.

2. Hydrodynamic limit and domain decomposition

In this section, we will recall the hydrodynamic limit of the kinetic equation (1.1). By formally
doing the Chapman-Enskog expansion, the equation (1.1), to the zeroth order limit as ε → 0 will
converge to the compressible Euler equations, while to the first order limit when 0 < ε� 1, it is going
to be the compressible Navier-Stokes equations. In the following, we will briefly review the derivation
of compressible Euler and Navier-Stokes limit [26, 5], and describe the domain decomposition criteria
to divide the domain into kinetic and hydrodynamic regions, which will be used to define our hybrid
scheme.
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2.1. The hydrodynamic limit. According to the conservation property (1.5), by integrating in the
velocity space, without any closure, we have

(2.1)



∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x ·
(∫

R3

v ⊗ v f(v) dv

)
= 0R3 ,

∂tE +∇x ·
(∫

R3

1

2
|v|2 v f(v) dv

)
= 0.

Let U denote the conservative macroscopic components of density, momentum and energy, which
correspond to the first three moments of the distribution function f :

U := (ρ, ρu, E)T =

∫
R3

m(v) f(v) dv,

where the energy is E = 1
2ρ|u|

2 + 3
2ρ T . f can be approximated by the Chapman-Enskog expansion,

which is

(2.2) f ε(v) := M
[
1 + ε g(1) + ε2 g(2) + · · ·

]
,

where M is in short of M[f ] and the fluctuations satisfy∫
R3

g(i)(v)m(v) dv = 0TR5 , i = 1, 2, · · · .

Substituting f ε(v) into (2.1), we get

(2.3)



∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x ·
(
ρu⊗ u + ρ T (I + Āε)

)
= 0R3 ,

∂tE +∇x ·

(
1

2
ρ |u|2 u + ρ T

(3 + 2

2
I + Āε

)
u + ρ T 3/2B̄ε

)
= 0,

where the traceless matrix Āε ∈M3 and vector B̄ε ∈ R3 are

(2.4)


Āε :=

1

ρ

∫
R3

A(V)f ε(v)dv,

B̄ε :=
1

ρ

∫
R3

B(V)f ε(v)dv,

with

A(V) = V ⊗V − |V|
2

3
I, B(V) =

1

2

[
|V|2 − (3 + 2)

]
V

and

V :=
v − u√
T
.

In the zeroth order limit when f ε(v) = M, since the matrix Āε is traceless, and due to B̄ε only
involving odd, centered moments of f , we obtain

(2.5)


Āε
Euler :=

1

ρ

∫
R3

A(V)M(v)dv = 0TM3 ,

B̄ε
Euler :=

1

ρ

∫
R3

B(V)M(v)dv = 0TR3 ,
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hence (2.3) gives us the compressible Euler system

(2.6)



∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u + ρ T I) = 0R3 ,

∂tE +∇x ·
(
u
(
E + ρ T

))
= 0.

In the first order limit, by plugging (2.2) into (2.3), since the Maxwellian distribution M is an

equilibrium of the collision operator Q(M) = 0, the fluctuation g(1) is given by

(2.7) ∂tM+ v · ∇xM = LMg(1) +O(ε),

where LM is the linearized collision operator around the Maxwellian distributionM. Besides, we also
have

∂tM+ v · ∇xM = M
[
∂tρ+ v · ∇xρ+

1√
T

(V · ∂tu + V ⊗ v : ∇xu) +
1

2T
(|V|2− 3)(∂tT + v · ∇xT )

]
.

Replacing the time derivatives by spatial ones from (2.3), and dropping all terms of order ε in (2.7),
after some computations, we get

(2.8) LMg(1) =M
[
A(V) : D(u) + 2B(V) · ∇xT√

T

]
,

where A and B are defined in (2.4) and the deformation tensor D(u) is given by

(2.9) D(u) := ∇xu + (∇xu)T − 2

3
(∇x · u)I.

The linear operator LM is invertible on the orthogonal of its kernel [26], where its kernel is

kerLM = Span

{
1

ρ
,
V

ρ
,

1

2ρ

(
|V|2 − 3

)}
,

and A(V), B(V) ∈ ker⊥ (LM). From (2.8), it yields

(2.10) g(1) = L−1M
(
MA(V)

)
: D(u) + 2L−1M

(
MB(V)

)
· ∇xT√

T
.

Plugging this expression into (2.4), it gives

(2.11)


Āε
NS :=

1

ρ

∫
R3

A(V)M(v)
[
1 + εg(1)(v)

]
dv = −ε µ

ρ T
D(u),

B̄ε
NS :=

1

ρ

∫
R3

B(V)M(v)
[
1 + εg(1)(v)

]
dv = −ε κ

ρ T 3/2
∇x T.

The viscosity and thermal conductivity coefficients are given by

(2.12)


µ := −T

∫
R3

M(v)A(V) : L−1M
(
MA)(v)dv,

κ := −T
∫
R3

M(v)B(v) · L−1M
(
MB)(v)dv.

Substituting (2.11) into (2.3), it gives us the compressible Navier-Stokes system

(2.13)


∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u + ρ T I) = ε∇x · (σ(u)),

∂tE +∇x · (u (E + ρ T )) = ε∇x · (σ(u) · u + q),

where σ := −µD(u) is the viscosity tensor and q := −κ∇xT is the heat flux.
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For the Boltzmann equation in the hard sphere case, µ and κ can be expressed as [27]

(2.14) µ = µ0
√
T , κ = κ0

√
T ,

for some positive constants µ0 and κ0. In the BGK case, µ and κ are related to the macroscopic
quantities of ρ and T by [39]

(2.15) µ =
1

1− β
ρT

ν
, κ =

5

2

ρT

ν
,

and the collision frequency can be taken as ν = 2√
π
ρ [4].

The compressible Navier-Stokes equations (2.13) can be written in a vector form as

(2.16) ∂tU +∇x · Fa(U) = ε∇x · Fd(U,∇xU),

with the advection flux Fa(U) and the viscous diffusion flux Fd(U,∇xU) to be

Fa(U) =

 ρu
ρu⊗ u + ρ T I
u (E + ρ T )

 , Fd(U,∇xU) =

 0
σ(u)

σ(u) · u + q

 .

Moreover, if we define

(2.17) F(U,∇xU) = Fa(U)− εFd(U,∇xU),

it becomes

(2.18) ∂tU +∇x F(U,∇xU) = 0.

The flux function F(U,∇xU) corresponds to the kinetic description (2.1) by taking the first order
distribution function f ε(v) (2.2), that is

(2.19) F(U,∇xU) =

∫
R3

vm(v)
[
M(1 + εg(1))

]
(v) dv.

Formally by letting ε→ 0, (2.18) corresponds to the compressible Euler equations

(2.20) ∂tU +∇x · Fa(U) = 0.

2.2. Domain decomposition. We now follow the domain decomposition indicator as defined in
[26], to divide the computation domain into kinetic and hydrodynamic regions, where in the kinetic
region (mainly around shocks or boundary layers) the kinetic equation (1.1) is used, otherwise in
the hydrodynamic region, the low computational cost compressible Navier-Stokes equations (2.13) or
(2.18) as the hydrodynamic equation will be solved. We review the main principle on how to define the
criteria, however we would like to simplify the tedious computation of the eigenvalues for the moment
realizability matrix.

From fluid to kinetic, the hydrodynamic breakdown criterion is defined by the moment realizability
matrix. The deviation of the eigenvalue for the moment realizability matrix measures the appropriate-
ness of the corresponding hydrodynamic limit. The compressible Euler system has all eigenvalues to
be 1 with an identity moment realizability matrix. Here since we use the compressible Navier-Stokes
equations as the fluid model, we only concern about the deviation of the eigenvalues between the first
order compressible Navier-Stokes equations and the second order Burnett equations. We recall the
moment realization matrix from [26], which is given by

(2.21) V := I + Āε − 2

3C̄ε
B̄ε ⊗ B̄ε.
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For compressible Navier-Stokes equations, Āε
NS and B̄ε

NS are defined in (2.11), while for the second
order Burnett equations, Āε

Burnett and B̄ε
Burnett are [26]

(2.22)

Āε
Burnett := −ε µ

ρ T
D(u)− 2ε2

µ2

ρ2 T 2

{
− T

ρ
Hessx(ρ) +

T

ρ2
∇xρ⊗∇xρ−

1

ρ
∇xT ⊗∇xρ

+∇xu∇xuT − 1

3
D(u) divx(u) +

1

T
∇xT ⊗∇xT

}
,

B̄ε
Burnett := −ε κ

ρ T 3/2
∇xT − ε2

µ2

ρ2 T 5/2

{
25

6
divxu∇xT −

5

3

[
Tdivx(∇xu) + divxu∇xT

+ 6(∇xu)∇xT
]

+
2

ρ
D(u)∇x(ρ T ) + 2T divx(D(u)) + 16D(u)∇xT

}
.

Noticing that for the main components Āε and B̄ε in (2.21), the major differences between Āε
NS and

Āε
Burnett as well as B̄ε

NS and B̄ε
Burnett are the O(ε2) terms appeared in (2.22). As an indicator, we may

only need to extract the crucial spatial derivatives appeared in those terms and roughly measure their
magnitudes, to simplify the tedious computations of all terms, thus avoiding too much computational
cost on the domain decomposition indicator along this side. From (2.14) and (2.15), either µ/

√
T and

κ/
√
T for the Boltzmann operator or νµ/(ρ T ) and νκ/(ρ T ) for the BGK operator are O(1) if we

assume macroscopic quantities ρ and T are O(1), a new indicator from fluid to kinetic we are now
using is defined as

λε2(t,x) := ε2

(
|∇xT |2

T
+ |∇xu|2 +

√(
|∆xu|2 +

∣∣∣∆xρ/ρ
∣∣∣2)(1 + T 2)

)
.

We take the fluid model of compressible Navier-Stokes equations to be not appropriate at some point
(t,x) if

(2.23) |λε2(t,x)| > η0.

λε2(t,x) is measured at the cell center in the numerical section and we take η0 = 10−3.
From kinetic to fluid, the criterion is that a kinetic description at some point (t,x) corresponds to

a hydrodynamic equations if

(2.24) ‖f(t,x, ·)− f2(t,x, ·)‖L2 ≤ δ0,

where δ0 is a small parameter and we take δ0 = 10−3 and the function f2 =M[1 + εg(1)] corresponds
to the Chapman-Enskog expansion (2.2) up to first order.

Remark 2.1. we would note that the most appropriate parameters η0 and δ0 are problem dependent.
Here we take η0 = 10−3 and δ0 = 10−3 mimicking the hydrodynamic limit is suitable when ε < 10−2,
and they work well in our numerical tests.

3. Hybrid discontinuous Galerkin scheme

In this section, we will propose our hybrid discontinuous Galerkin scheme for the multi-scale kinetic
equations, namely we define either an approximation of the kinetic equation (1.1) according to the
value of the indicator (2.23) or another one of the fluid equations (2.18) in the region where (2.24) is
satisfied. Due to the compactness of discontinuous Galerkin schemes, only consistent numerical fluxes
need to be defined at the cell interface between two regions, which is also important to ensure mass
conservation.

We adopt the discontinuous Galerkin scheme for spatial discretization, as it is more convenient than
a finite volume scheme used in [26], especially when extending to high dimensions in space and in the
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domain decomposition. Indeed, the finite volume method requires either the kinetic or fluid region to
be at least as wide as the stencil of the scheme. Besides, the discontinuous Galerkin scheme is h-p
adaptive and very flexible to nonuniform meshes, making it more suitable to physical problems with
boundary layers (see Section 4).

Our hybrid discontinuous Galerkin scheme can be defined for the multi-scale kinetic equation with
either the full Boltzmann collision operator or the (ES-) BGK operator. The Boltzmann operator
(1.2) in a bounded domain can be discretized by the method introduced in [24] and references therein,
and in an asymptotic preserving framework can be penalized by the BGK operator [25]. We will
only take the BGK operator (1.3) in the kinetic equation and describe the discontinuous Galerkin
scheme for the BGK equation (1.1). The ES-BGK operator (1.4) can be done similarly and we can
use the technique in [25] for the Boltzmann operator. The discontinuous Galerkin scheme for the
hydrodynamic equations (2.18) is followed. Only the discontinuous Galerkin scheme in 2D in space
is presented, the 1D case can be easily deduced from the 2D ones. We take the kinetic flux-vector
splitting [20] to define the hydrodynamic numerical flux at the cell interface between two hydrodynamic
cells or two cells between two regions. A nodal discontinuous Galerkin scheme [29] is implemented to
produce the numerical results.

For the velocity space, we will take a large enough cut-off domain Ωv = [−Vc, Vc] and discretize

it uniformly with Nv points, {vj}Nv
j=1, along each v direction. We integrate the velocity space by

mid-point rule, which is spectrally accurate for smooth functions with periodic boundary conditions
or compact supports [12], as there is no differential operator acting on v. However, we note that the
domain cut-off and the discretization in v will lead to conservation of mass, momentum and energy
not exactly but approximately up to the integral error along v direction. In the following, for easy
presentation, we still keep v to be continuous and only discuss the discretizations in space and in time.

3.1. Preliminary. We consider the space domain in 2D to be a rectangular Ωx = [a, b]× [c, d], and
divide it by a = x1/2 < x3/2 < · · · < xNx+1/2 = b and c = y1/2 < y3/2 < · · · < yNy+1/2 = d. Let
Ii,j = Ii × Ij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] denote an element with its length ∆xi = xi+ 1

2
− xi− 1

2

and ∆yj = yj+ 1
2
− yj− 1

2
. Let hx = maxNx

i=1 ∆xi, hy = max
Ny

j=1 ∆yj and h = max(hx, hy). Given any

non-negative integer vector K = (K1,K2), we define a finite dimensional discrete space,

(3.1) ZK
h =

{
w ∈ L2(Ωx) : w|Ii,j ∈ QK(Ii,j), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
.

Its vector version is denoted as

(3.2) ZK
h =

{
w = (w1, w2, w3, w4)

T : wl ∈ ZK
h , 1 ≤ l ≤ 4

}
.

For simplicity, we take the 2D local space QK(Ii,j) as a tensor product space of PK1(Ii) ⊗ PK2(Ij),
where PK(I) consists of polynomials of degree at most K on I. Functions in ZK

h are piecewise defined

and may be discontinuous across cell interfaces. The left and right limits of a function u ∈ ZK
h at the

interface (xi+ 1
2
, y) along y direction are denoted as u(x±

i+ 1
2

, y) = limε→±0 u(xi+ 1
2

+ ε, y), similarly for

u(x, y±
j+ 1

2

).

We will use a nodal basis to represent functions in the discrete space PK(I), and approximate
integrals by numerical quadratures. Specifically, we choose the local nodal basis (also called Lagrangian
basis) {φki (x)}Kk=0 associated with the K + 1 Gaussian quadrature points {xki }Kk=0 on Ii, defined as
below

(3.3) φki (x) ∈ PK(Ii), and φki (x
k′
i ) = δkk′ , k, k′ = 0, 1, · · · , K,

where δkk′ is the Kronecker delta function. We denote by {ωk}Kk=0 the corresponding quadrature
weights on the reference element (−1/2, 1/2). For the two dimensional local nodal basis, we choose a
tensor product of the one dimensional local nodal basis (3.3) but associated with K1 + 1 and K2 + 1
Gaussian quadrature points on Ii and Ij along x and y directions respectively.
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3.2. Discontinuous Galerkin for the kinetic equation. For the kinetic equation (1.1) with the
BGK operator, we take an implicit-explicit (IMEX) time discretization as in [25, 26]. Considering the
continuous problem in phase space (x,v), a first order implicit/explicit scheme is defined as follows
to pass from time level tn to tn+1

(3.4)


fn+1(v) =

ε

ε+ νn+1∆t

(
fn(v)−∆tv · ∇x f

n(v)
)

+
νn+1∆t

ε+ νn+1∆t
M(v,Un+1),

f0(v) = f(0,x,v).

The implicit Maxwellian M(v,Un+1) is first computed from the macroscopic quantity Un+1, where

(3.5) Un+1 := (ρn+1, (ρu)n+1, En+1)T =

∫
R3

m(v) (fn −∆tv · ∇x f
n) dv.

For each v, if we define

(3.6) R(v) := f(v)−∆tv · ∇x f(v),

in vector form we have

(3.7)



Rn+1(v) = fn(v)−∆tv · ∇x f
n(v),

Un+1 =

∫
R3

m(v) Rn+1(v) dv,

fn+1(v) =
ε

ε+ νn+1∆t
Rn+1(v) +

νn+1∆t

ε+ νn+1∆t
M(v,Un+1).

Following this strategy and for simplicity keeping v ∈ R3, a two dimensional in space discontinuous
Galerkin scheme for (3.7) is defined as follows: for given fnh (v), we find fn+1

h (v), by computing a

discrete approximation Rn+1
h , which solves the following problem : for any ζ ∈ ZK

h and for 1 ≤ i ≤ Nx,
1 ≤ j ≤ Ny,∫

Ii,j

Rn+1
h (v)ζ(x) dx =

∫
Ii,j

fnh (v)ζ(x)dx + ∆t

∫
Ii,j

v · ∇xζ(x) fnh (v) dx(3.8)

− ∆t

∫
Ii

(̃v1f)(xi+ 1
2
, y)ζ(x−

i+ 1
2

, y)− (̃v1f)(xi− 1
2
, y)ζ(x+

i− 1
2

, y) dy

− ∆t

∫
Ij

(̃v2f)(x, yj+ 1
2
)ζ(x, y−

j+ 1
2

)− (̃v2f)(x, yj− 1
2
)ζ(x, y+

j− 1
2

) dx,

then we compute Un+1
h given for any β ∈ ZK

h and for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, by

(3.9)

∫
Ii,j

Un+1
h β(x) dx =

∫
Ii,j

∫
R3

m(v)Rn+1
h (v)dv β(x) dx.

Finally the discrete distribution function fn+1
h is defined such that for any α ∈ ZK

h and for 1 ≤ i ≤ Nx,
1 ≤ j ≤ Ny, ∫

Ii,j

fn+1
h (v)α(x) dx =

∫
Ii,j

ε

ε+ νn+1∆t
Rn+1
h (v)α(x)dx(3.10)

+

∫
Ii,j

νn+1∆t

ε+ νn+1∆t
M(v,Un+1

h )α(x) dx,

where ṽf is an upwind numerical flux along its direction,

(3.11) ṽf :=

{
v f−, if v ≥ 0,
v f+, if v < 0,

whereas f± are the left and right limits of fnh at the cell interface of two adjacent cells respectively.
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For a nodal discontinuous Galerkin scheme with Lagrangian bases, the scheme (3.8) becomes

Rn+1
i,k1,j,k2

(v) = fni,k1,j,k2(v) +
1

ωk1ωk2

∆t

∆xi∆yj

(
K1∑
l1=0

K2∑
l2=0

v · ∇x(φk1i (xl1i )φk2j (yl2j )) gni,l1,j,l2(v)

− ∆yj

K2∑
l2=0

ωl2

(
(̃v1f)(xi+ 1

2
, yl2j ) ζ(x−

i+ 1
2

, yl2j )− (̃v1f)(xi− 1
2
, yl2j ) ζ(x+

i− 1
2

, yl2j )
)

− ∆xi

K1∑
l1=0

ωl1

(
(̃v2f)(xl1i , yj+ 1

2
) ζ(xl1i , y

−
j+ 1

2

)− (̃v2f)(xl1i , yj− 1
2
) ζ(xl1i , y

+
j− 1

2

)
))

,

whereas U is given by

Un+1
i,k1,j,k2

=

∫
R3

m(v)Rn+1
i,k1,j,k2

(v) dv,

and the discrete approximation fn+1
h is defined by

fn+1
i,k1,j,k2

(v) =
ε

ε+ νn+1
i,k1,j,k2

∆t
Rn+1
i,k1,j,k2

(v) +
νn+1
i,k1,j,k2

∆t

ε+ νn+1
i,k1,j,k2

∆t
M(v,Un+1

i,k1,j,k2
),

where fni,k1,j,k2(v),Rn+1
i,k1,j,k2

(v),Un+1
i,k1,j,k2

with subindex (i, k1, j, k2) are the corresponding numerical

values at the (k1, k2)-th Gaussian quadrature point in cell Ii,j , for 0 ≤ k1 ≤ K1 and 0 ≤ k2 ≤ K2.

3.3. Discontinuous Galerkin for the compressible Navier-Stokes equations. We will follow
F. Bassi and S. Rebay [6] to define a discontinuous Galerkin scheme for the compressible Navier-
Stokes equations (2.18). Letting ∇xU := (S1,S2), with an Euler forward time discretization, the
discontinuous Galerkin scheme for (2.18) is defined as follows: we seek Un

h ∈ ZK
h , such that for any

η(x) ∈ ZK
h and 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, we have∫

Ii,j

Un+1
h η(x) dx =

∫
Ii,j

Un
h η(x) dx(3.12)

+ ∆t

(∫
Ii,j

F(Un
h,S

n
h) · ∇xη(x) dx−

∮
∂Ii,j

η(x) F̂ · n dσ

)
.

whereas ∇xUn
h = (Sn1,h,S

n
2,h) is such that Sn1,h,S

n
2,h ∈ ZK

h for any η(x) ∈ ZK
h and 1 ≤ i ≤ Nx,

1 ≤ j ≤ Ny, we have∫
Ii,j

Sn1,h η(x) dx = −
∫
Ii,j

Un
h ∂xη(x) dx(3.13)

+

∫
Ij

η(x−
i+ 1

2

, y) Û(xi+ 1
2
, y)− η(x+

i− 1
2

, y) Û(xi− 1
2
, y) dy,

and ∫
Ii,j

Sn2,h η(x) dx = −
∫
Ii,j

Un
h ∂yη(x) dx(3.14)

+

∫
Ii

η(x, y−
j+ 1

2

) Û(x, yj+ 1
2
)− η(x, y+

j− 1
2

) Û(x, yj− 1
2
) dx,

where Û is taken to be a central flux

Û :=
1

2
(U+ + U−),

along x or y direction. U± are the left and right limits of Un
h at the cell interface. Finally to construct

a nodal discontinuous Galerkin scheme, we apply a quadrature formula as it has been done in the
previous section.
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The flux F̂ is defined in the next subsection. An important issue is to construct a numerical flux
which is consistent with the kinetic flux in the asymptotic limit ε → 0 in order to avoid spurious
oscillations of order ε or ε2.

3.4. Interface coupling condition. For a discontinuous Galerkin scheme, due to its compactness,
we only need to pass an interface coupling condition between two cells of different regions, that is,
to define consistent numerical fluxes at such a cell interface for both the kinetic equation and the

hydrodynamic system. Let us describe how to define the numerical fluxes ṽ1f and F̂1 in the x

direction, while ṽ2f and F̂2 in the y direction can be defined similarly.
We assume Ii,j is a kinetic cell and Ii+1,j is a hydrodynamic cell, and the cell interface is at

{xi+ 1
2
} × [yj− 1

2
, yj+ 1

2
]:

• For the discontinuous Galerkin scheme of the kinetic equation (3.8)-(3.10), an upwind flux
(3.11) in (3.8) is needed,

(3.15) ṽ1f :=

{
v1 f

−, if v1 ≥ 0,
v1 f

+, else,

at each Gaussian quadrature point within [yj− 1
2
, yj+ 1

2
]. For v1 ≥ 0, f− in cell Ii,j can be

defined from fnh , while f+ for v1 < 0 in cell Ii+1,j cannot. In this case, we take fnh in cell Ii+1,j

to be the first order truncated distribution functions as defined in (2.2) with g(1) defined in
(2.10), so that f+ can be recovered from v1, U(x+

i+ 1
2

, ·) and S(x+
i+ 1

2

, ·), where S = ∇xU.

• For the discontinuous Galerkin scheme of the fluid equations (3.12)-(3.14), for conservation,

the flux function F̂1 in (3.12) is defined as the integral of the kinetic upwind flux (3.15) on v,

(3.16) F̂1(xi+ 1
2
, ·) =

∫
v1≥0

v1m(v) f(x−
i+ 1

2

, ·,v) dv +

∫
v1<0

v1m(v) f(x+
i+ 1

2

, ·,v) dv.

Based on f± in (3.15), it can be obtained.

The other way when Ii,j is a hydrodynamic cell and Ii+1,j is a kinetic cell can be defined symmetrically.

The hydrodynamic flux F̂1(xi+ 1
2
, ·) at the interface of two cells inside the hydrodynamic region is

defined in the same form as (3.16), with f± both taken as the first order truncated distribution
function (2.2) in cell Ii,j and Ii+1,j respectively, which is known as the kinetic flux-vector splitting flux
[20].

This choice is particularly important to avoid that some spurious oscillations appear when the
coupling between kinetic and fluid regions occur. Furthermore, this numerical flux is consistent with
the continuous flux given in (2.19). Indeed, it is given by,

F̂1(xi+ 1
2
, ·) =

∫
v1≥0

v1m(v)
[
M (1 + εg(1))

]
(x−
i+ 1

2

, ·,v) dv

+

∫
v1<0

v1m(v)
[
M(1 + εg(1))

]
(x+
i+ 1

2

, ·,v) dv.

When we consider the BGK equation, we have

F̂1(xi+ 1
2
, ·) =

∫
v1≥0

v1m(v)

[
M
(

1 +
ε

ν

(
A(V) : D(u) + 2B(V) · ∇xT√

T

))]
(x−
i+ 1

2

, ·,v) dv

+

∫
v1<0

v1m(v)

[
M
(

1 +
ε

ν

(
A(V) : D(u) + 2B(V) · ∇xT√

T

))]
(x+
i+ 1

2

, ·,v) dv,

where A and B are given in (2.4). The resulting integrals on v1, either on [0,∞] or on [−∞, 0], can
be expressed in terms of the Gauss error function

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt
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and some of its related functions. We can get explicit expressions in terms of erfc(x) to avoid integration
on v1. We mainly need to do some integrals in the following form

ρ√
2πT

∫
v≥0

vn
(
v − u√
T

)m
e−

(v−u)2

2T dv

for 0 ≤ n ≤ 3 and 0 ≤ m ≤ 3. First by letting

v = z
√

2T + u,

It can be transformed to
ρ

2

2√
π

∫ ∞
− u√

2T

(z
√

2T + u)n (
√

2z)m e−z
2
dz.

Except the coefficient ρ
2 , it is in the form of

(3.17)
2√
π

∫ ∞
s

(a z + b)n (c z)m e−z
2
dz,

which is the Gauss error function erfc(s) in case of n = 0 and m = 0. Expanding on (a z + b)n for
n = 0, 1, 2, 3, what we need are ∫ ∞

s
zn e−z

2
dz

for 1 ≤ n ≤ 6. From integration by parts, they are

∫ ∞
s

z e−z
2

=
1

2
e−s

2
,

∫ ∞
s

z2 e−z
2

=
1

2
(s e−s

2
+

√
π

2
erfc(s)),

∫ ∞
s

z3 e−z
2

=
1

2
(1 + s2)e−s

2
,

∫ ∞
s

z4 e−z
2

=
1

2

((
s2 +

3

2

)
s e−s

2
+

√
π

2
erfc(s)

)
,

∫ ∞
s

z5 e−z
2

=

(
1 + s2 +

1

2
s4
)
e−s

2
,

∫ ∞
s

z6 e−z
2

=
1

2

((
s4 +

5

2
s2 +

15

4

)
s e−s

2
+

15

4

√
π

2
erfc(s)

)
.

For the integral

ρ√
2πT

∫
v<0

vn
(
v − u√
T

)m
e−

(v−u)2

2T dv

on the lower half plane, by letting v = z
√

2T + u, it can be transformed to

ρ

2

2√
π

∫ − u√
2T

∞
(z
√

2T + u)n (
√

2z)m e−z
2
dz,

replacing z by −z, it becomes to

ρ

2

2√
π

∫ ∞
u√
2T

(−z
√

2T + u)n (−
√

2z)m e−z
2
dz,

except the coefficient ρ/2, it is in the form of (3.17).
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4. Numerical examples

In this section, we will test the hybrid discontinuous Galerkin scheme with first order time dis-
cretizations for some physical relevant problems. For simplicity and reduce the high dimension in
velocity, we take the reduced BGK system described in Appendix A as our kinetic equation. No
limiters on the discontinuous Galerkin method are applied. We take a second order discontinuous
Galerkin method for 1D problem, while for 2D problems specify it in the examples. We take a cut-off
domain with Vc = 8 and discretize it with Nv = 32 uniform points along each direction if not specified.

In our hybrid scheme, for the kinetic quation, the time step restriction is in the order of h, while
for the compressible Navier-Stokes equations, it is in the order of h2 according to [44], where h is the
smallest mesh size. We take a small enough time step to ensure each separate scheme to be stable.

4.1. 1D accuracy test. We first test the accuracy for our hybrid scheme with one dimension in
space. We take the initial datum to be at the thermal equilibrium with

(4.1) (ρ, p, u)(x, 0) = (1 + 0.1 sin(2πx), 1, 1),

on the domain [0, 1] with periodic boundary condition. For simplicity, we consider a fixed domain
decomposition with hydrodynamic cells within [−0.25, 0.25], while kinetic cells elsewhere. We choose
a very small ε = 10−6 to avoid the modeling error between the kinetic equation and the hydrodynamic
equations. Due to such a small ε, the “exact” solution for the density could be seen as the one for the
limiting compressible Euler system, which reads

(4.2) ρ(x, t) = 1 + 0.1 sin(2π(x− t)).
We consider both the first order and second order DG schemes in space. The v direction is discretized

with Nv = 32 uniform points. We take a very small time step, e.g., 1/80000 for first order DG method
and 1/500000 for second order DG method correspondingly, so that the temporal error does not
dominate. We run the solution up to time T = 1. In Table 4.1, the first and second order accuracies
in space can be clearly observed.

Table 4.1. 1D accuracy test for density. The “exact” solution is taken from the
limiting compressible Euler system when ε = 0 at T = 1.

1st order DG
N 32 64 128 256

L1 error 1.70e-02 9.87e-03 5.31e-03 2.76e-03
L1 order – 0.78 0.89 0.94

2nd order DG
N 16 32 64 128

L1 error 2.31e-04 6.43e-05 1.67e-05 4.23e-06
L1 order – 1.85 1.95 1.99

4.2. Flow caused by evaporation and condensation. In this example, we consider a rarefied gas
flow caused by evaporation and condensation between two parallel planes with condensed phases [4].
We consider two cases: one is a weak evaporation and condensation with phase conditions to be

(4.3) Twl = 1, pwl = 1, Twr = 1.002, pwr = 1.02,

the other is a strong evaporation and condensation

(4.4) Twl = 0.5, pwl = 0.01, Twr = 1, pwr = 1.

The boundary conditions are fixed wall temperature and pressure, and we take the initial conditions
to be a linear function connecting the wall temperature or pressure. We take a nonuniform mesh with
Nx/4 cells on the width of 0.05 at the boundary, while with Nx/2 cells in the center on a width of 0.9.
For the hybrid scheme, we force the cells within a width of 0.1 at the boundary always to be in the
kinetic region.

In Figure 4.1, we show the pressure and temperature with Nx = 40 for the weak evaporation and
condensation (4.3), at t = 100 for ε = 10−1, 10−2, 10−3 respectively. The results are comparable to
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those in [4, Figure 2] obtained with a much refined mesh Nx = 600 for 10−3 ≤ ε < 1. The mean
velocity is nearly a constant up to the spatial discretization error and is omitted. For this example,
our hybrid method can well match the full kinetic scheme and identify the flat part of the steady
state solution in the middle to be in the hydrodynamic region, while the boundary layers are in the
kinetic region. We notice that even for a relatively large ε = 10−1, the hybrid scheme has a result very
comparable to the full kinetic scheme. Furthermore we compare the CPU cost between the hybrid
scheme and the full kinetic scheme. We take a uniform mesh with Nx = 40 and time step 1/5000.
We run the code up to t = 40 for three times. For the full kinetic scheme, the averaged CPU cost
(real time) is 2 minutes and 45 seconds, while the hybrid scheme costs about 1 minute 50 seconds
for ε = 10−2 and 1 minute 33 seconds for ε = 10−3, so the hybrid scheme saves about 1/3 and 2/5
of the CPU cost for ε = 10−2 and ε = 10−3 respectively. We note that for the nonuniform mesh,
since we put half of mesh points around the kinetic boundary, the CPU costs for the hybrid scheme
and the full kinetic scheme are almost the same. However, we would emphasize that here we use the
reduced BGK system as the kinetic model, the savings of a hybrid scheme would be more significant
if we consider the kinetic equation with the full Boltzmann collision operator and full velocity in 3D.
Nevertheless the hybrid scheme seems to be only very efficient when the kinetic region (and kinetic
cells) is very locally, which may usually happen when ε is relatively small, e.g., ε < 10−1. Besides, for
relatively large ε, e.g., ε ≥ 10−1, very less hydrodynamic cells can be identified for a hybrid scheme.
It will be more efficient to directly use a full kinetic scheme, to avoid the computation of the domain
indicator. In the following, we will use ε = 10−1 as a reference and only consider our hybrid scheme
for ε < 10−1.

Next, in Figure 4.2, we show the pressure, mean velocity and temperature with Nx = 40 for the
strong evaporation and condensation (4.4), at t = 100 for ε = 10−1, 10−2, 10−3 respectively. The mean
velocity is scaled by a factor of −1/

√
2. The results are comparable to those in [4, Figure 11] for the

results on a much refined nonuniform mesh. This example is more demanding, as it requires a good
resolution for small values like ε = 10−3 in order to well capture the boundary layer on both sides. We
can observe that for large ε = 10−1, the hybrid scheme automatically becomes a full kinetic scheme,
whereas when ε goes to zero, the numerical scheme well identifies the hydrodynamic region away from
the boundary layers. In conclusion, the above two cases show the capability of our hybrid scheme,
especially the good capturing of our defined domain decomposition indicator.

4.3. 2D accuracy test. Similar to the first example, we now test the accuracy for our hybrid scheme
with two dimensions in space. We take the initial datum to be at the thermal equilibrium with

(4.5) (ρ, p, u, v)(x, y, 0) = (1 + 0.2 sin(2πx) sin(2πy, 1, 1, 1),

on the domain [0, 1]2 with periodic boundary conditions. We also choose a very small ε = 10−6 and
consider a fixed domain decomposition with hydrodynamic cells within [−0.25, 0.25]2, while kinetic
cells elsewhere. The “exact” solution of the density for this two-dimension in space example reads

(4.6) ρ(x, y, t) = 1 + 0.2 sin(2π(x− t)) sin(2π(y − t)).

We also consider both the first order and second order DG scheme in space. Each v direction is
discretized with Nv = 32 uniform points. We take a very small time step, e.g. 1/10000 for first order
DG method and 1/50000 for second order DG method correspondingly, so that the temporal error
does not dominate. We run the solution up to time T = 0.1. In Table 4.2, the first and second order
accuracies in space can also be clearly observed.
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Figure 4.1. Flow caused by weak evaporation and condensation with
pwr/pwl = 1.02, Twr/Twl = 1.002. Second order discontinuous Galerkin scheme. From
left to right: ε = 10−1, 10−2, 10−3 with a nonuniform mesh with Nx = 40, Nx/4 cells
in a width of 0.05 at the boundary.

Table 4.2. 2D accuracy test for density. The “exact” solution is taken from the
limiting compressible Euler system when ε = 0 at T = 0.1.

1st order DG
Nx = Ny 16 32 64
L1 error 1.73e-02 9.11e-03 4.70e-03
L1 order – 0.93 0.95

2nd order DG
Nx = Ny 8 16 32
L1 error 3.13e-03 7.70e-04 2.03e-04
L1 order – 2.02 1.92

4.4. 2D Riemann problem. In this example, we now consider a 2D Riemann problem for polytropic
gas with initial datum in four quadrants [37],

(ρ, p, u, v)(x, y, 0) =



(1.5, 1.5, 0, 0), if x ≥ 0 and y ≥ 0,

(0.6429, 0.3, 1.0328, 0), if x ≤ 0 and y ≥ 0,

(0.1891, 0.0143, 1.0328, 1.0328), if x ≤ 0 and y ≤ 0,

(0.6429, 0.3, 0, 1.0328), if x ≥ 0 and y ≤ 0,

here we have γ = 5/3.
To avoid numerical oscillations from high order discontinuous Galerkin discretization for the shock

problem (usually limiters are needed in order to control numerical oscillations), we take first order
discontinuous Galerkin discretizations along both x and y directions. The mesh size is uniform and
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Figure 4.2. Flow caused by strong evaporation and condensation with
pwr/pwl = 100, Twr/Twl = 2. Second order discontinuous Galerkin scheme. The
mean velocity is scaled by −1/

√
2. From left to right: ε = 10−1, 10−2, 10−3 with a

nonuniform mesh with Nx = 40, Nx/4 cells in a width of 0.05 at the boundary.

Nx = Ny = 80. For the velocity, we take a cut-off domain Ωv = [−8, 8] with Nv = 64 along each
direction, due to discontinuous macroscopic density and temperature in the Maxwellian distribution
function. We run the code with MPI parallelization along y direction with 4 processors.

In Figure 4.3, we first show the density profiles with ε = 10−2, at time t = 0.01, 0.2, 0.35 for the
hybrid scheme and the full kinetic scheme, as well as the domain indicators for the hybrid scheme.
By comparing the contour lines, we can see that the hybrid scheme and the full kinetic scheme have
almost the same results. However, due to a little large viscosity of ε = 10−2, the four shock lines
are smeared as time evolves. Our domain decomposition indicator can well capture the kinetic region
around the smeared shock lines. The corresponding temperature profiles are displayed in Figure 4.4,
similarly almost the same results for the hybrid scheme and the full kinetic scheme can be observed.

Remark 4.1. Let us emphasize that high order reconstructions with limiters may be applied to in-
crease the accuracy in the regions where the solution is smooth. However, this limiter might affect the
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performance of the domain indicator and spurious oscillations might also come from the interface be-
tween two different regions. It is what we observe when we use a second order discontinuous Galerkin
methods with limiters on a fine mesh when ε � 1. Therefore, developing high order discontinuous
Galerkin methods with limiters for discontinuous solutions on coupled fluid/kinetic models deserve
further understanding.
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Figure 4.3. 2D Riemann problem. Density profile obtained with a first order
discontinuous Galerkin scheme using uniform grids with Nx = Ny = 80 and ε = 10−2.
From left to right: t = 0.01, 0.2, 0.35. From top to bottom: the full kinetic scheme, the
hybrid scheme, the domain indicator for the hybrid scheme. In the domain indicator,
symbol “+” denotes kinetic cells, symbol “o” denotes hydrodynamic cells. 29 contour
lines on the range [0, 1.6].

In Figures 4.5 and 4.6, we now show the density and temperature profiles with ε = 10−3, at time
t = 0.01, 0.2, 0.35 for the hybrid scheme and the full kinetic scheme, as well as the domain indicators
for the hybrid scheme. Similarly the hybrid scheme has almost the same results as the full kinetic one.
However, due to small viscosity and sharp shock lines, our domain indicator tightly follows the moving
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Figure 4.4. 2D Riemann problem. Temperature profile obtained with a first order
discontinuous Galerkin scheme with uniform grids with Nx = Ny = 80 and ε = 10−2.
From left to right: t = 0.01, 0.2, 0.35. Top: the full kinetic scheme; bottom: the hybrid
scheme. 29 contour lines on the range [0, 1.4].

of the shock lines. This problem well demonstrates the good performance of our hybrid scheme and
the domain indicator in the 2D case.

Concerning the CPU cost for the 2D problem, we run the code with MPI parallelization on 4
processors up to t = 0.02 with a time step ∆t = 2.5 × 10−5 and 800 time steps for ε = 10−2, and
t = 0.2 with a time step ∆t = 10−4 with 2000 time steps for ε = 10−3 respectively. We run the
code three times, and the averaged CPU cost (real time) for the hybrid scheme is about 7 minutes 33
seconds for ε = 10−2 and 15 minutes and 4 seconds for ε = 10−3, while a full kinetic scheme costs about
14 minutes and 54 seconds for ε = 10−2 and 37 minutes for ε = 10−3, so that the hybrid scheme saves
about 1/2 for ε = 10−2 and 3/5 for ε = 10−3 of the CPU cost. For the case of ε = 10−2, due to large
smearing of shock profile, more and more kinetic cells are identified as time goes on, see Figure 4.3.
Our hybrid scheme although still is effective on capturing the kinetic cells, but is getting less efficient.
However, we would also mention that there are some communication costs from MPI parallelization,
generally the hybrid scheme may save even more as compared to the full kinetic scheme.

4.5. 2D ghost effect. On the basis of kinetic theory, the heat-conduction equation from the station-
ary state solution of the classical Navier-Stokes equations is not suitable for describing the temperature
field of a gas in the continuum limit in an infinite domain without flow at infinity, where the flow van-
ishes in this limit. By the asymptotic theory, as the Knudsen number of the system approaches zero,
the temperature field should be obtained by the kinetic equation, this phenomenon is called the ghost
effect [24, 38, 10]. In this example, we will numerically study this effect based on our hybrid scheme.

We consider a rarefied gas between two parallel plane walls at x = 0 and x = 1. The walls both
have a common periodic temperature distribution Tw

Tw(y) = 1− 0.5 cos(2πx), ∀y ∈ (0, 1),
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Figure 4.5. 2D Riemann problem. Density profile obtained with a first order
discontinuous Galerkin scheme with uniform grids with Nx = Ny = 80 and ε = 10−3.
From left to right: t = 0.01, 0.2, 0.35. From top to bottom: the full kinetic scheme, the
hybrid scheme, the domain indicator for the hybrid scheme. In the domain indicator,
symbol “+” denotes kinetic cells, symbol “o” denotes hydrodynamic cells. 29 contour
lines on the range [0, 1.6].

and move in a common small mean velocity uw of order ε

uw(y) = (ε, 0).

We take a uniform mesh with Nx = Ny = 40 and time step ∆t = 1/5000. For velocity, since the
solution is smooth and does not vary too much, we take a cut-off domain Ωv = [−8, 8] and discretize
it with Nv = 16 points along each direction. We apply a second order nodal discontinuous Galerkin
scheme and force the grids inside the width of 0.1 along x direction around the walls always to be
kinetic. We show the results (rotated by 90◦) for ε = 0.02 in Figure 4.7 for the isothermal lines,
the mean velocity field as well as the domain indicators for the hybrid scheme, at time t = 10, 80
respectively. The solution at t = 80 is assumed to be close to a steady state. We can observe that the
solution at t = 80 is similar to the results in [38] which is obtained from solving the BGK equation by
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Figure 4.6. 2D Riemann problem. Temperature profile obtained with a first order
discontinuous Galerkin scheme with uniform grids with Nx = Ny = 80 and ε = 10−3.
From left to right: t = 0.01, 0.2, 0.35. Top: the full kinetic scheme; bottom: the hybrid
scheme. 29 contour lines on the range [0, 1.4].

a finite difference scheme, and also very similar to the results obtained from a 2dx × 2dv Boltzmann
system [24].

From the domain indicators at different time in Figure 4.7, we can find that the indicator well defines
the kinetic region where the solution has large variants (left and right sides) due to the effect from the
moving walls, while other parts are almost in the hydrodynamic region (note that top and bottom are
forced to be in the kinetic region). This example with long time simulation well demonstrates the good
property of our hybrid scheme, in which we have almost only solved the expensive kinetic equation in
the middle region where it is necessary and use the cheap hydrodynamic equations elsewhere. Due to
the compactness of our discontinuous Galerkin scheme, we may observe some isolated hydrodynamic
or kinetic cells, which show the robustness of the hybrid discontinuous Galerkin method in the multi-
dimensional case, while this cannot be easily achieved by a finite volume scheme due to the requirement
of wide stencils.

5. Conclusion

In this paper, we developed a hierarchical of hybrid discontinuous Galerkin scheme for some phys-
ically relevant problems in both 1D and 2D space dimensions. The compact discontinuous Galerkin
scheme has shown its robustness on the domain decomposition and h-p adaptivity on capturing the
boundary layers. Although only a first order time discretization is used in the paper for some long
time simulations, it can be easily generalized to high order in time based on some high order implicit-
explicit time discretizations. Extensions to unstructured meshes on more complicated geometries and
to ES-BGK or Boltzmann collision operators will be investigated in our future work.
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Appendix A. BGK equation and Chu reduction

We consider three dimensional problems in velocity, but to save the computational cost, we take
the BGK equation and use the technique of Chu reduction [21]. It has also recently been used by
M. Groppi, G. Russo and G. Stracquadanio in [28]. The main idea is that under suitable geometry
symmetry assumptions, we can integrate the distribution function f in the velocity phase space and
introduce several auxiliary variables, to transform the BGK equation (1.1) in 3D in velocity into a
system of equations in 2D or 1D in velocity, such that the system has the same dimension in space
and in velocity. We refer to [21] for more details.

Chu reduction. We start with the BGK equation in 3D in both space and velocity, which reads

(A.1) ∂tf + v · ∇xf =
ν

ε
(M[f ]− f) .

x = (x, y, z), v = (v1, v2, v3) and M[f ] is the Maxwellian defined as

(A.2) M[f ] := M(t,v,U) =
ρ

(2πT )3/2
exp

(
−|v − u|2

2T

)
,

where u = (u1, u2, u3) is the macroscopic mean velocity. As explained in [21, 28], we consider the
BGK equation to problems with axial symmetry, where all transverse spatial gradients vanish and
the gas is drifting only in the axial directions. In such cases, f(t,x,v) depends on the full velocity,
that is, molecular trajectories are 3D, however all transverse components of the macroscopic velocity
u vanish.

We first consider problems are axial symmetry with respect to two axises (x1, x2), so that the
problem does not depend on x3 and the macroscopic velocity u vanishes at u3 = 0. For simplicity,
let us now denote x̃ = (x1, x2), ṽ = (v1, v2), ũ = (u1, u2) and remove the dependence of f on x3. We
introduce two new unknowns

g1(t, x̃, ṽ) :=

∫
R
f(t, x̃, ṽ, v3) dv3, g2(t, x̃, ṽ) :=

∫
R

v23
2
f(t, x̃, ṽ, v3) dv3,

which are integrations on v3 and from assumption we notice that∫
R
v3 f(t, x̃, ṽ, v3) dv3 = ρ u3 = 0.

Multiplying (A.1) by 1 and v23/2, integrating on v3, it yields a system for the new unknown vector
g = (g1, g2), coupled with suitable initial conditions

(A.3)


∂tgi + ṽ · ∇x̃ gi =

ν

ε
(M[g]i − gi) ,

gi(t = 0) = gi,0, i = 1, 2.

The new BGK system (A.3) describes a relaxation process towards the vector function (M[g]1,M[g]2),
which is a Chu reduction of the Maxwellian (A.2) from 3D in velocity to 2D in velocity and has the
form

(M[g]1,M[g]2) = (M[g]1,
T

2
M[g]1),

where

M[g]1(ṽ) :=

∫
R
M[f ](ṽ, v3) dv3 =

ρ

2πT
exp

(
−|ṽ − ũ|2

2T

)
.
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We only list the argument ṽ in M[g]1(ṽ) to emphasize it is ṽ-dependent, while (t, x̃) are omitted.
The macroscopic moments ρ, ũ and T of f can be given in terms of g as

ρ =

∫
R2

g1(ṽ) dṽ, ũ =
1

ρ

∫
R2

ṽ g1(ṽ) dṽ, 3T =
1

ρ

[∫
R2

|ṽ − ũ|2

2
g1(ṽ) dṽ +

∫
R2

g2(ṽ) dṽ

]
.

If we further assume the model is axial symmetry only with respect to axis x1, and f only depends on
x1, we can transform (A.1) into a system of 1D problem in both x and v. The procedure is similar,
that is, we introduce

h1(t, x, v) :=

∫
R2

f(t, x, v, v2, v3) dv2 dv3, h2(t, x, v) :=

∫
R2

v22 + v23
2

f(t, x, v, v2, v3) dv2 dv3,

multiplying (A.1) by 1 and (v22 + v23)/2, integrating with respect to v2 and v3, it yields a system for
the unknown vector h = (h1, h2), coupled with suitable initial conditions

(A.4)


∂thi + v

∂hi
∂x

=
ν

ε
(M[h]i − hi) ,

hi(t = 0) = hi,0, i = 1, 2.

The vector (M[h]1,M[h]2) has the form

(M[h]1,M[h]2) = (M[h]1, TM[h]1),

where

M[h]1(v) :=

∫
R
M[f ](v, v2, v3) dv2dv3 =

ρ√
2πT

exp

(
−|v − u1|

2

2T

)
.

The macroscopic moments ρ, u1 and T of f can be given in terms of h

ρ =

∫
R
h1(v) dv, u1 =

1

ρ

∫
R
v h1(v) dv, 3T =

1

ρ

[∫
R

|v − u1|2

2
h1(v) dv +

∫
R
h2(v) dv

]
.

Flux relation. Now we establish the relation between the hydrodynamic equations (2.18) and the
reduced BGK systems (A.4) in 1D and (A.3) in 2D in space respectively. For the hybrid discontinuous
Galerkin scheme proposed in the following section, due to its compactness, we only need to define
consistent numerical fluxes at the interface of two cells in the hydrodynamic region and the kinetic
region respectively. Here we would like to borrow the form (2.19) and provide explicit formulae for
the flux functions in (2.18) to the unknowns of the reduced BGK systems (A.4) and (A.3).

First for the 1D BGK system, the deformation tensor is simply

D(u) = Diag

(
4

3
∂xu1,−

2

3
∂xu1,−

2

3
∂xu1

)
.

The first order truncated distribution function f ε(v) (2.2) becomes

(A.5) fT (v) = M(v)

[
1− ε

ν

((
V 2
1 −

1

3
|V|2

)
∂xu1 +

1

2

(
|V|2 − 5

)
V1
∂xT√
T

)]
,

where V = (V1, V2, V3) := v−u√
T

. Corresponding to the reduced BGK system (A.4) in 1D, we have

(A.6)


h1,T (v1) =

∫
R2

fT (v) dv2dv3 = M[h]1

[
1− ε

ν

2

3
(V 2

1 − 1) ∂xu1 −
ε

ν

1

2
V1(V

2
1 − 3)

∂xT√
T

]
,

h2,T (v1) =

∫
R2

fT (v)
v22 + v23

2
dv2dv3 = T

[
h1,T (v1) +

ε

ν
M[h]1

(
2

3
∂xu1 − V1

∂xT√
T

)]
.

The subindex “T” denotes truncations for the corresponding unknown functions. The nonzero first
component of the flux function (2.19) becomes

(A.7) F1(U, ∂xU) =

∫
R3

v1m(v) fT (v) dv =

∫
R
v1 [m(v1)h1,T (v1) + e3 h2,T (v1)] dv1,
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which will be used to define the numerical hydrodynamic flux at the interface of two cells between two
regions. Here m(v1) = (1, v1, v

2
1/2)T and e3 = (0, 0, 1)T .

For the 2D reduced BGK system (A.3), the truncated distribution function fT (v) is

fT (v) = M

{
1− ε

ν

[(
V 2
1 −

1

3
|V|2

)
∂xu1 +

(
V 2
2 −

1

3
|V|2

)
∂yu2(A.8)

+V1V2(∂xu2 + ∂yu1) +
1

2

(
|V|2 − 5

)(
V1
∂xT√
T

+ V2
∂yT√
T

)]}
,

so that

g1,T (v1, v2) =

∫
R
fT (v)dv3

= M[g]1

{
1− ε

ν

[(
V 2
1 −

1

3
(V 2

1 + V 2
2 + 1)

)
∂xu1 +

(
V 2
2 −

1

3
(V 2

1 + V 2
2 + 1)

)
∂yu2

+ V1 V2 (∂xu2 + ∂yu1) +
1

2

(
V 2
1 + V 2

2 − 4
)(

V1
∂xT√
T

+ V2
∂yT√
T

)]}
,

g2,T (v1, v2) =

∫
R
fT (v)

v23
2
dv3

=
1

2
T g1,T (v1, v2) +

ε T

ν
M[g]1

(
1

3
(∂xu1 + ∂yu2)−

1

2

(
V1
∂xT√
T

+ V2
∂yT√
T

))
.

The flux function (2.19) in 2D becomes

(A.9) F(U,∇xU) =

∫
R2

v [m(ṽ) g1,T (ṽ) + e3 g2,T (ṽ) ] dṽ,

in this equation we denote ṽ = (v1, v2) and m(ṽ) = (1, v1, v2, (v
2
1 + v22)/2)T .

Discontinuous Galerkin scheme. The discontinuous Galerkin scheme (3.8)-(3.10) can be easily
adapted to the reduced BGK system (A.3), which is for any ζ ∈ ZK

h∫
Ii,j

Rn+1
h (v)ζ(x) dx =

∫
Ii,j

gnh(v)ζ(x)dx + ∆t

∫
Ii,j

v · ∇xζ(x) gnh(v) dx

− ∆t

∫
Ii

(̃v1g)(xi+ 1
2
, y)ζ(x−

i+ 1
2

, y)− (̃v1g)(xi− 1
2
, y)ζ(x+

i− 1
2

, y) dy

− ∆t

∫
Ij

(̃v2g)(x, yj+ 1
2
)ζ(x, y−

j+ 1
2

)− (̃v2g)(x, yj− 1
2
)ζ(x, y+

j− 1
2

) dx,

where ṽ g is an upwind numerical flux. Then, Un+1
h is given for any β ∈ ZK

h∫
Ii,j

Un+1
h β(x) dx =

∫
Ii,j

∫
R2

Φ(v) Rn+1
h (v)dv β(x) dx,

where the matrix Φ is given by

Φ(v) :=

 1 0
v 0
|v|2/2 1

 .

Finally, for any α ∈ ZK
h we have∫

Ii,j

gn+1
h (v)α(x) dx =

∫
Ii,j

ε

ε+ νn+1∆t
Rn+1
h (v)α(x)dx +

∫
Ii,j

νn+1∆t

ε+ νn+1∆t
M[g](v,Un+1

h )α(x) dx,
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with g(v) := (g1, g2)
T and M[g] := (M[g]1,M[g]2)

T, whereas R(v) = g(v)−∆tv · ∇x g(v).
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Figure 4.7. The ghost effect. Second order discontinuous Galerkin scheme. Uni-
form grids with Nx = Ny = 40. ε = 0.02. From left to right: t = 10, 80. From top to
bottom: the isothermal lines, the mean velocity field and the domain indicator. Figures
are rotated by 90◦. In the domain indicator, symbol “+” denotes kinetic cells, symbol
“o” denotes hydrodynamic cells. The isothermal lines increase by 0.05 on the range
[0.45, 1.55].
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