
ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG1

MAGNETIC FIELD∗2

FRANCIS FILBET† , TAO XIONG‡ , AND ERIC SONNENDRÜCKER§3
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1. Introduction. We consider a plasma confined by a strong external magnetic13

field, hence the charged gas evolves under its self-consistent electromagnetic field and14

the confining magnetic field. This configuration is typical of a tokamak plasma [3, 30],15

where the magnetic field is used to confine particles inside the core of the device.16

We assume that on the time scale we consider, collisions can be neglected both17

for ions and electrons, hence collective effects are dominant and the plasma is entirely18

modelled with kinetic transport equations, where the unknown is the number density19

of particles f ≡ f(t,x,v) depending on time t ≥ 0, position x ∈ D ⊂ R3 and velocity20

v ∈ R3.21

Such a kinetic model provides an appropriate description of turbulent transport22

in a fairly general context, but it requires to solve a six dimensional problem which23

leads to a huge computational cost. To reduce the cost of numerical simulations, it24

is classical to derive asymptotic models with a smaller number of variables than the25

kinetic description. Large magnetic fields usually lead to the so-called drift-kinetic26

limit [1, 8, 28, 27] and we refer to [4, 7, 19, 20, 14, 21] for recent mathematical results27

on this topic. In this regime, due to the large applied magnetic field, particles are28

confined along the magnetic field lines and their period of rotation around these lines29

(called the cyclotron period) becomes small. It corresponds to the finite Larmor30

radius scaling for the Vlasov-Poisson equation, which was introduced by Frénod and31

Sonnendrücker in the mathematical literature [19, 20]. The two-dimensional version32

of the system (obtained when one restricts to the perpendicular dynamics) and the33

large magnetic field limit were studied in [14] and more recently in [4, 31, 24]. We also34

refer to the recent work [26] of Hauray and Nouri, dealing with the well-posedness35

theory with a diffusive version of a related two dimensional system. A version of the36

full three dimensional system describing ions with massless electrons was studied by37
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2 F. FILBET, T. XIONG, AND J. E. SONNENDRÜCKER

Han-Kwan in [23, 25].38

Here we formally derive a new asymptotic model under both assumptions of large39

magnetic field and large time asymptotic limit for the two dimensional in space and40

three dimensional in velocity (2d×3d) Vlasov-Maxwell system. An analogous problem41

for the Vlasov-Poisson system has already been carefully studied by F. Golse and L.42

Saint-Raymond in two dimension [21, 32, 22], and recently by P. Degond and F. Filbet43

in three dimension [12]. In this paper, we will follow [12] to introduce some main char-44

acteristic scales to rewrite the Vlasov-Maxwell system in a dimensionless form, and45

reformulate the Maxwell equations by defining two potential functions correspond-46

ing to the self-consistent electromagnetic field. We consider a small cyclotron period,47

where the plasma frequency is relatively small as compared to the cyclotron frequency,48

and study the long time behavior of the plasma. Assuming a constant strong external49

magnetic field and that the distribution function is homogeneous along the external50

magnetic field, an asymptotic kinetic model can be derived by performing Hilbert51

expansions and comparing the first three leading order terms in terms of the small cy-52

clotron period, thanks to passing in the cylindrical coordinates. The new asymptotic53

model is composed of two two dimensional transport equations for the distribution54

functions of ions and electrons respectively, averaging in the velocity plane orthogonal55

to the external magnetic field, and a Poisson’s equation for determining the electric56

potential as well as an elliptic equation for the magnetic potential. It is incompressible57

with a divergence free transport velocity and shares several good features with the58

original Vlasov-Maxwell system, such as conservation of moments in velocity, total59

energy, as well as the Lp norm and physical bounds. The existence of weak solutions60

for the asymptotic model can also be obtained by following the lines of existence of61

weak solutions for the Vlasov-Poisson system [2, 13], with some Lp estimates on the62

charge density and current. Moreover, as the Mach number goes to 0 in the self-63

consistent magnetic field, we can recover the two dimensional guiding-center model,64

which is an asymptotic model for the Vlasov-Poisson system under the same scalings65

[21, 36, 29].66

A high order numerical scheme will be applied to solve the new asymptotic model,67

which is an extension of the one developed by C. Yang and F. Filbet [36] for the two68

dimensional guiding center model. Some other recent numerical methods for the69

Vlasov-Poisson system or the two dimensional guiding-center model can be referred70

to [15, 34, 10, 9, 18, 16, 35] and reference therein. Here a Hermite weighted essen-71

tially non-oscillatory (HWENO) scheme is adopted for the two dimensional transport72

equation, as well as the fast Fourier transform (FFT) or a 5-point central difference73

scheme for the Poisson equation of the electric potential and the 5-point central dif-74

ference scheme for the elliptic equation of the magnetic potential. We will compare75

the asymptotic kinetic model with the two dimensional guiding-center model. With76

some special initial datum as designed in the numerical examples, we will show that77

under these settings, the two dimensional guiding-center model stays steady or nearly78

steady, while the asymptotic model can create some instabilities with a small initial79

nonzero current for the self-magnetic field. These instabilities are similar to some80

classical instabilities, such as Kelvin-Helmholtz instability [18], diocotron instability81

[36] for the two dimensional guiding-center model with some other perturbed initial82

conditions, which can validate some good properties of our new asymptotic model.83

The rest of the paper is organized as follows. In Section 2, the dimensionless84

Vlasov-Maxwell system under some characteristic scales and the derivation of an85

asymptotic model will be presented. The verification of preservation for some good86

features as well as the existence of weak solutions for the asymptotic model will also87
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ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 3

be given. The numerical scheme will be briefly described in Section 3 and followed88

by some numerical examples in Section 4. Conclusions and our future work are in89

Section 5.90

2. Mathematical modeling. In this paper, we start from the Vlasov equation91

for each species of ions and electrons,92

(1) ∂tfs + v · ∇xfs +
qs
ms

(
E + v × (B + Bext)

)
· ∇vfs = 0, s = i, e,93

where fs ≡ fs(t,x,v) is the distribution function, ms and qs are the mass and charge,94

with s = i, e for the ions and electrons respectively. Here we assume that the ions95

have an opposite charge to the electrons qi = e = −qe and consider a given large96

magnetic field Bext, as well as self-consistent electromagnetic fields E and B, which97

satisfy the Maxwell equations98

(2)



∇x ×E = −∂tB,

∇x ×B =
1

c2
∂tE + µ0 J,

∇x ·E =
ρ

ε0
,

∇x ·B = 0,

99

where c is the speed of light, µ0 is the vacuum permeability, ε0 is the vacuum per-100

mittivity and µ0ε0 = 1/c2. The density ns, average velocity us are related to the101

distribution function fs by102

ns =

∫
R3

fsdv, nsus =

∫
R3

fsvdv,103

hence we define the total charge density ρ and total current density J as ρ =104

e (ni − ne) and J = e (ni ui − ne ue).105

2.1. Rescaling of the Vlasov-Maxwell system. In the following we will de-106

rive an appropriate dimensionless scaling for (1) and (2) by introducing a set of107

characteristic scales.108

We assume that the plasma is such that the characteristic density and temperature109

of ions and electrons are of the same order, that is,110

(3) n := ni = ne, T := T i = T e.111

We choose to perform a scaling with respect to the ions. On the one hand, we set the
characteristic velocity scale v as the thermal velocity corresponding to ions,

v :=

(
κBT

mi

)1/2

,

where κB is the Boltzmann constant. Then we define the characteristic length scale112

of x given by the Debye length, which is the same for ions and electrons113

x := λD =

(
ε0κBT

ne2

)1/2

.114
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4 F. FILBET, T. XIONG, AND J. E. SONNENDRÜCKER

It allows to define a first time scale corresponding to the plasma frequency of ions115

ωp := v/x.116

Finally, the characteristic magnitude of the electric field E can be expressed from
n and x by

E :=
e n x

ε0
,

hence the characteristic magnitude of the self-consistent magnetic field B, which is117

denoted by B, is related to the scale of the electric field by E = v B.118

On the other hand, by denoting Bext the characteristic magnitude of the given
magnetic field Bext, we define the cyclotron frequency corresponding to ions by

ωc :=
eBext
mi

and ω−1
c corresponds to a second time scale.119

With the above introduced scales, we define the scaled variables as120

v′ =
v

v
, x′ =

x

x
, t′ =

t

t
,121

and the electromagnetic field as122

E′(t′,x′) =
E(t,x)

E
, B(t′,x′) =

B(t,x)

B
, B′ext(t

′,x′) =
Bext(t,x)

Bext
.123

Furthermore, for each species, we define the characteristic velocity and subsequently,
by letting f = n/v3,

f ′s(t
′,x′,v′) =

fs(t,x,v)

f
, s = i, e.

Inserting all these new variables into (1), dividing by ωp and dropping the primes for124

clarity, we obtain the following dimensionless Vlasov equation125

(4)


1

ωp t
∂tfi + v · ∇xfi +

(
E + v ×B +

ωc
ωp

v ×Bext

)
· ∇vfi = 0,

1

ωp t
∂tfe + v · ∇xfe −

mi

me

(
E + v ×B +

ωc
ωp

v ×Bext

)
· ∇vfe = 0,

126

while the dimensionless Maxwell equations (2) are scaled according to the plasma127

frequency of ions,128

(5)



∇x ×E = − 1

ωp t
∂tB,

∇x ×B = Ma2

(
1

ωp t
∂tE + J

)
,

∇x ·E = ρ,

∇x ·B = 0,

129
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ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 5

where Ma = v/c is the Mach number and130

(6) ρ = ni − ne, J = ni ui − ne ue .131

To consider an asymptotic limit, we introduce a dimensionless cyclotron period132

of ions133

ε :=
ωp
ωc
,134

where ε is a small parameter and study the long time asymptotic, that is, ε =
1/(ωpt)� 1. We also denote by α the mass ratio between electrons and ions

α :=
me

mi
.

Under these two scalings, the Vlasov equation (4) takes the form135

(7)


ε ∂tfi + v · ∇xfi +

(
E + v ×B +

1

ε
v ×Bext

)
· ∇vfi = 0,

ε ∂tfe + v · ∇xfe −
1

α

(
E + v ×B +

1

ε
v ×Bext

)
· ∇vfe = 0

136

and the Maxwell equations (5) are137

(8)



∇x ×E = −ε ∂tB,

∇x ×B = Ma2 (ε ∂tE + J) ,

∇x ·E = ρ,

∇x ·B = 0,

138

with ρ and J given by (6).139

2.2. Asymptotic limit of the Vlasov-Maxwell system. To derive an asymp-140

totic model from (7)-(8), let us set our assumptions141

Assumption 2.1. Consider Ω ⊂ R2 and D = Ω × [0, Lz], the external magnetic142

filed only applies in the z-direction143

Bext = (0, 0, 1)t.144

For simplicity we consider here periodic boundary conditions in space for the distri-145

bution function and the electromagnetic field.146

Assumption 2.2. The plasma is homogeneous in the direction parallel to the ap-147

plied magnetic field. Hence, the distribution functions fi and fe do not depend on148

z.149

For any x = (x, y, z)t ∈ R3, we decompose it as x = x⊥ + x‖ according to the150

orthogonal and parallel directions to the external magnetic field Bext, that is, x⊥ =151

(x, y, 0)t and x‖ = (0, 0, z). In the same manner, the velocity is v = v⊥ + v‖ ∈ R3152

with v⊥ = (vx, vy, 0)t and v‖ = (0, 0, vz). Under these assumptions and notations,153
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6 F. FILBET, T. XIONG, AND J. E. SONNENDRÜCKER

the Vlasov equation (7) can be written in the following form,154

(9)


ε ∂tfi + v · ∇xfi + (E + v ×B) · ∇vfi +

v⊥

ε
· ∇vfi = 0,

ε ∂tfe + v · ∇xfe −
1

α
(E + v ×B) · ∇vfe −

v⊥

ε α
· ∇vfe = 0,

155

where v⊥ = (vy,−vx, 0) for any v ∈ R3.156

Now we reformulate the Maxwell equations using Assumption 2.2. Here and after,
we will drop the subindex x for spatial derivatives of macroscopic quantities which do
not depend on v, such as E and B and their related quantities, for clarity. On the
one hand, from the divergence free condition of (8), we can write B = ∇x×A, where
A is a magnetic potential verifying the Coulomb’s gauge

∇x ·A = 0.

On the other hand, the electric field E is split into a longitudinal part and a transversal
part E = EL + ET , with  ∇x ×EL = 0,

∇x ·ET = 0.

From (8) it is easy to see that EL = −∇xΦ, where the electrical potential Φ is a157

solution to the Poisson’s equation,158

(10) −∆xΦ = ρ.159

Then, from (8) we get that160

∇x ×ET = −∂tB = −ε∇x × (∂tA),161

hence using the uniqueness of the decomposition for given boundary conditions, we162

necessarily have, assuming periodic boundary conditions, that ET = −ε∂tA and the163

electric field E is given by164

(11) E = −∇xΦ − ε∂tA.165

Furthermore, the second equation in (8) gives the equation satisfied by the potential166

A, that is,167

(12) (εMa)2 ∂2
ttA − ∆xA = Ma2 (J − ε ∂t∇xΦ) .168

Gathering (10)-(12), we finally have E = −∇xΦ − ε ∂tA and B = ∇x ×A,169

(13)

 (εMa)2 ∂2
ttA − ∆xA = Ma2 (J − ε ∂t∇xΦ) ,

−∆xΦ = ρ.
170

Now we remind the basic properties of the solution to (9) and (13)171

Proposition 2.3. We consider that Assumptions 2.1 and 2.2 are verified and
(fεi , f

ε
e ,Φ

ε,Aε)ε>0 is a solution to (9) and (13). Then we have for all t ≥ 0,

‖fεs (t)‖Lp = ‖fεs (0)‖Lp , s = i, e.

This manuscript is for review purposes only.



ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 7

Moreover we define the total energy at time t ≥ 0, as172

Eε(t) :=

∫
T2×R3

[fεi (t) + α fεe (t)]
|v|2

2
dx⊥ dv173

+
1

2

∫
T2

[
|∇xΦ|2 + ε|∂tA|2 +

1

Ma2 |∇x ×A|2
]
dx⊥,174

175

which is conserved for all time t ≥ 0, Eε(t) = Eε(0).176

We now derive the asymptotic limit of (9) and (13) by letting ε→ 0. We denote177

the solutions to the above equations (9) and (13) as (fεi , f
ε
e ,A

ε,Φε), and perform178

Hilbert expansions for s = i, e179

(14)


fεs = fs,0 + εfs,1 + ε2fs,2 + · · · ,

Aε = A0 + εA1 + · · · ,

Φε = Φ0 + εΦ1 + · · · ,

180

correspondingly

Eε = E0 + εE1 + · · · , Bε = B0 + εB1 + · · · .

We prove the following asymptotic limit181

Theorem 2.4 (Formal expansion). Consider that Assumptions 2.1 and 2.2 are
satisfied. Let (fεi , f

ε
e ,A

ε,Φε) be a nonnegative solution to the Vlasov-Maxwell system
(9) and (13) satisfying (14). Then, the leading term (fi,0, fe,0,Φ0,A0) is such that Φ0 ≡ Φ(t,x),

A0 ≡ (0, 0, A(t,x))t.

Furthermore, we define (Fi, Fe) as

Fi(t,x, pz) = 1
2π

∫
R2 fi,0(t,x,v) dvx dvy,

Fe(t,x, qz) = α−1 1
2π

∫
R2 fe,0(t,x,v) dvx dvy

where pz = vz +A(t,x) and qz = α vz −A(t,x), and the two Hamiltonians

Hi = Φ +
1

2
(A− pz)2

and He = Φ − 1

2α
(qz +A)

2
,

where (Fi, Fe,Φ, A) is a solution to the following system182

(15)



∂tFi − ∇⊥xHi · ∇xFi = 0,

∂tFe − ∇⊥xHe · ∇xFe = 0,

−∆xΦ = ρ,

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2 Jz,

183
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and the density ni and ne are given by184

(16) ns =

∫
R
Fs(t,x, rz) drz, s = i, e,185

hence the charge density is ρ = ni − ne and the current density corresponds to186

(17) Jz =

∫
R
rz

(
Fi(t,x, rz) −

1

α
Fe(t,x, rz)

)
drz,187

where the Mach number Ma = v/c.188

Remark 2.5. Observe that the drift velocity in (15) called E ×B = ∇⊥x Φ is the189

same for the two species, since it does not depend on the charge of the particle.190

Proof. We first start with the self-consistent electromagnetic fields, we can easily191

find from (13) that E0 = −∇xΦ0 and B0 = ∇x ×A0 with192

(18)


−∆xΦ0 = ρ0,

−∆xA0 = Ma2 J0,
193

and at the next order E1 = −∇xΦ1 − ∂tA0 and B1 = ∇x ×A1, with194

(19)


−∆xΦ1 = ρ1,

−∆xA1 = Ma2 (J1 − ∂t∇xΦ0) ,
195

where for k = 0, 1,

ρk =

∫
R3

[fi,k − fe,k] dv , Jk =

∫
R3

v [ fi,k − fe,k ] dv.

Substituting the Hilbert expansions into (9), and comparing the orders of ε, such as196

ε−1, ε0 and ε, we obtain the following three equations for ions:197

(20)



v⊥ · ∇vfi,0 = 0,

v · ∇xfi,0 + (E0 + v ×B0) · ∇vfi,0 = −v⊥ · ∇vfi,1,

∂tfi,0 + v · ∇xfi,1 + (E0 + v ×B0) · ∇vfi,1 + (E1 + v ×B1) · ∇vfi,0
= −v⊥ · ∇vfi,2

198

and for electrons:199

(21)



v⊥ · ∇vfe,0 = 0,

αv · ∇xfe,0 − (E0 + v ×B0) · ∇vfe,0 = v⊥ · ∇vfe,1,

α (∂tfe,0 + v · ∇xfe,1)− (E0 + v ×B0) · ∇vfe,1 − (E1 + v ×B1) · ∇vfe,0
= v⊥ · ∇vfe,2.

200

We now pass in cylindrical coordinates in velocity v = v⊥ + v‖, with

v⊥ = ω eω,
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where we have set ω = |v⊥| and201

eω =

cos θ
sin θ

0

 , eθ =

− sin θ
cos θ

0

 .202

Using these notations, we now derive the asymptotic limit according to the orders203

of ε in (20)-(21). First the leading order term in (20)-(21) written in cylindrical204

coordinates becomes205

−∂θfs,0 = 0, s = i, e,206

which means that fs,0 does not depend on θ, hence from Assumption 2.2, it yields207

that fs,0 ≡ fs,0(t,x⊥, ω, vz).208

As a consequence, the current density is such that209

(nsus,0)⊥ :=

∫
R3

v⊥fs,0 dv =

∫
R

∫ ∞
0

fs,0

(∫ 2π

0

eωdθ

)
ω2 dω dvz = 0,210

which implies that only the third component of the total current density J0 might
be nonzero and therefore only the third component of A0 in (18) might be nonzero,
that is, A0 = (0, 0, A0) is a solution to the Poisson’s equation with the source term
J0 = (0, 0, jz)

−∆xA0 = Ma2 jz,

hence from B0 = ∇x ×A0, it yields that B0 = ∇⊥xA0 and particularly B0,z = 0.211

Finally, since the electric field E0 = −∇xΦ0 and from Assumption 2.2, we also212

have that E0,z = 0.213

214

Now we treat the zeroth order term in (20)-(21) and use the cylindrical coordinates215

in the velocity variable, it gives216

(22) ∂θfi,1 = eω · Gi,0, ∂θfe,1 = eω · Ge,0,217

with218

(23)

 Gi,0 = +
(
ω∇xfi,0 − (∇xΦ0 − vz∇xA0) ∂ωfi,0 − ω∇xA0 ∂vzfi,0

)
,

Ge,0 = −
(
αω∇xfe,0 + (∇xΦ0 − vz∇xA0) ∂ωfe,0 + ω∇xA0 ∂vzfe,0

)
.

219

First notice that Ge,0 and Gi,0 do not depend on θ ∈ (0, 2π) since f0 does not depend
on θ and ∫ 2π

0

eω dθ = 0,

then the solvability condition of (22) is automatically satisfied and after integration220

in θ, we obtain f1 as,221

(24)

 fi,1(t,x⊥, ω, θ, vz) = −eθ ·Gi,0(t,x⊥, ω, vz) + hi(t,x⊥, ω, vz),

fe,1(t,x⊥, ω, θ, vz) = −eθ ·Ge,0(t,x⊥, ω, vz) + he(t,x⊥, ω, vz),
222

where hi and he are arbitrary functions which do not depend on θ.223
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10 F. FILBET, T. XIONG, AND J. E. SONNENDRÜCKER

Now we focus on the first order with respect to ε in (20)-(21). Similarly, from the
periodic boundary condition in θ ∈ (0, 2π), we have the following solvability condition

1

2π

∫ 2π

0

∂θfs,2 dθ = 0 , s = i, e.

Therefore, we have224

(25)



∂tfi,0 + 1
2π

∫ 2π

0

(
v · ∇xfi,1 + (E0 + v ×B0) · ∇vfi,1

+ (E1 + v ×B1) · ∇vfi,0

)
dθ = 0,

α∂tfe,0 + 1
2π

∫ 2π

0

(
αv · ∇xfe,1 − (E0 + v ×B0) · ∇vfe,1

− (E1 + v ×B1) · ∇vfe,0

)
dθ = 0.

225

Each integral term can be explicitly calculated by substituting fi,1 and fe,1 from (24).226

On the one hand, observing that227  ∂ωfs,1 = −eθ · ∂ωGs,0 + ∂ωhs, s = i, e ,

∂θfs,1 = eω ·Gs,0, s = i, e ,
228

it yields for s = i, e,229

(26)
1

2π

∫ 2π

0

v · ∇xfs,1 dθ = −ω
2
∇x ·G⊥s,0.230

On the other hand, the same kind of computation leads to for s = i, e,231

1

2π

∫ 2π

0

(E0 + v ×B0) · ∇vfs,1dθ(27)232

= −1

2

[
(E0 + vz∇xA0)

ω
· ∂ω

(
ωG⊥s,0

)
− ω∇xA0 · ∂vzG⊥s,0

]
.233

234

Finally since fs,0 does not depend on θ ∈ (0, 2π) and the electric field does not235

depend on z, the last term in (25) only gives236

(28)
1

2π

∫ 2π

0

(E1 + v ×B1) · ∇vfs,0dθ = −∂tA0 ∂vzfs,0, s = i , e.237

Gathering (26)-(28), and recalling that E0 = −∇xΦ0, we get for the distribution238

function fi,0,239

∂tfi,0 −
ω

2
∇x ·G⊥i,0 +

1

2

(
∇x (Φ0 − vzA0)

ω
· ∂ω

(
ωG⊥i,0

)
+ ω∇xA0 · ∂vzG⊥i,0

)
240

241

− ∂tA0 ∂vzfi,0 = 0.242243
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and for the distribution function fe,0,244

α
(
∂tfe,0 −

ω

2
∇x ·G⊥e,0

)
− 1

2

(
∇x (Φ0 − vzA0)

ω
· ∂ω(ωG⊥e,0) + ω∇xA0 · ∂vzG⊥e,0

)
245

246

+ ∂tA0 ∂vzfe,0 = 0.247248

Using the definition of Gs,0 for s = i, e in (23) and after some calculations, it finally249

yields that250

(29) ∂tfi,0 −∇⊥x (Φ0 − vzA0) · ∇xfi,0 −
(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzfi,0 = 0,

α
(
∂tfe,0 −∇⊥x (Φ0 − vzA0) · ∇xfe,0

)
+
(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzfe,0 = 0.

251

Observing that this equation does not explicitly depend on ω, we define

Fs,0(t,x⊥, vz) :=
1

2π

∫
R2

fs,0(t,x⊥,v) dvx dvy, s = i, e .

Multiplying (29) by ω and integrating with respect to ω, we get252

(30) ∂tFi,0 − ∇⊥x (Φ0 − vzA0) · ∇xFi,0 −
(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzFi,0 = 0,

α
(
∂tFe,0 − ∇⊥x (Φ0 − vzA0) · ∇xFe,0

)
+
(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzFe,0 = 0.

253

This last equation can be reformulated to remove the time derivative of A0 in the
velocity field. To this aim, we introduce a new variable for pz = vz + A0(t,x) in Fi,0
and qz = α vz − A0(t,x) in Fe,0 and perform a change of variable in velocity

Fi(t,x⊥, pz) = Fi,0(t,x⊥, vz), Fe(t,x⊥, qz) = α−1 Fe,0(t,x⊥, vz).

From now on, we will use Φ(t,x) and A(t,x) in short of Φ0(t,x) and A0(t,x) respec-
tively. Hence (30) now becomes ∂tFi − ∇⊥xHi · ∇xFi = 0,

∂tFe − ∇⊥xHe · ∇xFe = 0,

with

Hi = Φ +
1

2
(A− pz)2

and He = Φ − 1

2α
(A+ qz)

2
,

where the charge density is always given by ρ = ni − ne, whereas the current density
is now given by

jz = Jz −
(
ni +

ne
α

)
A,

where (ni, ne) and Jz are respectively defined in (16) and (17). Finally, the potentials254

(Φ, A) are now solutions to255 
−∆xΦ = ρ,

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2Jz,

256

where Ma = v/c is the Mach number.257
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12 F. FILBET, T. XIONG, AND J. E. SONNENDRÜCKER

2.3. Weak solutions for the asymptotic model. First notice that the asymp-258

totic model (15) is now two dimensional in space since we assume that the plasma is259

homogeneous in the parallel direction to the external magnetic field and one dimen-260

sional in moment since we have averaged in the orthogonal direction to the external261

magnetic field.262

To simplify the presentation, from now on x represents the orthogonal part of263

x⊥ = (x, y, 0) with (x, y) ∈ Ω.264

For the sake of simplicity in the analysis we have only considered periodic bound-265

ary conditions in space, for x ∈ Ω := (0, Lx)× (0, Ly),266

(31)

Φ(t, x+ Lx, y) = Φ(t, x, y), Φ(t, x, y + Ly) = Φ(t, x, y),

A(t, x+ Lx, y) = A(t, x, y), A(t, x, y + Ly) = A(t, x, y),

Fi(t, x+ Lx, y, pz) = Fi(t, x, y, pz), Fi(t, x, y + Ly, pz) = Fi(t, x, y, pz), pz ∈ R,

Fe(t, x+ Lx, y, qz) = Fe(t, x, y, qz), Fe(t, x, y + Ly, qz) = Fe(t, x, y, qz), qz ∈ R.

267

But other kinds of boundary conditions may be treated for the asymptotic model as268

homogeneous Dirichlet boundary conditions for the potential Φ and A269

(32) Φ(t,x) = 0, A(t,x) = 0, x ∈ ∂Ω.270

Then let us review the main features of the asymptotic model (15), which make271

this mathematical model consistent with the initial Vlasov-Maxwell model (9) and272

(13).273

Proposition 2.6. Consider a solution to the asymptotic model (15) with the274

boundary conditions (31), or (32), or a combination of both, then it satisfies275

• the flow remains incompressible ;276

• for any m > 1, we have conservation of moments in velocity, for any time277

t ≥ 0,278

(33)∫
Ω×R
|rz|m Fs(t,x, rz) drz dx =

∫
Ω×R
|rz|m Fs(0,x, rz) drz dx , s = i, e ;279

• for any continuous function φ : R 7→ R, we have for any time t ≥ 0,280

(34)

∫
Ω

∫
R
φ(Fs(t,x, rz))dx drz =

∫
Ω

∫
R
φ(Fs(0,x, rz))dx drz , s = i, e ;281

• the total energy defined by282

E(t) :=

∫
R

∫
Ω

|rz −A|2

2
Fi +

|rz +A|2

2α
Fedx drz(35)283

+
1

2

∫
Ω

|∇xΦ|2 +
1

Ma2 |∇xA|2 dx,284
285

is conserved for all time t ≥ 0.286

Proof. The velocity field in (15) can be written as

Us(t,x, pz) = −∇⊥xHs, s = e, i,
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hence ∇x ·Us = 0 is automatically satisfied and the flow is incompressible.287

Then observing that the variable rz ∈ R only appears as a parameter in the
equation, we prove the conservation of moments with respect to rz : for any m > 1
we have for s = i, e,∫

Ω×R
|rz|m Fs(t,x, rz) drz dx =

∫
Ω×R
|rz|m F (0,x, rz) drz dx .

For a given smooth function φ : R 7→ R and s = i, e, if we multiply the first288

equation in (15) by φ′(Fs), it becomes289

∂tφ(Fs) +∇x · (Us φ(Fs)) = 0.290

Integrating the above equation in space Ω we obtain291

∂

∂t

∫
Ω

φ(Fs)dx = −
∫
∂Ω

φ(Fs) Us(t,x, rz) · νxdσx,292

where νx is the outward normal to ∂Ω at x. Now for periodic boundary conditions
(31), the right hand side is obviously zero, and for homogeneous Dirichlet boundary
conditions (32), we observe that the tangential derivatives verify∇xΦ·τx = ∇xA·τx =
0, where τx is the tangential vector to ∂Ω at x. Hence since

Us · νx = 0, on x ∈ ∂Ω,

the right hand side is also zero in that case. Finally a further integration on rz shows293

that294

(36)
d

dt

∫
Ω

∫
rz

φ(Fs)drzdx = 0295

or ∫
Ω

∫
pz

φ(Fs(t))drzdx =

∫
Ω

∫
R
φ(Fs(0))drzdx, t ≥ 0.

Notice that this result still holds true when φ is only continuous. Taking φ(F ) = F , it296

ensures the conservation of mass, φ(Fs) = max(0, Fs) gives the non-negativity of the297

distribution function for nonnegative initial datum, while φ(Fs) = F ps for 1 ≤ p <∞,298

it yields the conservation of Lp norm.299

Now let us show the conservation of total energy. On the one hand, we multiply
the equation on Fi by Hi and the one on Fe by He, it gives after a simple integration
by part and using the appropriate boundary conditions (31) or (32),∫

Ω×R
Hi ∂tFi + He ∂tFe dx drz = 0.

or300

(37)

∫
Ω×R

(A− rz)2

2
∂tFi +

(A+ rz)
2

2α
∂tFe dx drz +

∫
Ω×R

∂t(ni − ne) Φ dx = 0.301

The first and second terms in the latter equality can be written as

I1 :=

∫
Ω×R

(A− rz)2

2
∂tFi dx drz

= d
dt

∫
Ω×R

(A−rz)2

2 Fi dx drz −
∫
Ω

(niA− ni ui) ∂tAdx

I2 :=

∫
Ω×R

(A+ rz)
2

2α
∂tFe dx drz

= d
dt

∫
Ω×R

(A+rz)2

2α Fe dx drz − 1
α

∫
Ω

(neA+ ne ue) ∂tAdx,
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14 F. FILBET, T. XIONG, AND J. E. SONNENDRÜCKER

which yields using the equation on A in (15),

I1 + I2 =
d

dt

∫
Ω×R

[
(A− rz)2

2
Fi +

(A+ rz)
2

2α
Fe

]
dx drz +

1

2 Ma2

d

dt

∫
Ω

|∇xA|2dx.

On the other hand, from the equation on Φ in (15), we get

I3 :=

∫
Ω×R

∂t(ni − ne) Φ dx =
1

2

d

dt

∫
Ω

|∇xΦ|2dx.

Finally, using that I1 + I2 + I3 = 0 in (37), we obtain the energy conservation (35).302

From the conservation of moments (Proposition 2.6), we get Lp estimates [5] on303

the macroscopic quantities304

Lemma 2.7. If F ∈ L1 ∩ L∞(Ω×R) and |rz|mF ∈ L1(Ω×R) with 0 ≤ m <∞,
then we define

nF =

∫
R
Fdrz, nuF =

∫
R
F rz drz, eF =

∫
R
F |rz|2 drz

and there exists C > 0 such that

‖nF ‖L1+m ≤ C ‖F‖m/(m+1)
L∞

(∫
Ω×R
|rz|m |F |drz dx

)1/(m+1)

and 
‖nuF ‖L(1+m)/2 ≤ C ‖F‖(m−1)/(m+1)

L∞

(∫
Ω×R
|rz|m |F |drz dx

)2/(m+1)

,

‖eF ‖L(1+m)/3 ≤ C ‖F‖(m−2)/(m+1)
L∞

(∫
Ω×R
|rz|m |F |drz dx

)3/(m+1)

.

From Proposition 2.6 and Lemma 2.7 we can prove the existence of weak solutions to305

(15)306

Theorem 2.8 (Existence of weak solutions). Assume that the nonnegative initial307

condition Fs,in ∈ L1 ∩ L∞(Ω× R) for s = i, e and for any m > 5308

(38)

∫
Ω×R
|rz|mFs(0,x, rz)drz dx <∞.309

Then, there exists a weak solution (Fi, Fe,Φ, A) to (15), with Fi, Fe ∈ L∞(R+, L1 ∩310

L∞(Ω× R)), and Φ, A ∈ L∞(R+,W 1,p
0 (Ω)), for any p > 1.311

Proof. The proof follows the lines of the existence of weak solutions for the Vlasov-
Poisson system [2, 13]. The main point here is to get enough compactness on the
potential A since its equation is nonlinear

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2Jz.

From (38) and Proposition 2.6, we first get the conservation of moments for any
l ∈ (0,m] and s = i, e∫

Ω×R
|rz|l Fs(t)drz dx =

∫
Ω×R
|rz|l Fs,indrz dx <∞,

This manuscript is for review purposes only.



ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 15

hence applying Lemma 2.7, it yields that for any r ∈ [1,m+ 1] and q ∈ [1, (m+ 1)/2]

ρ = ni − ne ∈ L∞(R+, Lr(Ω)), Jz ∈ L∞(R+, Lq(Ω)).

Thus, from the elliptic equations in (15) for A and Φ,
−∆xΦ = ρ,

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2Jz,

it yields

∇xΦ ∈ L∞(R+,W 1,r
0 (Ω)), ∇xA ∈ L∞(R+,W 1,q

0 (Ω)).

Since we can choose r and q > 2, using classical Sobolev inequalities, we have in312

particular that both ∇xΦ and ∇xA are uniformly bounded in L∞(R+ × Ω).313

Furthermore, we obtain an estimate on the time derivative ∂t∇xΦ and ∂t∇xA by
differentiating with respect to the two Poisson equations in (15)

−∆x∂tΦ = ∂tρ,

−∆x∂tA+ Ma2
(
ni +

ne
α

)
∂tA = Ma2 ∂tJz −Ma2

(
∂tni +

∂tne
α

)
A.

Then using the evolution equation satisfied by ρ and Jz
∂tρ = ∇x ·

(
ρ∇⊥x Φ +

(
ni +

ne
α

) ∇⊥xA2

2
− ∇⊥xAJz

)
,

∂tJz = ∇x ·
(
Jz∇⊥x Φ +

(
niui +

neue
α2

) ∇⊥xA2

2
− ∇⊥xA

(
ei −

ee
α2

))
,

where es corresponds to the second order moment in rz,

es(t,x) =

∫
R
Fs(t) |rz|2 drz, for s = i, e

and applying Lemma 2.7, we have that ei, ee ∈ L∞(R+, L2(Ω)), hence both terms314

∂t∇xA and ∂t∇xΦ are uniformly bounded L∞(R+, L2(Ω)).315

From these estimates, we get strong compactness on the electromagnetic field316

E = −∇xΦ and B = ∇x×A in L2 and weak compactness in L2 allowing to treat the317

nonlinear terms and prove existence of weak solutions for (15).318

Remark 2.9. Observing that starting from (15), and taking the limit Ma→ 0, it319

gives from the Poisson’s equation that A = 0. Then we integrate (15) in rz ∈ R and320

we recover the two dimensional guiding-center model [21, 36, 29]321

(39)

 ∂tρ+∇x · (U ρ) = 0,

−∆xΦ = ρ,
322

with the divergence free velocity U = −∇⊥x Φ.323
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2.4. Guiding center model & linear instability. To study the growth rate324

of the linear instability for our asymptotic model (15), we follow the classical lin-325

earization procedure: consider an equilibrium solution (Fi,0, Fe,0,Φ0, A0) to (15) and326

assume that327

(40)

∫
R
rz Fi,0 drz =

∫
R
rz Fe,0 drz = 0.328

Therefore the potential A0 satisfies a linear Poisson equation with a null source term329

together with periodic boundary condition or zero Dirichlet boundary conditions,330

which means that A0 ≡ 0.331

Now we consider (Fi, Fe,Φ, A) a solution to the nonlinear system ((15)) and332

decompose it as the sum of the equilibrium (Fi,0, Fe,0,Φ0, 0) and a perturbation333

(F ′i , F
′
e,Φ

′, A′) ,334

Fi = Fi,0 + F ′i , Fe = Fe,0 + F ′e, ρ = ρ0 + ρ′, Φ = Φ0 + Φ′, A = A′.335

Then we substitute them into (15) and drop the high order small perturbation terms,336

a linearized system is obtained as follows:337

(41)



∂tF
′
i − ∇⊥x Φ0 · ∇xF

′
i −∇⊥x (Φ′ − pzA′) · ∇xFi,0 = 0,

∂tF
′
e − ∇⊥x Φ0 · ∇xF

′
e −∇⊥x

(
Φ′ − qz

α
A′
)
· ∇xFe,0 = 0,

−∆xΦ′ = ρ′,

−∆xA
′ + Ma2

(
ni,0 +

ne,0
α

)
A′ = Ma2 J ′z := Ma2

∫
R
rz

(
F ′i −

F ′e
α

)
drz.

338

Now we integrate the first equation in pz ∈ R and the second one in qz ∈ R and using339

(40), we get a linearized system for the perturbed charge density340

(42)

 ∂tρ
′ − ∇⊥x Φ0 · ∇xρ

′ −∇⊥x Φ′ · ∇xρ0 = 0,

−∆xΦ′ = ρ′,
341

which is exactly the linearized system for the two dimensional guiding-center model342

(39).343

Therefore, from an equilibrium (ρ0,Φ0) for the guiding-center model (39), we can344

easily construct an equilibrium for (15) by choosing Fs,0 such that it satisfies (40) and345

(43)

∫
R
Fs,0 drz = ns,0, for s = i, e.346

where ns,0 is the equilibrium density satisfying ρ0 = ni,0 − ne,0. For instance, we can
choose

Fs,0 =
ns,0√

2π
exp

(
−r

2
z

2

)
.

In terms of the electric charge density ρ and potential Φ, our asymptotic model347

has the same mechanism for generating instabilities as the two dimensional guiding-348

center model, so that the growth rate of instabilities for the electric field will be the349

same. We can refer to [33, 29, 11] for the analytical and numerical studies of the two350
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dimensional guiding-center model. In the next section, we will numerically verify that351

the linear growth rates of instabilities for the electric potential of the two models are352

the same.353

From this point, we observe that by choosing a nonzero initial potential A, that354

is a small current density Jz, we can initiate an instability on the asymptotic model355

(15), whereas the purely electrostatic guiding center model remains stationary.356

Remark 2.10. We would notice that for the distribution function Fi or Fe, due to357

the extra term of ∇⊥x (pzA
′)·∇xFi,0 and ∇⊥x (qzA

′/α)·∇xFe,0 in the first two equations358

of (41), some other instabilities might also happen to F ′i or F ′e, which is much more359

complicated to analyze.360

3. Numerical Examples. In this section, we will perform numerical tests for361

the diocotron instability and the Kelvin-Helmholtz instability problems to illustrate362

some good properties of the asymptotic kinetic model (15) involving a self-consistent363

electromagnetic field, and compare with the macroscopic guiding-center model (39)364

taking into account only electrostatic effects [36, 29]. We will apply a conservative365

finite difference scheme with Hermite weighted essentially non-oscillatory (WENO) re-366

construction, coupled with a fourth-order Runge-Kutta time discretization for solving367

the conservative transport equations. The Poisson’s equation for the electric poten-368

tial function Φ will be solved by a 5-point central finite difference discretization for369

Dirichlet boundary conditions, or by the fast Fourier transform (FFT) for periodic370

boundary conditions on a rectangular domain. The elliptic equation for the magnetic371

potential A is solved by a 5-point central finite difference discretization. The methods372

are natural extensions of those proposed in [36] for solving the guiding-center model373

(39), since here the velocity field pz or qz in the transport equations only appears as a374

dummy argument. A mid-point rule with spectral accuracy [6] is used for the moment375

integration. We omit the description of these methods and refer to [36] for details.376

We mainly show that the asymptotic model (15) can generate the same instability377

as the two dimensional guiding-center model (39), while some other instabilities can378

also be created due to some small perturbations purely in the self-consistent magnetic379

field. In the following, for the asymptotic kinetic model (15), we all take the cut-off380

domain in velocity as [−8, 8] and discretize it with N = 32 uniform grid points.381

3.1. Diocotron instability. We set

H = Φ +
1

2
(A− pz)2

and consider the nonlinear asymptotic model (15) where the density of electrons is382

neglected and the reduced distribution function of ions is denoted by F and is a383

solution to384

(44)


∂tF −∇⊥xH · ∇xF = 0,

−∆Φ = n,

−∆A + Ma2 nA = Ma2 Jz,

385

where

n =

∫
R
F (t) dpz, Jz =

∫
R
F (t)pz dpz.
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This solution can be compared to the two dimensional guiding center model (39),386

where we neglect the effect of the self-consistent magnetic field B = ∇x × A, corre-387

sponding to the low Mach number limit Ma→ 0 of (44), it yields388

(45)

 ∂tn−∇⊥x Φ · ∇xn = 0,

−∆Φ = n.
389

In this example, we choose Ma = 0.1 and we would like to verify that the asymp-390

totic kinetic model (44) has indeed the same instability on the density n as compared391

to the two dimensional guiding-center model (45). We choose a discontinuous initial392

density n0 which is linearly unstable [11, 29]. Therefore, we consider Ω as a ball393

centered in 0 of radius R = 10 with the initial density394

(46) n0(x) =

{
1 + ε cos(lθ), if r− ≤

√
x2 + y2 ≤ r+,

0, else,
395

where ε = 0.02, l = 3, r− = 3, r+ = 5, which will create a small instability for the396

two-dimensional model (45).397

Now for the asymptotic model (44), we still consider the same density n0 as an398

initial data, but introduce an additional perturbation on the moment pz by choosing399

(47) F0(x, pz) =
n0(x)√

2π
exp

(
− ( pz − u0(x) )2

2

)
.400

with u0 = δ cos(mθ), where θ = atan2(y, x), δ = 0.1, m = 3. It is expected that the401

instability will now be driven by the perturbation on the density n0 corresponding402

to the mode l = 3 but also by the perturbation on the current density Jz due to u0403

corresponding to the mode m = 3.404

In Figure 1, we can clearly see three vortexes are formed at t = 40, which is405

the same as the diocotron instability for the two dimensional guiding-center model406

(45) and agrees with the linear instability analysis in Section 2.4. At t = 60, 80, 100,407

these vortexes continue moving and start to mix with each other. Here the grid is408

Nx × Ny = 600 × 600. However, we would notice that for the current density Jz,409

as shown in Figure 2, we can also observe three vortexes, which might be caused by410

the perturbation on the moment pz from the self-consistent magnetic field which are411

different from the instabilities of the density n.412

In Figure 3, we show the time evolution of the L∞ norm for the difference of the413

electrical potential ‖Φ(t)−Φ(0)‖L∞ and ‖A(t)‖L∞ , on the grids of Nx×Ny = 600×600414

and Nx ×Ny = 300× 300. We can see convergent results. Especially an exponential415

growth rate on ‖Φ(t)− Φ(0)‖L∞ can be observed for t < 50, while the magnitude of416

the self-consistent magnetic field A is at the level of 10−4. We measure the growth417

rate for ‖Φ(t) − Φ(0)‖L∞ by taking the time interval [10, 30], so the growth rate is418

about 0.0999. The growth rate from a linear instability analysis based on the formula419

(6.38)-(6.42) in [11] with ωD = 1/2, is about 0.1051. These two growth rates agree420

with each other very well.421

We also note that for this example, the dominating instability would be caused422

by the perturbation on the initial density n0. Numerically we observe the exponential423

growth rate of ‖Φ(t)−Φ(0)‖L∞ for the two dimensional guiding center model is almost424

the same as the asymptotic model and we omit them in Figure 3 for clarity.425
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Fig. 1. Diocotron instability. The density n for the 2d × 1d asymptotic model (15). From
left to right, top to bottom: t = 40, 60, 80, 100.

The time evolutions of the relative difference for the total energy (35) and the L2426

norm of F are preserved relatively well for this example, which are at the loss of 0.2%427

and 25% up to t = 150 respectively, on the grid of Nx × Ny = 600 × 600, especially428

the total energy can be greatly improved by mesh refinement. We omit the figures429

here to save space.430

431

432

433

3.2. Kelvin-Helmholtz instability. In this example, we consider a plasma for434

ions with a neutral background. The distribution function F of the asymptotic model435
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Fig. 2. Diocotron instability. The current density Jz for the 2d×1d asymptotic model (15).
From left to right, top to bottom: t = 40, 60, 80, 100.

(a) (b)

Fig. 3. Diocotron instability. Time evolution of the norm ‖Φ(t) − Φ(0)‖L∞ and ‖A(t) −
A(0)‖L∞ for the 2d× 1d asymptotic model (15).
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(44) for the ions is a solution to the following system436

(48)



∂tF −∇⊥x
(

Φ +
A2

2
− pzA

)
· ∇xF = 0,

−∆xΦ = ρ := n− ne,

−∆xA + Ma2
(
n+

ne
α

)
A = Ma2Jz,

437

with α = 1/1836.5 which corresponds to the mass ratio of one electron and one proton.
The current density is

Jz =

∫
R
F (t)pzdpz

and we choose the initial density n for the ions to be438

(49) n0(x) = 2 + sin y,439

while for the electrons, we fix it with ne = 2 so that the spatial average is 0 for the440

total charge density ρ = n − ne. We take the initial distribution function F of the441

ions as442

(50) F0(x, pz) =
n0(x)√

2π
exp

(
− (pz − u0(x))2

2

)
,443

where the shifted velocity u0(x) is444

(51) u0(x) = −0.01
(

sin
(x

2

)
− cos(y)

)
,445

which contributes as a small perturbation in the pz direction and its corresponding
initial current density Jz will be small but nonzero. The distribution function of the
electrons Fe is set to be at an equilibrium as

Fe := Fe(qz) =
ne√
2π

exp

(
−q

2
z

2

)
,

so that
∫
R Fe(rz)rzdrz = 0 and it does not contribute to the total current Jz in the446

equation of (17) for the magnetic potential A. Similarly if we neglect the effect of the447

self-consistent magnetic field B, which corresponds to the low Mach limit Ma→ 0 of448

(48), it yields the two-dimensional guiding center model in the following form449

(52)

 ∂tn−∇⊥x Φ · ∇xn = 0,

−∆Φ = n− ne.
450

The computational domain is on a square [0, 4π]× [0, 2π] with periodic boundary451

conditions and the Mach number in (48) is taken to be Ma = 0.1.452

Here we see that without perturbation on the initial data (49), the density n of453

the 2d guiding-center model (52) is at the steady state n(t,x) = sin(y). Furthermore,454

when we choose u0 ≡ 0, the solution is at steady state for both models (52) and (48)455

and remains stable on the time interval [0, 100]. However, for the asymptotic model456

(48) with a non zero u0 as (51), due to the effect of the self-consistent magnetic field457
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A and a small nonzero current Jz, we observe in Figure 4 that some instabilities are458

created on the density n at t = 40, 60, 80, 100. Here the grid is Nx ×Ny = 256× 256.459

These instabilities are very similar to the Kelvin-Helmholtz instability for the 2d460

guiding-center model (52) as compared to Figure 9 in [18], which do not happen on461

the current settings. Moreover, these instability structures can also be observed on462

the current density Jz as shown in Figure 5, which greatly indicate the capability of463

the self-consistent magnetic field as another source on the development of physical464

instabilities.465

For the 2d× 1d asymptotic model, in Figure 6 we show the time evolution of the466

L∞ norm for the difference of the electrical potential ‖Φ(t)−Φ(0)‖L∞ and ‖A(t)‖L∞ ,467

on the grids of Nx ×Ny = 256× 256 and Nx ×Ny = 128× 128. The results are also468

convergent and an exponential growth rate is observed for ‖Φ(t)−Φ(0)‖L∞ for t < 65,469

which explicitly demonstrates the instabilities caused by the small current density Jz470

on the self-consistent magnetic field A, even we notice that the magnitude of A is471

overall getting smaller as shown on the right side of Figure 6. Here we are also able to472

measure the growth rate for ‖Φ(t)−Φ(0)‖L∞ by taking the time interval [20, 40], the473

growth rate is about 0.2606, which is very close to the growth rate from the numerical474

predicted value 0.26 in [33] (see Figure 1 with ky = 0.5 and kys = 1) for the two475

dimensional nonlinear guiding-center model, which indicates that the instability for476

these two models might be similar.477

Similar to the last example, the time evolutions of the relative difference for the478

total energy (35) and the L2 norm of F are preserved well, which are only at the loss479

of 0.2% and 2.5% respectively, up to t = 100 on the grid of Nx×Ny = 256× 256. We480

also omit the figures here.481

482

483

484

4. Conclusion. In this paper, an asymptotic kinetic model is derived from a 2d×485

3d Vlasov-Maxwell system, by taking into account of the self-consistent magnetic field.486

We have assumed both a large applied magnetic field and large time in the asymptotic487

limit. The new asymptotic model could validate some effect on the dynamics of the488

plasma from the self-consistent magnetic field, even if initially the current is small, as489

compared to the two dimensional guiding-center model for the Vlasov-Poisson system.490

Numerical examples demonstrate the good properties of our new model.491
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