ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG
MAGNETIC FIELD*

FRANCIS FILBETT, TAO XIONG!, AND ERIC SONNENDRUCKERS$

Abstract. This paper establishes the long time asymptotic limit of the 2d x 3d Vlasov-Maxwell
system with a strong external magnetic field. Hence, a guiding center approximation is obtained in
the two dimensional case with a self-consistent electromagnetic field given by Poisson type equations.
Then, we perform several numerical experiments with high order approximation of the asymptotic
model, which provide a solid validation of the method and illustrate the effect of the self-consistent
magnetic field on the current density.
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1. Introduction. We consider a plasma confined by a strong external magnetic
field, hence the charged gas evolves under its self-consistent electromagnetic field and
the confining magnetic field. This configuration is typical of a tokamak plasma [3, 30],
where the magnetic field is used to confine particles inside the core of the device.

We assume that on the time scale we consider, collisions can be neglected both
for ions and electrons, hence collective effects are dominant and the plasma is entirely
modelled with kinetic transport equations, where the unknown is the number density
of particles f = f(t,x,Vv) depending on time ¢ > 0, position x € D C R? and velocity
v € R3.

Such a kinetic model provides an appropriate description of turbulent transport
in a fairly general context, but it requires to solve a six dimensional problem which
leads to a huge computational cost. To reduce the cost of numerical simulations, it
is classical to derive asymptotic models with a smaller number of variables than the
kinetic description. Large magnetic fields usually lead to the so-called drift-kinetic
limit [1, 8, 28, 27] and we refer to [4, 7, 19, 20, 14, 21] for recent mathematical results
on this topic. In this regime, due to the large applied magnetic field, particles are
confined along the magnetic field lines and their period of rotation around these lines
(called the cyclotron period) becomes small. It corresponds to the finite Larmor
radius scaling for the Vlasov-Poisson equation, which was introduced by Frénod and
Sonnendriicker in the mathematical literature [19, 20]. The two-dimensional version
of the system (obtained when one restricts to the perpendicular dynamics) and the
large magnetic field limit were studied in [14] and more recently in [4, 31, 24]. We also
refer to the recent work [26] of Hauray and Nouri, dealing with the well-posedness
theory with a diffusive version of a related two dimensional system. A version of the
full three dimensional system describing ions with massless electrons was studied by
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2 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

Han-Kwan in [23, 25].

Here we formally derive a new asymptotic model under both assumptions of large
magnetic field and large time asymptotic limit for the two dimensional in space and
three dimensional in velocity (2d x 3d) Vlasov-Maxwell system. An analogous problem
for the Vlasov-Poisson system has already been carefully studied by F. Golse and L.
Saint-Raymond in two dimension [21, 32, 22], and recently by P. Degond and F. Filbet
in three dimension [12]. In this paper, we will follow [12] to introduce some main char-
acteristic scales to rewrite the Vlasov-Maxwell system in a dimensionless form, and
reformulate the Maxwell equations by defining two potential functions correspond-
ing to the self-consistent electromagnetic field. We consider a small cyclotron period,
where the plasma frequency is relatively small as compared to the cyclotron frequency,
and study the long time behavior of the plasma. Assuming a constant strong external
magnetic field and that the distribution function is homogeneous along the external
magnetic field, an asymptotic kinetic model can be derived by performing Hilbert
expansions and comparing the first three leading order terms in terms of the small cy-
clotron period, thanks to passing in the cylindrical coordinates. The new asymptotic
model is composed of two two dimensional transport equations for the distribution
functions of ions and electrons respectively, averaging in the velocity plane orthogonal
to the external magnetic field, and a Poisson’s equation for determining the electric
potential as well as an elliptic equation for the magnetic potential. It is incompressible
with a divergence free transport velocity and shares several good features with the
original Vlasov-Maxwell system, such as conservation of moments in velocity, total
energy, as well as the LP norm and physical bounds. The existence of weak solutions
for the asymptotic model can also be obtained by following the lines of existence of
weak solutions for the Vlasov-Poisson system [2, 13], with some L? estimates on the
charge density and current. Moreover, as the Mach number goes to 0 in the self-
consistent magnetic field, we can recover the two dimensional guiding-center model,
which is an asymptotic model for the Vlasov-Poisson system under the same scalings
[21, 36, 29].

A high order numerical scheme will be applied to solve the new asymptotic model,
which is an extension of the one developed by C. Yang and F. Filbet [36] for the two
dimensional guiding center model. Some other recent numerical methods for the
Vlasov-Poisson system or the two dimensional guiding-center model can be referred
to [15, 34, 10, 9, 18, 16, 35] and reference therein. Here a Hermite weighted essen-
tially non-oscillatory (HWENO) scheme is adopted for the two dimensional transport
equation, as well as the fast Fourier transform (FFT) or a 5-point central difference
scheme for the Poisson equation of the electric potential and the 5-point central dif-
ference scheme for the elliptic equation of the magnetic potential. We will compare
the asymptotic kinetic model with the two dimensional guiding-center model. With
some special initial datum as designed in the numerical examples, we will show that
under these settings, the two dimensional guiding-center model stays steady or nearly
steady, while the asymptotic model can create some instabilities with a small initial
nonzero current for the self-magnetic field. These instabilities are similar to some
classical instabilities, such as Kelvin-Helmholtz instability [18], diocotron instability
[36] for the two dimensional guiding-center model with some other perturbed initial
conditions, which can validate some good properties of our new asymptotic model.

The rest of the paper is organized as follows. In Section 2, the dimensionless
Vlasov-Maxwell system under some characteristic scales and the derivation of an
asymptotic model will be presented. The verification of preservation for some good
features as well as the existence of weak solutions for the asymptotic model will also
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ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 3

be given. The numerical scheme will be briefly described in Section 3 and followed
by some numerical examples in Section 4. Conclusions and our future work are in
Section 5.

2. Mathematical modeling. In this paper, we start from the Vlasov equation
for each species of ions and electrons,

(1) 8tfs +V'fos + %(E+VX(B+Bewt))'vvfs =0, s=i,e,
S

where fs = f4(t,x,Vv) is the distribution function, ms and ¢, are the mass and charge,

with s = 4, e for the ions and electrons respectively. Here we assume that the ions

have an opposite charge to the electrons ¢; = e = —¢. and consider a given large

magnetic field B.,;, as well as self-consistent electromagnetic fields E and B, which

satisfy the Maxwell equations

Vx xXE = —3tB,

1
VixB = 50E + uod,

Vi E = ﬁv
€o
vV, B =0,

where c is the speed of light, p is the vacuum permeability, £g is the vacuum per-
mittivity and pogg = 1/c. The density n, average velocity u, are related to the
distribution function f, by

ns = fst, Nsus = fsVdVa
R3 R3

hence we define the total charge density p and total current density J as p =
e (n;i —ne)and J = e (n;u; — ne ).

2.1. Rescaling of the Vlasov-Maxwell system. In the following we will de-
rive an appropriate dimensionless scaling for (1) and (2) by introducing a set of
characteristic scales.

We assume that the plasma is such that the characteristic density and temperature
of ions and electrons are of the same order, that is,

(3) n = ﬁi = ﬁe7 T = Ti = Te,
We choose to perform a scaling with respect to the ions. On the one hand, we set the
characteristic velocity scale T as the thermal velocity corresponding to ions,

= 1/2

v = ,
m;

where kg is the Boltzmann constant. Then we define the characteristic length scale
of T given by the Debye length, which is the same for ions and electrons

_ EolﬂgT 1/2
T := Ap = —
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4 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

It allows to define a first time scale corresponding to the plasma frequency of ions
wp = T/Z.
Finally, the characteristic magnitude of the electric field E can be expressed from
n and T by
o enx’
€0

hence the characteristic magnitude of the self-consistent magnetic field B, which is
denoted by B, is related to the scale of the electric field by E = v B.

On the other hand, by denoting B.,; the characteristic magnitude of the given
magnetic field B.,¢, we define the cyclotron frequency corresponding to ions by

eEext
We = ——
m;
and w; ! corresponds to a second time scale.
With the above introduced scales, we define the scaled variables as

and the electromagnetic field as

E(t
B(,x) = P By = PEX gy i) =

Bewt (ta X)
Ee:mf .

Furthermore, for each species, we define the characteristic velocity and subsequently,

by letting f = n/v3,

fs(t,x,v)
f

Inserting all these new variables into (1), dividing by w,, and dropping the primes for
clarity, we obtain the following dimensionless Vlasov equation

i, x',v') = , s =1,e.

1 c
— O + v Vil + <E+v><B+ ‘“vam)-vvfi =0,
wpt Wp
(4) :
—— Oif. + V- Vsfe — ”“(E+va+ ‘*’Cvam)vae = 0,
wyt m

p e wp

while the dimensionless Maxwell equations (2) are scaled according to the plasma
frequency of ions,

1
Vx xE = ——— 0;B,
wpt
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ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 5
where Ma = ©/c is the Mach number and
(6) p=mn;—ne, J=mn;u — neue.

To consider an asymptotic limit, we introduce a dimensionless cyclotron period

of ions
w
e = 2
We

where € is a small parameter and study the long time asymptotic, that is, ¢ =
1/(wpt) < 1. We also denote by « the mass ratio between electrons and ions

Me
a = —.
m;

Under these two scalings, the Vlasov equation (4) takes the form
1
€0fi + v -Vifi + (E +vxB+ vaBe$t> -Vyfi = 0,

(7) ) ,
Eatf€+V'vxf€_ a(E+VXB+ gvaeajt)'vv‘fe =0

and the Maxwell equations (5) are

VXXE = —EatB,

Vi xB = Ma? (¢9,E + J),
(8)

Vx-E = 12

Vy-B =0,

with p and J given by (6).

2.2. Asymptotic limit of the Vlasov-Maxwell system. To derive an asymp-
totic model from (7)-(8), let us set our assumptions

AssUMPTION 2.1. Consider Q@ C R? and D = Q x [0, L,], the external magnetic
filed only applies in the z-direction

B..: = (0,0,1)"

For simplicity we consider here periodic boundary conditions in space for the distri-
bution function and the electromagnetic field.

ASSUMPTION 2.2. The plasma is homogeneous in the direction parallel to the ap-
plied magnetic field. Hence, the distribution functions f; and f. do not depend on
z.

For any x = (z,y, 2)! € R3, we decompose it as x = x| + x| according to the
orthogonal and parallel directions to the external magnetic field By, that is, x; =
(z,y,0)" and x| = (0,0,2). In the same manner, the velocity is v = v, + v € R?
with v = (vg,vy,0)" and v = (0,0,v,). Under these assumptions and notations,
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6 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

the Vlasov equation (7) can be written in the following form,

i
e0ifi +V-Vafi + (E+vxB)-Vf; + ‘%vvfi =0,

9)

1L

Eatfe + V'vxfe - é(EJ’_VXB)'vae - Zia'vvfe = 0,
where v+ = (vy, —v;,0) for any v € R3.

Now we reformulate the Maxwell equations using Assumption 2.2. Here and after,
we will drop the subindex x for spatial derivatives of macroscopic quantities which do
not depend on v, such as E and B and their related quantities, for clarity. On the
one hand, from the divergence free condition of (8), we can write B = V x A, where
A is a magnetic potential verifying the Coulomb’s gauge

Vx-A = 0.

On the other hand, the electric field E is split into a longitudinal part and a transversal
part E = E; + Ep, with

Vx X EL = 0,

Vx«-Er =0.
From (8) it is easy to see that E;, = —Vx®, where the electrical potential ® is a
solution to the Poisson’s equation,

Then, from (8) we get that
Vx X ET = —8tB = —€ Vx X ((9tA),

hence using the uniqueness of the decomposition for given boundary conditions, we
necessarily have, assuming periodic boundary conditions, that Er = —e0; A and the
electric field E is given by

(11) E = —V,d — ch,A.

Furthermore, the second equation in (8) gives the equation satisfied by the potential
A, that is,

(12) (eMa)? 92A — AcA = Ma? (J — £9,Vy®).

Gathering (10)-(12), we finally have E = —Vx® — €0, A and B = Vi x A,
(eMa)2 9ZA — AcA = Ma? (J — £9,V,®),

(13)
—Ax® = p.

Now we remind the basic properties of the solution to (9) and (13)

PROPOSITION 2.3. We consider that Assumptions 2.1 and 2.2 are verified and
(fe, fe,@%, A%) >0 is a solution to (9) and (13). Then we have for all t > 0,

1fs@llze = /5O, s=1i,e

This manuscript is for review purposes only.
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Moreover we define the total energy at time t > 0, as

[v[?

e = [ 10 + afi0) T dxsdv

1 1
= Vx®|? HA|? + —|Vx x A]?| dxy,
b5 [ |0 4 ol 4 S Livax AP ax.

which is conserved for all time t > 0, £5(t) = £%(0).
We now derive the asymptotic limit of (9) and (13) by letting ¢ — 0. We denote

the solutions to the above equations (9) and (13) as (ff, f¢, A%, @), and perform
Hilbert expansions for s =i, e
fe=feotefsi+efoo+ -,
(14) A = Ay +cA; +---,
O = Dy 4Dy +o-
correspondingly
ES=Ey+¢BE + -, B =By +¢eBy +---.

We prove the following asymptotic limit

THEOREM 2.4 (Formal expansion). Consider that Assumptions 2.1 and 2.2 are
satisfied. Let (f£, f¢, A%, ®°) be a nonnegative solution to the Viasov-Mazwell system
(9) and (13) satisfying (14). Then, the leading term (f; o, fe.0, ®o, Ao) is such that

Py = (L, x),
Ay = (0,0, A(t,x))".
Furthermore, we define (F;, F,) as
Fi(t,x,p,) = i Sz fio(t,x,v) dvg dvy,
Fo(t:%,q:) = a7l 50 Jpa feo(t,x,v) dvg du,
where p, = v, + A(t,x) and q, = av, — A(t,x), and the two Hamiltonians
M= ® 4+ (A=p.)? and H,=® — L (g + A)?,
2 2a
where (F;, Fe, ®, A) is a solution to the following system
O F; — ViH; - VyF; = 0,
O F, — ViH,. VyF, =0,

AP = p,

This manuscript is for review purposes only.
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8 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

and the density n; and ne are given by
(16) ng = /Fs(t,x,rz) dr., s=i,e,
R

hence the charge density is p = n; — ne and the current density corresponds to

(17) T, = /rz (Fi(ux, Ty) — 1Fe(t,x,rz)> dr,
R (0%

where the Mach number Ma =7/c.

REMARK 2.5. Observe that the drift velocity in (15) called E x B = VL ® is the
same for the two species, since it does not depend on the charge of the particle.

Proof. We first start with the self-consistent electromagnetic fields, we can easily
find from (13) that Eg = —V4x®y and By = Vx x Ag with

_Ax(bO = pPo,
(18)
—AxAq = Ma?Jy,

and at the next order E; = —V,®; — 0;Ag and By = V4 x Ay, with

—Ax®1 = p1,
(19)
—AyA; = Ma? (J; — 9, VD),

where for kK =0, 1,

P = /R[fi,k = ferldv, Ji = /RsV[fi,k_fe’k]dv‘

3

Substituting the Hilbert expansions into (9), and comparing the orders of ¢, such as
¢! €Y and ¢, we obtain the following three equations for ions:

vt vai,O = 0,

(20) v Vafio+ (Bo+vxBg) -Vyfio = —vt-Vfir,

Ofio +v-Vxfit+ (Eo+v xBg) - Vyfi1+(E1+vxBy) Vyfio
= vl .Vyfio

and for electrons:

VL . vvfe,O = 0,

av - Vfeo— (Bo+v xBg)-Vyfeo = v -Vyfer,
(21)

a (Orfeo+ v -Vyfer) = (Bo+v xBg) - Vyfer1— (Ei+vXxBy)-Vyfeo
= Vl ' vvfe,2-

We now pass in cylindrical coordinates in velocity v = v, + v, with

Vi = wey,
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where we have set w = |v | and

cos —sinf
e,=|sinf |, e = | cosb
0 0

Using these notations, we now derive the asymptotic limit according to the orders
of £ in (20)-(21). First the leading order term in (20)-(21) written in cylindrical
coordinates becomes

_aefs,[) = 07 s = ia €,

which means that fso does not depend on ¢, hence from Assumption 2.2, it yields
that fo0 = fso0(t, X1, w,v,).
As a consequence, the current density is such that

o) 2m
(nsus,O)J_ = / VJ_fs,O dv = // fs,O (/ ewd9> w2 deUz = Oa
R3 RJO 0

which implies that only the third component of the total current density Jy might
be nonzero and therefore only the third component of Ay in (18) might be nonzero,
that is, Ag = (0,0, Ap) is a solution to the Poisson’s equation with the source term
J0 = (07 Oajz)

—AxAy = Ma?j.,

hence from By = V4 X Ay, it yields that By = ViAo and particularly By, = 0.

Finally, since the electric field Eg = —V4®y and from Assumption 2.2, we also
have that Ep , = 0.

Now we treat the zeroth order term in (20)-(21) and use the cylindrical coordinates
in the velocity variable, it gives

(22) Oofin1 = ew - Gip, Opfeq1 = €w - Gep,
with

G,o = +(wvxf¢,0 — (Vx®o — v,VxAp) Owfio — wVxAg &szi,o),
29) Geo = —(@wVxfeo + (Vx®o — v2VxAg) Oufeo + wVxAg Oy, fe0)-

First notice that G ¢ and G; o do not depend on 8 € (0, 27) since fy does not depend

on # and
27
/ e,df = 0,
0

then the solvability condition of (22) is automatically satisfied and after integration
in 0, we obtain f; as,

fi,l(taxJ_7wa97vz) = —€p- Gi,O(t7XL7w7vz) + hi(t,XJ_,w,Uz),
(24)

fe,l(t7XL7w797vz) = —€p- Ge,O(taXL7w7Uz) + he(t,XL,w,Uz),

where h; and h, are arbitrary functions which do not depend on 6.
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10 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

Now we focus on the first order with respect to € in (20)-(21). Similarly, from the
periodic boundary condition in 6 € (0, 27), we have the following solvability condition

1 2

— Opfs2dfd = 0, s =1, e
Zﬂ- 0

Therefore, we have

27

Ahfio + 2= Jo (V -Vxfii+ (Eo + v xBg) - Vyfin

+ (B, +vxBj)- vvfz,o)do -0,
(25)

adifeo + &= [T (av Vifer — (Bo + v x Bg) - Vy for

~ (E1+vxB))- vvfe,o)de — 0.

Each integral term can be explicitly calculated by substituting f; 1 and f. 1 from (24).
On the one hand, observing that

awfs,l = —€g- awG"s,O +awhsa s =1,e,
89.]"571 =€, - Gsﬁo, S = i, e,

it yields for s =1, e,

27

1 w 1
2 — . = ——Vx- .
(26) o o V- Vi fs1d0 5 Vx - Gg

On the other hand, the same kind of computation leads to for s =1, e,

1 27

(27) — / (Eo + v X B()) . vas 1d9
27 0 ’

1 |:(E0 + UZVXA())

2 * aw (UJGio) - waAO * aUsz:O

w

Finally since f, o does not depend on 6 € (0,27) and the electric field does not
depend on z, the last term in (25) only gives

1 27
(28) %/ (El + v X Bl) . vasyod(g = —6tA0 81,2,]65’07 s =1,e.
0

Gathering (26)-(28), and recalling that Eqg = —Vx®g, we get for the distribution
function f; o,

w 1 (Vi (Pyg—v,A
Oifio — §Vx‘G¢L,o + = <(0w0)

: 0w (wGiy) + WV Ag - Oy, Gil,o>

— 0tAo 0y, fipo = 0.

This manuscript is for review purposes only.
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ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 11

and for the distribution function fe o,

w 1 /Vi(®Pg—v,A
o (00 = SV GLo) = 5 ((OWO)

5 0u(w GLy) + WVxAg - Oy, G;(])

+ atAAO avzfe,O = 0.

Using the definition of G for s = i,e in (23) and after some calculations, it finally
yields that
(29)

Defio = Vi (®0 = v2A0) - Vicfio = (VuPo - Vic Ao + 0:Ao) Do fio = 0,

(6% (atfe,O - vi ((I)O - UZAO) : vxfe,O) + (qu’o : viAO + 6,5140) avz fe,O = 0.

Observing that this equation does not explicitly depend on w, we define
1 .
Fso(t,x1,vy) = — / fsolt,x1,v)dvydvy, s =1, e.
2 R2

Multiplying (29) by w and integrating with respect to w, we get
(30)
0iF;0 — Vi (®o —v:Ag) - VxFyo — (Vx®o - ViAo + 81 Ao) 9y Fip = 0,

a (0iFe — Vi (®o — v240) - VxFepg) + (Vx®o - Vi Ao + 01 Ag) 0y, Fep = 0.

This last equation can be reformulated to remove the time derivative of Ag in the
velocity field. To this aim, we introduce a new variable for p, = v, + Ao(t,x) in Fj
and ¢ = av, — Ay(t,x) in F, ¢ and perform a change of variable in velocity

Fi(t7XLapz) = i,O(t7XL7UZ)7 Fe(taxl7q,2) = O‘71 Fe,o(t,XL,’Uz).

From now on, we will use ®(¢,x) and A(t,x) in short of ®y(t,x) and Ag(t,x) respec-
tively. Hence (30) now becomes

OF; — VyH; ViF; = 0,

O F. — ViH. VxF. = 0,
with
L
2c

where the charge density is always given by p = n; — n., whereas the current density
is now given by

1
Hi=@+5(A-p.)" and He=® — o~ (A+q)”,
. Te
]z*jz*<n1+E)Aa

where (n;,n.) and 7, are respectively defined in (16) and (17). Finally, the potentials
(®, A) are now solutions to

AP = P
—AxA + Ma? (nl + E) A = Ma’7,,
«

where Ma = ©/c is the Mach number. |
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12 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

2.3. Weak solutions for the asymptotic model. First notice that the asymp-
totic model (15) is now two dimensional in space since we assume that the plasma is
homogeneous in the parallel direction to the external magnetic field and one dimen-
sional in moment since we have averaged in the orthogonal direction to the external
magnetic field.

To simplify the presentation, from now on x represents the orthogonal part of
x) = (z,y,0) with (z,y) € Q.

For the sake of simplicity in the analysis we have only considered periodic bound-
ary conditions in space, for x € Q := (0, L) x (0, L),

(31)
O(t,x+ Ly,y) = O(t,z,y), Pt,z,y+Ly) =2t 2,y),

A(t,x + Ly, y) = A(t,z,y), A(t,z,y+ Ly) = A(t,z,y),

Fl(tax + anyvpz) = Fi(t’xa y7pz)a Fi(t7x7y + Lyapz) = Fi(t7x7yapz)7 P2 € Rv

Fe(tvx"_anyqu) = Fe(tvm7y7QZ)v Fe(tvxay+ Lyqu) = Fe(tvxvyath)a q: € R.

But other kinds of boundary conditions may be treated for the asymptotic model as
homogeneous Dirichlet boundary conditions for the potential ® and A

(32) B(t,x) =0, A(t,x)=0, x e d.

Then let us review the main features of the asymptotic model (15), which make
this mathematical model consistent with the initial Vlasov-Maxwell model (9) and
(13).

PROPOSITION 2.6. Consider a solution to the asymptotic model (15) with the
boundary conditions (31), or (32), or a combination of both, then it satisfies

e the flow remains incompressible ;
e for any m > 1, we have conservation of moments in velocity, for any time

t>0,
(33)
/ [ro|™ Fs(t,x,r,)dr, dx :/ Ir.|™ Fs(0,x,7.)dr,dx, s =1,e;
QxR QxR

e for any continuous function ¢ : R — R, we have for any time t > 0,

61 [ [oxraxd. = [ [oroxr i, s =ic

e the total energy defined by

2 2
(35) // I = A‘ |TZ+A| Fdx dr,

/|v o[ +—\v AP dx,

is conserved for all time t > 0.

Proof. The velocity field in (15) can be written as

Us(tvxapz) = 7vi_,Hsa s=e, 1,
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ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 13

hence Vx - Ug = 0 is automatically satisfied and the flow is incompressible.

Then observing that the variable r, € R only appears as a parameter in the
equation, we prove the conservation of moments with respect to r, : for any m > 1
we have for s =1, e,

[ dm Ry drds = [ jdm FO.x) drdx.
QxR QxR
For a given smooth function ¢ : R — R and s = i, e, if we multiply the first
equation in (15) by ¢'(Fj), it becomes
at¢(Fs) + V- (Us ¢(Fs)) =0.

Integrating the above equation in space 2 we obtain

0
En /Q o(Fs)dx = — . O(Fs) Ug(t,x, 1) - vxdoy,

where vy is the outward normal to 992 at x. Now for periodic boundary conditions
(31), the right hand side is obviously zero, and for homogeneous Dirichlet boundary
conditions (32), we observe that the tangential derivatives verify V4@ -7 = Vi A 75 =
0, where 7 is the tangential vector to 902 at x. Hence since

U;-vx =0, onxe€ i,

the right hand side is also zero in that case. Finally a further integration on 7, shows
that

(36) 2 /| / O(Fo)drodx = 0

/Q | oF.(O)dradx = /9 /R S(F(0))drdx, >0,

Notice that this result still holds true when ¢ is only continuous. Taking ¢(F) = F, it
ensures the conservation of mass, ¢(Fs) = max(0, Fy) gives the non-negativity of the
distribution function for nonnegative initial datum, while ¢(F;) = FP for 1 < p < oo,
it yields the conservation of LP norm.

Now let us show the conservation of total energy. On the one hand, we multiply
the equation on F; by H; and the one on F, by H., it gives after a simple integration
by part and using the appropriate boundary conditions (31) or (32),

Hi GtFl + He 8tFe dXdTZ = 0.
QxR
or

A—r,)? A+r,)?
(37) / Are) om + AE) o b ixar. +/ By(n; — ne) ddx = 0.
QxR 2 2 QxR

The first and second terms in the latter equality can be written as

2
Il = / M&FZ dXd’l"z
QxR 2

= % fo]R (A_2TZ)2 Fidxdr, — fg(niA - n;u;) O Adx

A+r,)?
I ::/ &&Fedxdrz
QxR 2

2
= %foR (A;Qz) Fe dXdTZ - éfﬂ(neA'i_ Ne ue) atAdX,
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which yields using the equation on A in (15),

1 d

d
—_— Al%dx.
2 Ma? dt /Q VA dx

Th+1y=—

2 2
(A—r,) Fot (A+r,)
dt Jaxr

5 9 dxdr, +

Fe

On the other hand, from the equation on ® in (15), we get

1d
I3 = / Or(n; —ne) Ddx = **/ ‘vx@‘de
QxR 2dt Jo

Finally, using that Z; + Zs +Zs = 0 in (37), we obtain the energy conservation (35).0

From the conservation of moments (Proposition 2.6), we get LP estimates [5] on
the macroscopic quantities

LEMMA 2.7. If F € L' N L®(Q x R) and |r,|™F € L'(Q x R) with 0 < m < oo,
then we define

nF:/Fdrza HUF:/FTszz7 eF:/F|Tz|2de
R R R

and there exists C > 0 such that
1/(m+1)
Ingllpem < C|F|7LmH (/ . |™ | F|dr. dx)
QxR
and

L . 2/(m+1)
Inup|| Lasmy/e < O [ F| gD/ (/ |2 |™ |Fldr, dx) 7
QxR

A 3/(m+1)
lerllLasmys < C | F||§a2/tm+D (/ o™ | F|dr. dx) '
QxR

From Proposition 2.6 and Lemma 2.7 we can prove the existence of weak solutions to
(15)

THEOREM 2.8 (Existence of weak solutions). Assume that the nonnegative initial
condition Fs i, € L' N L®(Q x R) for s =i, e and for any m > 5

(38) / |r.|™Fs(0,x,7,)dr, dx < oco.
QxR

Then, there exists a weak solution (F;, F.,®, A) to (15), with F;, F, € LR, L' N
L=(Q x R)), and ®, A € L>®°(RT, W, "*(2)), for any p > 1.

Proof. The proof follows the lines of the existence of weak solutions for the Vlasov-
Poisson system [2, 13]. The main point here is to get enough compactness on the
potential A since its equation is nonlinear

—AyA + Ma? (nl + %) A = Ma?J,.

From (38) and Proposition 2.6, we first get the conservation of moments for any
1€ (0,m] and s =14, e

/ \rz|l Fy(t)dr, dx = / |rz\l Fy indr, dx < o0,
OxR QxR
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hence applying Lemma 2.7, it yields that for any r» € [1,m + 1] and ¢ € [1, (m + 1) /2]
p=mn; —n.€ LR L"(Q), J.€ LR, LIQ)).
Thus, from the elliptic equations in (15) for A and @,
—Ax® = p,
—A A + Ma? (nl + %) A = Ma’7,,
it yields
Vi® € L®(RT, Wy (Q)), ViA € L®RY, W, 9(Q)).
312 Since we can choose r and ¢ > 2, using classical Sobolev inequalities, we have in
313 particular that both Vi@ and VA are uniformly bounded in L>® (Rt x ).

Furthermore, we obtain an estimate on the time derivative 9;Vx® and 0;Vx A by
differentiating with respect to the two Poisson equations in (15)

_Axat(p = 6tp7

~Ax0A+ M’ (nz + E) 0 A =Ma® 0,7, — Ma’ (@m + 8tne) A.
@ (0%

Then using the evolution equation satisfied by p and 7,

J_AQ
8tpVx'<pVi<I>+ <n¢+E)vx7* X )
« 2

0T = Vi - (JZ Vie + (niui—i— ”a‘;) Vid Vi (ei - e)) ,

where e corresponds to the second order moment in 7,
es(t,x) = / Fy(t)|r|*dr., fors=i,e
R

314 and applying Lemma 2.7, we have that e;, e, € L>(R™, L?(f2)), hence both terms
315 0;VxA and 9;V4® are uniformly bounded L>(R*, L?(Q2)).

316 From these estimates, we get strong compactness on the electromagnetic field
317 E=—-V4® and B = V, x A in L? and weak compactness in L? allowing to treat the
318 nonlinear terms and prove existence of weak solutions for (15). d
319 REMARK 2.9. Observing that starting from (15), and taking the limit Ma — 0, it

320 gives from the Poisson’s equation that A = 0. Then we integrate (15) in r, € R and
321 we recover the two dimensional guiding-center model [21, 36, 29]

8tp+Vx . (Up) = 0,
322 (39)
7Ax® =P

323 with the divergence free velocity U = —V3®.
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16 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

2.4. Guiding center model & linear instability. To study the growth rate
of the linear instability for our asymptotic model (15), we follow the classical lin-
earization procedure: consider an equilibrium solution (Fj g, Fe 0, ®o, Ag) to (15) and
assume that

(40) /rz Fiodr, = /TZ Feodr, = 0.
R R

Therefore the potential Aj satisfies a linear Poisson equation with a null source term
together with periodic boundary condition or zero Dirichlet boundary conditions,
which means that Ay = 0.

Now we consider (Fj, F.,®,A) a solution to the nonlinear system ((15)) and
decompose it as the sum of the equilibrium (F; g, Fe0,®P0,0) and a perturbation
(F1/7 Fé’ (b/7 AI) ?

Fi=Fiog+F], Fe=Feo+F, p=po+p, 2=+, A=A"

Then we substitute them into (15) and drop the high order small perturbation terms,
a linearized system is obtained as follows:

OF, — Vid, - VyF, — Vi (' —p.A')-ViFig = 0,
OF! — Vid, ViF — Vi (@’ - %A’) ViF.o =0,
(6]

—ALD = ,0/7

/
—AL A" + Ma? (m‘,o + @) A" = Ma? 7! := Ma? /rz (F[ — Fe> dr,.
(0% R «

Now we integrate the first equation in p, € R and the second one in ¢, € R and using
(40), we get a linearized system for the perturbed charge density

O’ — Vi ®g - Vyp' = Vx® - Vypy = 0,
(42)
7AX(I)I - p/a

which is exactly the linearized system for the two dimensional guiding-center model
(39).

Therefore, from an equilibrium (p
easily construct an equilibrium for (15

0, ®o) for the guiding-center model (39), we can
) by choosing Fj o such that it satisfies (40) and

(43) / Fsodr, = nso, fors=i,e.
R

where n, o is the equilibrium density satisfying pg = 14,0 — ne,0. For instance, we can

choose )
Ns 0 T

F,o=—"“2=exp|—2).

“" Vaw p( 2)

In terms of the electric charge density p and potential ®, our asymptotic model
has the same mechanism for generating instabilities as the two dimensional guiding-
center model, so that the growth rate of instabilities for the electric field will be the
same. We can refer to [33, 29, 11] for the analytical and numerical studies of the two

This manuscript is for review purposes only.



—_

w W

VI \)

W W
=

ot ot v Ot Ot
w

SN

382
383
384

ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD 17

dimensional guiding-center model. In the next section, we will numerically verify that
the linear growth rates of instabilities for the electric potential of the two models are
the same.

From this point, we observe that by choosing a nonzero initial potential A, that
is a small current density 7., we can initiate an instability on the asymptotic model
(15), whereas the purely electrostatic guiding center model remains stationary.

REMARK 2.10. We would notice that for the distribution function F; or Fy, due to
the extra term of Vi (p,A")-VxFio and Vi (q. A’ Ja) -V F, o in the first two equations
of (41), some other instabilities might also happen to F! or F., which is much more
complicated to analyze.

3. Numerical Examples. In this section, we will perform numerical tests for
the diocotron instability and the Kelvin-Helmholtz instability problems to illustrate
some good properties of the asymptotic kinetic model (15) involving a self-consistent
electromagnetic field, and compare with the macroscopic guiding-center model (39)
taking into account only electrostatic effects [36, 29]. We will apply a conservative
finite difference scheme with Hermite weighted essentially non-oscillatory (WENO) re-
construction, coupled with a fourth-order Runge-Kutta time discretization for solving
the conservative transport equations. The Poisson’s equation for the electric poten-
tial function ® will be solved by a 5-point central finite difference discretization for
Dirichlet boundary conditions, or by the fast Fourier transform (FFT) for periodic
boundary conditions on a rectangular domain. The elliptic equation for the magnetic
potential A is solved by a 5-point central finite difference discretization. The methods
are natural extensions of those proposed in [36] for solving the guiding-center model
(39), since here the velocity field p, or ¢, in the transport equations only appears as a
dummy argument. A mid-point rule with spectral accuracy [6] is used for the moment
integration. We omit the description of these methods and refer to [36] for details.

We mainly show that the asymptotic model (15) can generate the same instability
as the two dimensional guiding-center model (39), while some other instabilities can
also be created due to some small perturbations purely in the self-consistent magnetic
field. In the following, for the asymptotic kinetic model (15), we all take the cut-off
domain in velocity as [—8, 8] and discretize it with N = 32 uniform grid points.

3.1. Diocotron instability. We set
1 2
H=2+ 5 (A - pz)
and consider the nonlinear asymptotic model (15) where the density of electrons is

neglected and the reduced distribution function of ions is denoted by F' and is a
solution to

OF —VEH -V F =0,
(44) —Ad = n,
—AA + Ma?nA = Ma’7.,

where

n = /F(t)dpz, T, = /F(t)pzdpz.
R R
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18 F. FILBET, T. XIONG, AND J. E. SONNENDRUCKER

This solution can be compared to the two dimensional guiding center model (39),
where we neglect the effect of the self-consistent magnetic field B = V, x A, corre-
sponding to the low Mach number limit Ma — 0 of (44), it yields

on —Vid - Vyn = 0,
(45)
—AD =n.

In this example, we choose Ma = 0.1 and we would like to verify that the asymp-
totic kinetic model (44) has indeed the same instability on the density n as compared
to the two dimensional guiding-center model (45). We choose a discontinuous initial
density no which is linearly unstable [11, 29]. Therefore, we consider © as a ball
centered in 0 of radius R = 10 with the initial density

1+ecos(lf), ifr= < /z2+9y2<rt,
(46) nofx) = 1) Vet
0, else,
where € = 0.02, I = 3, r~ = 3, rT = 5, which will create a small instability for the

two-dimensional model (45).
Now for the asymptotic model (44), we still consider the same density ngy as an
initial data, but introduce an additional perturbation on the moment p, by choosing

(47) Fo(x,ps) = n\;éiﬂ') exp (W) )

with ug = § cos(m ), where 6 = atan2(y,x), § = 0.1, m = 3. It is expected that the
instability will now be driven by the perturbation on the density ng corresponding
to the mode [ = 3 but also by the perturbation on the current density J, due to ug
corresponding to the mode m = 3.

In Figure 1, we can clearly see three vortexes are formed at ¢ = 40, which is
the same as the diocotron instability for the two dimensional guiding-center model
(45) and agrees with the linear instability analysis in Section 2.4. At t = 60, 80, 100,
these vortexes continue moving and start to mix with each other. Here the grid is
N, x Ny = 600 x 600. However, we would notice that for the current density .,
as shown in Figure 2, we can also observe three vortexes, which might be caused by
the perturbation on the moment p, from the self-consistent magnetic field which are
different from the instabilities of the density n.

In Figure 3, we show the time evolution of the L*> norm for the difference of the
electrical potential | ®(¢)—®(0)| o and | A(¢)|| Lo, on the grids of N, x N,, = 600 x 600
and N, x N, = 300 x 300. We can see convergent results. Especially an exponential
growth rate on ||®(¢) — ®(0)||L~ can be observed for ¢ < 50, while the magnitude of
the self-consistent magnetic field A is at the level of 104, We measure the growth
rate for ||®(t) — ®(0)||r~ by taking the time interval [10,30], so the growth rate is
about 0.0999. The growth rate from a linear instability analysis based on the formula
(6.38)-(6.42) in [11] with wp = 1/2, is about 0.1051. These two growth rates agree
with each other very well.

We also note that for this example, the dominating instability would be caused
by the perturbation on the initial density ng. Numerically we observe the exponential
growth rate of ||®(t) —®(0)|| L= for the two dimensional guiding center model is almost
the same as the asymptotic model and we omit them in Figure 3 for clarity.
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Fic. 1. Diocotron instability. The density n for the 2d x 1d asymptotic model (15). From
left to right, top to bottom: t = 40,60, 80, 100.

426 The time evolutions of the relative difference for the total energy (35) and the L?
427 mnorm of F are preserved relatively well for this example, which are at the loss of 0.2%
428 and 25% up to t = 150 respectively, on the grid of N, x N, = 600 x 600, especially
429 the total energy can be greatly improved by mesh refinement. We omit the figures
430 here to save space.

431

432

433

434 3.2. Kelvin-Helmholtz instability. In this example, we consider a plasma for
435 ions with a neutral background. The distribution function F' of the asymptotic model
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Fic. 2. Diocotron instability. The current density J. for the 2d x 1d asymptotic model (15).
From left to right, top to bottom: t = 40, 60, 80, 100.
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Fic. 3. Diocotron instability. Time evolution of the norm ||®(t) — ®(0)||pe and ||A(t) —
A(0)||pee for the 2d x 1d asymptotic model (15).
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(44) for the ions is a solution to the following system

2
OF — Vi <<I>+épzA> VxF =0,

(48) —Ax® =p = n—ne,

A A + Ma? (n + %) A =Ma?7,,

with o = 1/1836.5 which corresponds to the mass ratio of one electron and one proton.
The current density is

7. = [ Fp.dv.
R
and we choose the initial density n for the ions to be
(49) no(x) =2 +siny,

while for the electrons, we fix it with n, = 2 so that the spatial average is 0 for the
total charge density p = n — n.. We take the initial distribution function F' of the
ions as

(50) Fo(x,p.) = n\j;i;) exp (—WQO(X))Q) ,

where the shifted velocity uo(x) is

(51) ug(x) = —0.01 (sin (g) — cos(y))7

which contributes as a small perturbation in the p, direction and its corresponding
initial current density 7, will be small but nonzero. The distribution function of the
electrons F, is set to be at an equilibrium as

2
Te q
F, .= F.(q,) = exp| —= 1,
(¢:) Jor P ( 5 )

so that fR F.(r,)r.dr, = 0 and it does not contribute to the total current 7, in the
equation of (17) for the magnetic potential A. Similarly if we neglect the effect of the
self-consistent magnetic field B, which corresponds to the low Mach limit Ma — 0 of
(48), it yields the two-dimensional guiding center model in the following form

on —Vid. Vyn = 0,
(52)
—AD =n — ne.

The computational domain is on a square [0, 47] x [0, 27] with periodic boundary
conditions and the Mach number in (48) is taken to be Ma = 0.1.

Here we see that without perturbation on the initial data (49), the density n of
the 2d guiding-center model (52) is at the steady state n(t,x) = sin(y). Furthermore,
when we choose ug = 0, the solution is at steady state for both models (52) and (48)
and remains stable on the time interval [0,100]. However, for the asymptotic model
(48) with a non zero ug as (51), due to the effect of the self-consistent magnetic field
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A and a small nonzero current J,, we observe in Figure 4 that some instabilities are
created on the density n at ¢t = 40, 60,80, 100. Here the grid is N, x N, = 256 x 256.
These instabilities are very similar to the Kelvin-Helmholtz instability for the 2d
guiding-center model (52) as compared to Figure 9 in [18], which do not happen on
the current settings. Moreover, these instability structures can also be observed on
the current density J, as shown in Figure 5, which greatly indicate the capability of
the self-consistent magnetic field as another source on the development of physical
instabilities.

For the 2d x 1d asymptotic model, in Figure 6 we show the time evolution of the
L*° norm for the difference of the electrical potential ||®(t) — ®(0)||z~ and ||A(t)| e,
on the grids of IV, x N, = 256 x 256 and N, x N, = 128 x 128. The results are also
convergent and an exponential growth rate is observed for ||®(t) — ®(0)|| L~ for ¢ < 65,
which explicitly demonstrates the instabilities caused by the small current density 7,
on the self-consistent magnetic field A, even we notice that the magnitude of A is
overall getting smaller as shown on the right side of Figure 6. Here we are also able to
measure the growth rate for ||®(t) — ®(0)||L~ by taking the time interval [20,40], the
growth rate is about 0.2606, which is very close to the growth rate from the numerical
predicted value 0.26 in [33] (see Figure 1 with k, = 0.5 and k,s = 1) for the two
dimensional nonlinear guiding-center model, which indicates that the instability for
these two models might be similar.

Similar to the last example, the time evolutions of the relative difference for the
total energy (35) and the L? norm of F are preserved well, which are only at the loss
of 0.2% and 2.5% respectively, up to ¢t = 100 on the grid of N, x N, = 256 x 256. We
also omit the figures here.

4. Conclusion. In this paper, an asymptotic kinetic model is derived from a 2d x
3d Vlasov-Maxwell system, by taking into account of the self-consistent magnetic field.
We have assumed both a large applied magnetic field and large time in the asymptotic
limit. The new asymptotic model could validate some effect on the dynamics of the
plasma from the self-consistent magnetic field, even if initially the current is small, as
compared to the two dimensional guiding-center model for the Vlasov-Poisson system.
Numerical examples demonstrate the good properties of our new model.
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