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Abstract. The level set method is often used to capture interface behavior in two or three

dimensions. In this paper, we present a combination of local discontinuous Galerkin (LDG)

method and level set method for simulating Willmore flow. The LDG scheme is energy stable

and mass conservative, which are good properties comparing with other numerical methods.

In addition, to enhance the efficiency of the proposed LDG scheme and level set method, we

employ a p-adaptive local discontinuous Galerkin technique, which applies high order polyno-

mial approximations around the zero level set and low order ones away from the zero level set.

A major advantage of the level set method is that the topological changes are well defined and

easily performed. In particular, given the stiffness of Willmore flow, a high order semi-implicit

Runge-Kutta method is employed for time discretization, which allows larger time step. The

equations at the implicit time level are linear, we demonstrate an efficient and practical multi-

grid solver to solve the equations. Numerical examples are given to illustrate the combination

of the LDG scheme and level set method provides an efficient and practical approach when

simulating the Willmore flow.

Key words: Willmore flow, local discontinuous Galerkin method, p-adaptive, semi-implicit

scheme, level set method.
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1. Introduction

The level set method was first introduced by Osher and Sethian [13] in 1987, and it has had

large impact on computational methods for interface motion. In the past years, the level set

method attracted a lot of attention and was used for a wide variety of problems, including

fluid dynamics, material sciences, computer vision and imaging processing. For an extensive

exposition of the level set method, we refer readers to the review paper [14] and the book [15].

In the level set method, the evolving family of interface Γt, t ≥ 0 is represented implicitly as

the zero level set of a continuous function which we will denote as φ : Ω × [0, T ] → R, where

Ω ⊂ R2 is a simply connected domain containing the whole family of evolving interfaces Γt,

t ∈ [0, T ]. Therefore, the interface Γt can be written as

Γt =
{
x ∈ R2, φ(x, t) = 0

}
.

There are certain advantages associated with this implicit Eulerian type of representation.

• The level set formulation is unchanged in higher dimensions, that is, it is easy to extend

to 3D.

• Topological changes such as merging and breaking in the evolving interface Γt are han-

dled naturally.

The level set formulation for Willmore flow will typically result in a fourth order nonlinear

partial differential equation (PDE), e.g. see [10] for details. Beneš et al. developed a finite

volume method for spatial discretization in [1]. When the evolved surface is a graph, the

Willmore flow converts to Willmore flow of graphs, and numerical methods for Willmore flow

of graphs attracted a lot of attention in the last decades. A semi-implicit numerical scheme for

the Willmore flow of graphs with continuous finite element discretization and the convergence

analysis has been provided by Deckelnick and Dziuk in [9]. Finite difference discretization for

the Willmore flow of graphs has been discussed in [12]. Xu and Shu [19] developed a local

discontinuous Galerkin method for Willmore flow of graphs, and time discretization was by the

forward Euler method with a suitably small time step for stability.

The discontinuous Galerkin (DG) method is a class of finite element methods using com-

pletely discontinuous basis functions, which are usually chosen as piecewise polynomials. It

was first introduced in 1973 by Reed and Hill [16] for solving the linear time dependent neutron

transport equation. Later, the DG method was developed for solving the nonlinear hyperbolic

conservation laws by Cockburn et al. in a series of papers [4, 5, 6, 7].

These discontinuous Galerkin methods were generalized to solve the PDEs containing higher

than first order derivatives, i.e. the local discontinuous Galerkin (LDG) method. The first

LDG method was designed to solve a convection diffusion equation (with second derivatives)

by Cockburn and Shu [8]. The idea of LDG methods is to suitably rewrite a higher order PDE

into a first order system, then apply the DG method to the system. A key ingredient for the

success of such methods is the correct design of interface numerical fluxes, which should be

designed to guarantee stability. For a detailed description about the LDG methods for high
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order time dependent PDEs, we refer the readers to [20]. The DG and LDG methods have

several attractive properties, for example:

(1) The order of accuracy can be locally determined in each cell, thus allowing for efficient

p adaptivity.

(2) These methods can be used on arbitrary triangulations, even those with hanging nodes,

thus allowing for efficient h adaptivity.

(3) These methods have excellent parallel efficiency.

In this paper, we present the level set method for computing evolution of the Willmore flow

of embedded surfaces, and one of the major advantages of level set method is their ability to

easily handle topological changes. Then we develop a high order local discontinuous Galerkin

method for solving level set formulation of the Willmore flow. The basis functions of LDG

method can be completely discontinuous, which leads that the order of accuracy can be locally

determined in each cell, i.e. p-adaptivity. To improve the efficiency of the proposed methods,

a p-adaptive technique is applied here to capture the evolution of the interface.

Another main difficulty when solving the Willmore flow numerically is that it is stiff, and

explicit time discretization methods suffer from extremely small time step restriction for stabil-

ity, of the form ∆t ≤ C∆x4, which is not efficient, especially for long time simulation. It would

therefore be desirable to develop implicit or semi-implicit time marching techniques to alleviate

this problem. In [18], three efficient time discretization techniques were explored, these are

the semi-implicit spectral deferred correction (SDC) method, the additive Runge-Kutta (ARK)

method and the exponential time differencing (ETD) method. These methods are mainly based

on a splitting of stiff and non stiff differential operators, which is particularly efficient for semi-

linear PDEs, but for quasi-linear equations, like for Willmore flows, fully nonlinear solver would

be required. Thus we will employ here a high order semi-implicit Runge-Kutta method [2, 11].

The organization of the paper is as follows. In Section 2, we review the level set formulation

for Willmore flow and get a highly nonlinear fourth order PDE. In Section 3, we present

the formulation of the local discontinuous Galerkin method and the p-adaptive technique for

solving the Willmore flow. Section 4 contains a simple description of the high order semi-

implicit Runge-Kutta method. Numerical experiments are presented in Section 5, testing the

performance of p-adaptive local discontinuous Galerkin level set method for Willmore flow.

Finally, we give concluding remarks in Section 6.

2. Level set formulation for Willmore flow

In the level set method, the evolving family of interface Γt, t ≥ 0 is represented implicitly as

the zero level set of a continuous function φ. Therefore, the interface Γt can be written as

Γt =
{
x ∈ R2, φ(x, t) = 0

}
.
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For the Willmore flow, the level set function

∂φ

∂t
+ V |∇φ| = 0,

with V being the speed of propagation of the level set function φ, turns into the following

equation

(2.1)
∂φ

∂t
+

(
∆ΓtH(t) +H(t)

(
‖S(t)‖2

L2 −
1

2
H(t)2

))
|∇φ| = 0,

where S(t) denotes the shape operator on Γt, H(t) is the mean curvature on Γt and is given as

H = ∇ ·
(
∇φ
|∇φ|

)
.

In order to obtain the Willmore flow, it is necessary to reformulate the equation in terms of

φ(t), H(t) and their derivatives.

For the sake of simplicity, we assume that |∇φ| 6= 0 on Γt. Then the unit normal vector to

a level curve of φ can be defined as

(2.2) n =
∇φ
|∇φ|

.

Let us denote the following auxiliary functions Q = |∇φ| and ω = QH. Then, by the

derivation in [10], a level set formulation of Willmore flow is given as follows:

(2.3)


∂φ

∂t
+ Q∇ ·

(
E∇ω − 1

2

ω2

Q3
∇φ
)

= 0,

ω = Q∇ ·
(
∇φ
|∇φ|

)
.

where the matrix E is given by

E =
1

Q

(
I− ∇φ

Q
⊗ ∇φ

Q

)
,

which is a projection into a tangential space of the curve representing the zero level set of φ.

The Willmore flow (2.3) is subjected to the initial condition

φ(x, 0) = φ0(x), x ∈ Ω,

where the initial function φ0(x) is a signed distance function, i.e. φ0(x) = dist(x,Γ0), for any

x ∈ Ω. The initial condition satisfies the following property

(2.4) |∇φ0(x)| = 1.

One of the major advantages of level set methods is their ability to easily handle topological

changes. However, we have found this not to be the case for Willmore flow because of the lack

of a maximum principle. Indeed, two surfaces both undergoing an evolution by Willmore flow

may intersect in finite time. Therefore, the level set formulation for Willmore flow will lead to

singularities in general, i.e. ∇φ = 0 in finite time. To handle these difficulties, it is necessary to
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introduce a suitable regularization technique. For a fixed regularization parameter 0 < ε� 1,

we define

(2.5) Qε =
√
ε+ |∇φ|2

and replace all occurrences of Q in (2.3) by Qε.

3. Numerical method

With the level set formulation for Willmore flow, we need to discrete equation (2.3) to capture

the movement of the interface (zero level set). It would therefore be desirable to develop high

order numerical scheme in both space and time to obtain high resolution. In this section, we

will consider the local discontinuous Galerkin (LDG) method for the Willmore flow (2.3).

3.1. Notation. We consider a subdivision Th of Ω with shape-regular elements K. Let Eh
denote the union of the boundary faces of elements K ∈ Th, i.e. Eh = ∪K∈Th∂K, and E0 =

Eh \ ∂Ω.

In order to describe the flux functions, we need to introduce some notations. Let e be an

interior face shared by the “left” and “right” elements KL and KR and define the normal

vectors νL and νR on e pointing exterior to KL and KR, respectively. For our purpose “left”

and “right” can be uniquely defined for each face according to any fixed rule. For example, we

choose ν0 as a constant vector. The left element KL to the face e requires that νL · ν0 < 0,

and the right one KR requires νL · ν0 ≥ 0. If ψ is a function on KL and KR, but possibly

discontinuous across e, let ψL denote (ψ|KL
)|e and ψR denote (ψ|KR

)|e, the left and right trace,

respectively.

Let Pk(K) be the space of polynomials of degree at most k ≥ 0 on K ∈ Th. The finite

element spaces are denoted by

Vh =
{
ϕ ∈ L2(Ω), ϕ|K ∈ Pk(K), ∀K ∈ Th

}
and

Σd
h =

{
Φ = (φ1, · · · , φd)

T ∈ (L2(Ω))d, φl|K ∈ Pk(K), ∀l = 1 · · · d, ∀K ∈ Th
}
.

Note that functions in Vh, Σd
h are allowed to be completely discontinuous across element inter-

faces.

3.2. Local discontinuous Galerkin method. To develop the local discontinuous Galerkin

scheme, we first rewrite the Willmore flow (2.3) as a first order system:

(3.1)


1

Qε

∂φ

∂t
+ ∇ · (s− v) = 0,

s = Ep and v =
1

2

ω2

Q3
ε

r,
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with p = ∇ω, where ω is given by the algebraic equation ω = QεH, and H is solution to

H = ∇ · q, where q satisfies Qε q = r and finally r = ∇φ. In equation (3.1), the matrix E is

given by

(3.2)


E =

1

Qε

(
I− r ⊗ r

Q2
ε

)
,

Qε =
√
ε+ |r|2.

Next, we obtain the weak formulation of the exact solution. Applying the LDG method

to system (3.1), we get the following numerical scheme for the unknowns (φ, ω,H) ∈ V 3
h and

(s,v,p, q, r) ∈ Σ5
h, such that, for all test functions (ϕ, ξ, ϑ) ∈ V 3

h and (θ,ψ,η,ρ, ζ) ∈ Σ5
h, we

have

(3.3)

∫
K

1

Qε

∂φ

∂t
ϕ dK =

∫
K

(s− v) · ∇ϕdK −
∫
∂K

(ŝ · ν − v̂ · ν) ϕds,

where the previous algebraic relations between (s,v) and (p, r, ω) are now written as

∫
K

s · θ dK =

∫
K

Ep · θ dK,

∫
K

v ·ψ dK =

∫
K

1

2

ω2

Q3
ε

r ·ψ dK.

Moreover, p is solution to∫
K

p · η dK = −
∫
K

ω∇ · η dK +

∫
∂K

ω̂ν · η ds,

where ω is now given with respect to H∫
K

ωξ dK =

∫
K

QεH ξ dK,

and H is solution to ∫
K

HϑdK = −
∫
K

q · ∇ϑ dK +

∫
∂K

q̂ · νϑ ds,

where (q, r) are given with respect to the main unknown φ, that is,

∫
K

q · ρ dK =

∫
K

r

Qε

· ρ dK,

∫
K

r · ζ dK = −
∫
K

φ∇ · ζ dK +

∫
∂K

φ̂ν · ζ ds,

where E and Qε are computed by (3.2). Here ŝ, v̂, ω̂, q̂ and φ̂ are the numerical fluxes. To

complete the definition of the LDG method, we need to define these numerical fluxes, which

are functions defined on the edges and should be designed based on different guiding principles

for different PDEs to ensure stability.
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Similar to the development in [19], it turns out that we can take the simple choices such that

(3.4) ŝ|e = sL, v̂|e = vL, q̂|e = qR, ω̂|e = ωL, φ̂|e = φR.

We remark that the choice for the numerical fluxes (3.4) is not unique. In fact, the crucial part

is taking ŝ, v̂ and φ̂ from opposite sides, and q̂ and ω̂ from opposite sides.

Remark 3.1. The solution to the LDG scheme is mass conservative, by choosing the test

function ϕ = 1 in equation (3.3).

Remark 3.2. Similar to the proof in [19], the solution to the LDG scheme (3.3) with numerical

fluxes (3.4) satisfies the following energy stability

1

2

d

dt

∫
Ω

H2Qεdx+

∫
Ω

(φt)
2

Qε

dx = 0.

3.3. A p-adaptive technique. In the level set method, we aim to capture the interface be-

havior. As a result, we are mainly interested in the position near the zero level set, which

motivates us to use adaptive technique. The basis functions of the LDG method we discuss

in this paper can be discontinuous, so it has certain adaptive flexibility, such as, the order of

accuracy can be locally determined in each cell.

Our aim is to apply a higher order polynomial approximation around the zero level set to

achieve high order accuracy, whereas in the regions far away from the zero level set, we apply

lower order polynomial approximations, which is similar as what is described by Yan and Osher

in [21]. We explain the p-adaptive technique in detail with Figure 3.1. In Figure 3.1, we apply

P2 approximation near the zero level set, which are the domain filled with dark cells. While

for the domain two or three cells away from the zero level set, it is not necessary to use high

order approximation, thus P1 approximation is enough.

As we know, in the implementation of the p-adaptive technique, it is essential to employ a

flag to mark “near the zero level set”. By the definition of the level set method, it is reasonable

to use the following flag: {
P2 approximation, if |φ| ≤ 1.5h,

P1 approximation, if |φ| > 1.5h,
(3.5)

where |φ| is the absolute value of φ. With the proposed p-adaptive technique, we can improve

the efficiency of the local discontinuous Galerkin method for level set equation.

4. Time discretization

As we know, the Willmore flow (2.3) is a highly nonlinear fourth order PDE, explicit time

integration methods lead to an extremely small time step restriction for stability, but not

for accuracy. It would therefore be desirable to develop a semi-implicit time discretization

technique to alleviate this problem.
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Figure 3.1. Explanation of p-adaptive technique.

In this section, we employ a high order semi-implicit Runge-Kutta method. Based on the

work in [2], the main idea of the semi-implicit method is to apply two different Runge-Kutta

methods. Consider the ODE system

(4.1)


du

dt
= H(t, u(t), u(t)), t ∈ [0, T ]

u(0) = u0,

where the function H : R × Rm × Rm → Rm is sufficiently differentiable and the dependence

on the second argument of H is non-stiff, while the dependence on the third argument is stiff.

The semi-implicit Runge-Kutta method is based on the partitioned Runge-Kutta method, so

we will first give a simple description for the partitioned Runge-Kutta methods. We consider

autonomous differential equations in the partitioned form,

(4.2)


dy

dt
(t) = F(y(t), z(t)),

dz

dt
(t) = G(y(t), z(t)),

where y(t) ∈ Rm, z(t) ∈ Rn, F : Rm × Rn → Rm, G : Rm × Rn → Rn and F , G ∈ C1(Rm ×
Rn). y(t0) = y0, z(t0) = z0 are the initial conditions. Then we can express the partitioned

Runge-Kutta methods by applying two different Runge-Kutta methods as the following Butcher
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tableau:

ĉ Â

b̂T
c A

bT

For practical reasons, in order to simplify the computations, we consider that Â is a strictly

lower triangular matrix and A is a lower triangular matrix for the implicit part. In addition,

the coefficients satisfy:

(4.3) ĉi =
i−1∑
j=1

âi,j, and ci =
i∑

j=1

ai,j, for 1 6 i 6 s.

By applying the partitioned Runge-Kutta time marching method, the solution of the au-

tonomous system (4.2) advanced from time tn to tn+1 = tn + ∆t is given by

(4.4)


ki = F

(
yn + ∆t

i−1∑
j=1

âi,j kj, z
n + ∆t

i∑
j=1

ai,j lj

)
, 1 6 i 6 s,

li = G

(
yn + ∆t

i−1∑
j=1

âi,j kj, z
n + ∆t

i∑
j=1

ai,j lj

)
, 1 6 i 6 s,

and we can calculate yn+1 and zn+1 as follows

(4.5)


yn+1 = yn + ∆t

s∑
i=1

b̂i ki,

zn+1 = zn + ∆t
s∑

i=1

bi li.

To derive a semi-implicit Runge-Kutta scheme, we first rewrite the non autonomous differ-

ential equation (4.1) as an autonomous system where we double the number of variable, that

is,

(4.6)



d

dt

(
t

u(t)

)
=

(
1

H(t, u(t), v(t))

)
,

dv(t)

dt
= H(t, u(t), v(t)),

u(0) = v(0) = u0

By a uniqueness argument the solution to (4.6) corresponds to the one of (4.1), but now this

system is written as an autonomous partitioned system (4.2), with y(t) = (t, u(t)), F = (1,H)

and z(t) = u(t), G = H and y(t0) = (t0, u0), z(t0) = u0 are the initial conditions.

Applying the partitioned Runge-Kutta scheme (4.4)-(4.5) to system (4.6), we can get a high

order semi-implicit Runge-Kutta method for (4.1) : the first component of the first equation

(4.6) only gives

ĉi =
i∑

j=1

âi,j,
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whereas the second component of the first equation and the second equation of (4.6) are iden-

tical, which gives the following semi-implicit scheme

ki = H

(
tn + ĉi∆t, u

n + ∆t
i−1∑
j=1

âi,j kj, u
n + ∆t

i∑
j=1

ai,j kj

)
, 1 6 i 6 s.

It is worth to mention here that ki is defined implicitly since ai,i 6= 0. Therefore, starting from

un, we give the algorithm to calculate un+1 in the following.

(1) Set for i = 1, . . . , s,

Ui = un + ∆t
i−1∑
j=1

âi,jkj,

Vi = un + ∆t
i∑

j=1

ai,jkj.(4.7)

(2) For i = 1, . . . , s, compute

(4.8) ki = H(tn + ĉi∆t, Ui, Vi).

(3) Update the numerical solution un+1 as

(4.9) un+1 = un + ∆t
s∑

i=1

bi ki.

After the LDG spatial discretization for the Willmore flow (2.3), we can apply the semi-

implicit scheme (4.7)-(4.9) by writing the system of ODE in the form of (4.1) with the compo-

nent u(t) treated explicitly, the component v(t) treated implicitly and H(t, u, v) = −Qε(u)∇ ·
(
E(u)∇ω(u, v) − 1

2
ω(u)2

Qε(u)3
∇v
)
,

ω(u, v) = Qε(u)∇ ·
(
∇v

Qε(u)

)
,

where  Qε(u) =
√
ε + |∇u|2, ω(u) = Qε(u)∇ ·

(
∇u

Qε(u)

)
,

E(u) = 1
Qε(u)

(
I − ∇u

Qε(u)
⊗ ∇u

Qε(u)

)
.

By algorithm (4.7)-(4.9), the second variable of equation (4.1) is treated explicitly and the

third one is treated implicitly. Obviously, it is necessary to solve system of linear algebraic

equations (4.8) at each time step. The overall performance highly depends on the performance

of the solver. Traditional iterative solution methods such as Gauss-Seidel method suffers from

slow convergence rates, especially for large systems. To enhance the efficiency of the high

order semi-implicit time marching method, we will apply the multigrid solver to solve algebraic

equations (4.8) in this paper. And for a detailed description of the multigrid solver, we refer

the readers to Trottenberg et al. [17] and Brandt [3].
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5. Numerical results

In this section, we present some numerical results for the Willmore flow. In addition, we use

p-adaptive LDG spatial discretization (P2 approximation near the zero level set, P1 approx-

imation away from the zero level set) coupled with a high order semi-implicit Runge-Kutta

method, which is high order accurate in both time and space, allowing larger time step. Each

time step we solve the linear algebraic equations by multigrid solver. We first present various

representative examples of shape relaxation, for example, the motions of an ellipse, a square,

an asteroid and a singular curve. Next, we will show the topological changes, such as merging

and breaking.

5.1. Accuracy test. In this example, we consider the accuracy test for one-dimensional Will-

more flow. We consider the exact solution

(5.1) φ(x, t) = 0.05 sin(x) cos(t)

for equation (2.3) with a source term f(x, t), which is a given function so that (5.1) is the exact

solution.

To show the effect of different regularization parameters ε on the corresponding errors and

orders of accuracy, we report the L2 and L∞ errors and the numerical orders of accuracy at

time T = 0.5 with uniform meshes in Table 5.1. We can see that the method with Pk elements

gives (k + 1)-th order of accuracy with different scales of the regularization parameters ε.

ε = 1 ε = 5h ε = 5h2

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

16 4.16E-03 – 3.52E-03 – 4.16E-03 – 3.52E-03 – 4.16E-03 – 3.52E-03 –

32 1.03E-03 2.00 9.07E-04 1.96 1.03E-03 2.00 9.09E-04 1.95 1.03E-03 2.00 9.06E-04 1.96

64 2.58E-04 2.00 2.27E-04 1.99 2.58E-04 2.00 2.27E-04 2.00 2.59E-04 1.99 2.19E-04 2.04

P2

16 2.60E-04 – 2.07E-04 – 2.60E-04 – 2.08E-04 – 2.60E-04 – 2.08E-04 –

32 3.25E-05 3.00 2.69E-05 2.95 3.25E-05 3.00 2.69E-05 2.95 3.25E-05 3.00 2.69E-05 2.95

64 4.06E-06 3.00 3.40E-06 2.99 4.06E-06 3.00 3.40E-06 2.99 4.06E-06 3.00 3.39E-06 2.99

Table 5.1. Accuracy test. L2 and L∞ error norms on the solution at time

T = 0.5 with different regularization parameters ε.

5.2. Towards a circle. We first perform a series of numerical simulations, where the initial

level sets describe two convex curves, a non-convex curve and a singular curve. Hence it is

expected that the level set approaches a circle for large time, which compares very well with

numerical calculations performed by Beneš et al. [1].
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The motion of an ellipse. We consider the motion of an ellipse as shown in Figure 5.1. For

large time, the level set asymptotically approaches a circle. Here, we approximate the Willmore

flow with ε = h on a 64 × 64 grid for the computational domain Ω = [0, 4] × [0, 4]. Here, we

adopt a p-adaptive LDG method for spatial discretization and a second order semi-implicit

Runge-Kutta method with a time step of ∆t = 0.001h, which is very large compare to that of

an explicit time marching method (∆t = Ch4).

1 2 3

1

2

3

(a) t = 0

1 2 3

1

2

3

(b) t = 0.01

1 2 3

1

2

3

(c) t = 0.05

1 2 3

1

2

3

(d) t = 0.1

Figure 5.1. Towards a circle. Evolution of Willmore of the regularized flow with

ε = h when the initial level set corresponds to an ellipse.

The motion of a square. We now consider an initial data, where the initial level set is a square,

that is, it has sharp corners. We report the numerical results in Figure 5.2, which shows the

evolution of a square into a circle. We approximate the Willmore flow with ε = h on a 64× 64

grid for the computational domain Ω = [0, 4] × [0, 4]. Here, we also adopt a second order

semi-implicit Runge-Kutta method with a time step of ∆t = 0.001h.



LOCAL DISCONTINUOUS GALERKIN LEVEL SET METHOD FOR WILLMORE FLOW 13

1 2 3

1

2

3

(a) t = 0

1 2 3

1

2

3

(b) t = 0.0005

1 2 3

1

2

3

(c) t = 0.001

1 2 3

1

2

3

(d) t = 0.002

Figure 5.2. Towards a circle. Evolution of Willmore of the regularized flow with

ε = h when the initial level set corresponds to a square.

The motion of an asteroid. In Figure 5.3, we present the motion of another non-convex curve

with very sharp corners. The numerical methods and parameters are chosen to be the same

with those in the previous example. Also the initial asteroid is evolved to be a circle.

The motion of a singular curve. We consider an initial data, where the initial level set is a

singular curve. We report the numerical results in Figure 5.4, which shows the evolution of a

singular curve into a circle. We approximate the Willmore flow with ε = 10h and ε = 10h2,

respectively on a 64× 64 grid for the computational domain Ω = [−4, 4]× [−4, 4], which shows

similar patterns with different regularization parameter ε.

5.3. Topology changes. Finally, in this example, we present two examples to illustrate a

topological change under Willmore flow, which is one of the major advantages of level set

methods. However, level set methods for this problem suffer from an additional difficulty.

The Willmore flow does not have a maximum principle, which leads to that two surfaces
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Figure 5.3. Towards a circle. Evolution of Willmore of the regularized flow with

ε = h when the initial level set corresponds to an asteroid.

both undergoing an evolution by Willmore flow my intersect in finite time. To handle these

difficulties, it is important to choose the regularization parameter ε to avoid a blow up of the

gradient of φ in finite time. In addition, it is important to choose small time steps to temporally

resolve the rapid transients that occur at a topological change.

Figure 5.5 presents the merging of two square-like shapes under the level set evolution of

Willmore flow. We can see the two square-like shapes merge and eventually evolve to a single

circle. Here, we choose ε = 5h, and the time step size is ∆t = 10−6. Since for such small time

step, we use here a first order semi-implicit time marching method. Certainly, we can use

explicit Runge-Kutta method here, but because of the severe time step restriction of explicit

methods, the time step must be very small, which takes about ∆t ≈ 10−9.

In Figure 5.6, we show another example of topological change. The initial configuration

consists of two almost touching surfaces-the inner surface being a circle and the outer surface
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being an ellipse. We can see a phenomenon of pinching off in Figure 5.6. Here, we also choose

ε = 5h, and the time step size ∆t = 10−6.

6. Concluding remarks

In this work, we have developed a local discontinuous Galerkin method for a level set for-

mulation of Willmore flow. The scheme is mass conservative and energy stable. In the level

set method, we are mainly interested in capturing the movement of the interface. Therefore, it

is reasonable and natural to combine our local discontinuous Galerkin scheme with p-adaptive

technique to improve the efficiency of the method. To relax the severe time step restriction

of explicit time integration methods for stability and achieve high order temporal accuracy,

a semi-implicit Runge-Kutta method is adopted. The equations at the implicit time level are

linear and we employ an efficient multigrid solver to solve them. Numerical experiments demon-

strate that the proposed methods are efficient for Willmore flow, and the level set method can

easily handle topological changes.
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Figure 5.4. Towards a circle. Evolution of Willmore of the regularized flow with

ε = 10h and ε = 10h2 when the initial level set corresponds to a singular curve.
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Figure 5.5. Topology changes. Two square-like shapes merge under the level

set evolution of Willmore flow.
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Figure 5.6. Topology changes. Two shapes pinch off under the level set evolu-

tion of Willmore flow.


