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Abstract. This paper deals with the numerical resolution of the Vlasov-Poisson system with
a strong external magnetic field by Particle-In-Cell (PIC) methods. In this regime, classical PIC
methods are subject to stability constraints on the time and space steps related to the small
Larmor radius and plasma frequency. Here, we propose an asymptotic-preserving PIC scheme
which is not subjected to these limitations. Our approach is based on first and higher order semi-
implicit numerical schemes already validated on dissipative systems [6]. Additionally, when the
magnitude of the external magnetic field becomes large, this method provides a consistent PIC
discretization of the guiding-center equation, that is, incompressible Euler equation in vorticity
form. We propose several numerical experiments which provide a solid validation of the method
and its underlying concepts.

Keywords. High order time discretization; Vlasov-Poisson system; Guiding-centre model; Particle

methods.

Contents

1. Introduction 1
2. A brief review of particle methods 4
3. A particle method for Vlasov-Poisson system with a strong magnetic field 6
3.1. A first order semi-implicit scheme 7
3.2. Second order semi-implicit Runge-Kutta schemes 8
3.3. Third order semi-implicit Runge-Kutta schemes 10
4. Uniform estimates 12
4.1. Analysis of the first-order semi-implicit scheme 12
4.2. Analysis of the L-stable second-order semi-implicit scheme 15
5. Numerical simulations 17
5.1. One single particle motion 18
5.2. Diocotron instability 20
6. Conclusion and perspective 22
Acknowledgements 23
References 23

1. Introduction

Magnetized plasmas are encountered in a wide variety of astrophysical situations, but also
in magnetic fusion devices such as tokamaks, where a large external magnetic field needs to be
applied in order to keep the particles on the desired tracks.

In Particle-In-Cell (PIC) simulations of such devices, this large external magnetic field obvi-
ously needs to be taken into account when pushing the particles. However, due to the magnitude
of the concerned field this often adds a new time scale to the simulation and thus a stringent
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restriction on the time step. In order to get rid of this additional time scale, we would like to
find approximate equations, where only the gross behavior implied by the external field would
be retained and which could be used in a numerical simulation. In the simplest situation, the
trajectory of a particle in a constant magnetic field B is a helicoid along the magnetic field
lines with a radius proportional to the inverse of the magnitude of B. Hence, when this field
becomes very large the particle gets trapped along the magnetic field lines. However due to the
fast oscillations around the apparent trajectory, its apparent velocity is smaller than the actual
one. This result has been known for some time as the guiding center approximation, and the
link between the real and the apparent velocity is well known in terms of B.

Here, we consider a plasma constituted of a large number of charged particles, which is
described by the Vlasov equation coupled with the Maxwell or Poisson equations to compute
the self-consistent fields. It describes the evolution of a system of particles under the effects
of external and self-consistent fields. The unknown f(t,x,v), depending on the time t, the
position x, and the velocity v, represents the distribution of particles in phase space for each
species with (x,v) ∈ Rd × Rd, d = 1, .., 3. Its behaviour is given by the Vlasov equation,

(1.1)
∂f

∂t
+ v · ∇xf + F(t,x,v) · ∇vf = 0,

where the force field F (t,x,v) is coupled with the distribution function f giving a nonlinear
system. We first define ρ(t,x) the charge density and J(t,x) the current density which are
given by

ρ(t,x) = q

∫
Rd

f(t,x,v)dv, J(t,x) = q

∫
Rd

v f(t,x,v)dv,

where q is the elementary charge. For the Vlasov-Poisson model

(1.2) F(t,x,v) =
q

m
E(t,x), E(t,x) = −∇xφ(t,x), −∆xφ =

ρ

ε0

,

where m represents the mass of one particle. On the other hand for the Vlasov-Maxwell model,
we have

F(t,x,v) =
q

m
(E(t,x) + v ∧B(t,x) ),

and E, B are solutions of the Maxwell equations

∂E

∂t
− c2∇×B = − J

ε0

,

∂B

∂t
+ ∇× E = 0,

∇ · E =
ρ

ε0

, ∇ ·B = 0,

with the compatibility condition
∂ρ

∂t
+ divxJ = 0,

which is verified by the solutions of the Vlasov equation.
Here we will consider an intermediate model where the magnetic field is given,

B(t,x) =
1

ε
Bext(t,x⊥),

with ε > 0 and we focus on the long time behavior of the plasma in the orthogonal plane to the
external magnetic field, that is the two dimensional Vlasov-Poisson system with an external
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strong magnetic field
(1.3)

ε
∂f

∂t
+ v⊥ · ∇x⊥f +

(
E(t,x⊥) +

1

ε
v⊥ ∧Bext(t,x⊥)

)
· ∇v⊥f = 0, (x⊥,v⊥) ∈ R4,

E = −∇x⊥φ, −∆x⊥φ = ρ, x⊥ ∈ R2.

Here, for simplicity we set all physical constants to one and consider that ε > 0 is a small
parameter related to the ratio between the reciprocal Larmor frequency and the advection time
scale. The term ε in front of the time derivative of f stands for the fact that we want to
approximate the solution for large time.

We want to construct numerical solutions to the Vlasov-Poisson system (1.3) by particle
methods (see [5]), which consist in approximating the distribution function by a finite number
of macro-particles. The trajectories of these particles are computed from the characteristic
curves corresponding to the Vlasov equation

(1.4)



ε
dX

dt
= V,

ε
dV

dt
=

1

ε
V ∧Bext(t,X) + E(t,X),

X(t0) = x0
⊥, V(t0) = v0

⊥,

where the electric field is computed from a discretization of the Poisson equation in (1.3) on a
mesh of the physical space.

The main purpose of this work is the construction of efficient numerical methods for stiff
transport equations of type (1.3) in the limit ε→ 0. Indeed, setting

Z =
V

ε
− E ∧Bext

‖Bext‖2
,

the system (1.4) can be re-written for (X,Z) as

(1.5)



dX

dt
=

E ∧Bext

‖Bext‖2
+ Z,

dZ

dt
= − 1

ε2
Bext ∧ Z − d

dt

(
E ∧Bext

‖Bext‖2

)
,

X(t0) = x0
⊥, Z(t0) =

1

ε
v0
⊥ −

E ∧Bext

‖Bext‖2
(t0,x0

⊥).

Therefore, we denote by (Xε,Zε) the solution to (1.5), and under some classical smoothness
assumptions on the electromagnetic fields (E,Bext), it is well-known at least when v0

⊥ = 0 or
Bext is homogeneous that (Zε)ε>0 converges weakly to zero when ε → 0, and Xε ⇀ Y, where
Y corresponds to the guiding center approximation

(1.6)


dY

dt
=

E ∧Bext

‖Bext‖2
(t,Y),

Y(t0) = x0
⊥.

Here, we are of course interested in the behavior of the sequence solution (f ε)ε>0 to the Vlasov-
Poisson system (1.3) when ε→ 0, which corresponds to the gyro-kinetic approximation of the
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Vlasov-Poissons system. Following the work of L. Saint-Raymond [37], it can be proved — at
least when Bext is homogeneous — that the charge density (ρε)ε>0 converges to the solution to
the guiding center approximation

(1.7)


∂ρ

∂t
+ U · ∇ρ = 0,

−∆x⊥φ = ρ,

where the velocity U is

U =
E ∧Bext

‖Bext‖2
, E = −∇x⊥φ.

We observe that the limit system (1.6) corresponds to the characteristic curves to the limit
equation (1.7).

We seek a method that is able to capture these properties, while the numerical parame-
ters may be kept independent of the stiffness degree of these scales. This concept is known
and widely studied for dissipative systems in the framework of asymptotic preserving schemes
[30, 31]. Contrary to collisional kinetic equations in hydrodynamic or diffusion asymptotic,
collisionless equations like the Vlasov-Poisson system (1.3) involve time oscillations. In this
context, the situation is more complicated than the one encountered in collisional regimes since
we cannot expect any dissipative phenomenon. Therefore, the notion of two-scale convergence
has been introduced both at the theoretical and numerical level [13, 23, 24] in order to derive
asymptotic models. However, these asymptotic models, obtained after removing the fast scales,
are valid only when ε is small. We refer to E. Frénod and E. Sonnendrücker [24], and F. Golse
and L. Saint-Raymond [26, 38] for a theoretical point of view on these questions, and E. Frénod,
F. Salvarani and E. Sonnendrücker [23] for numerical applications of such techniques.

Another approach is to combine both disparate scales into one and single model. Such a
decomposition can be done using a micro-macro approach (see [13] and the references therein).
Such a model may be used when the small parameter of the equation is not everywhere small.
Hence, a scheme for a micro-macro model can switch from one regime to another without
any treatment of the transition between the different regimes. A different method consists in
separating fast and slow time scales when such a structure can be identified [15] or [22].

Theses techniques work well when the magnetic field is uniform since fast scales can be
computed from a formal asymptotic analysis, but for more complicated problems, that is, when
the external magnetic field depends on time and position x, the generalization of this approach
is an open problem.

In this paper, we propose an alternative to such methods allowing to make direct simulations
of systems (1.3) with large time steps with respect to ε. We develop numerical schemes that
are able to deal with a wide range of values for ε, so-called Asymptotic Preserving (AP) class
[31, 30], such schemes are consistent with the kinetic model for all positive value of ε, and
degenerate into consistent schemes with the asymptotic model when ε→ 0.

Before presenting our time discretization technique, let us first briefly review the basic tools
of particle-in-cell methods which are widely used for plasma physics simulations [5].

2. A brief review of particle methods

The numerical resolution of the Vlasov equation and related models is usually performed by
Particle-In-Cell (PIC) methods which approximate the plasma by a finite number of particles.
Trajectories of these particles are computed from characteristic curves (1.4) corresponding to
the the Vlasov equation (1.3), whereas self-consistent fields are computed on a mesh of the
physical space.
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This method yields satisfying results with a relatively small number of particles but it is
sometimes subject to fluctuations, due to the numerical noise, which are difficult to control. To
improve the accuracy, direct numerical simulation techniques have been developed. The Vlasov
equation is discretized in phase space using either semi-Lagrangian [18, 19, 34, 36, 40, 39], finite
difference [12, 21, 43] or discontinuous Galerkin [4, 28] schemes. But these direct methods
are very costly, hence several variants of particle methods have been developed over the past
decades. In the Complex Particle Kinetic scheme introduced by Bateson and Hewett [2, 29],
particles have a Gaussian shape that is transformed by the local shearing of the flow. Moreover
they can be fragmented to probe for emerging features, and merged where fine particles are no
longer needed. In the Cloud in Mesh (CM) scheme of Alard and Colombi [1] particles also have
Gaussian shapes, and they are deformed by local linearization of the force field. More recently in
[7], the authors proposed a Linearly-Transformed Particle-In-Cell method, that employs linear
deformations of the particles.

Here we focus on the time discretization technique, hence we will only consider standard
particle method even if our approach is completely independant on the choice of the particle
method.

The particles method consists in approximating the initial condition f0 in (1.3) by the fol-
lowing Dirac mass sum

f 0
N(x,v) :=

∑
1≤k≤N

ωk δ(x− x0
k) δ(v − v0

k) ,

where (x0
k,v

0
k)1≤k≤N is a beam of N particles distributed in the four dimensional phase space

according to the density function f0. Afterwards, one approximates the solution of (1.3), by

fN(t,x,v) :=
∑

1≤k≤N

ωk δ(x−Xk(t)) δ(v −Vk(t)) ,

where (Xk,Vk)1≤k≤N is the position in phase space of particle k moving along the characteristic
curves (1.4) with the initial data (x0

k,v
0
k), for 1 ≤ k ≤ N .

However when the Vlasov equation is coupled with the Poisson equation for the computation
of the electric field, the Dirac mass has to be replaced by a smooth function ϕα

f 0
N,α(x,v) :=

∑
1≤k≤N

ωk ϕα(x− x0
k) ϕα(v − v0

k) ,

where ϕε = ε−dϕ(·/ε) is a particle shape function with radius proportional to ε, usually seen
as a smooth approximation of the Dirac measure obtained by scaling a compactly supported
“cut-off” function ϕ for which common choices include B-splines and smoothing kernels with
vanishing moments, see e.g. [32, 11].

Particle centers are then pushed forward at each time t by following a numerical approxima-
tion of the flow (1.4), leading to

fN,α(t,x,v) :=
∑

1≤k≤N

ωk ϕα (x−Xk(t)) ϕα (v −Vk(t)) .

In the classical error analysis [3, 35], the above process is seen as

• An approximation (in the distribution sense) of the initial data by a collection of
weighted Dirac measures ;
• The exact transport of the Dirac particles along the flow ;
• The smoothing of the resulting distribution∑

1≤k≤N

ωk δ(.−Xk(t)) δ(.−Vk(t))
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with the convolution kernel ϕε.

The classical error estimate reads then as follows [9]:

Proposition 2.1. Consider the Vlasov equation with a given electromagnetic field (E,Bext)
and a smooth initial datum f 0 ∈ Cs

c (Rd), with s ≥ 1.
If for some prescribed integers m > 0 and r > 0, the cut-off ϕ ≥ 0 has m-th order smoothness

and satisfies a moment condition of order r, namely,∫
Rd

ϕ(y) dy = 1,

∫
Rd

|y|r ϕ(y) dy < ∞,

and∫
Rd

ys11 . . . ysdd ϕ(y) dy = 0, for s = (s1, . . . , sd) ∈ INd with 1 ≤ s1 + · · ·+ sd ≤ r − 1.

Then there exists a constant C independent of f0, N or α, such that we have for all 1 ≤ p ≤ +∞,

‖f(t)− fN,α(t)‖Lp → 0,

when N →∞ and α→ 0 where the ratio N1/dα� 1.

Note that following [9], it is also possible to get explicit order of convergence for the linear
Vlasov equation. Let us also mention related papers where the convergence of a numerical
scheme for the Vlasov-Poisson system is investigated. G.-H. Cottet and P.-A. Raviart [10]
present a precise mathematical analysis of the particle method for solving the one-dimensional
Vlasov–Poisson system. We also mention the papers of S. Wollman and E. Ozizmir [41] and
S. Wollman [42] on the topic. K. Ganguly and H.D. Victory give a convergence result for the
Vlasov-Maxwell system [25].

The rest of the paper is organized as follows. In Section 3 we present several time discretiza-
tion techniques based on high-order semi-implicit schemes [6] for the Vlasov-Poisson system
with a strong external magnetic field, and we prove uniform consistency of the schemes in the
limit ε→ 0 with preservation of the order of accuracy (from first to third order accuracy). In
Section 4, for smooth electromagnetic fields, we perform a rigorous analysis of the first order
scheme and one of second-order schemes.

Section 5 is then devoted to numerical simulations for one single particle motion and for the
Vlasov-Poisson model for various asymptotics ε ≈ 1 and ε� 1, which illustrate the advantage
of high order schemes.

3. A particle method for Vlasov-Poisson system with a strong magnetic field

Let us now consider the system (1.3) and apply a particle method, where the key issue is to
design a uniformly stable scheme with respect to the parameter ε > 0, which is related to the
magnitude of the external magnetic field. Assume that at time tn = n∆t, the set of particles are
located in (xnk ,v

n
k )1≤k≤N , we want to solve the following system on the time interval [tn, tn+1],

(3.1)



ε
dXk

dt
= Vk,

ε
dVk

dt
=

1

ε
Vk ∧Bext(t,Xk) + E(t,Xk),

X(tn) = xnk , V(tn) = vnk ,

where the electric field is computed from a discretization of the Poisson equation (1.3) on a
mesh of the physical space.
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The numerical scheme that we describe here is proposed in the framework of Particle-In-Cell
method, where the solution f is discretized as follows

fn+1
N,α (x,v) :=

∑
1≤k≤N

ωk ϕα(x− xn+1
k )ϕα(v − vn+1

k ),

where (xn+1
k ,vn+1

k ) represents an approximation of the solution Xk(t
n+1) and Vk(t

n+1) to (3.1).
When the Vlasov equation (1.3) is coupled with the Poisson equation (1.2), the electric field

is computed in a macro-particle position xn+1
k at time tn+1 as follows

• Compute the density ρ

ρnh,ε(x) =
∑
k∈ZZd

wk ϕε(x− xnk).

• Solve a discrete approximation to (1.2)

−∆hφ
n(x) = ρnh,ε(x).

• Interpolate the electric field with the same order of accuracy on the points (xnk)k∈ZZd .

To discretize the system (3.1), we apply the strategy developed in [6] based on semi-implicit
solver for stiff problems. In the rest of this section, we propose several numerical schemes to
the system (3.1) for which the index k ∈ {1, . . . , N} will be omitted.

3.1. A first order semi-implicit scheme. We start with the simplest semi-implicit scheme
for (3.1), which is a combination of backward and forward Euler scheme. It gives for a fixed
time step ∆t > 0 and a given electric field E and an external magnetic field Bext,

(3.2)


xn+1 − xn

∆t
=

vn+1

ε
,

vn+1 − vn

∆t
=

1

ε

(
vn+1

ε
∧Bext(t

n,xn) + E(tn,xn)

)
.

Note that only the second equation on vn+1 is fully implicit and requires the inversion of a
linear operator. Then, from vn+1 the first equation gives the value for the position xn+1.

Proposition 3.1 (Consistency in the limit ε→ 0 for a fixed ∆t). Let us consider a time step
∆t > 0, a final time T > 0 and set NT = [T/∆t]. Assume that the sequence (xnε ,v

n
ε )0≤n≤NT

given by (3.2) is such that for all 1 ≤ n ≤ NT , (xnε , εv
n
ε )ε>0 is uniformly bounded with respect

to ε > 0 and (x0
ε, εv

0
ε)ε>0 converges in the limit ε→ 0 to some (y0, 0). Then, for 1 ≤ n ≤ NT ,

xnε → yn, as ε → 0 and the limit (yn)1≤n≤NT
is a consistent first order approximation with

respect to ∆t of the guiding center equation provided by the scheme

(3.3)
yn+1 − yn

∆t
= E(tn,yn) ∧ Bext(t

n,yn)

‖B‖2
.

Proof. For all 1 ≤ n ≤ NT , we consider (xnε ,v
n
ε ) the solution to (3.2) now labeled with respect

to ε > 0. Since, the sequence (xnε )ε>0 is uniformly bounded with respect to ε > 0, we can
extract a subsequence still abusively labeled by ε and find some (yn) such that xnε → yn as ε
goes to zero. Then, we observe that the second equation of (3.2) can be written as

ε2 vn+1
ε − vnε
ε∆t

=

(
vn+1
ε

ε
∧Bext(t

n,xnε ) + E(tn,xnε )

)
.
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and that, for any 0 ≤ n ≤ NT , (εvnε )ε>0 is uniformly bounded. From this we conclude first that
for any 1 ≤ n ≤ NT , (ε−1vnε )ε>0 is uniformly bounded then that εvnε → 0 for any 0 ≤ n ≤ NT .
Therefore, taking the limit ε→ 0, it yields that for 0 ≤ n ≤ NT − 1,

ε−1 vn+1
ε → E(tn,yn) ∧ Bext(t

n,yn)

‖Bext‖2
, when ε→ 0.

Substituting the limit of ε−1 vn+1 in the first equation of (3.2) we prove that the limit yn

satisfies (3.3). Since the limit point yn is uniquely determined, actually all the sequence (xnε )ε>0

converges. �

Remark 3.2. The consistency provided by the latter result is far from being uniform with
respect to the time step. However we do prove in the next section that the solution to (3.2) is
both uniformly stable and consistent with respect to ∆t and ε > 0.

Of course, such a first order scheme is not accurate enough to describe correctly the long
time behavior of the numerical solution, but it has the advantage of the simplicity and we will
prove in the next section that it is uniformly stable with respect to the parameter ε and the
sequence (xnε ) converges to a consistent approximation of the guiding center model when ε→ 0.

Now, let us see how to generalize such an approach to second and third order schemes.

3.2. Second order semi-implicit Runge-Kutta schemes. Now, we consider second order
schemes with two stages.

3.2.1. A second order A-stable scheme. A first example of scheme satisfying the second order
conditions is given by a combination of Heun method (explicit part) and an A-stable second
order singly diagonal implicit Runge-Kutta SDIRK method (implicit part) [27, 6]. The first
stage corresponds to

(3.4)


x(1) = xn +

∆t

2ε
v(1),

v(1) = vn +
∆t

2ε

[
v(1)

ε
∧Bext(t

n,xn) + E(tn,xn)

]
.

Then the second stage is given by

(3.5)


x(2) = xn +

∆t

2ε
v(2),

v(2) = vn +
∆t

2ε

[
v(2)

ε
∧Bext(t

n+1, 2x(1) − xn) + E(tn+1, 2x(1) − xn)

]
.

Finally, the numerical solution at the new time step is

(3.6)

 xn+1 = x(1) + x(2) − xn,

vn+1 = v(1) + v(2) − vn.

A similar numerical scheme has been proposed in the framework of δf simulation of the
Vlasov-Poisson system [8].

Under stability assumptions on the numerical solution to (3.4)-(3.6), we get the following
consistency result in the limit ε→ 0.
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Proposition 3.3 (Consistency in the limit ε→ 0 for a fixed ∆t). Let us consider a time step
∆t > 0, a final time T > 0 and set NT = [T/∆t]. Assume that the sequence (xnε ,v

n
ε )0≤n≤NT

given by (3.4)-(3.6) is such that for all 1 ≤ n ≤ NT , (xnε , εv
n
ε )ε>0 is uniformly bounded with

respect to ε > 0 and (x0
ε, εv

0
ε)ε>0 converges in the limit ε → 0 to some (y0, 0). Then, for

1 ≤ n ≤ NT , xnε → yn, as ε → 0 and the limit (yn)n≥1 is a consistent and second order
approximation with respect to ∆t of the guiding center equation given by the scheme

(3.7)


y(1) = yn +

∆t

2

(
E(tn,yn) ∧ Bext(t

n,yn)

‖Bext‖2

)
,

y(2) = yn +
∆t

2

(
E(tn+1, 2y(1) − yn) ∧ Bext(t

n+1, 2y(1) − yn)

‖Bext‖2

)
,

and yn+1 = y(1) + y(2) − yn.

Proof. We follow the lines of the proof of Proposition 3.1 and first choose a subsequence of (xnε )

converging to some yn. The second equation of (3.4) implies that ε−1v
(1)
ε is bounded. From

the first equation of (3.4) it follows that so is x
(1)
ε . Then the second equation of (3.5) yields

boundedness of ε−1v
(2)
ε and the first that x

(2)
ε is also bounded. Now from the second equation

of (3.6) stems that εvnε converges to zero as ε → 0 for any 0 ≤ n ≤ NT . Coming back to the

second equation of (3.4) we show that for all n, ε−1v
(1)
ε converges when ε→ 0 and

v
(1)
ε

ε
→ E(tn,yn) ∧ Bext(t

n,yn)

‖Bext‖2
, when ε→ 0.

Using the first equation of (3.4) we conclude that x(1) also converges and that its limit y(1) is
given by the first equation of (3.7). Going on with the same arguments shows that

v
(2)
ε

ε
→ E(tn+1, 2y(1) − yn) ∧ Bext(t

n+1, 2y(1) − yn)

‖Bext‖2
, when ε→ 0

and that x(2) converges to a y(2) given by the second equation of (3.7). One may then take a
limit in the first equation of (3.6) and conclude that indeed the limit yn satisfies (3.7). Again
uniqueness supplies the convergence of the whole sequence. �

3.2.2. A second order L-stable scheme. Another choice is a combination of Runge-Kutta method
(explicit part) and an L-stable second order SDIRK method in the implicit part. This implicit
scheme should give better stability properties on the numerical solution with respect to the
stiffness parameter ε > 0.

We first choose γ > 0 as the smallest root of the polynomial γ2 − 2γ + 1/2 = 0, i.e.
γ = 1− 1/

√
2, then the scheme is given by the following two stages. First, we have

(3.8)


x(1) = xn +

γ∆t

ε
v(1),

v(1) = vn +
γ∆t

ε
F(1),

with

F(1) :=
v(1)

ε
∧Bext(t

n,xn) + E(tn,xn).

For the second stage, we first define

(3.9) t̂(1) := tn +
∆t

2γ
, x̂(1) := xn +

∆t

2γε
v(1),
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then the solution (x(2),v(2)) is given by

(3.10)


x(2) = xn +

(1− γ)∆t

ε
v(1) +

γ∆t

ε
v(2),

v(2) = vn +
(1− γ)∆t

ε
F(1) +

γ∆t

ε
F(2),

with

F(2) :=
v(2)

ε
∧Bext

(
t̂(1), x̂(1)

)
+ E

(
t̂(1), x̂(1)

)
.

Finally, the numerical solution at the new time step is

(3.11)

 xn+1 = x(2),

vn+1 = v(2).

Under stability assumptions on the numerical solution to (3.4)-(3.6), we get the following
consistency result in the limit ε→ 0.

Proposition 3.4 (Consistency in the limit ε→ 0 for a fixed ∆t). Let us consider a time step
∆t > 0, a final time T > 0 and set NT = [T/∆t]. Assume that the sequence (xnε ,v

n
ε )0≤n≤NT

given by (3.8)-(3.11) is such that for all 1 ≤ n ≤ NT , (xnε , εv
n
ε )ε>0 is uniformly bounded

with respect to ε > 0 and (x0
ε, εv

0
ε)ε>0 converges in the limit ε → 0 to some (y0, 0). Then,

for 1 ≤ n ≤ NT , xnε → yn, as ε → 0 and the limit (yn)n≥1 is a consistent second order
approximation of the guiding center equation, given by

(3.12)


Un = E(tn,yn) ∧ Bext(t

n,yn)

‖Bext‖2
,

yn+1 = yn + (1− γ)∆tUn + γ∆tU(1),

where

ŷ(1) := yn +
∆t

2γ
Un, U(1) := E(t̂(1), ŷ(1)) ∧ Bext(t̂

(1), ŷ(1))

‖Bext‖2
.

We omit the proof of Proposition 3.4 as almost identical to the one of Proposition 3.3.
The present scheme is L- stable, which means uniformly linearly stable with respect to ∆t.

3.3. Third order semi-implicit Runge-Kutta schemes. A third order semi-implicit scheme
is given by a four stages Runge-Kutta method introduced in the framework of hyperbolic
systems with stiff source terms [6]. First, we set α = 0.24169426078821, β = α/4 and
η = 0.12915286960590 and γ = 1/2− α− β − η. Then we construct the first stage as

(3.13)


x(1) = xn +

α∆t

ε
v(1),

v(1) = vn +
α∆t

ε
F(1),

with

F(1) :=
v(1)

ε
∧Bext(t

n,xn) + E(tn,xn).



PARTICLE-IN-CELL METHODS FOR THE VLASOV-POISSON SYSTEM 11

For the second stage, we have

(3.14)


x(2) = xn − α∆t

ε
v(1) +

α∆t

ε
v(2),

v(2) = vn − α∆t

ε
F(1) +

α∆t

ε
F(2),

with

F(2) :=
v(2)

ε
∧Bext (tn,xn) + E (tn,xn) .

Then, for the third stage we set

(3.15)


x(3) = xn +

(1− α)∆t

ε
v(2) +

α∆t

ε
v(3),

v(3) = vn +
(1− α)∆t

ε
F(2) +

α∆t

ε
F(3),

with 
F(3) :=

v(3)

ε
∧Bext

(
tn+1,x(2)

)
+ E

(
tn+1,x(2)

)
,

x(2) := xn +
∆t

ε
v(2).

Finally, for the fourth stage we set

(3.16)


x(4) = xn +

β∆t

ε
v(1) +

η∆t

ε
v(2) +

γ∆t

ε
v(3) +

α∆t

ε
v(4),

v(4) = vn +
β∆t

ε
F(1) +

η∆t

ε
F(2) +

γ∆t

ε
F(3) +

α∆t

ε
F(4),

with 
F(4) :=

v(4)

ε
∧Bext

(
tn+1/2,x(3)

)
+ E

(
tn+1/2,x(3)

)
,

x(3) := xn + ∆t
4ε

(
v(2) + v(3)

)
,

and the numerical solution at the new time step is

(3.17)

 xn+1 = xn + ∆t
6ε

(
v(2) + v(3) + 4 v(4)

)
,

vn+1 = vn + ∆t
6ε

(
F(2) + F(3) + 4 F(4)

)
.

As for the previous schemes, under uniform stability assumptions with respect to ε > 0, we
prove the following Proposition

Proposition 3.5 (Consistency in the limit ε→ 0 for a fixed ∆t). Let us consider a time step
∆t > 0, a final time T > 0 and set NT = [T/∆t]. Assume that the sequence (xnε ,v

n
ε )0≤n≤NT

given by (3.13)-(3.17) is such that for all 1 ≤ n ≤ NT , (xnε , εv
n
ε )ε>0 is uniformly bounded

with respect to ε > 0 and (x0
ε, εv

0
ε)ε>0 converges in the limit ε → 0 to some (y0, 0). Then, for

1 ≤ n ≤ NT , xnε → yn, as ε→ 0 and the limit (yn)n≥1 is a consistent third order approximation
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of the guiding center equation provided by the scheme

(3.18)



U(2) = E(tn,yn) ∧ Bext(t
n,yn)

‖Bext‖2
,

U(3) = E(tn+1,y(2)) ∧ Bext(t
n+1,y(2))

‖Bext‖2
,

U(4) = E(tn+1/2,y(3)) ∧ Bext(t
n+1/2,y(3))

‖Bext‖2
,

where 
y(2) = yn + ∆tU(2),

y(3) = yn +
∆t

4

(
U(2) + U(3)

)
,

and

yn+1 = yn +
∆t

6

(
U(2) + U(3) + 4 U(4)

)
.

Proof. We follow the lines of the proof of Proposition 3.3. In particular we prove successively

the boundedness of ε−1v
(1)
ε , x

(1)
ε , ε−1v

(2)
ε , x

(2)
ε , ε−1v

(3)
ε , x

(3)
ε , ε−1v

(4)
ε , x

(4)
ε . Arguing inductively

on n one then shows that εvnε , F(1), F(2), F(3), F(4) all converge to zero when ε→ 0. Then for

any converging subsequence of xnε we may successively identify limits for ε−1v
(1)
ε , x

(1)
ε , ε−1v

(2)
ε ,

x
(2)
ε , ε−1v

(3)
ε , x

(3)
ε , ε−1v

(4)
ε , x

(4)
ε and prove that any accumulating point of xnε solves the limiting

scheme involving (3.18). Hence the result. �

4. Uniform estimates

4.1. Analysis of the first-order semi-implicit scheme. Consider the first order Euler
semi-implicit scheme

(4.1)



ε
xn+1
k − xnk

∆t
= vn+1

k ,

ε
vn+1
k − vnk

∆t
=

1

ε
vn+1
k ∧Bext(t

n,xnk) + E(tn,xnk),

x0
k = x0

k, v0
k = v0

k .

We focus here on the case where both E and Bext are given external fields. Since, in this
case, there is no coupling between particles we may focus safely on one of them and drop the

k suffix. Then we prove

Theorem 4.1 (Uniform consistency with respect to ε). We set

λ :=
∆t

ε2
,

assume that the (E,Bext) ∈ W 1,∞
loc (R+ × R2) and consider the solution (xn,vn) to (4.1). Then

there exist positive constants C and λ0, only depending on E, Bext and tn such that when1

0 ≤ ∆t ≤ 1 and λ ≥ λ0

‖xn − yn‖ ≤ C∆t

λ

[
1 +

∥∥ε−1v0 −R[E(t0,x0)]
∥∥] ,

1Obviously one may replace 1 by any upper bound on ∆t but λ0 and C would depend on this upper bound.
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where (yn) corresponds to the numerical solution of the guiding center model

(4.2)


yn+1 − yn

∆t
= E(tn,yn) ∧ Bext

‖Bext‖2
,

y0 = x0 .

Proof. To start with we analyze the case where E is a given bounded Lipschitz field and Bext

is constant and of norm 1. Our estimates shall be expressed in terms of2

K0 = ‖E‖L∞ Kt =

∥∥∥∥∂E

∂t

∥∥∥∥
L∞

Kx = ‖∇xE‖L∞ .

For concision’s sake we also introduce the operator to denote R[W] = W ∧Bext.
By introducing the key quantity for n ≥ 1,

zn = ε−1vn −R[E(tn−1,xn−1)],

the first equation of (4.1) reads

xn = xn−1 + ∆t R[E(tn−1,xn−1)] + ∆t zn , n ≥ 1

while z1 = [Id− λR]−1(ε−1v0 −R[E(t0,x0)]) and

zn+1 = [Id− λR]−1(zn −R[E(tn,xn)− E(tn−1,xn−1)]) , n ≥ 1 .

We first observe that ‖R‖ ≤ 1 and [Id− λR]−1 = (Id + λR)/(1 + λ2) since R2 = −Id.
This leads to

‖zn+1‖ ≤ 1 + λ

1 + λ2
[(1 +Kx∆t)‖zn‖ + (Kt +KxK0)∆t] , n ≥ 1 .

Assuming
1 + λ

1 + λ2
(1 +Kx∆t) < 1

and introducing

a =
1 + λ

1 + λ2

Kt +KxK0

1− 1+λ
1+λ2

(1 +Kx∆t)
∆t

we infer

‖zn‖ ≤ a +

(
1 + λ

1 + λ2
(1 +Kx∆t)

)n−1

b , n ≥ 1 ,

where

b = a +
1 + λ

1 + λ2

∥∥∥∥1

ε
v0 −R[E(t0,x0)]

∥∥∥∥ .
For comparison we define yn solution to (4.2). Then,

‖xn − yn‖ ≤ (1 +Kx∆t)‖xn−1 − yn−1‖

+ ∆t

[
a +

(
1 + λ

1 + λ2
(1 +Kx∆t)

)n−1

b

]
, n ≥ 1 .

2Strictly speaking when fields are only locally Lipschitz we should first determine a compact domain for the
values of x then define values below as L∞ norms on a compact neighborhood of this domain and restrict tn

accordingly. We omit however those immaterial details as they may be fixed in an extremely classical way.
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Hence assuming moreover Kx > 0 (or replacing Kx with some arbitrary positive number if
‖∇xE‖L∞ = 0)

‖xn − yn‖ ≤ a

Kx

[ 1 + (1 +Kx∆t)
n ]

+
b∆t

(1 +Kx∆t)[1− 1+λ
1+λ2

]

[
1 +

(
1 + λ

1 + λ2

)n]
(1 +Kx∆t)

n .

As a conclusion, for any 0 ≤ θ < 1, there exists Cθ such that if

1 + λ

1 + λ2
(1 +Kx∆t) ≤ θ

then, it yields

(4.3) ‖xn − yn‖ ≤ Cθ
∆t

λ

[
K0 +

Kt

Kx

+

∥∥∥∥1

ε
v0 −R[E(t0,x0)]

∥∥∥∥] eKx n∆t ,

which concludes the proof of Theorem 4.1 when the magnetic field is uniform.
We now relax the assumption that Bext is constant and of norm 1. We set bext = ‖Bext‖

and let R be dependent on t and x. We observe that now R2 = −b2
extId so that [Id− λR]−1 =

(Id + λR)/(1 + λ2b2
ext). Then introducing the drift force

F(t,x) =
1

‖Bext(t,x)‖2
E(t,x) ∧Bext(t,x)

we essentially obtain the same estimates with 1+λ
1+λ2

replaced by

1

Λ
:=

∥∥∥∥ 1 + λbext

1 + λ2b2
ext

∥∥∥∥
L∞

and

K0 = ‖F‖L∞ Kt =

∥∥∥∥∂F

∂t

∥∥∥∥
L∞

Kx = ‖∇xF‖L∞ .

Indeed introducing for n ≥ 1,

zn =
vn

ε
− F(tn−1,xn−1),

the scheme is written

z1 = [Id− λR(t0,x0)]−1

(
v0

ε
− F(t0,x0)

)
,

and then

zn+1 = [Id− λR(tn,xn)]−1(zn − (F(tn,xn)− F(tn−1,xn−1))) , n ≥ 1

together with

xn = xn−1 + ∆t F(tn−1,xn−1) + ∆t zn , n ≥ 1 .

Mark that if λ× (inf ‖Bext‖) >
√

2− 1 then

Λ ≥ 1 + λ2 × (inf ‖Bext‖)2

1 + λ× (inf ‖Bext‖)
.

�
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Note that this result can be slightly improved when we modify the initial condition of the
asymptotic discrete model. Indeed, consider yn solving

(4.4)


yn+1 − yn

∆t
= E(tn,yn) ∧Bext,

y0 = x0 + ε (v0 ∧Bext + εE(t0,x0)) .

The gain is that now

‖x1 − y1‖ ≤ ∆t

λ

[
Kx∆t +

1 + λ

1 + λ2

] ∥∥∥∥1

ε
v0 −R[E(t0,x0)]

∥∥∥∥
since

z1 =
1

λ
R

[
1

ε
v0 −R[E(t0,x0)]

]
− 1

λ
R [Id− λR]−1

[
1

ε
v0 −R[E(t0,x0)]

]
.

This leads, for n ≥ 1 to

‖xn − yn‖ ≤ a

Kx

[
1 + (1 +Kx∆t)

n−1
]

+
b∆t

1− 1+λ
1+λ2

1 + λ

1 + λ2

[
1 +

(
1 + λ

1 + λ2

)n−1
]

(1 +Kx∆t)
n−1

+
∆t

λ

[
Kx∆t +

1 + λ

1 + λ2

] ∥∥∥∥1

ε
v0 −R[E(t0,x0)]

∥∥∥∥ (1 +Kx∆t)
n−1

then with notation as above there exists a constant C = Cθ (K0 + Kt

Kx
+Kx + 1)eKxtn > 0 such

that

(4.5) ‖xn − yn‖ ≤ C
∆t

λ

[
1 +

(
1

λ
+ ∆t

)∥∥∥∥1

ε
v0 −R[E(t0,x0)]

∥∥∥∥] .
4.2. Analysis of the L-stable second-order semi-implicit scheme. Consider now the
scheme (3.8)-(3.11) where E and Bext are given external fields.

Theorem 4.2 (Uniform consistency with respect to ε). We set

λ :=
∆t

ε2
,

assume that the (E,Bext) ∈ W 1,∞
loc (R+ ×R2) and consider the solution (xn,vn) to (3.8)-(3.11).

Then there exist positive constants C and λ0, only depending on E, Bext and tn such that when
0 ≤ ∆t ≤ 1 and λ ≥ λ0

‖xn − yn‖ ≤ C∆t

λ

[
1 +

∥∥ε−1v0 −R[E(t0,x0)]
∥∥] ,

where (yn) solves the numerical scheme (3.12) for the guiding center model with initial condition
y0 = x0.

Proof. To keep a precise account of each step henceforth we mark with an n suffix the interme-

diate quantities involved at the nth step of the scheme, for instance t
(1)
n = tn−1 + ∆t/(2γ). For

concision’s sake we also introduce bext := ‖Bext‖, R(t,x)[W] := W ∧Bext(t,x)

F(t,x) :=
1

‖Bext(t,x)‖2
E(t,x) ∧Bext(t,x) ,

1

Λ
:=

∥∥∥∥ 1 + λγbext

1 + λ2γ2b2
ext

∥∥∥∥
L∞

,

K0 = ‖F‖L∞ Kt =

∥∥∥∥∂F

∂t

∥∥∥∥
L∞

Kx = ‖∇xF‖L∞ L+ = sup bext L− = inf bext ,
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and for n ≥ 1,

z(1)
n =

v
(1)
n

ε
− F(tn−1,xn−1), z(2)

n =
v

(2)
n

ε
− F(t̂(1)

n , x̂(1)
n ) .

With this set of notation the second equation of (3.8) leads when n ≥ 1 to

z
(1)
n+1 = [Id− λγR(tn,xn)]−1 [ z(2)

n + F(t̂(1)
n , x̂(1)

n ) − F(tn,xn) ]

thus

‖z(1)
n+1‖ ≤ Λ−1 [Kx∆t ‖z(1)

n ‖ + (1 +Kxγ∆t) ‖z(2)
n ‖ + KxK0(1 + γ)∆t + Kt(1− (2γ)−1)∆t ]

since

‖x̂(1)
n − xn‖ =

∆t

ε
‖γv(2)

n − v(1)
n ‖ ≤ ∆t [ ‖z(1)

n ‖ + γ‖z(2)
n ‖ + K0(γ + 1) ] .

Likewise when n ≥ 1 the second equation of (3.10) yields

z
(2)
n+1 = [Id−λγR(t̂

(1)
n+1, x̂

(1)
n+1)]−1 [ z(2)

n + F(t̂(1)
n , x̂(1)

n ) − F(t
(1)
n+1, x̂

(1)
n+1) + (1−γ)λR(tn,xn) z

(1)
n+1 ]

thus3

‖z(2)
n+1‖ ≤

[
Kx

2γΛ
+

1− γ
γ

L+

L−

(
1 +

1

γλL−

)]
‖z(1)

n+1‖

+
1

Λ

[
Kx∆t ‖z(1)

n ‖ + (1 +Kxγ∆t) ‖z(2)
n ‖ + 3KxK0∆t + Kt∆t

]
since

Λ−1 ≤
(

1 +
1

γλL−

)
1

γλL−
and

‖x̂(1)
n −x̂

(1)
n+1‖ =

∆t

ε
‖(2γ)−1v

(1)
n+1 + γv(2)

n −v(1)
n ‖ ≤ ∆t [ ‖z(1)

n ‖+ γ‖z(2)
n ‖+ (2γ)−1‖z(1)

n+1‖+ 3K0 ] .

Assuming some lower bound on λ and some upper bound on ∆t, for instance λ ≥ 1 and

∆t ≤ 1, one may then combine the latter estimate on ‖z(2)
n+1‖ with a sufficiently large multiple

of the former estimate on ‖z(1)
n+1‖ to derive

‖z(1)
n+1‖ + ‖z(2)

n+1‖ ≤ C Λ−1 [ ‖z(1)
n ‖ + ‖z(2)

n ‖ + ∆t ]

for a sufficiently large constant C. When λ, thus Λ, is sufficiently large this leads to

‖z(1)
n ‖ + ‖z(2)

n ‖ ≤ (C Λ−1)n−1 [ ‖z(1)
1 ‖ + ‖z(2)

1 ‖ ] + C ′ Λ−1 ∆t

for any n ≥ 1 and another suitable constant C ′. Since

z
(1)
1 = [Id− λγR(t0,x0)]−1 [ ε−1v0 − F(t0,x0) ]

and

z
(2)
1 = [Id− λγR(t̂

(1)
1 , x̂

(1)
1 )]−1 [ ε−1v0 − F(t0,x0) + F(t0,x0) − F(t

(1)
1 , x̂

(1)
1 ) ]

+ [Id− λγR(t̂
(1)
1 , x̂

(1)
1 )]−1 [ (1− γ)λR(tn,xn) z

(1)
1 ]

3The reader may rightfully wonder why in the study of a large magnetic field limit an upper bound L+

appears. One may actually replace this upper bound with Lipschitz bounds on Bext by decomposing

[Id− λγR(t̂
(1)
n+1, x̂

(1)
n+1)]−1R(tn,xn) into

[Id− λγR(t̂
(1)
n+1, x̂

(1)
n+1)]−1R(t̂

(1)
n+1, x̂

(1)
n+1) + [Id− λγR(t̂

(1)
n+1, x̂

(1)
n+1)]−1(R(tn,xn)−R(t̂

(1)
n+1, x̂

(1)
n+1)) .
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this yields when n ≥ 1, λ is large and ∆t ≤ 1

‖z(1)
n ‖ + ‖z(2)

n ‖ ≤
C0

λ

[
∆t +

(
C0

λ

)n−1

‖ε−1v0 − F(t0,x0)‖

]
for some suitable constant C0.

Now we turn to x and note that for n ≥ 0

xn+1 − yn+1 = xn − yn + (1− γ) ∆t z
(1)
n+1 + γ∆t z

(2)
n+1

+ ∆t [ (1− γ) (F(tn,xn)− F(tn,yn)) + γ (F(t
(1)
n+1,x

(1)
n+1)− F(t

(1)
n+1,y

(1)
n+1)) ]

hence

‖xn+1−yn+1‖ ≤ ‖xn−yn‖ (1+Kx∆t) + (1−γ) ∆t ‖z(1)
n+1‖ + γ∆t ‖z(2)

n+1‖ + 1
2
(∆t)2Kx ‖z(1)

n+1‖ .
Therefore when λ and ∆t are as above, we obtain for any n ≥ 0

‖xn − yn‖ ≤ C ′0 e
Kx n∆t ∆t

λ
[1 + ‖ε−1v0 − F(t0,x0)‖]

for some suitable C ′0. �

Note that, in the above proof, whereas we have been rather loose in the book-keeping of
constant dependencies4, we have followed carefully the influence of the size of ε−1v0 − F(t0,x0).
As in previous Subsection one may slightly improve this dependency by allowing y0 to depend
on ε. Though we do not discuss this explicitly here, the question is actually of importance
when going from estimates on characteristics to estimates on densities. We also stress that it is
not completely of technical nature since when taking account large velocities and non-uniform
magnetic fields one may have to correct equation (1.6) and include drifts arising from gradients
of the magnetic field.

Concerning the analysis of general high-order schemes, it is not straightforward to adapt
directly the strategy of Theorems 4.1 and 4.2. In particular, the use of a semi-implicit scheme
does not necessarily guarantee that the particle trajectories are under control.

Remark 4.3. Consider the scheme (3.4)-(3.6) in the simplest situation where the electric field
is zero and the magnetic field is Bext = (0, 0, 1), we show that the scheme preserves the kinetic
energy and we have

‖vn‖2 =
∥∥v0
∥∥2
, ∀n ∈ IN,

hence as ε goes to zero, the velocity vn/ε cannot converge to the null guiding center velocity
except if the initial velocity does. Fortunately, for the other high order schemes (3.8)-(3.11)
and (3.13)-(3.17), kinetic energy is dissipated and converges to 0.

5. Numerical simulations

In this section, we discuss some examples to validate and to compare the different time
discretization schemes. We first consider the single motion of a particle under the effect of a
given electromagnetic field. It allows us to illustrate the ability of the semi-implicit schemes to
capture the guiding center velocity with large time step ∆t in the limit ε→ 0.

Then we consider the Vlasov-Poisson system with an external magnetic field. A classical
particle-in-cell method is applied with different time discretization techniques to compute the
particle trajectories. Hence this collection of charged particles move and give rise to a self-
consistent electric field, obtained by solving numerically the Poisson equation in a space grid.

4Mostly because it is completely analogous to what occurs in the proof of Theorem 4.1.
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(a) (b)

Figure 1. One single particle motion. Numerical solution obtained with a
large time step ∆t = 0.1 with the 1st order scheme (3.2), the 2nd order schemes
(3.4)-(3.6) and (3.8)-(3.11) and the third order scheme (3.13)-(3.17) for ε = 1
(top) and ε = 5. 10−1 (bottom) :
(a) particle trajectory in physical space (xn)0≤n≤NT

(b) particle velocity (vn)0≤n≤NT
.

5.1. One single particle motion. Before going to the statistical descriptions, let us investi-
gate the accuracy and stability properties of the semi-implicit algorithms presented in Section 3
on the motion of individual particles in a given electromagnetic field.

Here we consider an electric field E = −∇φ, where

φ(x) =
1

2

(
‖x‖2 + α cos2(2π y)

)
, x = (x, y) ∈ R2,

with α = 0.02 and a magnetic field B(x) = 1 + 10−1 sin(2πx) with x = (x, y) ∈ R2. We choose
for all simulations ∆t = 0.1 and the initial data as x0 = (1, 1.4) and ε−1 v0 = (3, 4), such that
the initial data z0 = ε−1v0 + F(0,x0) is bounded with respect to ε > 0.
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(a) (b)

Figure 2. One single particle motion. Numerical solution obtained with a
large time step ∆t = 0.1 with the 1st order scheme (3.2), the 2nd order schemes
(3.4)-(3.6) and (3.8)-(3.11) and the third order scheme (3.13)-(3.17) for ε = 10−1

(top) and ε = 10−2 (bottom) :
(a) particle trajectory in physical space (xn)0≤n≤NT

(b) particle velocity (vn)0≤n≤NT
.

Thus, we apply the schemes proposed in Section 3 to compute a numerical solution to (3.1)
and present the particle trajectory and velocity in Figures 1 and 2. These results are compared
with those obtained with a fourth order Runge-Kutta scheme using a small time step.

In Figure 1, we first investigate the case where ε is of order one (ε = 1 and 0.5), which is the
non stiff regime. On the left column, we clearly observe that the space trajectory obtained from
high order schemes agree very well with the reference trajectory, whereas after few time steps
the first order scheme does not give satisfying results. On the right hand side, we present the
evolution of the velocity at each time step and compare it with the reference velocity and the
guiding center velocity. In this non stiff regime, the velocity obtained from high order schemes
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coincides with the reference velocity and the guiding center velocity is meaningless. Therefore,
this first test illustrates the ability of high order schemes to describe accurately the particle
motion in phase space when ε ∼ 1.

In Figure 2, we now propose the numerical results when ε� 1, that is, ε = 0.1 and ε = 0.01,
which corresponds to the high field regime. In that case, the space trajectory in the orthogonal
plane to the magnetic field can be decomposed into a relatively slow motion due to the guiding
center velocity

F(t,x) =
1

‖Bext(t,x)‖2
E(t,x) ∧Bext(t,x)

along the field line and a fast circular motion with a frequency of order 1/ε. Our aim here is
to capture the slow motion using a fixed time step ∆t = 0.1 independently of the value ε� 1.

On the one hand, the space trajectory (left column of Figure 2) of the numerical solution
remains stable for various ε > 0 even if we do not solve the fast scales. Moreover, when ε→ 0,
the numerical solution approaches the correct trajectory and fast fluctuations are somehow
filtered thanks to the implicit treatment of the velocity vn. As in the previous simulations, we
observe a discrepancy between the first order scheme and other high order schemes for large
time.

Furthermore, we focus on the velocity variable (vn)0≤n≤NT
and compare its time evolution

with the reference velocity and the guiding center velocity (right column of Figure 2). Since
we use a large time step ∆t = 0.1, we cannot expect to follow all the details of the velocity
variable, but only the slow motion corresponding to the guiding center velocity. Now we clearly
observe a different behavior of the numerical solutions. On the one hand, the scheme (3.4)-
(3.6), which preserves the kinetic energy 1

2
|vn|2 when E = 0 and Bext = (0, 0, 1) (see Remark

4.3), still oscillates with a large amplitude and the velocity does not coincide with the guiding
center velocity. On the other hand, the schemes (3.2), (3.8)-(3.11) and (3.13)-(3.17) are more
dissipative and after few time steps the velocity follows the line of the guiding center velocity
(see the zoom on the right column of Figure 2). Hence the amplitude of oscillations in the
physical space are diminishing and the particle follows the trajectory corresponding to the
guiding center model (1.7).

As a conclusion, these elementary numerical simulations confirm the ability of the semi-
implicit discretization to capture the slow motion corresponding to the guiding center model
(1.7) uniformly with respect to ε� 1 and the interest of high order time discretization for the
long time behavior of the solution.

5.2. Diocotron instability. We now consider the diocotron instability [16] for an annular
electron layer usually described by the guiding center model (1.7). This instability is well
studied numerically as in [43, 33]. It may give rise to electron vortices, which is the analog
of the Kelvin-Helmholtz fluid dynamics and may occur when charge neutrality is not locally
maintained.

Here we want to investigate the development of such instability when we consider the Vlasov-
Poisson system with an external magnetic field (1.3). It is expected that such instability holds
true for large magnetic fields, whereas dissipative effects dominate when the magnetic field is
not large enough to confine particles.

Therefore, we perform numerical simulation using a particle-in-cell method [5] for the Vlasov
equation (1.3), where the particle trajectories are approximated thanks to the third order semi-
implicit scheme (3.13)-(3.17). On the other hand, we compute an approximation of the guiding
center model using a finite difference method developed in [43]. This reference solution will be
used to compare our results obtained from the Vlasov-Poisson system with a large magnetic
fields.
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The initial density is given by

ρ0(x) =

{
(1 + α cos(`θ)) exp (−4(‖x‖ − 6.5)2), if r− ≤ ‖x‖ ≤ r+,

0, otherwise,

where α is a small parameter, θ = atan(y/x), with x = (x, y) ∈ R2. In the following tests, we
take α = 0.01, r− = 5, r+ = 8, ` = 7.

Furthermore, we will also consider the Vlasov-Poisson system (1.3) with an external magnetic
fiel with the initial datum f0

f0(x,v) =
ρ0(x)

2π
exp

(
−‖v‖

2

2

)
, (x,v) ∈ R4.

A particle method with a third order semi-implicit solver (3.13))-(3.17) will be applied for
different values of ε = 1, 10−1 and 10−2.

For both systems a high order finite difference scheme in Cartesian coordinates will be applied
[43] for the numerical approximation of the Poisson equation in a disc domain. We choose a
grid with 100× 100 points in the physical space and 400 particles per cell for the discretization
of the velocity space.

We define the total energy E(t) as the sum of the potential energy Epot(t) and the kinetic
energy Ekin(t) with

Epot(t) =
1

2

∫
R2

|∇φ(t,x)|2dx, and Ekin(t) =
1

2

∫
R4

f(t,x,v) |v|2dxdv.

For the Vlasov-Poisson system (1.3), the total energy is exactly conserved with respect to time.
First, we consider the case where ε = 1, that is, the particle trajectories do not coincide with

the trajectory corresponding to the guiding center model (1.7). On the one hand, we present
in Figures 3, the evolution of relative energy with respect to the initial data t 7→ E(t) − E(0)
and the L∞ norm of the self-consistent electric field t 7→ ‖E(t)‖∞. The discrete total energy
is not exactly preserved but it oscillates around zero and these variations remain relatively
small compared to the variations of the kinetic and potential energy which also oscillate with
a frequency around 1/2π. The same phenomenon can be observed on the time evolution of the
L∞ norm of the electric field. On the other hand in Figure 4, we plot the time evolution of the
charged density and observe that when the amplitude of the external magnetic field ‖B‖ is of
order one, the plasma is not well confined and does not develop any instability. The density
seems to oscillate around the steady state.

Then, we take a small value ε = 0.01, and for this case we present a comparison between
the finite difference approximation to the guiding center model (1.7) and a particle method for
the Vlasov-Poisson system (1.3), using the third order semi-implicit scheme (3.13)-(3.17). The
numerical results are presented in Figures 5 and 6.

Let us emphasize that for the guiding center model (1.7), that is in the limit ε → 0, the
potential energy Epot is conserved with respect to time. Therefore, for ε � 1, it is expected
that both the variations of Epot and Ekin are small. In Figure 5, we can indeed observe that the
variation of both quantities Epot and Ekin are varying with a small amplitude of order 10−3. In
that case, we do not see any oscillations since a large time step is used. Moreover, the second
picture in Figure 5 represents the time evolution of ‖E(·)‖∞ for the Vlasov-Poisson system (1.3)
and the guiding center model (1.7). Both results agree well which illustrates the accuracy of
the particle method in the limit ε� 1.

Finally in Figure 6, we present a comparison between the density ρ obtained from the Vlasov-
Poisson system discretized with the particle method and the one corresponding to the guiding
center model discretized with a finite difference method. These figures show the development
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(a) Relative Energy (b) ‖E(t)‖∞

Figure 3. Diocotron instability ε = 1. Time evolution of (a) relative energy
E(t) − E(0) with respect to the initial one and (b) ‖E(t)‖∞. For ε ∼ 1 the
instability does not occur.

of the diocotron instability on the density ρ for both models. Indeed in this regime (ε� 1), it
is expected that the density ρε computed from the Vlasov-Poisson system obeys to the same
evolution as the one of the guiding center model. Once again, the results agree very well and it
is remarkable that the particle-in cell method does not suffer from too many fluctuations. The
vortices are well described even for large time t ∼ 120.

6. Conclusion and perspective

In this paper we proposed a class of semi-implicit time discretization techniques for particle-
in cell simulations. The main feature of this approach is to guarantee the accuracy and stability
when the amplitude of the magnetic field becomes large and to get the correct long time behavior
(guiding center approximation). We formally showed that the present schemes preserve the
initial order of accuracy when ε→ 0. Furthermore, we performed a complete analysis of both
the first order semi-implicit scheme and the L-stable second order Runge-Kutta scheme when
we consider a given and smooth electromagnetic field (E,Bext).

The time discretization techniques proposed in this paper seem to be a very simple and
efficient tool to filter fast oscillations and have nice stability and consistency properties in the
limit ε→ 0. However, a complete analysis of high order semi-implicit schemes is still missing.
The main issue is to control the space trajectory (xn)n uniformly with respect to ε and as we
have shown in Remark 4.3, the use of a semi-implicit scheme does not necessarily guarantee
that the particle trajectories are under control. At least for second order schemes, we would
like to find some criteria on coefficients in order capture a consistent asymptotic behavior of
the solution. It is not clear if A or L stability properties are sufficient here...

On the other hand, the present techniques will be applied to more advanced problems as
the three dimensional Vlasov-Poisson system when the magnetic field is non uniform and the
particle trajectories become more complicated.
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Figure 4. Diocotron instability ε = 1. Time evolution of the density ρ for
time t = 36, t = 38, t = 40 and t = 42 units. For ε ∼ 1 the instability does not
occur.
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