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Abstract. The main purpose of the paper is to show how to use implicit-explicit (IMEX) Runge-
Kutta methods in a much more general context than usually found in the literature, obtaining very
effective schemes for a large class of problems. This approach gives a great flexibility, and allows,
in many cases the construction of simple linearly implicit schemes without any Newton’s iteration.
This is obtained by identifying the (possibly linear) dependence on the unknown of the system which
generates the stiffness. Only the stiff dependence is treated implicitly, then making the whole method
much simpler than fully implicit ones. The resulting schemes are denoted as semi-implicit R-K. We
adopt several semi-implicit R-K methods up to order three. We illustrate the effectiveness of the new
approach with many applications to reaction-diffusion, convection diffusion and nonlinear diffusion
system of equations.
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1. Introduction
sec:1

A well-known approach in the numerical solution of evolutionary problems in partial differential
equations is the method of lines. In this approach a partial differential equation is first discretized in
space by finite difference or finite element techniques and converted into a system of ordinary differential
equations (ODEs). In some cases the right hand side can be written as the sum of two terms, a stiff
one and a non stiff one:

Problem1Problem1 (A)


du

dt
(t) = F (t, u(t)) +

1

ε
G(t, u(t)), ∀ t ≥ t0,

u(t0) = u0,
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where ε is a small parameter, which generates some stiffness in the system. We call such stiff problem
of additive type and hereafter denoted by (A).

The development of numerical schemes for systems of stiff ODEs of the form (A) attracted a lot
of attention in the last decades. Systems of such form often arise from the discretization of partial
differential equations, such as convection-diffusion equations and hyperbolic systems with relaxation.
In previous works we considered the latter case which in recent years has been a very active field
of research, due to its great impact on applied sciences. In fact, relaxation is important in many
physical situations, for example it arises in discrete kinetic theory of rarefied gases, hydrodynamical
models for semiconductors, linear and non-linear waves, viscoelasticity, traffic flows, shallow water
[15, 16, 20, 34, 35, 36, 30].

Hopefully, when a problem with easily separable stiff and non-stiff components is considered, a
combination of implicit and explicit Runge-Kutta methods can be used. The implicit method is used
to treat the stiff component G(t, u(t))/ε in a stable fashion while the non-stiff component F (t, u(t)) of
the system is treated using the explicit scheme. These combined implicit/explicit (IMEX) schemes are
already used for several problems, including convection-diffusion-reaction systems, hyperbolic systems
with relaxation, collisional kinetic equations, and so on.

However it is not always easy to separate stiff and non-stiff components, and therefore the use
of standard IMEX schemes is not straightforward. In such cases one usually relies on fully implicit
schemes.

In the context of ODEs, several authors usually call semi-implicit RK methods (in contrast to
implicit RK methods) numerical schemes that require the solution of linear systems of equations for the
computation of the numerical solution with no Newton iteration. A typical case is given by Rosenbrock
schemes, [28], which are linearly implicit schemes, that do not make use of the particular structure of
the system. Similarly, in the contest of PDEs, some authors denote by semi-implicit additive schemes
in which the two tableau correspond respectively to an explicit and an implicit scheme (see [31, 41]).

In other cases, semi-implicit schemes denote methods for the numerical solution of a problem of the
form

du

dt
= f(t, u),

obtained by adding and subtracting an approximation g(u) of f(u) which is more amenable for an
implicit treatment:

du

dt
= f(t, u)− g(t, u) + g(t, u).

Then the term f(t, u)− g(t, u) is treated explicitly, while g(t, u) is treated implicitly.
Examples of this type are given in [7], where the authors consider nonlinear hyperbolic systems

containing fully nonlinear and stiff relaxation terms in the limit of arbitrary late times. The dynamics
is asymptotically governed by effective systems which are of parabolic type and may contain degenerate
and/or fully nonlinear diffusion terms. Fully nonlinear relaxation terms can arise, for instance, in
presence of strong friction, see for example in [3] and references therein. Furthermore, a general class
of models of the same type were introduced by Kawashima and LeFloch (see for example [7]). For
such problems in [7], the authors introduced a semi-implicit formulation based on implicit-explicit
(IMEX) Runge-Kutta methods. Similarly in [38], the author introduced a semi-implicit method for
computing the two models of motion by mean curvature and motion by surface diffusion which is
stable for large time steps. In all such models a semi-implicit method is more effective than a fully
implicit one. Other examples are given in [22], where the authors construct a very effective solver
for the Boltzmann equation near the fluid dynamic regime. In this case f denotes the Boltzmann
operator, while g denotes a suitable BGK approximation. A similar technique is adopted in [24, 25] in
the context of Navier-Stokes equations.
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In other cases the stiffness is associated to some variables. For example, if a system can be written
in the partitioned form, hereafter denoted by (P),

PS1bisPS1bis (P)


dy

dt
(t) = F1(t, y(t), z(t)),

ε
dz

dt
(t) = F2(t, y(t), z(t)),

then the stiffness is associated to variable z, and the corresponding equation will be treated implicitly,
while the equation for y is treated explicitly. In other cases it is more convenient to associate the
stiffness to a part of the right hand side, for example if a system has the additive form (A), in this
case the term F (t, u(t)) is treated explicitly while G(t, u(t))/ε is treated implicitly. It can be shown
that the same system can be written in either form, however sometimes one of the two forms is more
convenient.

Directly motivated by the above cases, we consider a more general class of problems of the form

equation1equation1 (G)


du

dt
(t) = H(t, u(t), u(t)/ε), ∀ t ≥ t0,

u(t0) = u0,

where the function H: R × Rm × Rm → Rm is sufficiently differentiable and the right hand side has
a stiff dependence only on the last argument, emphasized by the appearance on the small parameter
ε in the denominator. We denote this class of problems as generalized partitioned form and hereafter
denoted by (G). All the cases mentioned before belong to this more general class. In our paper we
denote by semi-implicit schemes numerical methods which solve problems of the form (G) in which
the variable u appearing as the second argument of H is treated explicitly, while u appearing as third
argument is treated implicitly.

Remark 1.1. Note that the parameter ε in (G) does not necessarily appear explicitly, but it just
indicates some stiffness in the term. Sometime the stiffness is hidden, and is not explicitly expressed in
terms of a small parameter ε. For example, in the case of diffusion terms ε = O(∆x2), see [7, 8, 2, 11].

Now, let us first show the following hierarchical dependence

prop:1 Proposition 1.1. Consider a system in partitioned form (P). Then it can be written either in the
additive form (A) or in the generalized partitioned form (G).

Proof. This hierarchical dependence can be illustrated by the following Figure 1.

Figure 1. Illustration of the hierarchical dependence of (P), with respect to (A) and
(G) approach. Sets1

First we consider the system (P) and set u = (y, z)T , F = (F1, 0) and G = (0,F2), then u is solution
to (A).
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On the other hand, we again consider the system (P) and set u = (u1, u2) with u1 = y and u2 = ε z,
then we have from (P) 

du1

dt
(t) = F1(t, u1(t), u2(t)/ε),

du2

dt
(t) = F2(t, u1(t), u2(t)/ε),

that is, system (G) with u = (u1, u2) and F1(t, u1(t), u2(t)/ε)

F2(t, u1(t), u2(t)/ε)

 = H(t, u(t), u(t)/ε).

�

We note that in this two cases no duplications of unknowns is needed. Unfortunately there is no
such hierarchical dependence between (A) and (G) systems. Note however that if we allow to double
the number of unknowns, then we have the following dependence.

prop:2 Proposition 1.2. We have the following assertions
(1) Consider a system in the additive form (A). Then by doubling the number of unknowns, it can

be written in the partitioned form (P).
(2) Consider a system in the generalized partitioned form (G). Then by doubling the number of

unknowns, it can be written in the partitioned form (P).

Proof. This hierarchical dependence can be illustrated by the following Figure 2.

Figure 2. Illustration of hierarchical dependence between partitioned approach (P),
additive approach (A) and generalised partitioned form (G) approach where the dashed
lines represent the set of systems with doubled number of unknowns. Sets2

We start with (1) and consider a solution u to (A). We define the couple (y, z) as the solution to
dy

dt
(t) = F (t, y(t) + z(t)),

ε
dz

dt
(t) = G(t, y(t) + z(t)),

hence u is given by u = y + z and the couple (y, z) is written as a solution to (P) with
dy

dt
(t) = F1(t, y(t), z(t)),

ε
dz

dt
(t) = F2(t, y(t), z(t)),

where F1 (t, y (t) , z (t)) = F (t, y (t) + z (t)) and F2 (t, y (t) , z (t)) = G (t, y (t) + z (t)).
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Then to prove (2), we consider a solution to (G) and set v = u/ε. Thus, we have

PS1terPS1ter (1)


du

dt
(t) = H(t, u(t), v(t)),

ε
dv

dt
(t) = H(t, u(t), v(t)),

it is a particular case of system (P). Note that these two last cases require duplication of unknowns. �

Such inclusions are very important, since the analysis of the numerical schemes applied to one family
of schemes is automatically valid also for schemes applied to the other two families. As far as we know,
it is not possible to write system (A) in the form (G) or viceversa, without doubling the number of
unknowns.

Thus, the formal equivalence among the various systems allows us to adopt techniques well known
for additive or partitioned systems to more general cases.

A remark is in order at this point. A vast literature exists on the formal analysis of systems (P),
which are denoted as singular perturbation systems, [28, 26, 9, 10, 14, 16]. However, system (1) is only
formally a particular case of (P), and the analysis developed for the former cannot be directly applied
to this case, since now the two functions F1 and F2 are the same. Furthermore, a detailed asymptotic
analysis of the schemes presented here goes beyond the scope of the paper, and will be considered in
a future work.

The main goal of the paper is to focus on the treatment of systems of the form (G), by using some
IMEX schemes already presented in the literature. Furthermore, in order to simply the expression of
the formulas, we drop the dependence of the parameter ε in the second argument as mentioned before,
keeping in mind that the dependence on the second argument is stiff. Then in this paper we consider
the general class of non-autonomous problems of the form

du

dt
(t) = H(t, u(t), u(t)), ∀ t ≥ t0,

u(t0) = u0,

equation1BIS (2)

In particular, we show several examples of systems of the form G that can be efficiently solved with
the new approach.

The aim of this paper is to propose a new class of semi-implicit schemes based on IMEX Runge-
Kutta methods which are strongly inspired by partitioned Runge-Kutta methods [27] and very much
related to the additive Runge-Kutta methods of Zhong [41].

In the next section, we describe the general framework to construct this new class of semi-implicit
Runge-Kutta schemes based on partitioned methods. Several schemes are proposed with different
stability properties and order of accuracy. We next compare the numerical solutions with exact ones
available in the literature for reaction-diffusion problem and nonlinear convection-diffusion equation.
After this validation step, we perform several numerical computations to show the robustness of our
approach (nonlinear Fokker-Planck equation, Hele-Shaw flow and surface diffusion flow).

2. Numerical methods for ODEs
sec:2

In this section we review the concept of partitioned Runge-Kutta methods and derive a new class
of semi-implicit R-K schemes, and we propose several schemes up to third order of accuracy, based on
IMEX Runge-Kutta schemes already existing in the literature.

2.1. From Partitioned to semi-implicit Runge-Kutta methods. In the literature some interest-
ing numerical methods do not belong to the classical class of implicit or explicit Runge-Kutta methods.
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They are called partitioned Runge-Kutta methods, [27, 28]. In order to present these methods we con-
sider non-autonomous differential equations in the partitioned form,

dy

dt
(t) = F1(t, y(t), z(t)),

dz

dt
(t) = F2(t, y(t), z(t)),

parsystem (3)

where y(t) and z(t) may be vectors of different dimensions and y(t0) = y0, z(t0) = z0 are the initial
conditions.

The idea of the partitioned Runge-Kutta methods is to apply two different Runge-Kutta methods,
i.e.

hyp:0hyp:0 (4)
ĉ Â

b̂T

c A

bT

where we treat the first variable y with the first method, Â, b̂T = (b̂1, · · · , b̂s), ĉ = (ĉ1, · · · , ĉs) and
the second variable z with the second method, A, bT = (b1, · · · , bs), c = (c1, · · · , cs) under the usual
assumption

hyp:1hyp:1 (5)
∑
j

âi,j = ĉi, and
∑
j

aij = ci, for 1 ≤ i ≤ s.

In other words, if we consider a numerical approximation (yn, zn) of (3) at time tn, a partitioned
Runge-Kutta method for the solution of (3) is given by

ki = F1

tn + ĉi ∆t, yn + ∆t

s∑
j=1

âijkj , z
n + ∆t

s∑
j=1

aij`j

 , 1 ≤ i ≤ s,

`i = F2

tn + ci ∆t, yn + ∆t
s∑

j=1

âijkj , z
n + ∆t

s∑
j=1

aij`j

 , 1 ≤ i ≤ s

PRKm1 (6)

and the numerical solution at the next time step is given by
yn+1 = yn + ∆t

s∑
i=1

b̂i ki,

zn+1 = zn + ∆t
s∑

i=1

bi `i.

PRKm2 (7)

We observe that we can rewrite system (2) as a partition one

ydotzdotydotzdot (8)


dy

dt
(t) = H(t, y(t), z(t)),

dz

dt
(t) = H(t, y(t), z(t)),

with initial conditions y(t0) = y0, z(t0) = y0. In this way the system is a particular case of partitioned
system in which F1 = F2 but with an additional computational cost since we double the number of
variables. Applying the partitioned Runge-Kutta method (6)-(7) we have
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 ki = H (tn + ĉi∆t, Yi, Zi) , 1 ≤ i ≤ s,

`i = H (tn + ci∆t, Yi, Zi) , 1 ≤ i ≤ s,
SIRKm1bis (9)

with 
Yi = yn + ∆t

s∑
j=1

âi,j kj , 1 ≤ i ≤ s,

Zi = zn + ∆t

s∑
j=1

aij `j , 1 ≤ i ≤ s,

and the numerical solutions at the next time step are
yn+1 = yn + ∆t

s∑
i=1

b̂i ki,

zn+1 = zn + ∆t

s∑
i=1

bi `i.

In general, ki and `i given by (9) for all 1 ≤ i ≤ s are different. However, there are two cases in
which ki = `i, i = 1, . . . , s. The first one is when the system is autonomous, i.e. H does not explicitly
depend on time, and the second one is when ĉi = ci, i = 1, . . . , s. In these two cases only one evaluation
of H is needed in (9), and only one set of stage fluxes is computed:

ki = H

(
yn + ∆t

s∑
i=1

âi,j kj , y
n + ∆t

s∑
i=1

aij kj

)
, 1 ≤ i ≤ s.

Now we show that even in the general case of a non-autonomous system, it is still possible to derive
a scheme that does not require two sets of stage fluxes.

We start observing that by choosing ŷ = (t, u) and z = u, we can rewrite system (2) as

ydotzdotydotzdot (10)


dŷ

dt
(t) =

(
1

H(ŷ(t), z(t))

)
,

dz

dt
(t) = H(ŷ(t), z(t)),

with initial conditions ŷ(t0) = (t0, u0), z(t0) = u0.
In this way, system (10) for (ŷ, z) is a particular case of an autonomous partitioned system in

which F1 = (1,H) and F2 = H but apparently with an additional computational cost since we double
the number of variables. Now, we apply the partitioned Runge-Kutta method (6)-(7) to (ŷ, z), hence
using the assumption (5), that is,

∑
j âi,j = ĉi and under the consistency condition

∑
i b̂i = 1, the first

component of ŷ is trivially satisfied and will be omitted. Replacing ŷ by (t, y), we have ki = H (tn + ĉi ∆t, Yi, Zi) , 1 ≤ i ≤ s,

`i = H (tn + ĉi∆t, Yi, Zi) , 1 ≤ i ≤ s,
SIRKm1 (11)

with 
Yi = yn + ∆t

s∑
j=1

âi,j kj , 1 ≤ i ≤ s,

Zi = zn + ∆t
s∑

j=1

aij `j , 1 ≤ i ≤ s,
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Equation (11) already shows that ki = `i, i = 1, . . . , s. The numerical solutions at the next time step
are 

yn+1 = yn + ∆t
s∑

i=1

b̂i ki,

zn+1 = zn + ∆t
s∑

i=1

bi ki.

We observe that under the additional assumption b̂i = bi for i = 1, · · · , s then also the numerical
solutions are the same, i.e. if z0 = y0 then zn = yn ∀n ≥ 0, and no duplication of variables is needed.
The case b̂ 6= b is discussed in Remark 2.2.

At this stage let us address several issues: number of evaluations, storage, order of accuracy and
embedded methods.

Remark 2.1. Concerning the number of evaluations of H, we observe that by writing (G) as an
autonomous partitioned system, we have `i = ki for all 1 ≤ i ≤ s. Therefore only one evaluation of H
is needed in (11), and only one set of stage fluxes is computed.
Note that in (10), we could also choose y = u and ẑ = (t, u) and therefore use the (ci)i coefficients for
time stages.

b_neq_hatb Remark 2.2. Concerning the order of accuracy, even in the general case, i.e. if bi 6= b̂i, i = 1, · · · , s,
for a method which is consistent to order p, one has:

yn+1 = y(tn+1) +O(∆tp), zn+1 = z(tn+1) +O(∆tp),

where we adopt the classical order of the scheme, i.e. we assume ε = 1.
Alternatively, another scheme can be constructed as follows. At each time step we set zn := yn,

and compute yn+1 by the first equation of (7). The quantity zn+1 computed numerically by the second
equation in (7) would differ from yn+1 by an amount O(∆tp+1), therefore the subsequent approximation
of setting zn+1 := yn+1 will not alter the order of the scheme. Also in this case there is no need to
evolve both yn and zn, and no duplication of variables is needed. In an analogue way, one can choose
to advance zn to zn+1 by the second equation of (7), and set yn+1 = zn+1, still with no duplication of
the variables.

Hereafter we assume that we follow the evolution of yn, and we set zn := yn, at the beginning of
each time step. We expect that in general it is more accurate to follows the non stiff variable y, but
there may be exception, and for some scheme it may be more convenient to follow the evolution of the
stiff variable z ant to set yn := zn at the beginning of the time step.

Since the equations contain stiff terms, classical order analysis may not be sufficient to justify the
practical equivalence of the two different choices i.e. advancing yn and setting zn+1 = yn+1 or advancing
zn and setting zn+1 = yn+1 and a more detailed analysis is needed. In the first example presented in
the paper, we compare numerically the two approaches (Test 1 reaction-diffusion problem) whereas all
other systems are autonomous, so that if b̂ = b then yn+1 = zn+1. Let us notice that there are only two
cases in which b̂ 6= b. For such cases we explore numerically the two choices, and compare the results,
to establish which one is better.

Remark 2.3 (Embedded methods). From the above remarks, we can select a different vector of weights
b for the z variable that provides a lower order approximation of the solution, and construct in this
way an embedded method, which can be used for an automatic time step control [27], although we shall
not implement any time step control in the present paper.

From now on we shall adopt IMEX R-K schemes. These are additive R-K schemes that combine
explicit and implicit R-K methods. Usually they are applied to additive systems that involve terms
with different stiffness properties. An example of additive system is given by (A), where we apply an
implicit method to the stiff part G(u)/ε and an explicit one to F (u). It is usual to consider diagonally
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implicit R-K (DIRK) schemes for the implicit part. In addition to be simpler to implement, this will
ensure that the terms involving function F are explicit. The coefficients of the method are usually
represented in a double Butcher tableau as (4).

Now we are ready to propose semi-implicit Runge-Kutta methods in order to solve problem (G)
when the dependence from the second variable is stiff. We will treat the first variable explicitly, and
the second one implicitly. A semi-implicit Runge-Kutta method is implemented as follows. First we
set zn = yn and compute the stage fluxes for i = 1, . . . , s, we set Y1 = Z̃1 = yn and

Yi = yn + ∆t

i−1∑
j=1

âij kj , 2 ≤ i ≤ s,

Z̃i = yn + ∆t
i−1∑
j=1

aij kj , 2 ≤ i ≤ s

ki = H
(
tn + ĉi∆t, Yi, Z̃i + ∆t aii ki

)
, 1 ≤ i ≤ s,

PS1 (12)

and, finally update the numerical solution by

eq1-1eq1-1 (13) yn+1 = yn + ∆t
s∑

i=1

b̂i ki,

or by

eq1-2eq1-2 (14) zn+1 = yn + ∆t

s∑
i=1

bi ki.

At the end of the step the difference zn+1 − yn+1 can be used as local time step control indicator.
After that, we set n ← n + 1, zn ← yn, assuming that we advance in time with the scheme for the
variable y.

Remark 2.4. We note that this new approach includes Zhong’s method [41] for autonomous systems.
The theory developed in [41] for additive semi-implicit Runge-Kutta methods can be extended in a
straightforward manner to the semi-implicit Runge-Kutta methods. In fact, by setting H(y, y) = f(y)+
g(y) we obtain for the numerical method

ki = H

yn +

j−1∑
j=1

âij kj , y
n +

j−1∑
j=1

aij kj + aii ki

 ,

= f

yn +

j−1∑
j=1

âij kj

 + g

yn +

j−1∑
j=1

aij kj + aii ki

 ,ZhongIS (15)

for i = 1, · · · s and for the numerical solution

yn+1 = yn +

s∑
i=1

bi ki,ZhongNS (16)

which are exactly those proposed by Zhong [41].

In the following we propose different types of semi-implicit Runge-Kutta methods and verify that the
order conditions are the same as the ones satisfied by the explicit and implicit Runge-Kutta schemes.
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Sec2bis
2.2. Classification of IMEX Runge-Kutta schemes. Next we give a classification of such schemes
and recall the order conditions to obtain second and third order accuracy in time. Finally we list several
second and third order IMEX R-K schemes presented in the literature, [34, 35, 36] that we will use for
our semi-implicit framework (12)-(14).

IMEX Runge-Kutta schemes presented in the literature can be classified in three different types
characterized by the structure of the matrix A = (aij)

s
i,j=1 of the implicit scheme. Following [9], we

will rely on the following notions [1, 16, 36].

Def:A Definition 2.1. An IMEX Runge-Kutta method is said to be of type A [36] if the matrix A ∈ Rs×s

is invertible. It is said to be of type CK [16] if the matrix A ∈ Rs×s can be written in the form

A =

(
0 0
a A

)
,

in which the matrix A ∈ R(s−1)×(s−1) invertible. Finally, it is said to be of type ARS [1] if it is a
special case of the type CK with the vector a = 0.

Schemes of type CK are very attractive since they allow some simplifying assumptions, that make
order conditions easier to treat, therefore permitting the construction of higher order IMEX Runge-
Kutta schemes. On the other hand, schemes of type A are more amenable to a theoretical analysis,
since the matrix A of the implicit scheme is invertible.

Sec2
2.3. Order conditions and numerical schemes. Runge-Kutta methods (12)-(14) are a special case
of the semi-implicit ones (6)-(7). Thus, the order conditions for (12)-(14) are a direct consequence of
the classical order conditions computed for partitioned Runge-Kutta methods, [27, 29]. Here we recall
some known results for IMEX R-K schemes presented in [16, 34, 36]. In particular the order conditions
up to order 3 can be simplified if we set b̂i = bi for i = 1, · · · , s. Then using the previous notation for
the explicit and implicit part and assuming (4) and (5), we have for a method of order 2

order:2order:2 (17)
∑
i

bi = 1,
∑
i

bi ci = 1/2,
∑
i

bi ĉi = 1/2.

and for a method of order 3

order3:imporder3:imp (18)
∑
i

bic
2
i = 1/3,

∑
i,j

bi aij cj = 1/6,

order3:exporder3:exp (19)
∑
i

bi ĉ
2
i = 1/3,

∑
i,j

bi âij ĉj = 1/6,

order3:couporder3:coup (20)
∑
i

bi ĉi ci = 1/3,
∑
i,j

bi aij ĉj = 1/6,
∑
i,j

bi âij cj = 1/6.

The general conditions in case b̂ 6= b can be found in [36].
We recall some well know definitions that we shall adopt in the paper.

DefSA Definition 2.2. An implicit R-K method is called stiffly accurate if bT = eTs A with eTs = (0, ..., 0, 1),
i.e. methods for which the numerical solution is identical to the last internal stage.

Remark 2.5. This property is important for the L-stability of the implicit part of the method, i.e. an
A-stable implicit method stiffly accurate is also L-stable, (see [28] for details).

Note that the coefficients of the implicit part of some IMEX RK schemes presented later in this
paper satisfy the property given in the Definition 2.2.

Now, we first consider second order schemes with two stages that satisfy the set of order conditions
(17). For practical reasons, in order to simplify the computations of the coefficients, we consider
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singly diagonally implicit Runge-Kutta (SDIRK) schemes, [28], for the implicit part, i.e. aii = γ, for
i = 1, · · · s. The Butcher tableau takes then the following form

0 0 0
ĉ ĉ 0

b1 b2

γ γ 0
c c− γ γ

b1 b2

first_scheme (21)

with the following coefficients:

conditions1conditions1 (22) b1 = 1− b2, ĉ = 1/(2 b2), c = (1/2− γ(1− b2))/b2,

where b2 6= 0 and γ > 0 free parameters.
We list below the second order schemes that we shall use in the paper.

2.3.1. The second order semi-implicit Runge-Kutta scheme - H-SDIRK2(2,2,2). A first
example of scheme satisfying the second order conditions given in (17) is b2 = γ = 1/2, which yields
the following table

0 0 0
1 1 0

1/2 1/2

1/2 1/2 0
1/2 0 1/2

1/2 1/2
scheme1 (23)

This scheme is the combination of Heun method (explicit part) and an A-stable second order singly
diagonal implicit Runge-Kutta SDIRK method (implicit part), hence we call it H-SDIRK2(2,2,2).

2.3.2. The stiffly accurate semi-implicit Runge-Kutta scheme - LSDIRK2(2,2,2). Another
choice for the coefficients (22) is b2 = γ, c = 1, where γ is chosen as the smallest root of the polynomial
γ2 − 2γ + 1/2 = 0, i.e. γ = 1− 1/

√
2 and ĉ = 1/(2γ). This gives

0 0 0
ĉ ĉ 0

1− γ γ

γ γ 0
1 1− γ γ

1− γ γ
scheme2 (24)

This scheme is the combination of Runge-Kutta method (explicit part) and an L-stable second order
SDIRK method in the implicit part. Thus, we call it LSDIRK2(2,2,2).

2.3.3. The IMEX-SSP2(2,2,2) L-stable scheme - H-LDIRKp(2,2,2). We choose b2 = 1/2,
ĉ = 1, i.e. the corresponding Butcher tableau is given by

0 0 0
1 1 0

1/2 1/2

γ γ 0
1− γ 1− 2γ γ

1/2 1/2
scheme3 (25)

This scheme, introduced in [34], is based on Heun method coupled with an L-stable SDIRK Runge-
Kutta. We call it H-LDIRKp(2,2,2). The implicit part has order p = 2 with γ = 1− 1/

√
2 and order

p = 3 with γ = (3 + 3
√

(6))/3. The version for p = 2 also has the strongly stability preserving (SSP)
property, see [34]. The choice of γ for p = 3 guarantees that the implicit part is a third-order DIRK
scheme with the best dampening properties [27].

To conclude this subsection devoted to two stages second order schemes, let us give a second order
scheme, which is not in the class of singly diagonally implicit Runge-Kutta schemes.
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2.3.4. The second order semi-implicit Runge-Kutta scheme of type CK - H-CN(2,2,2). A
variant of the previous scheme satisfying the second order conditions (17) is given by the following
table

0 0 0
1 1 0

1/2 1/2

0 0 0
1 1/2 1/2

1/2 1/2
scheme1bis (26)

This scheme is the combination of Heun method (explicit part) and a trapezoidal rule Crank Nicolson
(implicit part) which is A-stable second order implicit, hence we call it H-CN(2,2,2). It may be a nat-
ural choice when dealing with convection-diffusion equation, since the Heun method is an SSP explicit
RK [23], and the trapezoidal rule (also known as Crank-Nicolson) is an A-stable method, widely used
for diffusion problems.

Finally, we also propose a three stage, second order IMEX scheme.

2.3.5. The stiffly accurate IMEX-SSP2(3,3,2) L-stable scheme - SSP-LDIRK2(3,3,2). The
last second order scheme is obtained by combining a three-stage, second-order SSP scheme with an
L-stable, second-order DIRK scheme, and is denoted by SSP-LDIRK2(3,3,2). This scheme is given by

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

scheme4 (27)

2.3.6. The IMEX-SSP3(4,3,3) L-stable scheme - SSP-LDIRK3(4,3,3). As third semi-implicit
Runge-Kutta methods of the type (12)-(14), that satisfies the set of order conditions (18)-(19)-(20), a
possible choice is given by the IMEX-SSP3(4,3,3) L-stable scheme with b̂i = bi for i = 1, · · · , s, i.e.

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0
0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1− α α 0

1/2 β η 1/2− β − η − α α
0 1/6 1/6 2/3

scheme5 (28)

with α = 0.24169426078821, β = α/4 and η = 0.12915286960590. We call this scheme SSP-
LDIRK3(4,3,3). For this particular choice, let us observe that the number of evaluations of the right
hand side H is still reasonable since the coefficients ci = ĉi for 2 ≤ i ≤ 4 and only c1 differs from ĉ1.

We remark that schemes H-LDIRK2(2,2,2), SSP-LDIRK2(3,3,2), and SSP-LDIRK3(4,3,3) were in-
troduced in the context of hyperbolic systems with stiff relaxation in [34].

Remark 2.6. Even though IMEX R-K methods can be considered as additive R-K methods ([16, 1, 13]),
we note that the coefficients in the Zhong form (15), (16) are not the standard coefficients of an IMEX
R-K method. It is possible to show, by inspection, that equations (15), (16) can be written as an IMEX
R-K method. Let

Â =


0 0
â21 0
...

...
. . .

as1 · · · · · · ass−1

 , A =


a11 0
a21 a22
...

...
. . .

as1 · · · · · · ass

 b =


b1
b2
...
bs


be the coefficients of the scheme (15), (16), with s stages. Then we write explicitly

yn+1 = yn +
s∑

i=1

bi

(
f(Ŷi) + g(Yi)

)
sol1 (29)
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with 

Ŷ1 = yn,

Y1 = yn + ∆t a11

(
f(Ŷ1) + g(Y1)

)
,

Ŷ2 = yn + ∆t â21

(
f(Ŷ1) + g(Y1)

)
,

Y2 = yn + ∆t a21

(
f(Ŷ1) + g(Y1)

)
+ ∆t a22

(
f(Ŷ2) + g(Y2)

)
,

...

Ŷs = yn + ∆t âs1

(
f(Ŷ1) + g(Y1)

)
+ ...+ ∆t âss−1

(
f(Ŷs−1) + g(Ys−1)

)
,

Ys = yn + ∆t as1

(
f(Ŷ1) + g(Y1)

)
+ ...+ ∆t ass

(
f(Ŷss) + g(Yss)

)
.

sol2 (30)

and the Butcher tableau is
0
a11 0
â21 0 0
a21 0 a22 0
...

...
...

...
. . .

as1 0 as2 0 · · · ass 0
b1 0 b2 0 · · · bs 0

0
0 a11

0 â21 0
0 a21 0 a22
...

...
...

...
. . .

0 as1 0 as2 · · · ass
0 b1 0 b2 · · · bs

Using the Kronecker product, this can be written in a more compact form as

Â
bT

A
bT

with
bT = bT ⊗ (1, 0),

Â = (Â⊗ B̂1) + (A⊗ B̂2), A = (Â⊗B1) + (A⊗B2),

B̂1 =

(
1 0
0 0

)
, B̂2 =

(
0 0
1 0

)
,

and

B1 =

(
0 1
0 0

)
, B2 =

(
0 0
0 1

)
,

i.e., a double Butcher tableau (4) of scheme (29-30) with ĉ = c. Note that this is an IMEX scheme
with a double Butcher tableau as (4). From this, we can derive the set of order conditions for scheme
of the form (15)-(16) in terms of matrix Â, A and vector b. Below we list these equations up to order
p = 2.

bT e = 1, (first order),

bT Âe = 1/2, bTAe = 1/2, (second order),

with e = (1, ..., 1)T . Explicit computation of these conditions gives

b1 + b2 = 1,∑
ij

biâij = 1/2,
∑
ij

biaij = 1/2,

and by ĉi =
∑

j âij and ĉi =
∑

j âij we obtain classical conditions (17) for order two.
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3. Applications
sec:3

In this section we present several numerical tests for nonlinear PDEs for reaction-diffusion systems
and nonlinear convection-diffusion equation for which we verify the order of accuracy and stability issues
with respect to the CFL condition. Then, we treat a nonlinear Fokker-Planck equation to investigate
the long time behavior of the numerical solution obtained from (12)-(14). Finally we complete this
section with numerical tests on Hele-Shaw flow and surface diffusion flow.

We monitor L1 and L∞ norms of the error, defined as:
ε∞ = max

0≤n≤NT
max
i,j
‖ωn

i,j − ω(tn, xi, yj)‖,

ε1 = max
0≤n≤NT

∑
i,j

∆x∆y ‖ωn
i,j − ω(tn, xi, yj)‖.

For space discretization we will apply basic fourth order discretization with central finite difference
for first derivative

∇hωi =
−ωi+2 + 8ωi+1 − 8ωi−1 + ωi−2

12h
where h is the space step, and for the second derivative is discretized using a fourth order central finite
difference scheme as well

∇2
hωi =

−ωi+2 + 16ωi+1 − 30ωi + 16ωi−1 − ωi−2

12h2
.

For all numerical tests below, linear systems have been solved by a simple iterative C + + solver,
that is, a successive over-relaxation (SOR(ω)) method even if more efficient solvers may be applied.
The runs are performed on 2.8 GHz Intel core i7 machine.

3.1. Test 1 - Reaction-diffusion problem. We first consider a very simple reaction-diffusion system
with nonlinear source for which there are explicit solutions.

To demonstrate the optimal accuracy of the semi-implicit method in various norms, we consider
the reaction-diffusion system problem [40] together with periodic boundary conditions: ω = (ω1, ω2) :
R+ × (0, 2π)2 7→ R2

test:brusstest:bruss (31)


∂ω1

∂t
= ∆ω1 − α1(t)ω2

1 +
9

2
ω1 + ω2 + f(t), t ≥ 0, (x, y) ∈ (0, 2π)2,

∂ω2

∂t
= ∆ω2 +

7

2
ω2 , t ≥ 0, (x, y) ∈ (0, 2π)2,

with α(t) = 2 et/2 and f(t) = −2e−t/2. The initial conditions are extracted from the exact solutions ω1(t, x, y) = e−t/2 (1 + cos(x)),

ω2(t, x, y) = e−t/2 cos(2x).

To apply our semi-implicit scheme (12)-(14) we rewrite this PDE in the form (G) with u = (u1, u2) the
component treated explicitly, v = (v1, v2) the component treated implicitly and

H(t, u, v) =


∆v1 − α(t)u1 v1 +

9u1

2
+ v2 + f(t)

∆v2 +
7 v2

2

 .

Since the ∆ operator induces some stiffness it is treated implicitly whereas reaction terms are treated
according to the sign of the reaction term and are linearized in order to avoid the numerical solution of
a fully nonlinear problem. Concerning the spatial discretization, we simply apply a fourth order central
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finite differente method to the ∆ operator. A fourth order accurate scheme for spatial derivatives is
applied in order to bring out the order of accuracy of the second and third order time discretization.

To estimate the order of accuracy of the schemes we compute a numerical approximation and refine
the time step ∆t according to the space step ∆x = ∆y in such a way the CFL condition associated to
the diffusion operator is violated, that is, we apply an hyperbolic CFL condition where we refine the
time step and the space step simultaneously

λ =
2∆t

∆x
,

with λ = 1.
Obviously, for a fully explicit scheme like the Runge-Kutta method, this condition would lead to

some instabilities of the numerical solution since a parabolic CFL is necessary.
The semi-implicit schemes are expected to be stable even for large time step when the parabolic

CFL condition is not satisfied.
Furthermore, the PDE system (31) is non autonomous since the source term depends on time, hence

the two solutions given by the explicit coefficient (b̂i, ĉi)1≤i≤s in (13) and by the implicit coefficient
(bi, ci)1≤i≤s in (14) are different and we want to explore numerically the two choices.

Absolute error in L∞ norms at time T = 2 are shown in Figure 3 for all the schemes presented in the
previous section. As expected the order of accuracy is satisfied for all second and third order schemes.
The results obtained with the third order SSP-DIRK3(4,3,3) scheme (28) are much more accurate
than the others obtained from second order schemes. Moreover, let us also emphasize that comparing
the amplitude of the L∞ error norm obtained with the second order schemes, the SSP-LDIRK2(3,32)
scheme (27) with three stages is much more accurate than the others. Among the second order schemes
with two stages the H-CN scheme (26) is the most accurate for this test. However, when we take into
account the CPU time (see Figure 4), most of the second order schemes are equivalent, whereas the
third order scheme is clearly advantageous for this test.

Finally, we only observe a slight difference between the two solutions yn+1 from (13) and zn+1 from
(14), even if it seems that for this numerical test, the amplitude of the error is smaller when we use
the solution given by the implicit stencil (14).
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Figure 3. Test 1 - Reaction-diffusion problem: L∞ error norm when the last step is
performed using the coefficients obtained from the (a) explicit scheme (13) and (b) and
the implicit scheme (14) for the IMEX schemes described in the previous section. error:bru0
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Figure 4. Test 1 - Reaction-diffusion problem: L∞ error norm with respect to the
number of operations obtained from the IMEX schemes described in the previous sec-
tion. error:bru1

3.2. Test 2 - Nonlinear convection-diffusion equation. We consider the following nonlinear con-
vection diffusion equation on the whole space R2 and apply a fourth order central finite difference
scheme for the first and second spatial derivatives

∂ω

∂t
+ [V + µ∇ log(ω)] · ∇ω − µ∆ω = 0 , (t, x) ∈ R+ × R2,

ω0(t = 0) = e−‖x‖
2/2,

where V = t(1, 1), µ = 0.5 . The exact solution is given by

ω(t, x) =
1√

4µ t + 1
e
− ‖x−V t‖

2

8µ t+2 , t ≥ 0, x ∈ R2.

After the space discretization, we apply our semi-implicit scheme (12)-(14) by writing the system of
ODEs in the form (G) with u the component treated explicitly, v the component treated implicitly and

H(t, u, v) = − (V + µ∇ log(u)) · ∇v + µ∆v.

We treat both the convection and diffusion implicitly but we only deal with a linear system at each time
step. The computational domain in space is (−10, 10)2 and the final time is T = 0.5. As in the previous
case, the space step is chosen sufficiently small to neglect the influence of the space discretization and
the time step ∆t is taken proportional to ∆x such that ∆t = λ∆x, with λ = 1. Therefore, the classical
CFL condition for convection diffusion problem ∆t = O(∆x2) is not verified.

In Figure 5 we present the numerical error for the L∞ norm for the semi-implicit schemes described
in the previous section and still verify the correct order of accuracy. We also present the error norm
with respect to the CPU time. Once more, the third order SSP-DIRK3(4,3,3) scheme (28) with four
stages gives much more accurate results than second order schemes with several order of magnitude.

3.3. Test 3 - Nonlinear Fokker-Planck equations for fermions and bosons. In [18, 17], a
nonlinear Fokker-Planck type equation modelling the relaxation of fermion and boson gases is studied.
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Figure 5. Test 2 - Nonlinear convection-diffusion problem: (a) L∞ error norm for
the second order schemes (23), (26), (24), (25) and (27) and the third order SSP-
DIRK3(4,3,3) L-stable scheme (28). error:cd0

This equation has a linear diffusion and a nonlinear convection term:

bosonfermionbosonfermion (32)


∂ω

∂t
= div (x (1 + k ω)ω + ∇ω) , x ∈ Rd, t > 0,

ω(x, 0) = ω0(x),

with k = 1 in the boson case and k = −1 in the fermion case. For this equation, the explicit solution is
not known except steady states, but there are several works devoted to the long time behavior based
on the knowledge of the qualitative behavior of the entropy functional. The long time behavior of
this model has been rigorously investigated quite recently in [17] via an entropy-dissipation approach.
More precisely, the stationary solution of (32) is given by the Fermi-Dirac (k = −1) and Bose-Einstein
(k = 1) distributions:

eqbosonfermioneqbosonfermion (33) ωeq(x) =
1

βe
|x|2
2 − k

,

where β ≥ 0 is such that ωeq has the same mass as the initial data ω0. For this equation, there exists
an entropy functional given by

tt:entroptt:entrop (34) E(t) :=

∫
Rd

(
|x|2

2
ω + ω log(ω)− k(1 + kω) log(1 + kω)

)
dx,

such that
d

dt
Eω(t) = −I(t),

where the entropy dissipation I(t) is defined by

tt:dissiptt:dissip (35) I(t) :=

∫
Rd
ω (1 + kω)

∣∣∣∣∇( |x|22
+ log

(
ω

1 + kω

))∣∣∣∣2 dx.
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Then decay rates towards equilibrium are given in [18, 17] for fermion case in any dimension and
for 1D boson case by relating the entropy and its dissipation. Here we want to investigate the long
time behavior of the numerical solution using different semi-implicit solvers with large time step and
compare the numerical solution with the one obtained with an explicit method with a small time step
[6].

To apply our semi-implicit scheme we rewrite this PDE in the form (G) with u the component
treated explicitly, v the component treated implicitly and

H(t, u, v) = div (x (1 + k u) v + ∇v) = div (x (1 + k u) v) + ∆v

and we apply a fourth order spatial discretization for the convective and diffusive components.
We consider the nonlinear Fokker-Planck equation (32) for fermions (k = −1) in 2D. The initial

condition is chosen as

ω0(x) =
1

2π
|x|2 exp

(
−|x|

2

2

)
, x ∈ R2,

and the computational domain is (−10, 10)2 with the space step ∆x = 0.1.

Evolution of the discrete relative entropy E(tn) = Eω(tn) − Eωeq and its dissipation I(tn), given in
(35), is presented in Figure 6. This is obtained at the top by second order schemes, i.e. classical
second order explicit Runge-Kutta scheme and H-LDIRKp(2,2,2) (25), and at the bottom by third
order schemes, i.e. classical third order explicit Runge-Kutta scheme and SSP-DIRK3(4,3,3) (28).

We observe exponential decay rate of these quantities, which is in agreement with the result proved
by J. A. Carrillo, Ph. Laurençot and J. Rosado in [17] and the numerical results proposed in [6].
Classical Runge-Kutta schemes are subject to a parabolic condition whereas semi-implicit schemes can
be used with a large time step without affecting the accuracy even for large time asymptotics.

3.4. Test 4 - Hele-Shaw flow. In this section we consider a fourth order nonlinear degenerate
diffusion equation in one space dimension called the Hele-Shaw cell [4, 37]

eq:1.3eq:1.3 (36)
∂ω

∂t
+

∂

∂x

(
ω
∂3ω

∂x3

)
= 0, x ∈ R, t ≥ 0,

with ω(x, t = 0) = ω0(x) ≥ 0.
One of the remarkable features of equation (36) is that its nonlinearity guarantees the nonnegativity

preserving property of the solution [5] and the conservation of mass∫
R
ω(t, x)dx =

∫
R
ω0(x)dx.

Moreover there is dissipation of surface-tension energy, that is,

d

dt

∫
R

∣∣∣∣∂ω∂x
∣∣∣∣2 dx = −

∫
R
ω

∣∣∣∣∂3ω

∂x3

∣∣∣∣2 dx,
and dissipation of an entropy which highlights similarities with the Boltzmann equation

d

dt

∫
R
ω log(ω)dx = −

∫
R

∣∣∣∣∂2ω

∂x2

∣∣∣∣2 dx.
On the one hand, we compare the numerical results obtained with our numerical approximation with
the similarity property of monotonicity in time of solution

ω(t, x) =
1

120(t+ τ)1/5

[
r2 − x2

(t+ τ)2/5

]2

+

,
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(a) relative entropy functional E(t) (b) entropy dissipation I(t)

Figure 6. Test 3 - Fokker-Planck equation. (a) Evolution of the relative entropy E∆(tn)
and (b) the dissipation I∆(tn) for the second order explicit Runge-Kutta scheme and
for the H-LDIRKp(2,2,2) scheme (25) (top) and for the third order explicit third order
Runge-Kutta scheme and SSP-DIRK3(4,3,3) scheme (28) (bottom). fig:00

where [·]+ denotes the positive part. We have chosen r = 2, τ = 4−5 and x ∈ (−2, 2). This solution
is only ω ∈ C1(R×R) but the second derivative in space is discontinuons, therefore we cannot expect
high order accuracy. Exact and numerical solutions at various times are reported in Fig. 8.

On the other hand, we consider the same problem with a given source term

f(τ, x) =
1

8τ4
exp

(
−x

2

4τ

) (
2x2 τ2 +

(
x4 + 6τ2 − 9x2τ

)
exp

(
−x

2

4τ

))
,

with τ = t+ 1 such that the exact solution is smooth and given by ωexact(t, x) = exp
(
−x2/4(t+ 1)

)
.

For the time discretization we apply the scheme (28) by writing the system of ODEs in the form
(G) with u the component treated explicitly and the v component treated implicitly:

H(t, u, v) = − ∂

∂x

(
u
∂3v

∂x3

)
+ f(t+ 1, x).

Concerning the space discretization, we apply a second order centred finite difference scheme for the
space discretization

H∆(t, ui, vi) = −
Fi+1/2 −Fi−1/2

∆x
+ f(t+ 1, xi),
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with
Fi+1/2 = ui+1/2

vi+2 − 3vi + 3vi−1 − vi−2

∆x3
,

with ui+1/2 = (ui + ui+1)/2. The time step is chosen as previously such that ∆t is proportional to the
space step ∆x. In this way the stability condition associated to an hypothetical fully explicit time
discretization for this problem, i.e. ∆t ≤ C∆x4, is strongly violated.

The numerical error in L1 and L∞ for both test cases are reported in Fig. 7 at the final time t = 0.35.
We observe a rate of convergence about 1.6 for both L1 and L∞ norms for the non smooth solution
and second order accuracy for the smooth solution.
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Figure 7. Test 4 - Hele-Shaw flow : (a) L1 error norm and (b) L∞ error norm for the
SSP-LDIRK2(3,3,2) L-stable scheme (25). fig:t4-0

Of course for these large time steps, the numerical scheme does not preserve positivity, but only
some small spurious oscillations occur for short times and then they are damped after several time
iteration thanks to the diffusion process (see Fig. 8).

3.5. Test 5 - Surface diffusion flow. In this section, we consider the surface diffusion of graphs [21]
∂ω

∂t
+ divS(ω) = 0, x ∈ R2, t ≥ 0,

where the nonlinear differential operator S is given by

S(ω) :=

(
Q(ω)

(
I − ∇ω ⊗∇ω

Q2(ω)

)
∇N(ω)

)
,

where Q is the area element
Q(ω) =

√
1 + |∇ω|2

and N is the mean curvature of the domain boundary Γ

N(ω):=

(
∇ω
Q(ω)

)
.

The surface diffusion equation models the diffusion of mass within the bounding surface of a solid
body, where V = ∆ΓN(ω) is the normal velocity of the evolving surface Γ,

V = − 1

Q(u)

∂u

∂t
,
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Figure 8. Test 4 - Hele-Shaw flow : time evolution of the numerical solution for the
SSP-LDIRK3(4,3,3) L-stable scheme (28) for t = 0, 0.01, 0.15 and 0.35. fig:t4-1

and ∆Γ denotes the Laplace-Beltrami operator [21].
There are many applications of these models, such as body shape dynamics, surface construction,

computer data processing or image processing. This equation is a highly nonlinear fourth-order PDE.
The higher order differential operators and additional nonlinearities for these kind of problems are
difficult to analyze and to simulate numerically due to the stiffness of order ∆x4, where ∆x is the
space step [39]. We will apply our stable high order accurate methods based on semi-implicit time
discretizations. Moreover, we will compare our time discretization with the one proposed by P. Smereka
in [38] or in [22], where the operator S is split in two parts

S(ω) = S(ω)− β∆2ω︸ ︷︷ ︸
less stiff part

+ β∆2ω,︸ ︷︷ ︸
stiff, dissipative part

where β is a free parameter to be determined and in [38] it is chosen as β = 2. The first part is then
treated explicitly whereas the stiff and dissipative part is treated implicitly. This splitting technique
is very effective to stabilize numerical schemes but it may affect the numerical accuracy.

With our approach there is no need to add and subtract terms, because the system is automatically
stabilized by the proper choice of the variable that will be implicitly treated.

The solution of the surface diffusion of graphs verifies

1

2

d

dt

∫
Ω
ω2dx+

∫
ω
N2(ω)dx = 0,

giving L2 stability.
We consider numerical solutions of the two-dimensional surface diffusion of graphs equation with

the initial condition

ω0(x) =
1

2πT
exp

(
−|x|

2

2T

)
.
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The computational domain is (−10, 10)2 and we use a second order central finite difference scheme
together with the second order H-LDIRKp(2,2,2) scheme (25) with

H(u, v):=

(
Q(u)

(
I − ∇u⊗∇u

Q2(u)

)
∇N (u, v)

)
,

and N
N (u, v):=

(
∇v
Q(u)

)
.

We present in Figure 9 the time evolution of the L2 norm of the numerical solution and its dissipation:
d

dt
E(ω) = −I(t),

where the functional E(ω) and the dissipation I(t) are defined by

E(ω) =

∫
Ω
ω2(t, x)dx, I(t) =

∫
Ω
N2(ω(t, x))dx.

The results show that our second order numerical scheme (25) is stable and accurate for large time
steps whereas the one based on the splitting technique given in [38] is stable but less accurate for large
time step ∆t = 0.1. These numerical simulations illustrate the efficiency of our approach based on
semi-implicit numerical schemes.
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Figure 9. Test 5 - Surface diffusion flow. (a) Evolution of the L2 norm and (b) the
dissipation I∆(tn) for second order H-LDIRKp(2,2,2) L-stable scheme (25) and the one
proposed in [38] based on a splitting technique in log scale. fig:can

4. Conclusions

In this paper we show that classical IMEX schemes can be adopted in a much wider context that
the one they were originally introduced for. Indeed, in several contexts, the stiffness of the problem
is essentially linear, and therefore IMEX schemes can be successfully adopted by treating the linear
stiff part implicitly. Note that this approach is not equivalent to a linearization of the problem, and
in several cases it is much simpler to apply than linearization. The overall accuracy of the scheme
is automatically guaranteed by the standard order conditions for IMEX schemes. Many practical
examples showing how to apply IMEX schemes in this new context are presented. We believe that this
new approach can be successfully applied in many other contexts well beyond the ones presented in
the paper.
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