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ABSTRACT. We develop weighted essentially non-oscillatory reconstruction techniques based
on Hermite interpolation both for semi-Lagrangian and finite difference methods. We apply
these methods to transport equations in the context of plasma physics and the numerical sim-
ulation of turbulence phenomena. On the one hand the non-conservative semi-Lagrangian
methods with high order reconstructions are particularly efficient and accurate in linear
phase of simulations before the appearance of small structures. However in the non-linear
phase, the lack of conservations may generate inaccurate numerical simulations. At con-
trast, the conservative finite difference methods are more stable in non-linear phase and the
Hermite WENO reconstruction avoid spurious oscillations.
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1. INTRODUCTION

Turbulent magnetized plasmas are encountered in a wide variety of astrophysical situa-
tions like the solar corona, accretion disks, etc, but also in magnetic fusion devices such as
tokamaks. In practice, the study of such plasmas requires solving the Maxwell equations
coupled to the computation of the plasma response. Different ways are possible to compute
this response: the fluid or the kinetic description. Unfortunately the fluid approach seems to
be insufficient when one wants to study the behavior of zonal flow, the interaction between
waves and particles or the occurrence of turbulence in magnetized plasmas for example. Most
of the time these plasmas are weakly collisional, and then they require a kinetic description
represented by the Vlasov-Maxwell system. The numerical simulation of the full Vlasov equa-
tion involves the discretization of the six-dimensional phase space (x,v) € R? x R3, which is
still a challenging issue. In the context of strongly magnetized plasmas however, the motion
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of the particles is particular since it is confined around the magnetic field lines; the frequency
of this cyclotron motion is faster than the frequencies of interest. Therefore, the physical
system can be reduced to four or five dimensions by averaging over the gyroradius of charged
particles (See for a review [1, 15]).

To develop accurate and stable numerical techniques for plasma turbulence (4D drift ki-
netic, 5D gyrokinetic and 6D kinetic models) is one of our long term objectives. Of course,
there are already a large variety of numerical methods based on direct numerical simulation
techniques. The Vlasov equation is discretized in phase space using either semi-Lagrangian
[9, 10, 29, 30], finite element [I&], finite difference [31] or discontinuous Galerkin [7, 20]
schemes. Most of these methods are based on a time splitting discretization which is particu-
larly efficient for classical Vlasov-Poisson or Vlasov-Maxwell systems since the characteristic
curves corresponding to the split operator simply become straight lines and can be solved ex-
actly. Therefore, the numerical error is only due to the splitting in time and the phase space
discretization of the distribution function. Furthermore for such time splitting schemes, the
semi-Lagrangian methods on Cartesian grids coupled with Lagrange, Hermite or cubic spline
interpolation techniques are conservative [3, 10]. Hence, these methods are now currently
used and have proven their efficiency for various applications and in this context they are
often observed to be less dissipative than classical finite volume or finite difference schemes.
However, for more elaborated kinetic equations like the 4D drift kinetic [16] or 5D gyroki-
netic [17] equations, or even the two dimensional guiding center model [30], time splitting
techniques cannot necessarily be applied. Thus characteristic curves are more sophisticated
and required a specific time discretization. For instance, in [16, 17] several numerical solvers
have been developed using an Eulerian formulation for gyro-kinetic models. However, spu-
rious oscillations often appear in the non-linear phase when small structures occur and it is
difficult to distinguish physical and numerical oscillations. Moreover, for these models semi-
Lagrangian methods are no more conservative, hence the long time behavior of the numerical
solution may become unsuitable.

For this purpose, we want to develop a class of numerical methods based on the Her-
mite interpolation which is known to be less dissipative than Lagrange interpolation [10]
together with a weighted essentially non-oscillatory (WENQO) reconstruction applied to semi-
Lagrangian and finite difference methods. Actually, Hermite interpolation with WENO
schemes were already studied in [26] in the context of discontinuous Galerkin methods with
slope limiters. A system of equations for the unknown function and its first derivative is
evolved in time and used in the reconstruction. Moreover, a similar technique, called CIP
(Cubic Interpolation Propagation), has also been proposed for transport equations in plasma
physics applications [24], but the computational cost is strongly increased since the unknown
and all the derivatives are advected in phase space. In [10], a semi-Lagrangian method with
Hermite interpolation has been proposed and shown to be efficient and less dissipative than
Lagrangian interpolation. In this method, the first derivatives are approximated by a fourth
order centered finite difference formula.

Here, we also apply a similar pseudo-Hermite reconstruction [10] and meanwhile introduce
an appropriate WENO reconstruction to control spurious oscillation leading to nonlinear
schemes. We develop third and fifth order methods and apply them to semi-Lagrangian
(non-conservative schemes) and conservative finite difference methods. Our numerical results
will be compared to the usual semi-Lagrangian method with cubic spline interpolation [30]
and the classical fifth order WENO finite difference scheme [22].

The paper is organized as follows : we first present the Vlasov equation and related models
which will be investigated numerically. Then in section 3, the semi-Lagrangian method is
proposed with high order Hermite interpolation with a WENO reconstruction to control
spurious oscillations. In section 4, conservative finite difference schemes with Hermite WENO
reconstructions are detailed. In section 5, a discussion of approximation of first derivatives is
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presented. Then the one-dimensional free transport equation with oscillatory initial data is
investigated to compare our schemes with classical ones (semi-Lagrangian with cubic spline
interpolation and conservative finite difference schemes with WENO reconstruction). Finally
we perform numerical simulations on the simplified paraxial Vlasov-Poisson model and on
the guiding center model for highly magnetized plasma in two dimension.

2. THE VLASOV EQUATION AND RELATED MODELS

The evolution of the density of particles f(¢,x,v) in the phase space (x,v) € R% x RY,
d=1,..,3, is given by the Vlasov equation,
of

(2.1) E+V-fo+F(t,x,v)-va:0,

where the force field F'(¢,x,v) is coupled with the distribution function f giving a nonlinear
system. We mention the well known Vlasov-Poisson (VP) model describing the evolution
of particles under the effects of self-consistent electro-magnetic fields. We define the charge
density p(t,z) by

(2.2) p(t,x) = q]ﬂ%d flt,x,v)dv,
where ¢ is the single charge. The force field is given for the Vlasov-Poisson model by
(23) F(t,X,V) = iE(t,X), E(t,X) = _vx¢(tax)7 _qus = ﬁv
m €0

where m represents the mass of one particle. These equations and related reduced equations,
such as 4D drift-kinetic equation [19], are frequently used to describe plasma turbulence in a
Tokamak core.

In the sequel, we will also consider the so-called 2D guiding-center model [21], which can

be obtained by integrating the 4D drift-kinetic model on z,v. This model can describe the
evolution of the charge density in a highly magnetized plasma in the transverse plane of a
tokamak, given by

dp

L 4+U-vp=0,
(2.4) ot o VP

-A¢ = p.

where the velocity U = (-=0y¢, 0;¢) is divergence free.
Transport equations (2.1) or (2.4) can be recast into an advective form
of

2.5 — +A-Vf=0,

(25 Ay

where A : RY x R* - RY, N > 1. Hence, classical backward semi-Lagrangian method can be
applied to solve (2.5). Furthermore, under the assumption V- A =0, equations (2.1) or (2.4)
can also be rewritten in a conservative form

(2.6) % + div(Af) =0,

for which a finite difference method can be used.

3. HERMITE WENQO RECONSTRUCTION FOR SEMI-LAGRANGIAN METHODS

We introduce a high order Hermite interpolation coupled with a weight essentially non-
oscillatory (HWENO) reconstruction for semi-Lagrangian methods. The classical HWENO
should evaluate the distribution function f and its spatial derivatives, which increases com-
putational cost [26]. We thus devote to develop a more efficient HWENO scheme based on
finite difference approximations of the derivatives.
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The semi-Lagrangian method becomes a classical method for the numerical solution of the
Vlasov equation because of its high accuracy and its small dissipation [2, 30]. Moreover, it
does not constraint any restriction on the time step size. Indeed, the key issue of the semi-
Lagrangian method compared to classical Eulerian schemes is that it uses the characteristic
curves corresponding to the transport equation to update the unknown from one time step
to another. Let us recall the main feature of the backward semi-Lagrangian method. For a
given s € R*, the differential system

dX

— =A(t,X
dt (7 )7
X(s) =x,

is associated to the transport equation (2.5). We denote its solution by X(¢;s,x). The
backward semi-Lagrangian method is decomposed into two steps for computing the function
f™*1 at time t,41 from the function f™ at time t,, :

(1) For each mesh point x; of phase space, compute the backward characteristic X (t,; tn+1,X;),
the value of the characteristic at time t, who is equal to x; at time t,,1.
(2) As the function f of transport equation verifies

FHxa) = (Xt tne1, X1)),
we obtain the value of f"*1(x;) by computing f™(X(tn;tn+1,%;)) by interpolation,
since X(tp;tn+1,%;) is not usually a mesh point.

In practice, a cubic spline interpolation is often used [, 11]. It gives very good results,
but it has the drawback of being non local which causes a higher communication overhead on
parallel computers. Moreover spurious oscillations may occur around discontinuities. On the
other hand, the cubic Hermite interpolation is local, and has been shown in [10] to be less
dissipative than Lagrange interpolation polynomial. However, it has still spurious oscillations
for discontinuous solution.

Here, we develop a third and fifth order Hermite interpolation coupled with a weighted
essentially non-oscillatory procedure, such that it is accurate for smooth solutions and it re-
moves spurious oscillations around discontinuities or high frequencies which cannot be solved
on a fixed mesh.

3.1. Third order Hermite WENO reconstruction in 1D. Consider a uniform mesh
(x;); of the computational domain and assume that the values of the distribution function
(fi)i and its derivative (f/); are known at the grid points. The standard cubic Hermite
polynomial Hs(z) on the interval I; = [x;,2;11] can be expressed as follows :

i+ 7 +1 — Ji -A !
Hy(z) = fi+ L i:nf( - x;) + (fina 222 vfi (x—x;)(x — Ti41)
(3.1)
Ax(f +fH1A)x32(le )(55—131')2(.’E—33i+1).

The polynomial Hs(x) verifies :
{ H3(mi):fi7 H‘é(ml):f;a
H3(wi41) = fir1, Hiz(xiv1) = fiq-

Moreover, we define two quadratic polynomials in the interval I; :

(3.2) m(z) = fi+ f”ix Jile -2+ (i _f;; L VN
(3.3) he(z) = fi+ fwgzv fz( —x;) + Azfin A:(UJ;HI )(aj ) (T = Tis1).
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The polynomial of degree 2 h; verifies
hi(xi) = fi,  hi(ziv1) = fivr,  hy(2i) = fi,

while h, verifies
he(xi) = fiy  he(@in1) = fin,  hp(@ien) = fla-
The idea of WENO reconstruction is now to use the cubic polynomial H3 when function

f is smooth, otherwise, we use the less oscillatory polynomial of degree 2 between h; or h,..
Thus, let us write Hg as follows

Hs(z) = wi(z)h(z) + we(z)h(x),

where w; and w, are WENO weights. When the function f is smooth, we expect that
Tivl — T
Ax

so that we recover the third order Hermite polynomial. Otherwise, we expect that

wi(z) ~ c(x) = and  wr(z) ~ cr(2) =1 - (2),

(3.4) wi(z) » L,w(z) 0 or wy(zr)~0,w.(z)~1

according to the region where f is less smooth. To determine these WENO weights, we follow
the strategy given in [22] and first define smoothness indicators by integration of the first
and second derivatives of h; and h, on the interval I; :

/Bl '[E.xz#l A:L‘(hg)2 + A])S(hZ/)Qd‘T = (fZ _ fi+1)2 + ?((fl+l _ fz) _ A-sz/)Q,

Br

Ti+1 13
f_ Ax(hy)? + Az’ (h))2dx = (f; = fir)? + 7 (A fin = (fin - fi)?.
Then we set w; and w, as

()

(@) oy nd (@) =1-wi(@),

wy(z) =
where
cr(z)

(e+06)%

a(x)

(e+p1)?
where € = 107% to avoid the denominator to be zero.

Observe that when the function f is smooth, the difference between §; and [, becomes
small and the weights w;(z) ~ ¢;(x) and w,(x) » ¢.(z). Otherwise, when the smoothness
indicator B, s =, r blows-up, then the parameter a; and the weight ws goes to zero, which
yields (3.4).

Finally, let us mention that the following fourth-order centred finite difference formula is
used to approximate the first derivative at the grid point x;

(3.5) fi = ﬁ(fiﬂ —8fi—1 +8fis1 — fir2).

However, other choices may be done and a further discussion on the different possibilities will
be given in section 5.1.

Now, we give an error estimate on the Hermite WENO interpolation procedure and com-
pare it with the classical WENO interpolation based on Lagrange interpolation.

a(x) = and «,(x) =

Proposition 3.1. Assuming that f is smooth, we can formally prove that

) (g
(3.6) EH(r) = f(z) - Hy(x) = f4—(!2)r2(1 -r)2 Azt + O(Az®),
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FIGURE 1. Stencil used for the (a) fifth order classical WENO interpolation
and (b) fifth order Hermite WENO interpolation with sixth order finite dif-
ference approximation of the first derivative

where 0 <7 =7 < 1. This approvimation error Er (1) is smaller than that of cubic Lagrange
reconstruction Ls(x)

@) (g
(3.7) EX(r) = f(z) - La(z) = S ) 4(! ) (1+7)r(1-r)(2-r)Az* + O(AzD).

From this proposition, we observe that the amplitude of the error of the Hermite recon-
struction is smaller than the one obtained from a Lagrange interpolation.

) (g,
Remark 3.2. We emphasize that the coefficients f4—(!zl)r2(1—r)2 in the error estimate (3.6)
s guaranteed by fourth or higher order approximation of the derivative. On the opposite, a
lower order approrimation would affect this coefficients, and thus the error amplitude.

Remark 3.3. Hermite and Lagrange WENO procedures have the same complexity since the
discrete derivative can be computed and stored before the reconstruction step. Indeed, we
have 27 additions (resp. 32) and 47 (resp. 44) multiplications for the Lagrange WENO
(resp. Hermite WENQO) procedure.

On the other hand, as we show in Figure 1, the stencils for the Hermite WENQO recon-
struction with a centred approximation of the first order derivative is much wider than the
one for the Lagrange WENQO reconstruction. Moreover, for the HWENQO procedure, the in-
tersection of the reconstruction points of hy, he and hy is {x;_1,%;, Tiy1, Tiro, } whereas it is
only {x;,xis1} for WENO. Hence, we should expect some spurious oscillations when a dis-
continuity is located on (xi-1,x;+2). This issue may be fived using a decentred approzimation
of the derivative on each side. However, numerical simulations performed in section 5.1 show
that the centered approximation is the most robust and accurate.

3.2. Fifth order Hermite WENO reconstruction. We can extend previous method to a
fifth order Hermite WENO reconstruction. In the same way, we first construct a fifth degree
polynomial Hs(x) on the interval [x;, 241 ]

H5(xj) = fj? .7 =1- 1) 7:7 T+ 17i+ 27 Hé(xl—l) = fi,—h Hé($z+2) = fi,+2
and then polynomials of degree three hi(x), h.(z), h,(z) verifying

hi(xz;)=f;, j=i-1,4,i+1, hi(zi-1) = fi1,
hc(xj)ij, j=i—1,i,’i+1,i+2,
he(x) = fj,  §=ii+10+2, hp(iv2) = fio,

where the first derivative f/ is given by a sixth order centered approximation

1
fi= @[(fu:% = fi3) = 9(fir2 = fi-2) +45(fix1 = fi-1) |-
Then the polynomial H5 can be written as a convex combination

H5(.%') = wl(x)hl(x) +wc(x)hc(x) +U),«($)hr(af),
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where w;(x), we(x), we(x) are WENO weights depending on x. Similarly smoothness indi-
cators are computed by integration of the first, second and third order derivatives of h;(x),
he(x), hy(x) on the interval [x;, x;41] :

8; = [ AR+ AP (W) + AP (W) dz,  j=1e,r.

Finally, the WENO weights are determined according to the smoothness indicators

~ () () = c(x) (2 (- 2i42)?
wi(z) = ay(z) + ac(x) + a.(z)’ (x) = (e +5)%’ (x) = 9Az2
we(x) = ac() a (:E)zM ce(z) =1-¢(x) —cr ()
T @) rac(@) v an(@) T (e+B)2 : e
~ ar(x) () = er(x) o (z) (- xi1)?
wr(w) = ay(x) + ac(x) + a.(z)’ () (e +6r)? () 9Az2

This polynomial reconstruction allow to get fifth order accuracy for smooth stencil and
the various stencils are expected to damp oscillations when filamentation of the distribution
function occurs. Finally, let us observe that this technique can be easily extended to high
space dimension on Cartesian grids.

4. HERMITE WENO RECONSTRUCTION FOR CONSERVATIVE FINITE DIFFERENCE METHODS

When the velocity A is not constant in (2.5), the semi-Lagrangian method is not conser-
vative even when divA =0, hence mass is no longer conserved and the long time behavior of
the numerical solution may be wrong even for small time steps. Therefore, high order con-
servative methods may be more appropriate even if they are restricted by a CFL condition.
An alternative is to use the finite difference formulation in the conservative form and to use
the semi-Lagrangian method for the flux computation [27, 25].

In this section, we extend Hermite WENO reconstruction for computing numerical flux of
finite difference method. For instance we consider the one dimensional transport equation

0F 2 (ap)=,

EIr
We set u = A f and suppose that {u;}1<;<n is approximation of u(x;), where u is a smooth
function. We look for { fi+1 /2}093 ~ such that the flux difference approximates the derivative
u'(x) to k-th order accuracy :

= Fiare oy s oadhy,
Ax

An upwind scheme gives

T else,

f = { ;'l+1/27 if A(xi+1/2) >0,
i+1/2 — 7
i+1/27

where fz.lﬂ /2 (resp. fzﬁl /2) is the numerical flux reconstructed on the left (resp. right) hand
side.
Then, let us define a function g such that

(4.1 ur)y = o [0 sy

B E -Az/2
then clearly

W (z) = Aix [g(z + Az)2) - g(x - AzJ2)].
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Hence we define the flux function f;,, /2 as an approximation of g(x; + Az/2). Let us denote
by G one primitive of g

G(x)= [ g(s)ds,
then (4.1) implies

Tj+1/2

G(ﬂﬁm/z) = Zl: f

j=—o0 x]71/2

g(s)ds = Ax Z uj = Giyy/o-
j=—o0

Thus, given the point values {u;}, the primitive function G(x) is exactly known at = = x;,1 .
We thus can approximate G(x) by an interpolation method. Therefore,

dG

(4.2) 9(Ti2) = dr

T=Ti+1/2

Now let us interpolate the primitive function G(x). Here we only consider high order
Hermite WENO scheme and outline the procedure of reconstruction only for the fifth order
accuracy case.

The aim is to construct an approximation of the flux f;+1 /2 by the Hermite polynomial of
degree five together with a WENO reconstruction from point values {u;}. For instance here
we choose to present the left hand side reconstruction on the interval (z;_1/2, Zj+1/2):

(1) We construct the Hermite polynomial Hy such that
H5(wij172) = Givjerjos 5= =2, 1,0, 1, Hy(ipji1/2) = Glyjiyn J = -2, 1,
(2) We construct cubic reconstruction polynomials H;(x), Hc.(z), Hy(x) such that :
Hy(%iyj172) = Givjerje =2, -1, 0, Hi(zi-3/2) = Gi_3/9;
He(2iji1/2) = Gisjerye, 3=-2,-1,0, 1,

Hy (%5 j012) = Girjarye, 3= 1,0, 1, Hy(75,3/2) = G;+3/ga

where G, | /2 is the sixth order centered approximation of first derivative

1
;+1/2 = @[(UHS —ui—2) = 8(ir2 — Uj—1) + 37 (Ujs1 — u;)].

Let us denote by hi(x), he(x), hy(x), hs(x) the first derivatives of H;(x), Hq(x),
H,(x), Hs(x) respectively. By evaluating hi(x), he(z), hi (), hs(z) at © = 24,19,

we obtain
—8ui_1 + 19ui + 19ui+1 + 3Gg_3/2 - 6G§+3/2
hs(Ti41/2) = o7
and
hi(Ziv2) = —2ui1 + 2u; + G§_3/2,
—Ui—] + DU + 2Ui4q
hc(xi+1/2) = : 6z - )
u; + 5ui+1 - 2Gl.+3 9
hr($i+1/2) = s .

4
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(3) We evaluate the smoothness indicators 3;, ., [, which measure the smoothness of
hi(x), he(z), hy(x) on the cell [x;, ;1]

o= [ A(hi(@)? 4 At (] (2))?de
9 75 4 ) ,
= 17 + 3Ll + EZQ, with I1 = w; —wi—1, lo = —3ui—1 +u; +2Gi—3/2’
fo = [ An(h(@))?+ Aat (W] (2))d
2 25 2 .
= ¢ + 2cico + ECQ, with ¢ = u; - Uj-1, €2 = Uj—1 — 2u; + Uj+1,
B, = [ T A(B(2))? + AP (R () d

2 39 2 . /
ry + 3rire + ETQ, with 71 = w31 —u;, 79 = ui—3ui+1+2Gi+3/2.

(4) We compute the non-linear weights based on the smoothness indicators

_ (6%} _ q
wl_al+ac+ar’ al_(5+6l)2’
_ (8% _ Ce
wc_al+ozc+ar7 Oéc_(aEJrﬁc)Z7
~ a G

where the coefficients ¢; = 1/9, ¢. = 4/9, ¢, = 4/9 are chosen to get fifth order accuracy
for smooth solutions and the parameter € = 107% avoids the blow-up of ay, k = {l,¢,r}.
(5) The flux fl.l +1/2 15 then computed as

A

fz‘l+1/2 = whi(@i12) + wehe(Tivrye) + wrhe(Tii172)-

The reconstruction to f7

i+1/2 1s mirror symmetric with respect to ;1 of the above procedure.

5. NUMERICAL SIMULATION OF VLASOV EQUATION AND RELATED MODELS

We start with a discussion of approximation of first derivatives for Hermite WENO re-
construction. Then we check the order of accuracy and compare the error amplitude of the
various numerical schemes with a very basic test on the one dimensional transport equation
with constant velocity. Finally we perform numerical simulations on the simplified paraxial
Vlasov-Poisson model and on the guiding center model for highly magnetized plasma in the
transverse plane of a tokamak.

In this section we will compare our Hermite WENO reconstruction with the usual semi-
Lagrangian method with cubic spline interpolation without splitting [30], and with the classi-
cal fifth order finite difference technique [22] coupled with a fourth order Runge-Kutta scheme
for the time discretization.

5.1. A discussion on approximation of f/. Insection 3.1, we have proposed a fourth-order
centred finite difference formula (3.5) for f/ in third order Hermite WENO reconstruction.
However, in this subsection, different approximations of f/ will be compared.

Let us only consider f/ in hy(z) of (3.2), then following approximations will be considered
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e Second-order centred approximation

1
fi= E(‘fi—l + fir1)-
e Fourth-order WENO approximation

fi = wif] +wefo+wn f],

where w;, we, w, are WENO type weights, f/, f/, f/ are third-order decentred ap-
proximation

, 1

fi E(fi72_4fifl+3fi)a
;o 1

fe = E(—fi—l + fis1),

, 1
Ir = E(_Sfi+4fi+l_fi+2)-

e Fourth-order centred approximation

1
fl=——(fi—2 - 8fi-1+8fi+1 — fi+2).
12Ax
e Sixth-order centred approximation
1
fi = m(—fi—?) +9fi0—45fi 1 +45fi1 — 9fira + fiss).

For comparison, let us consider the free transport equation
of N of
ot ox

with periodic boundary conditions.
We first consider a smooth solution, where the initial condition is chosen as

f(0,z) =sin(nz), xe[-1,1].

We present in Table 1 numerical errors for semi-Lagrangian-HWENO 3rd method with dif-
ferent approximations of f/ in continuous solution case. We first note that all the approaches
can achieve third-order actuary. The one with 2nd-order centred approximation is less precise
than the others. Moreover, we notice that higher order centred approximation can no more
improve the precision.

(5.1) =0, ze[-1,1], t>0,

o 200 400 800

I | [HE r L o
2nd-order Centred | 9.35e-6 | 3.02 | 1.164e-6 | 3.01 | 1.45e-7 | 3.00
4th-order WENO | 1.04e-6 | 3.03 | 1.29¢e-7 | 3.01 | 1.62¢-8 | 3.00
4th-order Centred | 1.04e-6 | 3.03 | 1.29¢-7 | 3.01 | 1.62¢-8 | 3.00
6th-order Centred | 1.04e-6 | 3.02 | 1.29¢-7 | 3.01 | 1.62¢-8 | 3.00

TABLE 1. Comparison of different first derivative approximations in contin-
uous solution case: Error in L'-norm and order of convergence r. The final
time is Tepg = 8.

Then we consider a discontinuous solution, a step function, as follows

1, for —1<2x<0,

(5.2) f(0,2) = {

0, otherwise.
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It is clear from table 2 that the approaches with 4th-order WENO and centred approximations
are more precise than the one with 2nd-order centred approximation both for the precision and
for the control of oscillation. Moreover, the approach with 4th-order centred approximation
is even better than the ones with 4th-order WENO and 6th-order centred approximations,
and it is cheaper in sense of computational cost then later ones. We thus propose to use the
4th-order centred approximations for the first derivatives.

The similar results can be observed in the semi-Lagrangian-HWENO 5th method and finite
difference HWENO 5th method with different approximations of first derivatives.

Ny 200 400 800
2nd-order Centred | 4.72e-2 | 2.76e-2 | 1.60e-2
4th-order WENO | 4.39¢-2 | 2.65e-2 | 1.57e-2
4th-order Centred | 3.27e-2 | 1.89¢-2 | 1.09¢-2
6th-order Centred | 3.08e-2 | 1.78¢-2 | 1.03e-2

(a) Error between the exact solution and the approximated solutions

Ny 200 400 800
2nd-order Centred | 3.32¢-3 | 5.34e-3 | 8.21e-3
4th-order WENO | 2.04e-3 | 2.68e-3 | 3.77e-3
4th-order Centred | 5.71e-4 | 5.18e-4 | 4.37e-4
6th-order Centred | 1.70e-3 | 1.99e-3 | 2.65¢-3

(b) Error of total variation

TABLE 2. Comparison of different first derivative approximations in discon-
tinuous solution case: (a) Error in L* norm and r is the order of accuracy
(b) Error on the total variation. The final time is Tepg = 8.

5.2. 1D transport equation. In this subsection, we consider again the free transport equa-
tion (5.1), but compare our Hermite WENO reconstruction with various classical methods.

We present in Tables 3 and 4, the numerical error for different methods. On the one hand
for semi-Lagrangian methods in Table 3, the third and fifth order Hermite WENO recon-
struction are compared with the cubic spline interpolation. The semi-Lagrangian method is
unconditionally stable, we thus choose a CFL number larger than one, e.g. \ = ﬁ—fc = 2.5.
For this equation, the time integration is exact since the characteristic curves are straight
lines, hence the numerical error is only due to the accumulation of the interpolation error
at each time step. For a reconstruction of degree p, the error is expected to be of order
O(AzP*L/At), that is O(AxP/)\). We observe that the cubic spline and third order Hermite
WENO reconstructions have both third order accuracy, and the numerical error has almost
the same amplitude. The third order Hermite WENO reconstruction is much accurate than
the classical third order WENO reconstruction, which corresponds to the approximation
errors (3.6),(3.7). The semi-Lagrangian method with a fifth order Hermite WENO recon-
struction has fifth order accuracy, thus it is much more accurate than the previous third
order methods.

On the other hand in Table 4, we focus on the finite difference method and compare the fifth
order Hermite WENO reconstruction with the classical fifth order WENO reconstruction [22].
We choose a CFL number such that the time stepping error is negligible to spatial error, e.g.
A= % = 0.4.. We thus observe that these two methods have fifth order accuracy, but the fifth
order Hermite WENO interpolation method is much more accurate than the usual fifth order
WENO method. Furthermore, for the same order of accuracy the semi-Lagrangian method
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Ny 200 400 800
[ N N O PO
Semi-Lagrangian cubic spline | 1.03e-6 | 3.00 | 1.29e-7 | 3.00 | 1.61e-8 | 3.00
Semi-Lagrangian WENO 3rd | 9.48e-6 | 3.08 | 1.17e-6 | 3.02 | 1.45e-7 | 3.00
Semi-Lagrangian HWENO 3rd | 1.04e-6 | 3.03 | 1.29e-7 | 3.01 | 1.62e-8 | 3.00
Semi-Lagrangian WENO 5th | 1.92e-9 | 5.02 | 5.98e-11 | 5.00 | 1.94e-12 | 4.94
Semi-Lagrangian HWENO 5th | 9.28e-10 | 5.51 | 2.28e-11 | 5.35 | 8.63e-13 | 4.72

(a) Error between the exact solution and the approximated solutions

SL-spline

SL-WENO3

SL-HWENO3

SL-WENOb5

SL-

HWENOS

0.56

0.05

0.06

0.14

0.16

(b) Computational time for different methods in the case n, = 800

TABLE 3. Comparison of the semi-Lagrangian methods in continuous solution
case: (a) Error in L*-norm and order of convergence r, (b) Computational
time, in seconds. The final time is Te,q = 8.

is much more precise than the finite difference scheme, which is expected for linear problems
since the error only comes from the polynomial interpolation. Computational time is rather
similar with both reconstructions.

o 200 400 800
NN |- r
Finite difference WENO 5th | 1.15e-7 | 4.99 | 3.60e-9 | 5.01 | 1.16e-10 | 4.95
Finite difference HWENO 5th | 6.06e-8 | 4.99 | 1.92e-9 | 4.98 | 6.55¢e-11 | 4.87

(a) Error between the exact solution and the approximated solutions

FD-WENO5H
2.48

FD-HWENO5
2.85

(b) Computational time for different methods in the case n, = 800

TABLE 4. Comparison of the finite difference methods in continuous solution
case: (a) Error in L*-norm and order of convergence r, (b) Computational
time, in seconds. The final time is Tepg = 8.

Comparisons of the methods in discontinuous solution case are now summarized in Ta-
bles 5 and 6. We first notice that all the methods can achieve order of accuracy of z%’ where
p is degree of polynomial. This numerical results are in perfect argument with the stability
result proven in [6, Corollary 7] for discontinuous solution. Indeed, even without any limiter,
the high order scheme remains stable and convergent for discontinuous solution. Surpris-
ingly, the order of accuracy increases with the degree of polynomial. Moreover, it is clear
that semi-Lagrangian methods with spline cubic and Hermite interpolations are more precise
than fourth-order Runge-Kutta time discretization coupled with the finite difference methods
with the different WENO reconstructions. More precisely for n, < 103, the cubic spline inter-
polation is more accurate than Hermite polynomials of degree three and five coupled with the
WENO reconstruction. It illustrates perfectly the robustness of the semi-Lagrangian method
with cubic spline interpolation. Nevertheless it also generates a lot of oscillations (see Table 5
(b)) which produce negative values of the distribution function. Furthermore it seems that
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the fifth order Hermite WENO reconstruction is less dissipative than usual fifth order WENO
one and it is more accurate. Both of them control well spurious oscillations (see Table 5 (b)).

Here, we emphasize that the Hermite WENO reconstructions do not significantly increase
the computational cost with respect to the classical WENO reconstructions (see Remark 3.3).

On the other hand, we notice that the error of the Hermite WENQO reconstruction is only
50% of that of the classical WENO reconstruction in the smooth solution case, and it is about
90% in the non-smooth solution case. Therefore, the Hermite WENO reconstruction is more
efficient than the classical WENO reconstruction.

Ng 200 400 800

[ N 1 N A I
Semi-Lagrangian cubic spline | 2.47e-2 | 0.80 | 1.43e-2 | 0.79 | 8.52¢-3 | 0.75
Semi-Lagrangian WENO 3rd | 5.16e-2 | 0.76 | 3.02e-2 | 0.77 | 1.75e-2 | 0.78
Semi-Lagrangian HWENO 3rd | 3.27e-2 | 0.78 | 1.89e-2 | 0.79 | 1.09e-2 | 0.80
Semi-Lagrangian WENO 5th | 3.22e-2 | 0.83 | 1.80e-2 | 0.84 | 9.97¢-3 | 0.85
Semi-Lagrangian HWENO 5th | 2.94e-2 | 0.84 | 1.63e-2 | 0.85 | 8.99¢-3 | 0.86

(a) Error between the exact solution and the approximated solutions

Ng 200 400 800
Semi-Lagrangian cubic spline | 5.75e-1 | 5.12e-1 | 5.19e-1
Semi-Lagrangian WENO 3rd | 5.13e-3 | 7.22e-3 | 1.11e-2

Semi-Lagrangian HWENO 3rd | 5.71e-4 | 5.18e-4 | 4.37¢e-4
Semi-Lagrangian WENO 5th | 1.93e-3 | 2.34e-3 | 3.43e-3
Semi-Lagrangian HWENO 5th | 1.09e-3 | 1.42e-3 | 1.46e-3

(b) Error of total variation

TABLE 5. Comparison the semi-Lagrangian methods in discontinuous solution
case: (a) Error in L' norm and r is the order of accuracy (b) Error on the
total variation. The final time is Tepg = 8.

ne 200 400 800

[ N 15 P N O O
Finite difference WENO 5th | 4.50e-2 | 0.83 | 2.53e-2 | 0.83 | 1.43¢-2 | 0.82
Finite difference HWENO 5th | 4.07e-2 | 0.83 | 2.29¢-2 | 0.83 | 1.29¢-2 | 0.83

(a) Error between the exact solution and the approximated solutions

Ng 200 400 800
Finite difference WENO 5th | 9.54e-5 | 8.43e-5 | 6.58e-5
Finite difference HWENO 5th | 2.30e-3 | 2.47e-3 | 1.88e-3

(b) Error of total variation

TABLE 6. Comparison of finite difference methods in discontinuous solution
case: (a) Error in L' norm and r is the order of accuracy (b) Error on the
total variation. The final time is Tepg = 8.
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We finally consider an oscillatory solution where the initial condition is given by [22],

%[G(m,z—é) + G(x,z-9) + 4G(x,2)], for —0.8<z<-0.6,

1, for —0.4<x<-0.2,
(5.3) f(0,z)={ 1-1]10(z-0.1)|, for 0 <x<0.2,

t[F(z,2-6) + F(z,2-6) + 4F(z,2)], for 0.4<z<0.6,

0, otherwise.

where G(z, z) = exp(-f(z-2)?), F(z,a) = {max((1-a?(z—-a)?)"/?,0)} with a = 0.5, z = -0.7,
§=0.005, @ = 10 and 3 = (log2)/3652.

We have similar observations of both regular solution and discontinuous solution cases in
Figure 2. From table (e), we see that the usual semi-Lagrangian method with cubic spline
interpolation is again the most precise method. It approximates well exponential function, but
involves too much oscillation in step function. The other methods with WENO or HWENO
reconstruction avoid a lot spurious oscillations. It seems that semi-Lagrangian methods is
less dissipative than finite difference method, which can be seen in step function and peak
function.

From [10], it is already known that classical Hermite reconstruction gives a better am-
plification coefficient than the one obtained using a Lagrange interpolation. For HWENO
reconstruction, a rigorous analysis based on Fourier analysis has to be performed but is much
more delicate since the scheme is nonlinear. We refer for instance to the works [23, 32].

5.3. Simplified paraxial Vlasov-Poisson model. We apply the numerical methods pre-
sented in previous sections to the following Vlasov-Poisson system satisfied by f(¢,7,v), where
reR,veR [4]

g Uaf+(E—f)af 0,

ot € Or e) Ov
(5.4) o
;_7" T‘Ef /fd?)

The electric field can be expressed explicitly as follows

1 T
Ef(t7r) = ;A Sp(t,S)dS,

where p(t,7) = [ f(t,7,v)dv, hence we will compute E by a simple numerical integration.
The initial condition is chosen as a Gaussian in velocity multiplied by a regularized step
function in r:

2

4 v
mx(r) eXp(_ﬁ)v

with x(r) = —erf( ”1 2y - %erf( 7’6.13'2) and « = 0.2. The Vlasov-Poisson system (5.4) conserves
mass

(5.5) fo(r,v) =

d
pn fRQ f(t,r,v)drdo =0,

and also LP norm for 1 <p < oo

d
EHf(taTvU)HLp(Rz) =0.
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(e) Error in L' norm

FIGURE 2. Plot solutions of the linear equation (5.1) with initial data (5.3).
ng = 200, CFL= 2.5 for the semi-Lagrangian methods and CFL= 0.85 for the
finite difference methods. The final time is Ty,q = 8.

Therefore, the evolution in time of these quantities will be observed for various numerical
schemes. We will also investigate the time evolution of the kinetic energy of the Vlasov-
Poisson system (5.4) :

2
v
(5.6) (t) = fR S fdrdv.
In the following we take the parameter ¢ = 0.7 and the computational domain is (r,v) €
Q=[-4,4]%

Concerning the numerical resolution using semi-Lagrangian methods, we notice that we
deliberately choose not to apply a time splitting in order to use this method in a general
context. The characteristic curves corresponding to the Vlasov equation (5.4) cannot be
solved explicitly. To compute the characteristic curves, we have multi-step method as the
second order leap-frog scheme [30] or single time step method as the second order predictor-
corrector scheme [3]. Finally, we interpolate the distribution function f(r",v™) by a tensor
product for cubic spline or by a dimension by dimension Hermite WENQO reconstruction.

Let us first compare the numerical methods for searching the characteristic curves. A
reference solution of kinetic energy is computed using a fifth order finite difference WENO
method with very fine mesh (At = 1/1600 and n, = 1025). We denote the linear phase for



16 CHANG YANG* AND FRANCIS FILBET?
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FiGure 3. Comparison between the semi-Lagrangian methods with the
Leap-Frog and Predictor-Corrector time integrators for Beam test. Mesh size
is n, =257, At =1/100.

time interval ¢ < 10, and the nonlinear phase for time interval ¢ > 10 where small filaments are
generated. Figure 3 illustrates that the leap-frog scheme has a very bad kinetic energy for
t > 10. It is because the leap-frog time integrator which decouples odd and even time steps
and leads to a checker-board like instability that has been observed before [11]. At contrast,
the predictor-corrector scheme has a kinetic energy close to reference solution.

From Figure 4, we observe that at time t = 10, the distribution function f of these two
methods is similar, where two small filaments appear (see top of Figure 4). Then during the
nonlinear phase, a large number of filaments are generated due to the non-linearity of the
Vlasov-Poisson system and the distribution functions f obtained with leap-frog and predictor-
corrector methods start to differ strongly at ¢ > 15. At time ¢ > 20, the leap-frog method
generates a completely unstable beam. Therefore, in the sequel, the predictor-corrector
scheme will be used for time integrator.

In Figure 5, we compare the evolution of invariants (mass, L? norm, minimum of the
density) and the kinetic energy obtained from semi-Lagrangian and finite difference methods.
Compared to the other methods, the semi-Lagrangian method with HWENO reconstruction
has a very bad mass conservation in nonlinear phase (see Figure 5(a)). The semi-Lagrangian
method with cubic spline interpolation has the best L? norm conservation. Moreover, for finite
difference methods, the HWENO reconstruction has a better L? norm conservation than the
WENO reconstruction, which indicates that HWENO reconstruction is less dissipative (see
Figure 5(b)). The kinetic energy obtained with all these methods is relatively close in the
linear phase t < 10, but it is slightly different in the nonlinear phase t > 10 (see Figure 5(c)).
Finally, the semi-Lagrangian method with cubic spline interpolation has significant oscillation
in nonlinear then the other methods (see Figure 5(d)).

These numerical simulations illustrate perfectly that semi-Lagrangian methods without
splitting work well during the linear phase even with very large time step, but they are not
appropriate during the nonlinear phase when micro-structures appear (filamentation). While
the finite difference methods seems more suitable for nonlinear phase.

5.4. Guiding center model. We finally consider the guiding center model [21], which can
be derived by integrating the 4D Drift-Kinetic model [19] with respect to variables (z,v)).
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FIGURE 4. Distribution function for Beam test: (a) the Leap-frog scheme;
(b) the Predictor-corrector scheme; (c) Reference solution at time t = 10, 15
and 20. The HWENODbS reconstruction is used for interpolation. Mesh size is

ng = 257, At = 1/100.

This model can describe highly magnetized plasma in the transverse plane, given by

(5.7)

0
Z+U-Vp=0,
-A¢ = p.

where the velocity U = (-0y¢, 0,¢). Here we consider the model in a disk domain

D = {(z,y) eR*:\/z2 +y2 < R}

and assume that the electric potential is vanishing at the boundary

(5.8)

o(z,y) =0, (x,y)edD.

Then if we ignore the effect of boundary conditions, the guiding center model verifies the

following properties :
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FicUrRE 5. Comparison between the semi-Lagrangian with cubic spline, Her-

mite WENO 5th and the finite difference with Hermite WENO 5th methods
for Beam test.

(1) Positivity of density p
0<p(t,z,y).

d
@ dady) = 0.
dt(/[)pxy) 0

(3) LP norm conservation, for 1 <p < oo

(2) Mass conservation

d
aHPHLP(D) =0.

%([D |V¢|2dxdy) =0.

To solve the system (5.7), we use a scheme based on Cartesian mesh and apply an Inverse
Lax-Wendroff procedure to treat boundary conditions on kinetic equations [12, 13]. Actually,
this system has been already solved in polar coordinates in [21]. But, the change of coordinate
usually produce an artificial singularity at the origin, which needs a particular treatment.
At contrast, with the Inverse Lax-Wendroff technique on Cartesian mesh, we do not have
any singularity and it is not related to the numerical scheme since boundary effects and
numerical schemes are treated independently. Furthermore, it is easy to adapt to other
geometries [12, 13].

(4) Energy conservation
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In this section, we only focus on discretization of boundary condition (5.8) of Poisson
equation. The one for transport equation is trivial, since a homogeneous Dirichlet boundary
condition will be used.

5.4.1. Discretization of Poisson equation. A classical five points finite difference approxima-
tion is used to discretize the Poisson equation. However, to discretize the Laplacian operator
Ao near the physical boundary, we notice that some points of the usual five points finite dif-
ference formula can be located outside of interior domain. For instance, Figure 6 illustrates
the discretization stencil for A¢ at the point (z;,y;). The point x4 = (z,y5-1) is located
outside of interior domain. Let us denote the approximation of ¢ at the point x4 by ¢; j_1.
Thus ¢; ;-1 should be extrapolated from the interior domain.
We extrapolate ¢; j_1 on the normal direction n

(5.9) Gij-1 = Wpd(Xp) + Wpd(Xp) + Wapd(Xon),

where x,, is the cross point of the normal n and the physical boundary 2, . The points x;, and
Xgp, are equal spacing on the normal n, i.e. h =[x, — Xp| =[x — X2p|, with A = min(Az, Ay),
Ax, Ay are the space steps in the directions = and y respectively. Moreover, Wy, Wy, Wap, are
the extrapolation weights depending on the position of x4, x,, X}, and x25. In (5.9), ¢(x,)
is given by the boundary condition (5.8), whereas ¢(xp), ¢(x2,) should be determined by
interpolation.

yll n
J+2 ® R4 ®
2
X2h
J+1 ® ® Y
1
\
\ Xh
~ J7~ J7~ 7
J < N7 Y= N
~ 0
- o
j-1
Xg
Jj—2 > T
-2 1—1 7 1+ 1 1+ 2

FIGURE 6. Spatially two-dimensional Cartesian mesh. e is interior point, = is
ghost point, [@ is the point at the boundary, O is the point for extrapolation,
the dashed line is the boundary.

For this, we first construct an interpolation stencil £, composed of grid points of €. For
instance, in Figure 6, the inward normal n intersects the grid lines y = y;, y;11, yj+2 at points
Py, Pf, Py. Then we choose the three nearest points of the cross point P*, [ =0,1,2, in
each line, i.e. marked by a large circle. From these nine points, we construct a Lagrange
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polynomial ¢2(x) € Q2(R?) and evaluate the polynomial go(x) at x;, and Xy, i.e.

8
d(xp) = > whed(xe),
=0
8
P(xan) = Y, woned(xe),
=0

with x, € £. Hence, we get ¢; j_1 which is approximated from the interior domain.

However, in some cases, we can not find a stencil of nine interior points. For instance,
when the interior domain has small acute angle sharp, the normal n can not have three cross
points P, [ =0,1,2 in interior domain, or we can not have three nearest points of the cross
point P, 1=0,1,2, in each line. In this case, we alternatively use a first degree polynomial
¢1(x) with a four points stencil or even a zero degree polynomial go(x) with an one point
stencil. We can similarly construct the four points stencil or the one point stencil as above.

5.4.2. Numerical simulation of the diocotron instability. We now consider the diocotron in-
stability for an annular electron layer [21, 25]. This plasma instability is created by two sheets
of charge slipping past each other and is the analog of the Kelvin-Helmholtz instability in
fluid mechanics. The initial data is given by

x1) { (1 +ecos(0))exp (-4(r—6.5)%), ifr~ </z2+y2<r",
polXL) =

0, otherwise,

where ¢ is a small parameter, 6 = atan2(y, z). In the following tests, we take € = 0.01, r~ =5,
rt=81/0=17.

We have seen in the previous section that semi-Lagrangian methods may be not very ap-
propriate during the nonlinear phase. Indeed, on the one hand, the semi-Lagrangian method
with cubic spline interpolation involves too much oscillations when small filaments appear; on
the other hand, the semi-Lagrangian method with Hermite WENO reconstruction avoid the
oscillations but loses the conservative properties of physical problems. Therefore, we propose
to apply a mixed method based on the Hermite interpolation with a WENO reconstruction:
we use the semi-Lagrangian method for the linear phase with large time step; then we apply
the conservative finite difference scheme for nonlinear phase with small time step respecting
CFL condition. The criterion to pass from semi-Lagrangian to finite difference methods is as
follows

(5.10)

\[]R? [ph(tn) - ph(tnfl)] dx| > hg’

where h is the smallest space step.

A comparison between the semi-Lagrangian method with cubic spline interpolation and
the mixed method for the diocotron instability is presented in Figures 7 and 8. For a fair
comparison an adaptive time step is also applied to the semi-Lagrangian method with cubic
spline interpolation. We first choose a CFL number A » 2 during the linear phase, then A
will be changed to 0.5 according to (5.10) for the nonlinear phase and the number of points
in space is ng = ny = 256.

Using the semi-Lagrangian method with cubic spline interpolation, the relative error of
mass oscillates a lot during the nonlinear phase, while relative error for the mixed method is
more stable (see Figure 7(a)). Unfortunately, kinetic energy conservation and relative error
of L? norm for the mixed method are worse than that for the semi-Lagrangian method with
cubic spline interpolation, but the price to pay is to generate a non negligible negative values.
Indeed, the HWENO reconstruction allow to control spurious oscillations generate from the
discontinuous initial data and small structures (see Figure 7(d)). Moreover, we notice that
semi-Lagrangian method with cubic spline interpolation switches time step at t » 40, where
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FIGURE 7. Guiding center model: Comparison between the semi-Lagrangian
method with cubic spline interpolation and the mixed semi-Lagrangian/finite
difference Hermite WENObS5 method. Mesh size is n, = 256. Adaptive time
step is used.

the non negligible negative values are already generated, while the mixed HWENO method
switches time step at the end of linear phase. Thus, although semi-Lagrangian method with
cubic spline interpolation has better conservation laws in the linear phase of simulation, we
propose to use mixed HWENO method in the whole period of simulation.

Finally, the evolution of the density p is presented in Figure 8. At first glance, we see the
density of these two methods are very similar. At time ¢ = 30, small filaments appear and
then seven vortices are formed and move.

Looking more carefully, we observe that the numerical results obtained from the mixed
method is a little bit more dissipative than the ones obtained from the semi-Lagrangian
method with cubic spline interpolation, i.e. small structures of density are more thin. How-
ever, the semi-Lagrangian method is much more oscillatory than the mixed method, which
can be observed from the minimum or maximum of density.

As a conclusion, although the semi-Lagrangian method with cubic spline interpolation is
less dissipative than the mixed HWENO method, it involves too much numerical instabilities
in nonlinear phase. Therefore, the mixed method controlling spurious oscillations is more
appropriate for long time simulation in plasma physics.

6. CONCLUSION AND PERSPECTIVE

In this paper, we have first developed a Hermite weighted essentially non-oscillatory re-
construction for semi-Lagrangian method and finite difference method respectively.
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FIGURE 8. Guiding center model. (a) the semi-Lagrangian method with cubic
spline interpolation (b) the mixed semi-Lagrangian/finite difference method
with Hermite WENOb5 at time ¢ = 30, 40 and 50.

We illustrate that such a reconstruction is less dissipative than usual weighted essentially
non-oscillatory reconstruction. Then we have compared our approaches with the usual semi-
Lagrangian method with cubic spline interpolation and finite difference method with WENO
reconstruction. The both semi-Lagrangian methods are efficient and accurate for linear phase
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even with a large time step, however, the one with cubic spline interpolation involves too much
non negligible oscillation in nonlinear phase, while the one with HWENO reconstruction
becomes dissipative.

The finite difference method is stable under the classical CFL condition, but it is much
more stable in nonlinear phase and it conserves mass. We thus apply a mixed method using
the semi-Lagrangian method in linear phase and finite difference method during the nonlinear
phase, called mixed HWENOS method.

We finally apply the mixed HWENOS method to the simulation of the diocotron instability
and observe that although the mixed HWENObS method is a little more dissipative than the
semi-Lagrangian method with cubic spline interpolation, but it is much more stable during
the nonlinear phase.

The next step is now to apply our mixed method to more realistic and high dimensional
plasma turbulence simulations, for instance, 4D Drift-Kinetic simulation [16] or 5D Gyroki-
netic simulation[15].
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