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Abstract. We present a new algorithm based on a Cartesian mesh for the numerical ap-
proximation of kinetic models for chemosensitive movements set in an arbitrary geometry.
We investigate the influence of the geometry on the collective behavior of bacteria described
by a kinetic equation interacting with nutrients and chemoattractants. Numerical simula-
tions are performed to verify accuracy and stability of the scheme and its ability to exhibit
aggregation of cells and wave propagations. Finally some comparisons with experiments
show the robustness and accuracy of such kinetic models.
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1. Introduction

This paper is devoted to the numerical simulation of the process of cellular spatial orga-
nization driven by chemotaxis. The effective mechanism by which individual cells undergo
directed motion varies among organisms. Here we are particularly interested in bacterial
migration, characterized by the smallness of the cells, and their ability to move to several
orders of magnitude in the attractant concentration. Several models, depending on the level
of description, have been developed mathematically for the collective motion of cells. We
refer to the reviews of B. Perthame on parabolic, hyperbolic and kinetic models [23, 24] for
more details on this topic. Among them the kinetic model introduced by Othmer, Dunbar
and Alt [2, 21], describes a population of bacteria in motion (for instance the E. Coli) in
interactions with a chemoattractant concentration [8]. These cells are so small that they are
not able to measure any head-to-tail gradient of the chemical concentration, and to choose di-
rectly some preferred direction of motion towards high concentrated regions. Therefore they
develop an indirect strategy to select favorable regions, by detecting a sort of time derivative
in the concentration along their pathways, and to react accordingly [14].

More precisely, they undergo a jump process where free runs are followed by a reorientation
phenomenon called tumble [32]. For instance it is known that E. Coli increases the time
spent in running along a favourable direction [14]. This jump process can be described by two
different informations. First cells switch the rotation of their flagella, from counter-clockwise,
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called free runs, to clockwise called reorientation or tumbling phase, and conversely. This
decision is the result of a complex chain of reactions inside the cells, driven by the external
concentration of the chemoattractant [28, 32]. Then bacteria select a new direction, but
they are unable to choose directly a favourable direction, so they randomly choose a new
orientation. During the ”run” phases a bacterium moves with a constant speed in a given
direction while during a ”tumbling” event it changes direction randomly.

2. Kinetic models for bacterial chemotaxis

In the simple situation, C. S. Patlak [22] and E. F. Keller & L. A. Segel [19] considered
a density of cells which interacts with two chemical substances. The cells consume nutrients
which drive the migration and excrete a chemoattractant that prevents the dispersion of the
population. However, this approach is not always sufficiently precise to describe the evolution
of bacteria movements. For instance, Saragosti et al [27] showed clearly that relative large
scales of modulation of cells exist, which cannot be described by diffusion models. Moreover,
Keller-Segel system has been shown [33] to permit travelling wave solutions which correspond
to travelling band formation in bacterial colonies, yet only under specific criteria, such as a
singularity in the chemotactic sensitivity function as the signal approaches zero. Such a
singularity generates infinite macroscopic velocities which are biologically unrealistic. We
refer to review [29] for more arguments of many models of bacterial populations.

By contrast, this phenomenon of run and tumble can be modeled by a stochastic process
called the velocity-jump process, and has been introduced by Alt [2] and further developed
in [21]. A kinetic transport model to describe this velocity jump process consists to study
the evolution of the bacterial population by the local density of cells f(t,x,v) ≥ 0 located in
position x, at time t and swimming in the direction v ∈ V .

Here the set V of all possible velocities is bounded and symmetric in general. In two
dimensions, the modulus of the speed is a constant v0, hence V = S(0, v0) circle centred in 0
with a radius v0 > 0.

A kinetic transport model to describe this velocity-jump process has been introduced by
W. Alt [2] inspired by the Boltzmann equation [21] where the tumbles appear as scattering
events and all the fluxes are explicitly introduced [26]. We consider the Boltzmann type
equation

(2.1)
∂f

∂t
+ v ⋅ ∇xf = Q(f) + r f, x ∈ Ω, v ∈ V,

where Q(f) is the Boltzmann type tumbling operator

Q(f) = ∫
V
T (v,v′) f(t,x,v′)dv′ − ∫

V
T (v′,v) f(t,x,v)dv′.

The contribution of the tumbles is introduced with a transition (scattering) kernel T (v,v′) ≥ 0
which stands for the change of velocity from v′ to v; r is the division rate of the bacteria
(r = ln 2/τ2 where τ2 is the mean doubling time). This equation is indeed a variant of the
Boltzmann equation for gases, where collisions are delocalized via the secretion or consump-
tion of chemical cues.

In (2.1), the transition kernel T also depends on the local concentration of chemoattractant
S(t,x) and nutrient N(t,x). To estimate the respective contributions on pulse speed of the
biais of the run lengths and of preferential reorientation, it is possible to split this transition
kernel T (v,v′) in two contributions, one being the tumbling rate λ(v′), and the other one
the reorientation effect during tumbles K(v,v′):

(2.2) T (v,v′) = λ(v′)K(v,v′),

with the condition

(2.3) ∫
V
K(v,v′)dv = 1,
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where the function K accounts for the persistence of the trajectories. For simplicity we
consider the case of the absence of such an angular persistence, hence the turning kernel
T (v,v′) is only proportional to the tumbling rate λ(v′), i.e. K is constant.

For the tumbling rate λ(v′), we assume that bacteria are sensitive to the temporal vari-
ations of attractant molecules via a logarithmic sensing mechanism [3, 13]. Therefore, the
tumble frequency only depends on the local gradients of nutrient and attractant, both gradi-
ents having independent and additive contributions. This gives

λ(v′) =
1

2
(λN(v′) + λS(v

′
))

=
1

2
(ψN (

D logN

Dt
∣
v′
) + ψS (

D logS

Dt
∣
v′
))

=
1

2
(ψN (∂t log(N) + v′ ⋅ ∇x log(N)) + ψS (∂t log(S) + v′ ⋅ ∇x log(S)) ) .

The nutrient and chemoattractant response functions ψN and ψS are both positive and
decreasing, expressing that cells are less likely to tumble (thus perform longer runs) when the
external chemical signal increases. These functions are smooth and characterized by their
characteristic time δ−1N and δ−1S and their tumble frequency χN and χS .

Here, we have chosen the following analytical form [27] that encompassed these character-
istics:

(2.4) ψα(X) = ψ0 (1 − χα tanh(
X

δα
)) , α = {N,S},

where ψ0 is the mean tumbling frequency, and the parameters χN and χS are the modulation
of tumble frequency.

In order to define completely the mathematical problem (2.1), suitable boundary conditions
on ∂Ω should be applied. Here we consider wall type boundary conditions, for which emerging
particles have been reflected elastically at the wall. More precisely, for x ∈ ∂Ω the smooth
boundary ∂Ω is assumed to have a unit inward normal n(x) and for v ⋅n(x) ≥ 0, we assume
that at the solid boundary we have

(2.5) f(t,x,v) = R[f(t,x,v)], x ∈ ∂Ω, v ⋅ n(x) ≥ 0,

with

(2.6) R[f(t,x,v)] = f(t,x,v − 2(v ⋅ n(x))n(x)).

This boundary condition (2.5) guarantees the global conservation of mass [5].
The equations describing the behaviors of nutrients density N and chemottractant S are

of the same type as in [16]:

(2.7)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− µS ∆S = −aS + b ∫

V
f(t,x,v)dv, x ∈ Ω,

∂N

∂t
− µN ∆N = − cN ∫

V
f(t,x,v)dv, x ∈ Ω,

where a, b and c are respectively the degradation rate of the chemoattractant, its production
rate and the consumption rate of the nutrient by the bacteria, whereas µS and µN are the
molecular diffusion coefficients. Finally, these equations are completed with homogeneous
Neumann boundary conditions, i.e.

(2.8) ∇xα ⋅ n(x) = 0, α = {N,S}, x ∈ ∂Ω.

The purpose of this work is to present a numerical scheme for (2.1)-(2.8) and to investigate
numerically the occurrence of cells aggregation, pattern formation or travelling waves when
it takes place, and the convergence to equilibrium otherwise for different geometries. Several
numerical methods have already been developed to solve the Patlak-Keller-Segel model for
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chemotaxis using finite element methods [15], finite volume methods [6, 7, 11], and the refer-
ences therein. Other models have also been investigated numerically [9, 10, 20]. However, it
seems that none of the above-mentioned numerical approaches have been studied for kinetic
models (2.1)-(2.8). In the present paper we propose a numerical scheme for (2.1)-(2.8) and
investigate the influence of the geometry on the collective behavior of bacteria.

We now briefly outline the contents of the paper. In the next section, we introduce the
numerical approximation of (2.1) and (2.7) and describe the numerical approximation of the
boundary (2.5), (2.6), and (2.8). Two points are worth to mention here. First, we restrict
ourselves to the case of specular reflection which seems to be the most appropriate for the
study of bacteria. One difficulty in the approximation of kinetic models for chemotaxis, is
related to the fact that it can exhibits very different phenomena as finite time blow-up, cell
aggregation, wave propagations. At the discrete level, our approximation should also be able
to describe a similar property. Secondly, an important step is to discretize appropriately the
effect of boundary.

The final section is devoted to numerical simulations performed with the numerical scheme
presented in Section 3. We investigate numerically cells aggregation, convergence to equilib-
rium, and wave propagation in a bounded domain.

3. Numerical resolution

3.1. Numerical resolution of the kinetic model (2.1). We consider a computational
domain [xmin, xmax] × [ymin, ymax] × V , such that Ω ⊂ [xmin, xmax] × [ymin, ymax].

The computational domain is covered by an uniform Cartesian mesh Xh ×Vh, where Xh,
Vh are defined by

(3.1)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Xh ∶= {x0 = (xmin, ymin), . . . ,xi = (xix , yiy), . . . ,x(nx,ny)
= (xmax, ymax) } ,

Vh ∶= {vj = v0 (cos θj , sin θj), θj = (j + 1/2)∆v,0 ≤ j ≤ nv − 1} .

The mesh steps are respectively ∆x = (xmax−xmin)/nx, ∆y = (ymax−ymin)/ny and ∆v = 2π/nv.
Let us denote fni,j an approximation of the distribution function f(tn,xi,vj). We introduce

the following finite difference scheme

(3.2)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

f⋆i,j − f
n
i,j

1
2∆t

+ v ⋅ ∇x,hf
n
i,j = Qh(f

n
i,j) + r ⋅ f

n
i,j ,

fn+1i,j − fni,j

∆t
+ v ⋅ ∇x,hf

⋆

i,j = Qh(f
⋆

i,j) + r ⋅ f
⋆

i,j ,

where h = (∆t,∆x,∆y), v ⋅ ∇x,hf
n
i,j is a second-order approximation [31] of the transport

operator v ⋅∇xf , and Qh(f
n
i,j) is an approximation of the Boltzmann type tumbling operator

Q(f). We will now focus on searching the approximation Qh(f
n
i,j).

By using the trapezoidal rule, we have

Qh(f
n
i,j) = ∆v

nv−1

∑
`=0

((Th)
n+1/2
i,j,` fni,`) −∆v

nv−1

∑
`=0

((Th)
n+1/2
i,`,j fni,j) ,

where (Th)
n+1/2
i,j,` is an approximation of the transition kernel T (v,v′). We assume that the

nutrient density N and the chemottractant S are known at time tn+1/2. Moreover with the
hypothesis that K is constant, the condition (2.3) implies that K = 1/2π. Thus it remains to

search an approximation of the tumbling rate, i.e. λ
n+1/2
i,` . It is also equivalent to search the

local gradients of nutrient (λN)
n+1/2
i,` and attractant (λS)

n+1/2
i,` .

We study only the local gradients of nutrient (λN)
n+1/2
i,` , since the local gradient of at-

tractant (λS)
n+1/2
i,` has the same expression as (λN)

n+1/2
i,` . We discretize the local gradient of
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nutrient as follows

(λN)
n+1/2
i,` =

1

N
n+1/2
i

(DhN
n+1/2
i + v` ⋅ ∇x,hN

n+1/2
i ) ,

where DhN
n+1/2
i is a discrete time derivative and will be given in the section 3.2. Moreover

we use centred difference approximation for v′ ⋅ ∇xN , which yields

v` ⋅ ∇x,hN
n+1/2
i = v0 cos θ`

N
n+1/2
ix+1,iy

−N
n+1/2
ix−1,iy

2∆x
+ v0 sin θ`

N
n+1/2
ix,iy+1

−N
n+1/2
ix,iy−1

2∆y
.

In summary, the discrete tumbling rate reads

λ
n+1/2
i,` =

1

2
((λN)

n+1/2
i,` + (λS)

n+1/2
i,` ) .

Finally we reduce the tumbling operator as follows

Qh(f
n
i,j) =

∆v

2π

nv−1

∑
`=0

(λ
n+1/2
i,` fni,`) − λ

n+1/2
i,j fni,j .

3.2. Calculate the chemoattractant S or the nutrient N . The equations (2.7) for
nutrient densityN and chemottractant S are parabolic equations with source terms depending
on the distribution function of density f . We study again the discretization for nutrient
density, since the one for chemottractant is similar. The Euler implicit scheme is used for
time integration. Hence the scheme for nutrient density N reads

(3.3) DhN
n+1/2
i − µN∆hN

n+1/2
i = −cN

n+1/2
i ρni ,

where DhN
n+1/2
i is an approximation of time derivative as follows

(3.4) DhN
n+1/2
i =

N
n+1/2
i −N

n−1/2
i

∆t
.

Then we use a five points finite difference scheme to discretize ∆N

(3.5) ∆hN
n+1/2
i =

N
n+1/2
ix+1,iy

− 2N
n+1/2
ix,iy

+N
n+1/2
ix−1,iy

∆x2
+
N
n+1/2
ix,iy+1

− 2N
n+1/2
ix,iy

+N
n+1/2
ix,iy−1

∆y2
.

Finally, a trapezoidal rule is applied for the integration, i.e.

ρni = ∆v
nv−1

∑
j=0

fni,j .

3.3. Treatment of the boundary conditions. As we mentioned at the end of section 2,
an appropriate discretization of boundary condition is important to exhibit very different
phenomena. Therefore, we present respectively the numerical approximations for specular
reflection boundary condition (2.6) and Neumann boundary condition (2.8).

3.3.1. Numerical approximation for specular reflection boundary condition. The specular re-
flection boundary condition in 2D reads as

(3.6) R[f](t,x,v) = f(t,x,v′),

with
v ⋅ n = −v′ ⋅ n ⇔ v′ = v − 2(v ⋅ n)n

where x ∈ Γx = ∂Ω is the point at the boundary, n is the interior normal at point x. We note
that this specular reflection is just like a mirror. For example, if we follows the characteristic
of the flux f(v), its reflected flow is corresponding to the velocity v′.

We thus use a mirror procedure to construct f at each ghost point. For instance from the
ghost point xg, we can find an inward normal n(xp), which crosses the boundary at xp (see
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Figure 1). For velocity v, its reflected velocity with respect to xp is v′ = v−2(v ⋅n(xp))n(xp).
Thus instead of computing f at the ghost point xg, we compute f at mirror point with respect
to the boundary xm = 2xp − xg as follows

(3.7) f(xg,v) = f(xm,v
′
).

x

y n(xp)

n

◾ ◾ ◾ ●

◯◯ ◯

◾ ◾ ● ● ●

◯ ◯ ◯

xg

● ● ● ● ●◯ ◯ ◯

xp

P ∗0◆

● ● ● ● ●
P ∗1
◆

● ● ● ● ●◆
P ∗2

⊡

ix − 2 ix − 1 ix ix + 1 ix + 2

iy − 2

iy − 1

iy

iy + 1

iy + 2

⊡

⊙

⊙xm

Figure 1. Spatially two-dimensional Cartesian mesh. ● is interior point, ◾ is
ghost point, � is the point at the boundary, ◯ is the point for extrapolation,
the dashed line is the boundary.

The last step is to approximate f(xm,v
′) using f of interior domain. Let us assume that

the values of the distribution function f on the grid points in Ω are given. We first construct
a stencil E composed of grid points of Ω for interpolation or extrapolation. For instance as it
is shown in Figure 1, the inward normal n(xp) intersects the grid lines y = yiy , yiy+1, yiy+2 at
points P ∗

0 , P ∗

1 , P ∗

2 . Then we choose the three nearest points of the cross point P ∗

l , l = 0,1,2,
in each line, i.e. marked by a large circle. From these nine points, we can build a Lagrange
polynomial q2(x) ∈ Q2(R2). Therefore we evaluate the polynomial q2(x) at xm, and obtain
an approximation of f at the mirror point. We distinguish two cases of mirror points. In
the case that mirror point xm is surrounded by interior points, we interpolate f at mirror
point xm; otherwise a WENO type extrapolation can be used to prevent spurious oscillations,
which will be detailed below.

Note that in some cases, we cannot find a stencil of nine interior points. For instance when
the interior domain has small acute angle sharp, the normal n cannot have three cross points
P ∗

l , l = 0,1,2 in interior domain, or we cannot have three nearest points of the cross point
P ∗

l , l = 0,1,2, in each line. In such a case, we alternatively use a first degree polynomial q1(x)
with a four points stencil or even a zero degree polynomial q0(x) with one point stencil. We
can similarly construct the four points stencil or the one point stencil as above. In that case
order of accuracy may be affected, but it also prevent spurious oscillations since acute angles
may generate singularities.



NUMERICAL SIMULATIONS OF KINETIC MODELS FOR CHEMOTAXIS 7

Two-dimensional WENO type extrapolation. A WENO type extrapolation [30] was
developed to prevent oscillations and maintain accuracy, which is an extension of WENO
scheme [18]. The key point of WENO type extrapolation is to define smoothness indicators,
which is designed to help us choose automatically between the high order accuracy and the
low order but more robust extrapolation. Moreover a slightly modified version of the method
was given in [12], such that the smoothness indicators are invariant with respect to the scaling
of f . We now describe this method in 2D case.

The substencils Sr, r = 0,1,2 for extrapolation are chosen around the inward normal n
such that we can construct Lagrange polynomial of degree r. For instance in Figure 1, the
three substencils are respectively

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 = {(xix , yiy)},

S1 = {(xix−1, yiy), (xix , yiy), (xix , yiy+1), (xix+1, yiy+1)},

S2 = {(xix−1, yiy), (xix , yiy), (xix+1, yiy), (xix−1, yiy+1),

(xix , yiy+1), (xix+1, yiy+1), (xix , yiy+2), (xix+1, yiy+2), (xix+2, yiy+2)}.

Once the substencils Sr are chosen, we could easily construct the Lagrange polynomials in
Qr(R2)

qr(x) =
r

∑
m=0

r

∑
l=0

al,mx
lym

satisfying

qr(x) = f(x), x ∈ Sr.

Then the WENO extrapolation has the form

(3.8) f(x) =
2

∑
r=0

wrqr(x), x ∈ Sr,

where wr are the nonlinear weights, which are chosen to be

wr =
αr

∑
2
s=0 αs

,

with

αr =
dr

(ε + βr)2
,

where ε = 10−6, d0 = ∆x2 + ∆y2, d1 =
√

∆x2 +∆y2, d2 = 1 − d0 − d1. The coefficients βr are
the smoothness indicators determined by

β0 = ∆x2 +∆y2,

and for r ≥ 1, either we take βr = 0 when f(x) = 0,∀x ∈ Sr, or we choose

βr =
1

∑x∈Sr
f(x)2

∑
1≤∣σ∣≤r

∫
K

∣K ∣
∣σ∣−1

(Dσqr(x))
2dx, r = 1,2,

where σ is a multi-index and K = [xp−∆x/2, xp+∆x/2]×[yp−∆y/2, yp+∆y/2] and the point
xp is given by (xp, yp).
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3.3.2. Numerical approximation for Neumann boundary condition. In section 3.2, we have
seen that discrete Laplace operator (3.5) is the only non-locally in space term in (2.7). In
Figure 2, we illustrate an example of a discrete Laplace operator near the boundary. We note
that Nix,iy−1 is not known, since xg = (xix , yiy−1) is out of domain. To approximate N at
ghost point xg, we have to use the boundary condition (2.8).

In fact, if we denote n ∶= (nx, ny), then the boundary condition (2.8) reads

nx∂xN + ny∂yN = 0.

Using a centered difference formula, it yields

nx
N(xm) −N(xg)

xm − xg
+ ny

N(xm) −N(xg)

ym − yg
= 0,

where xg ∶= (xg, yg), xm ∶= (xm, ym) is the mirror point of the ghost point xg with respect to
the boundary. The previous equation is equivalent to

(3.9) N(xm) = N(xg).

Therefore instead of computing N at the ghost point xg, we extrapolate N at the mirror
point xm ∶= (xm, ym). As shown in Figure 2, a nine points stencil S2 is found, thus we have

(3.10) Nix,iy−1 = N(xm) =
8

∑
i=0

wiN(xi), xi ∈ S2,

where wi is weight of extrapolation calculated, for instance, by Lagrange polynomial. Finally
by injecting (3.10) into (3.5), we complete the discretization.

Remark 3.1. It is important to emphasize that the numerical scheme for the internal domain
is disconnected to the numerical procedure for the treatment of the boundary. Therefore the
present method can be applied to any other numerical scheme. The main point is to preserve
the order of accuracy and then to eventually increase the stencil outside the domain.

Remark 3.2. As interpolation stencil is corresponding to the arbitrary geometry, thus the
linear system for the nutrient density or the chemoattractant equation is not symmetric.
In practice, we use a direct solver to solve these linear systems, e.g. an aggregation-based
algebraic multigrid method [17] , which is expected to be efficient for large systems arising
from the discretization of scalar second order elliptic PDEs.

4. Numerical examples

In this section, we present a large variety of tests in 2dx and one dimensional in velocity
space showing the validation of mathematical model and the effectiveness of our numerical
schemes. In Test 1, we verify self convergence of numerical schemes. In Test 2, we consider cell
aggregation to study only chemotactic motility [16]. In Test 3, we consider wave propagation
formed by cells reorientation and the presence of nutrients in a disc. In Test 4, we study
the interaction of two traveling wave in a U shape. Then in Test 5, we consider again the
traveling wave but in a more wide U shape, which is similar like the effectiveness of centrifugal
force. Finally in Test 6 we add the effect of cell division for long time behavior using new
parameters.

4.1. Test 1 : estimate on the order of accuracy. Let us first verify the order of accuracy
of our numerical schemes on smooth solutions. Since there is no explicit solutions we estimate
the order of accuracy by comparing different numerical solutions obtained with different
meshes.

On the one hand, to compare numerical solutions at the same point values, we consider
a computational domain as a square of size [−0.25,0.25]2, which is covered by an uniform
mesh nx ×ny. The velocity space belongs to the unit circle S1, and is uniformly divided into
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x

y n

◾ ◾ ◾

◯◯ ◯

◾ ◾ ◾ ◾ ●

◯ ◯ ◯

xg

● ● ● ● ●◯ ◯ ◯

xp

● ● ● ● ●

● ● ● ● ●

⊡

ix − 2 ix − 1 ix ix + 1 ix + 2

iy − 2

iy − 1

iy

iy + 1

iy + 2

⊙
xm

Figure 2. Illustration of discretization of Laplace operator near the
boundary on two-dimensional Cartesian mesh. ● is interior point, ◾ is ghost
point, � is the point at the boundary, ◯ is the point for extrapolation, the
dashed line is the boundary.

Table 1. Summary of the values used in the simulation

Parameter Value
run speed v0 = 25µm ⋅ s−1

mean tumbling frequency ψ0 = 3s−1

modulation of tumbling frequency of nutrient χN = 60%
modulation of tumbling frequency of chemoattractant χS = 20%
stiffness of the response functions 1/δN = 1/δN ≈ 20s
space scale x̄ = 1mm
time scale t̄ = 40s
doubling time τ2 = ln 2/r ≈ 2h
degradation rate of the chemoattractant a = 5 ⋅ 10−3mol ⋅ s−1

production rate of the chemoattractant b = 4 ⋅ 105cell−1s−1

consumption rate of the nutrient by the bacteria c = 2 ⋅ 10−7cell−1s−1

diffusion coefficient of the nutrient molecules µN = 8 ⋅ 10−6cm2 ⋅ s−1
diffusion coefficient of the chemoattractant molecules µS = 8 ⋅ 10−6cm2 ⋅ s−1

nv parts. We set equal mesh size in each direction, i.e. N = nx = ny = nv and the time step
∆t verifies the CFL condition.. Then, we compute the following error estimate

e2h = ∥fh − f2h∥L1 .

On the other hand, all the parameters are chosen as in [27] and listed in Table 1. The
physical domain is a rectangle of size [−0.241,0.237]×[−0.232,0.247], such that the boundary
is not located on mesh points and it is included in the computational domain [−0.25,0.25]2.
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N 33 65 129 257

∣∣ ⋅ ∥1 8.12e-4 1.89e-4 4.55e-5 1.10e-5
r x 2.10 2.06 2.05

(a) Error of kinetic model (2.1)

N 33 65 129 257

∣∣ ⋅ ∥1 2.24e-4 5.69e-4 1.44e-5 3.60e-6
r x 1.98 1.98 2.00

(b) Error of equation for chemottractant (2.7)

Table 2. Error in L1-norm and order of self convergence r of numerical
schemes. N = nx = ny = nv is mesh size.

We first look at the scheme (3.2) of kinetic equation (2.1). We assume that the kernel
T (v,v′) depends only on a fixed chemoattractant S(x), which has an exponential form. The
initial data of distribution function f is also given by an exponential function

(4.1) f0(x,v) =
50

π
exp(−100∣x∣2).

The result of convergence of the scheme (3.2) is summarized in Table 2 (a). We see that
the scheme (3.2) has second order convergence for all mesh sizes.

Then we estimate the numerical error for the scheme applied to the chemottractant equa-
tion (2.7). Now, the distribution function f is fixed and taken as the same as in (4.1), hence
we approximate numerically the chemottractant S. The initial chemoattractant is equal to
0 in physical domain. Due to the application of the Euler implicit scheme, we do not have
any limitation for choosing time step ∆t, but to get second order accuracy in time we take
for instance

2µs∆t

∆x2
= 2.5 > 1.0.

Similarly, we obtain second order convergence for chemottractant (see Table 2 (b)).

4.2. Test 2 : cell aggregation. Motile bacteria are able to interact with their environment
by accumulating in regions of high concentrations of certain chemicals called attractants and
avoiding others called repellents. Cell division is not required to generate these multi-cellular
structures because they form on a much shorter time scale than the cell-doubling time [16].
The process leading to formation of multi-cellular clusters can be qualitatively understood
as follows: fluctuations in the local cell density produce local gradients of attractants. Cells
respond by moving up these concentration gradients thus amplifying the initial spatial non-
uniformities in the cell distribution and forming multi-cellular clusters.

We thus use the model of Othmer-Dunbar-Alt [21] to mimic the cell aggregation as follows

∂tf + v ⋅ ∇xf = ∫
v′
T [S](v,v′)f(t,x,v′)dv′ − ∫

v′
T [S](v′,v)f(t,x,v)dv′,

where the tumbling kernel T [S](v′,v) describes the frequency of reorientation v′ → v

T [S](v′,v) = ψS (∂t log(S) + v′ ⋅ ∇x log(S)) ,

and the chemical signal is secreted by the cells, following the reaction-diffusion equation (2.7).
We use a square domain of size [−0.25,0.25]2, which is uniformly divided by a mesh size of

nx×ny = 120×120. The velocity space belongs to the unit circle S1, and is uniformly divided
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into nv = 64 parts. The initial chemoattractant S0 is equal to 0, and the initial distribution
function f0 is independent of the velocity v

f0(x,v) =
100m

π
exp(−100∣x∣2),

where m is the total mass.
The evolution of the cell aggregation is presented in Figure 3. We observe that the initial

density is a Gaussian distribution centered at (0,0). At time t = 0.2 t̄, the density forms a
volcano profile, which disappears soon and is becoming into an exponential function at time
t = 1 t̄. Finally at time t = 10 t̄, a steady exponential function is formed (see Figure 3(c)).
The last observation is similar with the sharp boundary of clusters in [16].

Furthermore, we observe in Figure 4 that with the total mass equal to m = π/100, π/50 and
π/25 respectively, the size of clusters is almost the same. This phenomena coincides with the
conclusion in [16] that the steady-state size of clusters is almost independent of the number
of cells comprising them. In fact, following [26] the steady density has a form

ρ(x) ≃ ρ0 exp(−λ∣x∣),when ∣x∣→∞,

where ρ0 is the maximum density, λ depends on χS . Notice that the typical size of a cluster,
defined as the mean radius given by

< ∣x∣ > =
∫x ∣x∣ρ(x)dx

∫x ρ(x)dx
=

1

λ

is independent of the total mass. This computation shows that the size of a cluster only
depends on the model parameters and is entirely independent of the initial mass condition.

4.3. Test 3 : wave propagation in a disc. Suspended Escherichia coli bacteria swim in
convection-free geometries such as capillaries or micro-channels, collectively migrate towards
nutrient-rich regions, in the form of propagation concentration waves [1]. In this test, we
are interested in the model (2.1)-(2.8) to study concentration waves attracted by nutrient.
Moreover, we consider a disc geometry to verify the numerical discretization of boundary
conditions in section 3.3.

The computational domain in space is a square domain of size [−3,3]2, which is uniformly
divided by a mesh size of nx × ny = 80 × 80. The disc is inside of the square with radius
equal to 3. It is clear that the boundary is not located on grids. Thus to achieve interior
high order scheme, some artificial values on ghost points behind the boundary are needed.
These values are given by using the numerical method presented in section 3.3. Moreover the
velocity space belongs to the unit circle S1, and is uniformly divided into nv = 64 parts. All
the parameters are chosen as in [27] and listed in Table 1. The initial distribution function
f0 is given by a Gaussian function

f0(x,v) = ρ0 exp(∣x∣2),

where ρ0 is constant. The initial chemoattractant S0 is equal to 0 and the initial nutrient N0

is homogeneous equal to 1.
The time evolution of concentration wave in a disc is illustrated in Figure 5. In the first

row of Figure 5, we observe that the initial Gaussian density is extending and forming a
propagating wave. When the circle wave arrives at the boundary, all cell are reflected by
the boundary and attracted by nutrient remained in the disc center (see the second row of
Figure 5). In the third row of Figure 5, the circle wave contracts back to disc center, and
finally the cells concentrates at the disc center. We notice that cell diffusion appears when
circle wave goes back to disc center. In fact, this diffusion is due to the stiffness of the
response functions in the tumbling kernel [27].
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Figure 3. Test 2 : Time evolution of the cell aggregation: (a) cell density
in domain, (b) section plot of cell density, (c) section plot in log-scale of cell
density.

4.4. Test 4 : interaction of traveling waves in a U shape. In this test, we focus on
the influence of the reorientation on the shape. The simulations are compared to a particular
experiment by courtesy of Axel Buguin, Institut Curie (see the second row of Figure 6). We
consider a channel of U shape, with initially homogeneous nutrient injected in the channel.
Two clusters of bacteria are then imposed at two extremities of the channel. These two
clusters move along the channel and finally meet at the channel center (the top of U shape).
We note that these two clusters keep their bar shape till their meeting.
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Figure 4. Test 2 : The steady-state size of clusters comparison for different
total masses at time t = 10 t̄: (a) section plot of cell density, (b) section plot
in log-scale of cell density.

To perform the simulation, we consider a channel of U shape with channel width equal to
1 included in a rectangle computational domain [0,8]× [0,6], which is covered by an uniform
mesh of size nx×ny = 80×60. The velocity space belongs to the unit circle S1, and is uniformly
divided into nv = 64 parts. The numerical parameters used in the simulations are listed in
Table 1. The initial distribution function f0 is given by a constant as follows

f0(x,v) =

⎧⎪⎪
⎨
⎪⎪⎩

0.25, if 0 ≤ y ≤ 1,

0, else.

The initial chemoattractant S0 is equal to 0 and the initial nutrient N0 is homogeneous equal
to 1.

The numerical simulations are presented in the first row of Figure 6. In Figure 6(a), we
observe that two bar shape clusters form and are moving to the channel center. In Figure 6(b),
two clusters go forward along the half-ring channel and keep well their bar shape. Finally in
Figure 6(c), two clusters meet at the channel center. We see that the numerical simulations
have a good agreement with the experiment.

4.5. Test 5 : one traveling wave in a U shape. In this test, we consider again traveling
wave in a U shape but with a more wide channel than the previous one. The experience is
shown in the second row of Figure 7 and Figure 8. Again we inject homogeneous nutrient in
the channel, but we consider only one cluster of bacteria at the right extremity of the channel.
We observe that at straight part of channel the cluster goes ahead in a bar shape. Once the
cluster enters into the half-ring part, the bacteria near interior circle goes faster than the
one near the exterior circle. Moreover, bacteria contracts towards the exterior circle. Before
the cluster enters into the left straight part of channel, bacteria concentrate almost near the
exterior circle. When the cluster goes forward the other extremity, the cluster recovers its
original bar shape.

To perform the simulation, we consider a channel of U shape with channel width equal
to 3 included in a rectangle computational domain [0,6.5] × [0,8], which is covered by an
uniform mesh of size nx × ny = 65 × 80. The velocity space belongs to the unit circle S1, and
is uniformly divided into nv = 64 parts. The numerical parameters used in the simulations
are listed in Table 1. The initial condition is the same as in the previous test.

The numerical simulations are presented in the first row of Figure 7 and Figure 8. We
can see that the numerical simulations are very similar as the experience one. In fact, this
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Figure 5. Test 3 : Time evolution of the cell density at different time.

phenomena is due to the directional persistence of chemotactic bacteria in a traveling con-
centration wave. When bacteria enter into a wide half-ring, they keep going straight and
accumulate by the reflection of the exterior circle. It is very similar like the effectiveness of
centrifugal force, and can be observed significantly in a wide channel. This test shows that
the model (2.1)-(2.8) represents well the chemotactic bacteria behavior and our numerical
discretization based on Cartesian mesh approximates well the continuous model.

4.6. Test 6 : long time behavior and pattern formations. In this last numerical test,
we consider the full kinetic model with cell divisions and degradation

(4.2)
∂f

∂t
+ v ⋅ ∇xf = Q(f) + rf − γΘ(ρ)Θ(ρ − ρ∞), x ∈ Ω, v ∈ V,

where the division rate is given by [25]

r =
G0N

σ +N
,
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Figure 6. Test 4 : Time evolution of the cell density (a) t= 0.65 sec. (b) t
= 2.65 sec. (c) t = 4.53 sec. At the top numerical results and at the bottom
experiments on Escherichia coli (courtesy of Axel Buguin, Institut Curie).

(a) (b) (c)

Figure 7. Test 5 : Numerical simulations (top) and experiments on Es-
cherichia coli (bottom) : time evolution of the cell density (a) t = 7.5 t (b) t
= 18.5 t (c) t = 23 t in sec.
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(d) (e) (f)

Figure 8. Test 5 : Numerical simulations (top) and experiments on Es-
cherichia coli (bottom) : time evolution of the cell density (d) t = 28 t (e) t
= 34.5 t (f) t = 46.5 t in sec.

it takes into account two experimental facts : the slowing down of the growth rate for low
nutrients concentrations and its finite quantity for high concentrations. The third term on the
right hand side of (4.2) describes the vegetative cells into anabiotic form due to the increase
of the local density. The transition starts when the total cell density reaches the value ρ∞
and Θ is the Heaviside function.

Actually such a source term has been proposed in [25] in the framework of a macroscopic
Patlak-Keller-Segel model where the unknown is the total density ρ. Numerical simulations
of this macroscopic model have shown pattern formations as the ones observed in experiments
[25, 4]. Here we consider the following initial density

f0(x,v) ∶= {
1 if ∣x∣ ≤ 1,
0 else

and the initial nutrient concentration is uniform N0 = 0.5. In the nutrient and chemoattrac-
tant system of equations (2.7) we take the following parameters µS = µN = 1, the production
rate of chemoattractant b = 20, the degradation rate of chemoattractant a = 8 and the con-
sumption rate of nutrient c = 0.8, whereas in (4.2), we choose σ = 0.1, ρ∞ = 15 and for the
turning operator (2.2)-(2.4),we have δ = 20, ψ0 = 1, χN = 1/2 and χS = 1/10. The mesh
sizes are nx = ny = 120, nv = 64 respectively. The numerical simulations are presented in
Fig. 9. We observe that for high initial nutrient concentration, cell density in the expanding
ring becomes sufficient both for the break of stability of the uniform cell distribution and for
their aggregation. In particular, if after the formation of the successive set of aggregates the
expanding ring had time to grasp a certain part of the cells, participating in aggregation,
then a radial pattern is formed.
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Figure 9. Test 6 : Time evolution of the cell density (a) t = 0 t (b) t = 15
t (c) t = 25 t (d) t = 35 t (e) t = 45 t and (f) t = 55 t in sec.

5. Conclusion

In this paper we present a new algorithm based on a Cartesian mesh for the numerical
approximation of kinetic models on an arbitrary geometry boundary modelling chemosensi-
tive movements. We present first a kinetic model for chemotactic bacteria interacting with
two chemical substances, i.e. nutrient and chemottractant. Then we give the numerical dis-
cretization for this kinetic model and the numerical method for the boundary conditions based
on a Cartesian mesh. A number of numerical tests in 2Dx × 1Dv are shown and compared
with biological experiences. We conclude that on the one hand this kinetic model repre-
sents well the chemotactic bacteria behaviors and on the other hand our numerical method
is accurate and efficient for numerical simulation. In practice, this numerical scheme shows
good stability properties since we do not observe any spurious oscillations coming from the
boundary. Actually, a rigorous stability analysis of such a method should be investigated and
we mention the work in [34] on this direction.
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