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Abstract

In this paper we present a new algorithm based on Cartesian meshes for the numerical approximation
of kinetic models set in an arbitrary geometry. Due to the high dimensional property of kinetic models,
numerical algorithms based on unstructured meshes are not really appropriate since most of numerical
methods (semi-Lagrangian, spectral methods) are particularly efficient on structured grids. Here we
propose to adapt the inverse Lax-Wendroff procedure, which has been recently introduced for conservation
laws [23], for kinetic equations. Numerical simulations in 1D × 3D and 2D × 3D based on this approach
are proposed for Boltzmann type operators (BGK, ES-BGK models).
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1 Introduction
We are interested in the numerical approximation of solutions to kinetic equations set in an arbitrary geom-
etry with different type of boundary conditions. Unfortunately, classical structured or unstructured meshes
are not appropriate due to the high dimensional property of kinetic problems. In contrast, the Cartesian
grids make numerical methods efficient and easy to implement. The difficulty is that obviously grid points
are usually not located on the physical boundary when using a Cartesian mesh, thus a suitable numeri-
cal method to capture the boundary condition is required. Several numerical methods based on Cartesian
meshes have been developed in computational fluid dynamics in last decade. Among these methods, the
immersed boundary method (IBM), first introduced by Peskin [19] for the study of biological fluid mechanics
problems, has attracted considerable attention because of its use of a regular Cartesian grid and great simpli-
fication of tedious grid generation task. The basic idea of the immersed boundary method is that the effect
of the immersed boundary on the surrounding fluid is represented through the introduction of some forcing
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terms in the momentum equations. The extension of IBM methods has been then developed in [2, 15].
For conservation laws, two major classes of immersed boundary methods can be distinguished on different
discretization types. The first one is the Cartesian cut-cell method [13], which is based on a finite volume
approach. This conceptually simple technique “cuts” solid bodies out of a background Cartesian mesh. Thus
we get several polygons (cut-cells) around the boundary. Then the numerical flux at the boundary of these
cut-cells are imposed using the real boundary conditions. This method satisfies well the conservation laws,
however to determine the polygons is still a delicate issue. The second class is based on a finite difference
method. To achieve a high order interior scheme, several ghost points behind the boundary are added. For
instance for solving hyperbolic conservations laws, an inverse Lax-Wendroff type procedure is used to impose
some artificial values at ghost points [23]. The idea of the inverse Lax-Wendroff procedure (ILW) is to use
successively the partial differential equation to write the normal derivatives at the boundary in terms of the
tangential and time derivatives of the given boundary conditions. From these normal derivatives, we can
obtain accurate values of ghost points using a Taylor expansion of the solution at the point located on the
boundary.

The goal of this paper is to extend the inverse Lax-Wendroff procedure to kinetic equations together with
an efficient time discretization technique [6, 7] for problems where boundary conditions play a significant role.
In particular, we are interested in low speed and low Knudsen flows for which Direct Simulation Monte-Carlo
methods (DSMC) are unsuitable due to the requirement to perform large amounts of data sampling in order
to reduce the statistical noise.

For simplicity, we only consider simple collision operators as the ellipsoidal statistics BGK (ES-BGK)
model introduced by Holway [10]. This model gives the correct transport coefficients for Navier-Stokes
system of equations, so that Boltzmann or ES-BGK simulations are expected to give the same results for
dense gases. Moreover, F. Filbet & S. Jin recently proposed a deterministic asymptotic preserving scheme
for the ES-BGK model, where the entire equation can be solved explicitly and it can capture the macroscopic
fluid dynamic limit even if the small scale determined by the Knudsen number is not numerically resolved [8].
We will use this scheme to solve ES-BGK model while on the boundary the inverse Lax-Wendroff procedure
will be applied.

The outline of the paper is as follows. In Section 2 we describe precisely the inverse Lax-Wendroff
procedure for the Maxwell’s boundary conditions in 1D and 2D space dimension. Then in Section 3 we present
the ES-BGK model and the application of inverse Lax-Wendroff procedure to this model. In Section 4 various
numerical examples are provided in 1D × 3D and 2D × 3D to demonstrate the interest and the efficiency of
our method in term of accuracy and complexity. Finally a conclusion and some perspectives are given in
Section 5.

2 Numerical method for the Maxwell’s boundary conditions
The fundamental kinetic equation for rarefied gas is the Boltzmann equation

∂f

∂t
+ v ⋅ ∇xf =

1

ε
Q(f), (2.1)

which governs the evolution of the density f(t,x,v) of monoatomic particles in the phase space Ω × R3,
where x ∈ Ω ⊂ Rdx , v ∈ R3. The collision operator is either given by the full Boltzmann operator

Q(f)(v) = ∫
R3
∫
S2
B(∣v − v⋆∣, cos θ) (f ′⋆f

′
− f⋆f) dσ dv⋆ (2.2)

or by a simplified model as the BGK or ES-BKG operator (see the next section). Boltzmann’s type collision
operators share the fundamental properties of conserving mass, momentum and energy: at the formal level

∫
R3
Q(f) φ(v) dv = 0, φ(v) = 1, v, ∣v∣2.

Moreover, the equilibrium is the local Maxwellian distribution namely:

M[f](t,x,v) =
ρ(t,x)

(2π T (t,x))3/2 exp(−
∣u(t,x) − v∣2

2T (t,x)
) ,
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where ρ, u, T are the density, macroscopic velocity and the temperature of the gas, defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(t,x) = ∫
R3
f(t,x,v)dv,

u(t,x) =
1

ρ(t,x)
∫
R3

vf(t,x,v)dv,

T (t,x) =
1

3ρ(t,x)
∫
R3

∣u(t,x) − v∣2f(t,x,v)dv.

(2.3)

In order to define completely the mathematical problem (2.1), suitable boundary conditions on ∂Ω should
be applied. Here we consider wall type boundary conditions introduced by Maxwell [16], where it is assumed
that one fraction (1 − α) of the emerging particles is reflected elastically at the wall, whereas the remaining
fraction α is thermalized and leaves the wall in a Maxwellian distribution (see Figure 1). The parameter α
is called accommodation coefficient [4].

More precisely, at any x ∈ ∂Ω, the smooth boundary ∂Ω is assumed to have a unit inward normal n(x)
and for v ⋅ n(x) ≥ 0, we assume that at the solid boundary a fraction (1 − α) is perfectly reflected, while
the remaining portion α of particles is absorbed by the wall and then re-emitted according to a velocity
distribution which has the same temperature as the one at the solid wall. This is equivalent to impose for
the ingoing velocities

f(t,x,v) = (1 − α)R[f(t,x,v)] + αM[f(t,x,v)], x ∈ ∂Ω, v ⋅ n(x) ≥ 0, (2.4)

with 0 ≤ α ≤ 1 and
⎧⎪⎪
⎨
⎪⎪⎩

R[f(t,x,v)] = f(t,x,v − 2(v ⋅ n(x))n(x)),

M[f(t,x,v)] = µ(t,x) fw(v).
(2.5)

By denoting Tw the temperature of the solid boundary, fw is given by

fw(v) ∶= exp(−
v2

2Tw
) , (2.6)

and the value of µ(t,x) is determined by mass conservation at the surface of the wall for any t ∈ R+ and
x ∈ ∂Ω

µ(t,x)∫
v⋅n(x)≥0

fw(v)v ⋅ n(x)dv = −∫
v⋅n(x)<0

f(v)v ⋅ n(x)dv. (2.7)

Let us emphasize that since the velocity field is a variable, the boundary conditions have to be applied
at all points x ∈ ∂Ω. The inflow corresponds to

Γin = {(x,v) ∈ ∂Ω ×R3; v ⋅ n(x) ≥ 0},

whereas the outflow corresponds to

Γout = {(x,v) ∈ ∂Ω ×R3; v ⋅ n(x) < 0}.

This boundary condition (2.4) guarantees the global conservation of mass for any accommodation coefficient
α ∈ [0,1] [4]. Moreover, in the specular case α = 0 the energy of f is globally conserved [9].

Therefore, for hydrodynamics quantities (ρ, ρu,E), the specular reflection applied at the kinetic level,
implies slip boundary conditions [4, 9], which correspond to a zero-flux boundary condition for the mean
velocity:

u ⋅ n = 0.

This condition yields in particular the global conservation of mass and kinetic energy. Moreover, pure diffuse
boundary conditions (α = 1) impose also a zero-flux boundary condition for the mean velocity. This yields
the global conservation of mass at the macroscopic level.

The main issue for the numerical discretization of these boundary conditions relies on that the inflow
is no longer a given function, while it is determined by the outflow. For this, we proceed in three steps:
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Figure 1: Schematic representation of the Maxwell conditions at the boundary.

we first compute the outflow at the ghost points. To maintain high order accuracy and to prevent spurious
oscillations caused by shocks, we use a weighted essentially non-oscillatory (WENO) type extrapolation to
approximate the ghost points using the values of interior mesh points. In the same time, we can extrapolate
the outflow located at the boundary associated with ghost points. Then, we compute the inflow at the
boundary using the outflow obtained in the first step and the Maxwell’s boundary conditions. Finally, we
perform the inverse Lax-Wendroff procedure to approximate the inflow on the ghost points, where the key
point is to replace the normal derivatives by a reformulation of the original kinetic equation.

In this paper we only apply a second order finite difference method to discretize the transport term
of (2.1), but other numerical schemes may be used like WENO or ENO schemes [14] or semi-Lagrangian
schemes [5]. Concerning boundary conditions, we will also restrict ourselves to second order approximation.
Indeed, we will see that higher order methods would require additional evaluations of the collision operator
which can be costly. However, let us emphasize that the second order inverse Lax-Wendroff method can be
extended to higher order using WENO extrapolation [24]. Then to keep the order of accuracy of the method,
two ghost points should be added in each direction in space. To impose f at the ghost points, we will apply
the inverse Lax-Wendroff procedure proposed in [23] for conservation laws.

Suppose that the distribution function f at time level tn for all interior points is already known, we now
construct f at the ghost points.

2.1 One-dimensional case
We start with a one-dimensional space problem, that is dx = 1. In this case the Boltzmann equation reads:

∂f

∂t
+ vx

∂f

∂x
=

1

ε
Q(f), (x,v) ∈ [xl, xr] ×R3, (2.8)

where xl and xr are the left and right boundaries respectively, vx is the component of velocity field corre-
sponding to x-direction. For the boundary conditions in one-dimensional case, the inward normal on the
boundary in (2.4) is

n(xl) =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
, n(xr) =

⎛
⎜
⎝

−1
0
0

⎞
⎟
⎠
.

To implement the numerical method, we assume the computational domain is a bounded domain [xmin, xmax]×

[−V,V ]3, where (xl, xr) ⊂ [xmin, xmax]. The computational domain is covered by a uniform Cartesian mesh
Xh ×Vh,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Xh = {xmin = x0 ≤ ⋯ ≤ xi ≤ ⋯ ≤ xnx = xmax} ,

Vh = {vj = j∆v, j = (j1, j2, j3) ∈ Z3, ∣j∣ ≤ nv} ,
(2.9)

with the mesh size ∆x and ∆v for space and velocity respectively. We only describe the numerical calculation
of ghost points near the left boundary, since the procedure for the right boundary is the same. Figure 2
illustrates a portion of the mesh near the left boundary xl, which is located between x0 and x1.
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Figure 2: A portion of the mesh in one dimensional case. ● is interior point, ◾ is ghost point, � is the left
boundary.

We denote h = (∆x,∆v) and construct an approximation fh of the distribution function at each ghost
point following three steps: we perform an extrapolation fh to compute a high order approximation of the
outflow, i.e. fh(xg,vj∗), xg = x0 andx−1. Then, we compute an approximation of the distribution function
at the boundary using the Maxwell’s boundary conditions. Finally, we apply the inverse Lax-Wendroff
procedure for the inflow, i.e. fh(xg,vj), xg = x0 andx−1.

2.1.1 First step: Extrapolation fh for the outflow

At time t = tn we consider the outflow near the point xl, that is the values f(t, xl,vj) where vj1 < 0. We
denote by fi,j an approximation of f at (xi,vj).

A natural idea is to extrapolate fh at the left boundary xl and the ghost points x0 and x−1 using the
values on interior points. For example from the values f1,j , f2,j and f3,j , we can construct a Lagrange
polynomial p2(x) ∈ P2(R). Then by injecting xl, x0 and x−1 into p2(x), we obtain the approximations fh
at the ghost points and the left boundary, i.e. fl,j , f0,j and f−1,j . However, when a shock goes out of the
boundary, the high order extrapolation may lead to a severe oscillation near the shock. To prevent this,
we would like to have a lower order accurate but more robust extrapolation. Therefore, a WENO type
extrapolation [23] will be applied and described below (see subsection 2.3) for this purpose.

2.1.2 Second step: Compute boundary conditions

In the previous step, the outflow at the boundary is obtained by extrapolation. To compute the values of f
at the inflow boundary, we apply the Maxwell’s boundary conditions (2.4), i.e.

fl,j = (1 − α)R[fl,j] + αM[fl,j]. (2.10)

On the one hand the specular reflection portion is given by the outflow at the left boundary, which is

R[fl,j] = fl,j⋆ , where j⋆ = (−j1, j2, j3).

On the other hand the diffuse one is computed by a half Maxwellian

M[fl,j] = µl exp(−
∣vj ∣

2

2Tl
) ,

where Tl is the given temperature at the left wall and µl is given by

µl ∑
vj ⋅n(xl)≥0

vj ⋅ n(xl) exp(−
∣vj ∣

2

2Tl
) = − ∑

vj ⋅n(xl)≤0

vj ⋅ n(xl) fl,j .
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2.1.3 Third step: Approximation fh for the inflow

Finally we compute the values of fh at the ghost points for the inflow. Here we cannot approximate fh by an
extrapolation, since the distribution function at interior points cannot predict the inflow. Thus we extend
the inverse Lax-Wendroff type procedure recently proposed in [12, 23, 26] for conservation laws. At the left
boundary xl, a first order Taylor expansion gives

fh(x, vj) = fl,j + (x − xl)
∂fh
∂x

∣
(x,v)=(xl,vj)

+O(∆x2
).

Hence a second order approximation of f at ghost points is

fs,j = fl,j + (xs − xl)
∂fh
∂x

∣
(x,v)=(xl,vj)

, s = −1,0. (2.11)

We already computed fl,j in the second step, thus it remains to obtain an approximation of the first derivative.
By reformulating (2.8), we have

∂fh
∂x

∣
x=xl

=
1

vx
(−
∂fh
∂t

+
1

ε
Q(fh))∣

x=xl

. (2.12)

Now instead of approximating the first derivative ∂xf ∣x=xl
, we compute an approximation of the time deriva-

tive ∂tf ∣x=xl
and the collision operator Q(f)∣x=xl

. An approximation of the time derivative can be computed
using several fl,j at previous time levels. Different approximations can be obtained. At first order one could
use

∂fh
∂t

∣
x=xl

≃
fnl,j − f

n−1
l,j

∆t
,

where ∆t is the time step. For higher order one can use a WENO type extrapolation to approximate the
time derivative (see subsection 2.3 below).

The last term Q(fh)∣x=xl
can be computed explicitly using fl,j obtained in previous two steps. Clearly

this procedure is independent of the values of f at interior points.

Remark 2.1. Let us address the following points to increase the order of accuracy and to stabilize the inverse
Lax-Wendroff procedure.

1. Here, we restrict our presentation to a second order accurate method, since the higher order ILW proce-
dure becomes more complicated to apply (it would require several evaluations of the collision operator).
To achieve higher order accuracy, we can follow the ideas in [24], where the second order derivative
can be approximated using a WENO type extrapolation from the interior points.

2. Let us notice that when vx → 0 or when ε → 0 at the boundary, the formula (2.12) gives an approx-
imation ∂xf

ILW
h (xl, vj), which may blow-up and the inverse Lax-Wendroff procedure may generate

spurious oscillations. Therefore, a limitation procedure based on the WENO extrapolation is applied.
For instance, at the boundary point xl, the second step gives values (fl,j)j, then using interior points
we construct a WENO polynomial interpolation and compute approximated values f1∗,j at point xl+∆x
and f2∗,j at point xl + 2∆x. Hence from these later points, we compute a WENO type extrapolation
a new approximation of the first derivative denoted by ∂xf

WENO
h (xl, vj). Finally, we introduce an

approximation ∂xfh(xl, vj) by

∂xfh(xl, vj) = minmod (∂xf
ILW
h , ∂xf

WENO
h ) (xl, vj). (2.13)

This procedure prevents spurious oscillations and numerical instabilities of the inverse Lax-Wendroff
procedure.

3. Let us observe that when α = 0 we have a pure specular reflection condition. A mirror procedure can
be used to approximate f at the ghost points. More precisely, by considering the boundary as a mirror,
we approximate the distribution at the ghost points f(xs, vj) as

f(xs,vj) = f(2xl − xs,vj⋆), where j⋆ = (−j1, j2, j3),

where 2xl − xs is the mirror image point of xs. Since 2xl − xs is located in interior domain, we can
approximate f(2xl − xs,vj⋆) by an interpolation procedure.
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2.2 Two-dimensional case
The previous approach can be generalized to two-dimensional problems. We assume dx = 2 in equation (2.1)

∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
=

1

ε
Q(f), (2.14)

where the distribution function f(t,x,v) is defined in (t,x,v) ∈ R+ × Ω × R3 with x = (x, y). We consider
a computational domain [xmin, xmax] × [ymin, ymax] × [−V,V ]3, such that Ω ⊂ [xmin, xmax] × [ymin, ymax] and
f(t,x,v) ≊ 0, for all ∥v∥ ≥ V .

The computational domain is covered by an uniform Cartesian mesh Xh×Vh, where Xh, Vh are defined
similarly to (2.9). The mesh steps are respectively ∆x, ∆y and ∆v. In Figure 3, we present a portion of the
mesh in space near the boundary. From a ghost point xg, we can find an inward normal n, which crosses
the boundary at xp.

x

y n

θ

◾ ◾ ◾ ◾

◯◯ ◯

◾ ◾ ◾ ● ●

◯ ◯ ◯

xg

◾ ● ● ● ●◯ ◯ ◯

xp

P ∗
0

◆

● ● ● ● ●
P ∗

1

◆

● ● ● ● ●

P ∗
2

◆

�

ix − 2 ix − 1 ix ix + 1 ix + 2

iy − 2

iy − 1

iy

iy + 1

iy + 2

�

�

Figure 3: Two-dimensional Cartesian mesh. ● is interior point, ◾ is ghost point, � is the point at the
boundary, ◯ is the point for extrapolation, the dashed line is the boundary.

For the 2D case, the numerical approximation of the distribution function f at ghost points is similar to
the one dimensional case. However, there are two major differences. First to compute R[f] in the second
step, the corresponding reflected velocities may not correspond to grid nodes in phase space. Secondly to
approximate the normal derivative in the third step, besides the time derivative and collision operator we
need also the tangential derivative at xp. Once again, we present the method in three steps:

2.2.1 First step: Extrapolation of f for the outflow

Let us assume that the values of the distribution function f on the grid points in Ω are given. To approximate
f at a ghost point, for instance xg, we first construct a stencil E composed of grid points of Ω for the
extrapolation. For instance as it is shown in Figure 3, the inward normal n intersects the grid lines y = yiy ,
yiy+1, yiy+2 at points P ∗

0 , P
∗
1 , P

∗
2 . Then we choose the three nearest points of the cross point P ∗

l , l = 0,1,2,
in each line, i.e. marked by a large circle. From these nine points, we can build a Lagrange polynomial
q2(x) ∈ Q2(R2). Therefore we evaluate the polynomial q2(x) at xg and xp, and obtain an approximation
of f at the boundary and at ghost points. As for the 1D case, a WENO type extrapolation can be used to
prevent spurious oscillations, which will be detailed in subsection 2.3.
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Note that in some cases, we cannot find a stencil of nine interior points. For instance when the interior
domain has a small acute angle sharp, the normal n cannot have three cross points P ∗

l , l = 0,1,2 in interior
domain, or we cannot have three nearest points of the cross point P ∗

l , l = 0,1,2, in each line. In such a
case, we alternatively use a first degree polynomial q1(x) with a four points stencil or even a zero degree
polynomial q0(x) with a one point stencil. We can similarly construct the four points stencil or the one
point stencil as above.

2.2.2 Second step: Compute boundary conditions

In the previous step, we have obtained the outflow f(xp,v ⋅ n < 0) at the boundary xp. Using (2.4) as we
did for the 1D case, we can similarly compute the distribution function f for v ⋅ n ≥ 0. However now the
distribution function for specular reflection is given by

R[f(xp,v)] = f(xp,v − 2(v ⋅ n)n), ∀v ∈Vh

and the vector fields v − 2 (v ⋅n)n may not be located on a grid point. Therefore, we interpolate f in phase
space (xp,v − 2(v ⋅ n)n) using the values computed from the outflow f(xp,v) such that v ⋅ n ≥ 0.

2.2.3 Third step: Approximation of f for the inflow

We have obtained the values of f at the boundary points xp for all v ∈ Vh in previous two steps. Now we
reconstruct the values of f for the velocity grid points such that v ⋅ n ≥ 0 at the ghost point xg by a simple
Taylor expansion in the inward normal direction. To this end, we set up a local coordinate system at xp by

x̂ = (
x̂
ŷ
) = (

cos θ sin θ
− sin θ cos θ

)(
x
y
) ,

where θ is the angle between the inward normal n and the x-axis illustrated in Figure 3. Thus the first order
approximation of f(xg,v) reads

f(xg,v) ≊ f̂(x̂p,v) + (x̂g − x̂p)
∂f̂

∂x̂
(x̂p,v),

where f̂(x̂p,v) = f(xp,v) and ∂f̂
∂x̂

(x̂p,v) is the first order normal derivative at the boundary xp. To approx-

imate ∂f̂
∂x̂

(x̂p,v), we use inverse Lax-Wendroff procedure. Firstly, we rewrite the equation (2.14) in the local
coordinate system as

∂f̂

∂t
+ v̂x

∂f̂

∂x̂
+ v̂y

∂f̂

∂ŷ
=

1

ε
Q(f̂), (2.15)

where v̂x = vx cos θ + vy sin θ, v̂y = −vx sin θ + vy cos θ. Then a reformulation of (2.15) yields

∂f̂

∂x̂
(x̂p,v) = −

1

v̂x
(
∂f̂

∂t
+ v̂y

∂f̂

∂ŷ
−

1

ε
Q(f̂))∣

x̂=x̂p

. (2.16)

Finally instead of approximating ∂f̂
∂x̂

(x̂p,v) directly, we approximate the time derivative ∂f̂
∂t
, the tangential

derivative ∂f̂
∂ŷ

and the collision operator Q(f̂). Similarly as in one-dimensional case, we compute ∂f̂
∂t

and

Q(f̂), but it remains to approximate ∂f̂
∂ŷ

.
When the boundary is a straight line, we can use some neighbor points of xp at the boundary to ap-

proximate the tangential derivative ∂f̂
∂ŷ

. However, when the boundary is a curve, we cannot use the neighbor

points to approximate ∂f̂
∂ŷ

. Here we approximate the tangential derivative using interior points. Precisely, we
define h = min(∆x,∆y) and space step ĥy = (0, h) in local coordinates (x̂, ŷ). Then the tangential derivative
∂f̂
∂ŷ

can be calculated by an ENO type approximation as follows

∂f̂

∂ŷ
(x̂,v) = minmod(

f(x̂ + ĥy,v) − f(x̂,v)

h
,
f(x̂,v) − f(x̂ − ĥy,v)

h
) , n ⋅ v ≥ 0,
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where f(x̂ + ĥy,v) and f(x̂ − ĥy,v) can be obtained by an interpolation in concave boundary case, or by a
WENO type extrapolation in convex boundary case.

Remark 2.2. As in one dimensional case, when v̂x is small or when ε goes to zero at the boundary, the
formula (2.16) blows up and the inverse Lax-Wendroff procedure is not appropriate. Therefore a WENO
type extrapolation is applied using interior points. More precisely, we first interpolate f at points x+ ĥx and
x+ 2ĥx, where ĥx = (h,0), i.e. f̂(x̂p + ĥx,v), f̂(x̂p + 2ĥx,v), n ⋅v ≥ 0. We then extrapolate f(xg,v) with the
WENO type extrapolation using f̂(x̂p,v), f̂(x̂p + ĥx,v) and f̂(x̂p + 2ĥx,v).

2.3 WENO type extrapolation
A WENO type extrapolation [23] was developed to prevent oscillations and maintain accuracy, which is
an extension of WENO scheme [14]. The key point of WENO type extrapolation is to define smoothness
indicators, which is designed to help us choose automatically between the high order accuracy and the low
order but more robust extrapolation. Here we describe this method in 1D and 2D cases. Moreover we will
give a slightly modified version of the method such that the smoothness indicators are invariant with respect
to the scaling of f .

2.3.1 One-dimensional WENO type extrapolation

Assume that we have a stencil of three points E = {x1, x2, x3} showed in Figure 2 and denote the corresponding
distribution function by f1, f2, f3. Instead of extrapolating f at ghost point xg by Lagrange polynomial, we
use following Taylor expansion

fg =
2

∑
k=0

(xg − xl)
2

k!

dkf

dxk
∣
x=xl

.

We aim to obtain a (3 − k)-th order approximation of dkf
dxk ∣

x=xl

denoted by f (k)l , k = 0,1,2. Three candidate
substencils are given by

Sr = {x1, . . . , xr+1}, r = 0,1,2.

In each substencil Sr, we could construct a Lagrange polynomial pr(x) ∈ Pr(R)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0(x) = f1,

p1(x) = f1 +
f2 − f1

∆x
(x − x1),

p2(x) = f1 +
f2 − f1

∆x
(x − x1) +

f3 − 2f2 + f1

2∆x2
(x − x1)(x − x2).

We now look for the WENO type extrapolation in the form

f
(k)
l =

2

∑
r=0

wr
dkpr(x)

dxk
(xl),

where wr are the nonlinear weights depending on fi. We expect that f (k)l has (3 − k)-order accurate in the
case f(x) is smooth in S2. The nonlinear weights are given by

wr =
αr

∑
2
s=0 αs

,

with
αr =

dr
(ε + βr)2

,
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where ε = 10−6, d0 = ∆x2, d1 = ∆x, d2 = 1 −∆x −∆x2 and βr are the new smoothness indicators determined
by β0 = ∆x2, then if (f1, f2) = (0,0), we take β1 = 0 else we choose

β1 =
1

f2
1 + f

2
2

2

∑
l=1
∫

x1

x0

∆x2l−1
(
dl

dxl
p1(x))

2

dx

=
(f2 − f1)

2

f2
1 + f

2
2

,

and finally if (f1, f2, f3) = (0,0,0), we take β2 = 0 else, we choose

β2 =
1

f2
1 + f

2
2 + f

2
3

2

∑
l=1
∫

x1

x0

∆x2l−1
(
dl

dxl
p2(x))

2

dx

=
1

12(f2
1 + f

2
2 + f

2
3 )

(61f2
1 + 160f2

2 + 25f2
3 + 74f1f3 − 192f1f2 − 124f2f3).

We remark that the smoothness indicators β1 and β2 have the factors 1
∑r+1

m=1 f
2
m
, which guarantee that the

indicators are invariant of the scaling of fi.

2.3.2 Two-dimensional extrapolation

The two-dimensional extrapolation is a straightforward expansion of the 1D case. The substencils Sr, r =
0,1,2 for extrapolation are chosen around the inward normal n such that we can construct Lagrange poly-
nomial of degree r. For instance in Figure 3, the three substencils are respectively

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 = {(xix , yiy)},

S1 = {(xix−1, yiy), (xix , yiy), (xix , yiy+1), (xix+1, yiy+1)},

S2 = {(xix−1, yiy), (xix , yiy), (xix+1, yiy), (xix−1, yiy+1),

(xix , yiy+1), (xix+1, yiy+1), (xix , yiy+2), (xix+1, yiy+2), (xix+2, yiy+2)}.

Once the substencils Sr are chosen, we could easily construct the Lagrange polynomials in Qr(R2)

qr(x) =
r

∑
m=0

r

∑
l=0

al,mx
lym

satisfying
qr(x) = f(x), x ∈ Sr.

Then the WENO extrapolation has the form

f(x) =
2

∑
r=0

wrqr(x), x ∈ Sr, (2.17)

where wr are the nonlinear weights, which are chosen to be

wr =
αr

∑
2
s=0 αs

,

with
αr =

dr
(ε + βr)2

,

where ε = 10−6, d0 = ∆x2 + ∆y2, d1 =
√

∆x2 +∆y2, d2 = 1 − d0 − d1. βr are the smoothness indicators
determined by

β0 = ∆x2
+∆y2,
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and if f(x) = 0,∀x ∈ Sr we take βr = 0, else

βr =
1

∑x∈Sr
f(x)2 ∑

1≤∣σ∣≤r
∫
K

∣K ∣
∣σ∣−1

(Dσqr(x))
2dx, r = 1,2,

where σ is a multi-index and K = [xp −∆x/2, xp +∆x/2] × [yp −∆y/2, yp +∆y/2], xp = (xp, yp).

3 Application to the ES-BGK model
The Boltzmann equation (2.1) governs well the evolution of the density f in kinetic regime and also in the
continuum regime [4]. However the quadratic collision operator Q(f) has a rather complex form such that
it is very difficult to compute. Hence different simpler models have been introduced. The simplest model is
the so-called BGK model [3], which is mainly a relaxation towards a Maxwellian equilibrium state

Q(f) =
τ

ε
(M[f] − f), (3.1)

where τ = πρ.
Although it describes the correct hydrodynamic limit, the BGK model does not give the Navier-Stokes

equation with correct transport coefficients in the Chapman-Enskog expansion. Holway et al. [10] proposed
the ES-BGK model, where the MaxwellianM[f] in the relaxation term of (3.1) is replaced by an anisotropic
Gaussian G[f]. This model has correct conservation laws, yields the Navier-Stokes approximation via the
Chapman-Enskog expansion with a Prandtl number less than one, and yet is endowed with the entropy
condition [1]. In order to introduce the Gaussian model, we need further notations. Define the opposite of
the stress tensor

Θ(t,x) =
1

ρ
∫
R3

(v − u)⊗ (v − u)f(t,x,v)dv. (3.2)

Therefore the translational temperature is related to the T = tr(Θ)/3. We finally introduce the corrected
tensor

T (t,x) = [(1 − ν)T I + νΘ](t,x),

which can be viewed as a linear combination of the initial stress tensor Θ and of the isotropic stress tensor
T I developed by a Maxwellian distribution, where I is the identity matrix.

The ES-BGK model introduces a corrected BGK collision operator by replacing the local equilibrium
Maxwellian by the Gaussian G[f] defined by

G[f] =
ρ

√
det(2πT )

exp(−
(v − u)T −1(v − u)

2
) .

Thus, the corresponding collision operator is now

Q(f) =
τ

ε
(G[f] − f), (3.3)

where τ = πρ, the parameter −1/2 ≤ ν < 1 is used to modify the value of the Prandtl number through the
formula

2

3
≤ Pr =

1

1 − ν
≤ +∞.

It follows from the above definitions that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R3
f(v)dv = ∫

R3
G[f](v)dv = ρ,

∫
R3

v f(v)dv = ∫
R3

vG[f](v)dv = ρu,

∫
R3

∣v∣2

2
f(v)dv = ∫

R3

∣v∣2

2
G[f](v)dv = E

(3.4)
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and
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∫
R3

(v − u)⊗ (v − u) f(v)dv = ρΘ,

∫
R3

(v − u)⊗ (v − u)G[f]dv = ρT .

This implies that this collision operator does indeed conserve mass, momentum and energy as imposed.
In this section, we will first recall the implicit-explicit (IMEX) scheme to the ES-BGK equation proposed

in [3]. Then we apply our ILW procedure to treat boundary conditions for the ES-BGK model.

3.1 An IMEX scheme to the ES-BGK equation
We now introduce the time discretization for the ES-BGK equation (2.1), (3.3)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂f

∂t
+ v ⋅ ∇xf =

τ

ε
(G[f] − f), x ∈ Ω ⊂ Rdx , v ∈ R3,

f(0,x,v) = f0(x,v), x ∈ Ω, v ∈ R3,

(3.5)

where τ = πρ.
The time discretization is an IMEX scheme. Since the convection term in (3.5) is not stiff, we will treat

it explicitly. The source terms on the right hand side of (3.5) will be handled using an implicit solver. We
simply apply a first order IMEX scheme,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

fn+1 − fn

∆t
+ v ⋅ ∇xf

n
=
τn+1

ε
(G[fn+1

] − fn+1
),

f0(x,v) = f0(x,v) .

(3.6)

This can be written as

fn+1
=

ε

ε + τn+1∆t
[fn −∆tv ⋅ ∇xf

n
] +

τn+1∆t

ε + τn+1∆t
G[fn+1

], (3.7)

where G(fn+1) is the anisotropic Maxwellian distribution computed from fn+1. Although (3.7) appears
nonlinearly implicit, since the computation of fn+1 requires the knowledge of G[fn+1], it can be solved
explicitly. Specifically, upon multiplying (3.7) by φ(v) defined by

φ(v) ∶= (1,v,
∣v∣2

2
)

and use the conservation properties of Q and the definition of G[f] in (2.3), we define the macroscopic
quantity U by U ∶= (ρ, ρu,E) computed from f and get

Un+1
=

ε

ε + τn+1∆t
∫
R3
φ(v) (fn −∆tv ⋅ ∇xf

n
)dv +

τn+1∆t

ε + τn+1∆t
∫
R3
φ(v)G[fn+1

](v)dv,

or simply
Un+1

= ∫
R3
φ(v) (fn −∆tv ⋅ ∇xf

n
)dv . (3.8)

Thus Un+1 can be obtained explicitly. This gives ρn+1,un+1 and Tn+1. Until now the IMEX scheme is the
same as the IMEX scheme for BGK model proposed in [22]. Since the Maxwellian M(f) depends only
macroscopic quantities, we can solve explicitly fn+1 for the BGK model. Unfortunately for the ES-BGK
model, it is not enough to define G[fn+1] for which we need ρn+1 Θn+1. Therefore, we define the tensor Σ by

Σn+1
∶= ∫

R3
v ⊗ v fn+1 dv = ρn+1 (Θn+1

+ un+1
⊗ un+1) (3.9)

and multiply the scheme (3.7) by v ⊗ v. Using the fact that

∫
R3

v ⊗ vG[f](v)dv = ρ (T + u⊗ u) ,
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and (3.9), we get that

Σn+1
=

ε

ε + (1 − ν) τn+1 ∆t
(Σn − ∆t ∫

R3
v ⊗ vv ⋅ ∇xf

ndv) (3.10)

+
(1 − ν) τn+1 ∆t

ε + (1 − ν) τn+1 ∆t
ρn+1 (Tn+1 I + un+1

⊗ un+1) .

Now G[fn+1] can be obtained explicitly from Un+1 and Σn+1 and then fn+1 from (3.7).
Finally the scheme reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = ∫
R3
φ(v) (fn −∆tv ⋅ ∇xf

n
)dv,

Σn+1 =
ε

ε + (1 − ν) τn+1 ∆t
(Σn − ∆t ∫

R3
v ⊗ vv ⋅ ∇xf

ndv)

+
(1 − ν) τn+1 ∆t

ε + (1 − ν) τn+1 ∆t
ρn+1 (Tn+1 I + un+1

⊗ un+1) ,

fn+1 =
ε

ε + τn+1∆t
[fn −∆tv ⋅ ∇xf

n
] +

τn+1∆t

ε + τn+1∆t
G[fn+1

].

(3.11)

The scheme (3.11) is an AP scheme for (3.6). On the one hand, although (3.6) is nonlinearly implicit, is
can be solved explicitly. On the other hand, the scheme (3.11) preserves the correct asymptotic [8], which
means when holding the mesh size and time step fixed and letting the Knudsen number go to zero, the
scheme becomes a suitable scheme for the limiting hydrodynamic models.

Remark 3.1. To improve the numerical accuracy, second order schemes are sometimes more desirable. For
this we will follow the IMEX scheme proposed by Filbet et al. [7]. Assume that an approximate solution fn
is known at time tn , we compute a first approximation at time t∗ using a first order IMEX scheme and next
apply the trapezoidal rule and the mid-point formula. The scheme reads

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

2
f∗ − fn

∆t
+ v ⋅ ∇xf

n
=
τ∗

ε
(G[f∗] − f∗),

fn+1 − fn

∆t
+ v ⋅ ∇xf

∗
=

1

2 ε
(τn(G[fn] − fn) + τn+1

(G[fn+1
] − fn+1

)) .

(3.12)

3.2 Inverse Lax-Wendroff procedure for boundary conditions
We have described the numerical method for boundary conditions to general kinetic equations in 1D and 2D
case. To implement this method, it remains to replace the collision operator Q(f) in (2.12) or (2.16) by the
ES-BGK operator (3.3).

Assume that the approximation to the distribution function at the boundary f(xp,v) is known for all
v ∈Vh. Then, the macroscopic quantities ρ, u and T at the boundary point xp can be obtained using (2.3)
and (3.4). Therefore, substituting these macroscopic quantities in (3.2), we compute the stress tensor Θ at
the boundary point xp, such that the corrected tensor T (xp). Thus G[f] is computed for all points (xp,v),
where v ∈Vh.

4 Numerical examples
In this section, we present a large variety of test cases in 1dx and 2dx and three dimensional in velocity
space showing the effectiveness of our method to get an accurate solution of Boltzmann type equations set
in an arbitrary geometry with different boundary conditions. We perform a second order finite difference
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scheme for space discretization with Van Leer limiters [25] and the second order IMEX scheme presented in
Remark 3.1. For the velocity discretization, the trapezoidal rules will be used.

We first give an example on a flow generated by gradients of temperature, which has already been treated
by DSMC or other various methods [6]. Then, we present some numerical results in 2dx. The first one is a
high-speed flow through a trapezoidal channel, which was performed in [21]. The second one is to study the
unsteady behaviors of viscous fluxes around an airfoil.

4.1 Test 1 : Smooth solutions
We consider the ES-BGK equation (2.1)-(3.3)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂f

∂t
+ vx

∂f

∂x
= Q(f), , x ∈ (−0.5, 0.5), v ∈ R3,

f(t = 0) = f0,

with an initial datum f0 which is a perturbation of the constant state in space and a Maxwellian distribution
function in velocity, that is,

f0(x, v) =
ρ0(x)

(2π)
exp(−

∣v∣2

2
) , x ∈ (−0.5, 0.5), v ∈ R3

with a density ρ0 = 1+ 0.1 cos(2π x) and we consider pure specular reflection. Thus, the solution is expected
to be smooth for large time since it does not develop any discontinuity at the boundary.

We perform several numerical simulations on a time interval [0, tend] with tend = 1, a computational
domain in space I0 = [−π/6, π/6] such that (−1/2,1/2) ⊂ I0 and a domain in velocity V = [−8,8]3. Then, we
choose a grid in space for I0 constituted of nx = n points and a grid Vh for the velocity space with nv = n
points for each direction with respectively n = 32, 64,..., n = 512. Let us emphasize that the boundary points
x = −1/2 and x = 1/2 are not exactly located on a grid point. Since we don’t know an exact solution of the
problem, we compute errors with respect to a reference solution. More precisely, an estimation of the error
with respect to a reference solution in L1 norm at time T is given by

e2h = ∥fh(T ) − f2h(T )∥L1 ,

where fh represents the approximation computed from a mesh of size h = (∆x,∆v). The numerical scheme
is said to be k-th order if e2h ≤ C∥h∥k, for all 0 < ∥h∥ ≪ 1.

In Table 1 we present the order of convergence in L1 norm of our numerical methods at time t = 1, and
Figure 4 illustrates the time evolution of the e2h errors with different values of h. We can clearly see the
expected second order convergence. Moreover, we verify experimentally that our scheme is also second-order
accurate at the boundary since with this specific boundary condition the solution is still smooth.

nx × nv L1 error Order L1 error at the boundary Order
322 8.8833 10−4 X 3.909 10−3 X
642 2.5221 10−4 1.94 5.832 10−3 X
1282 6.5511 10−5 1.88 2.341 10−4 4.1
2562 1.7829 10−5 1.91 5.811 10−5 2.01
5122 4.4571 10−6 2 1.573 10−5 1.89

Table 1: Test 1 : Smooth solutions. Experimental order of convergence in L1 norm.

4.2 Test 2 : Flow generated by a gradient of temperature
We consider the ES-BGK equation (2.1)-(3.3),

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂t
+ vx

∂f

∂x
=

1

ε
Q(f), x ∈ (−1/2,1/2), v ∈ R3,

f(t = 0, x, v) =
1

2π T0
exp(−

∣v∣2

2T0
) ,
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Figure 4: Test 1 : Smooth solutions. Experimental order of convergence in L1 norm (1) in the physical
domain (2) at the boundary.

with T0(x) = 1 and we assume pure diffuse boundary conditions with Tw(−1/2) = 1 and Tw(1/2) = 1.44,
which can be written as

f(t, x, v) = µ(t, x) fw(v), if (x, vx) ∈ {−1/2} ×R+ and (x, vx) ∈ {1/2} ×R−,

where µ is given by (2.7). This problem has already been studied in [27] using DSMC for the Boltzmann
equation or using deterministic approximation using a BGK model for the Boltzmann equation in [18, 6].

Here we apply our numerical scheme with the ES-BGK operator (3.3) and choose a computational domain
in space I0 = [−0.52,0.52] with only nx = 64 points such that (−1/2,1/2) ⊂ I0 and [−8,8]3 for the velocity
space with 8192 = 32 × 16 × 16 grid points and the time step ∆t = 0.002.

The main issue here is to capture the correct steady state for which the pressure is a perturbation of a
constant state with a Knudsen layer at the boundary [18, 27]. We compare our numerical solution with the
one obtained with a second order classical finite volume scheme where the computational domain corresponds
to the physical domain such that there is no inverse Lax-Wendroff procedure.

In Figure 5, we represent the stationary solution (obtained approximately at time tend = 15 for ε = 0.3 up
to tend = 30 for ε = 0.1) of the temperature and the pressure profile with both methods. The results are in a
qualitative good agreement with those already obtained in [27] with DSMC. More precisely, the boundary
layer (Knudsen layer) appears in the density and temperature as well as the pressure, but it is small for all
the quantities. The magnitude in the dimensionless density, temperature, and pressure is of order of ε and
the thickness of the layer is, say O(ε). In the density and temperature profiles, we cannot observe it unless
we magnify the profile in the vicinity of the boundary (see the zoom in Figure 5). Instead, since the pressure
is almost constant in the bulk of the gas, we can observe perfectly the boundary layer by magnifying the
entire profile. Let us emphasize that, as it is shown in Figure 5 the Knudsen layer is a kinetic effect, which
disappears in the fluid limit (ε→ 0).

Observe that our numerical algorithm is accurate for ε larger than 0.1, but for values below this threshold
the Inverse Lax-Wendroff procedure does not give accurate results (see the steady state of the pressure) for
the actual resolution. This can be easily understood since we evaluate Q(f)/ε at the boundary where the
solution is not necessarily at equilibrium and this term does not vanish for small values ε. This can be
improved by adding the limitation of the derivative (2.13) when the one given by the ILW fails (see the
second item of Remark 2.1). This additional step improves the previous procedure for small values ε and
gives better conservation (for this problem global mass is theoretically conserved, but the numerical method
does not guarantee mass conservation). We present the numerical results in Figure 6 for ε = 0.1 and observe
the very good agreement with the reference solution.

These results provide strong evidence that the present treatment of boundary conditions using WENO
extrapolation and inverse Lax-Wendroff method can be used to determine the state of a gas under highly non-
equilibrium conditions. Using deterministic methods, we can investigate the behavior of gases for situations
in which molecular diffusion is important e.g., thermal diffusion.

15



 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4
 1.45

-0.4 -0.2  0  0.2  0.4

Temperature profile =0.1

Zoom at x=0.5

0.02

x  1.214

 1.2145

 1.215

 1.2155

 1.216

 1.2165

 1.217

 1.2175

 1.218

-0.4 -0.2  0  0.2  0.4

Pressure profile =0.1

Zoom at x=0.5

/3

x

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4
 1.45

-0.4 -0.2  0  0.2  0.4

Temperature profile =0.2

Zoom at x=0.5

0.02

x  1.211

 1.212

 1.213

 1.214

 1.215

 1.216

 1.217

 1.218

-0.4 -0.2  0  0.2  0.4

Pressure profile =0.2

Zoom at x=0.5

/3

x

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4
 1.45

-0.4 -0.2  0  0.2  0.4

Temperature profile =0.3

Zoom at x=0.5

0.02

x  1.208

 1.21

 1.212

 1.214

 1.216

 1.218

-0.4 -0.2  0  0.2  0.4

Pressure profile =0.3

Zoom at x=0.5

/3

x

(1) (2)

Figure 5: Test 2 : Flow generated by a gradient of temperature. comparison of steady state of (1) temper-
ature (2) pressure for various Knudsen numbers ε = 0.1, 0.2 and 0.3 (− represents the numerical solution
obtained with a classical second order finite volume scheme without the ILW procedure whereas ○ represents
the numerical solution obtained with the ILW procedure).
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Figure 6: Test 2 : Flow generated by a gradient of temperature. comparison of steady state of (1) temperature
(2) pressure for various Knudsen numbers ε = 0.1 represents the numerical solution obtained with a classical
second order finite volume scheme without the ILW procedure whereas ○ represents the numerical solution
obtained with the ILW procedure and an additional limitation procedure of the derivative.

Also let us mention that a quantitative comparison between our results (3dv with ES-BGK operator)
and [27] (3dv Boltzmann with hard sphere potential) or [18] (3dv BGK) gives a very good agreement on the
values of the Knudsen layer and the values of the pressure inside the domain.

4.3 Test 3 : High-speed flow through a trapezoidal channel
In this section we deal with two-dimensional ES-BGK model in a trapezoidal domain. We attempt to get
some steady state as

vx
∂f

∂x
+ vy

∂f

∂y
=

1

ε
Q(f),

where x ∈ Ω and v ∈ R3. Here we will reproduce a numerical test performed in [21] but with our ILW method.
The computational domain is a trapezoid

Ω = {x = (x, y), 0 < x < a, 0 < y < b + x tan(δ)}

as shown in Figure 7 for the parameters

a = 2.0, b = 0.4, δ = arctan(0.2).

Boundary conditions are defined separately for each of the four straight pieces

∂Ω = Γl ∪ Γb ∪ Γr ∪ Γt

denoting the left, bottom, right and top parts of the boundary respectively. The bottom part represents the
axis of symmetry, so we use specular reflection (2.5) there, i.e.

f(x,v) = (f(x,v − 2(v ⋅ n(x))n(x)), x ∈ Γb, vy > 0.

On the right part we are modeling outflow (particles are permanently absorbed), i.e.

f(x,v) = 0, x ∈ Γr, vx < 0. (4.1)

On the left part there is an incoming flux of particles, i.e.

f(x,v) = fin(x,v) =Min(v), x ∈ Γl, vx > 0, (4.2)
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Figure 7: Test 3 : High-speed flow through a trapezoidal channel. Trapezoidal domain Ω.

with an inflow Maxwellian

Min(v) =
ρin

(2πTin)3/2 exp(−
∣v − Vin∣

2

2Tin
) .

On the top part of the boundary, we consider a diffuse reflection (2.5) of particles, with a Maxwellian
distribution function

MΓt(v) = exp(−
∣v∣2

2Tt
) .

In the numerical experiments we assume

ρin = 1, Tin = 1, Tt = 1.05

and consider the inflow velocity in the form

Vin =Machin
√
γTin

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
,

where Machin = 5 and γ = 1.4.
To start the calculation we take an uniform initial solution equal to the values defined by the left boundary

conditions:

f0(x,v) =
ρin

(2πTin)3/2 exp(−
∣v − Vin∣

2

2Tin
) , x ∈ Ω, v ∈ R3.

We define the Mach number from the macroscopic quantities, computing the moments of the distribution
function with respect to v ∈ R3, by

Mach =
∣u∣

√
γT

,

where c ∶=
√
γT is the sound speed.

We apply our inverse Lax-Wendroff method to the boundary conditions at ∂Ω. More precisely, we
extrapolate first the outflow at ghost points corresponding to the four straight pieces. Then we impose
directly the inflow at the boundaries Γl and Γr by (4.1), (4.2), since they are independent of outflow. While
the inflow of Γb and Γt is computed by specular and diffuse reflection. Finally we use inverse Lax-Wendroff
procedure to compute inflow at ghost points.

In following the sequel, numerical experiments are performed on a mesh of size 96 × 48 on space domain
Ωx. For velocity space we choose limit domain [−12,12] × [−8,8] × [−8,8] with the grid point number as
64×48×12. Moreover for the ES-BGK operator (3.3) we choose ν = −0.5. We consider the weak collision case,
i.e. Kn = 5. In Figures 8–9, we show on the left hand side, the contour plots of the density, the temperature
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Figure 8: Test 3 : High-speed flow through a trapezoidal channel. Stationary state of the density with ε = 5
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Figure 9: Test 3 : High-speed flow through a trapezoidal channel. Stationary state of the Mach number with
ε = 5

and the Mach number while the right hand side plots show the absolute values of these quantities plotted
along the axis of symmetry y = 0. We observe that the Mach number reaches its maximum at Γr. We can
observe also that there is a clear maximum of the density near x = 0.75. In the same region the temperature
reaches its maximum. All these results coincide with that in [21] implemented by DSMC method.

4.4 Test 4 : High-speed flow around an object
In this section, we desire to simulate viscous fluxes around an airfoil (see Figure 11). In literature [17], the
unsteady behaviors of viscous fluxes were studied using unsteady compressible Navier-Stokes equations. No
slip boundary condition were used on the airfoil surface, i.e. u = 0. In fact, there are instances wherein
under certain angles of attack the flow becomes unsteady and the compressible Navier-Stokes equations do
not lead to any convergent steady-state solution. Here we use ES-BGK model to reproduce this unsteady
behaviors.

In [17], the computations were performed with Mach number Ma = 0.3 and Reynolds number Re = 3000.
The Mach, Reynolds and Knudsen numbers relation is given by:

Kn =
Ma
Re

√
γπ

2
,
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Figure 10: Test 3 : High-speed flow through a trapezoidal channel. Stationary state of the temperature with
ε = 5
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Figure 11: Test 4 : High-speed flow around an object. Domain including an airfoil.

where γ = 1.4 is the ratio of specific heats. Therefore we have a very small Knudsen number approximately
equal to Kn = 0.0001. As we mentioned in Remark 2.2, the inverse Lax-Wendroff procedure alone is not
appropriate in this case. We thus supplement it with use the WENO type extrapolation (2.13) to stabilize
the inverse Lax-Wendroff procedure.

The boundary is divided in two parts: the rectangle Γext = Γl ∪Γb ∪Γr ∪Γt and the airfoil profile Γw. We
impose inflow on Γext as follows

f(x,v) =
ρin

2πTin
exp(−

∣v − Vin∣
2

2Tin
) , n(x) ⋅ v ≥ 0, x ∈ Γext,

where the parameters ρin, Tin, ν have the same values as in the previous test, and we and consider the inflow
velocity in the form

Vin =Ma
√
γTin

⎛
⎜
⎝

cos(λ)
sin(λ)

0

⎞
⎟
⎠
,

with the angle λ = 30○. Finally on Γw, we use the pure specular reflection boundary conditions.
To perform this simulation, we consider an uniform mesh of size 180×180 in domain Ω. We use a limited

velocity domain [−8,8]2 with mesh size 40×40. We compare evolution of vortex in a periodic unsteady cycle
with the one performed with unsteady Navier-Stokes equation [17]. We present a unsteady cycle in Figure 12.
In Figure 12(a), there is a long bubble covering the entire upper surface. In Figures 12(b) and 12(c), a small
vortex is induced at the trailing edge and it grows in size and strength. In Figure 12(d), two counter rotating
vortices form with one of them at the trailing edge and other near the middle region. In Figure 12(e), the
right vortex is lifted and is collapsed since the left one is increasing in size and strength. In Figure 12(f),
the vortex lift increases due to formation of new bubble with single clockwise vortex trapped inside and
anti-clockwise vortex shed from the trailing edge. In Figure 12(g), two vortices form on clockwise and there
is a dead air region above the upper surface. In Figure 12(h), at trailing edge the vortex grows in strength
and the dead air region is lifted by a new vortex near the trailing edge, which will finally become a long
bubble covering again the entire upper surface. It is interesting to note that although the Boltzmann type
model is used here, we are able to observe a similar behavior as in [17].

20



−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

(a)
−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

(b)

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

(c)
−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

(d)

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

(e)
−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

(f)

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

(g)
−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

(h)

Figure 12: Velocity vector and streamline plot around an airfoil
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5 Conclusion
In this paper we present an accurate method to deal with kinetic models set in an arbitrary geometry using
a Cartesian grid. We reconstruct the distribution function f on ghost points to discretize the transport
operator. For this we proceed in three steps: first extrapolate the distribution function f on ghost points for
outflow and then apply boundary conditions to compute the inflow at the boundary. Finally we implement an
inverse Lax-Wendroff procedure to give an accurate approximation of f for inflow on the ghost points. One-
dimensional examples are given to show that this method has second order accuracy in L1 norm. Moreover
several numerical simulations in 1D × 3D and 2D × 3D illustrate that our method can reproduce similar
results as the ones in literature. An extension of the inverse Lax-Wendroff method to moving boundary is
in progress.
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