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Abstract. In this paper we present several numerical results performed with a fully deterministic
scheme to discretize the Boltzmann equation of rarefied gas dynamics in a bounded domain for
multi-scale problems. Periodic, specular reflection and diffusive boundary conditions are discussed
and investigated numerically. The collision operator is treated by a Fourier approximation of
the collision integral, which guarantees spectral accuracy in velocity with a computational cost of
M N log(N), where N is the number of degree of freedom in velocity space and M represents the
the number of discrete angles of the collision kernel. This algorithm is coupled with a second order
finite volume scheme in space and a time discretization allowing to deal for rarefied regimes as well
as their hydrodynamic limit. Our numerical results show that the proposed approach significantly
improves the near-wall non stationary flow accuracy of standard numerical methods over a wide
range of Knudsen numbers. In particular when the solution to the Boltzmann equation is closed to
the local equilibrium and for slow motion flows.
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1. Introduction

The construction of numerical methods to approximate the solution to the Boltzmann equation
is an important problem for non stationary and rarefied flows. The difficulties related to the struc-
ture of the Boltzmann equation make it extremely difficult in most physically relevant situations.
For such reasons realistic numerical simulations are based on Monte-Carlo techniques. The most
famous examples are the Direct Simulation Monte-Carlo (DSMC) methods by Bird [1] and by
Nanbu [28]. These methods can successfully simulate high speed transition flows. In contrast, the
flow encountered in micro-scale and nano-scale systems typically involve low Mach Numbers and
low Knudsen numbers. Under these conditions, DSMC approach is not computationally efficient

The author is partially supported by the European Research Council ERC Starting Grant 2009, project 239983-
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due to the requirement to perform large amounts of data sampling in order to reduce the statistical
noise. This inconvenient offer a wide range of applications to fully deterministic methods for which
there is no fluctuation. Numerical methods based on the use of spectral techniques in the velocity
space has been developed in [30, 31, 33], inspired by previous works on the use of Fourier trans-
form techniques for the Boltzmann equation (see [2] for instance). The spectral method has been
applied later to non homogeneous situations [16, 19], to the Landau equation [15, 32], where fast
algorithms can be readily derived, and to the case of granular gases [27, 17]. In [26], C. Mouhot
& L. Pareschi proposed a fast spectral method was proposed on the basis of the previous spectral
method together with a suitable semi-discretization of the collision operator. This method permits
to reduce the computational cost from O(N2), where N denotes the total number of grid points
in velocity space to O(M N log2 N), without loosing the spectral accuracy, where M is an addi-
tional numerical parameter representing the number of discrete angles [26, 18]. The principles and
basic features of this method will be presented in the next sections. Finally let us mention that
A. Bobylev & S. Rjasanow [4, 5] have also constructed fast algorithms based on a Fourier transform
approximation of the distribution function.

The goal of this paper is to apply the fast spectral method already developed in [18] together
with an efficient time discretization technique [20] for problems where boundary conditions play a
significant role in the long time asymptotic behavior of the solution to the Boltzmann equation.
In particular, for low speed and low Knudsen flows for which DSMC methods are unsuitable. The
plan of the paper is the following. In the next sections we recall the Boltzmann equation in a
bounded domain and describe different types of boundary conditions. Therefore, we present the
main ingredients for the approximation of the Boltzmann equation : a Fourier-Galerkin method for
the Boltzmann operator [31, 16, 19, 26, 18], a second order finite volume scheme for the transport
[14] and finally a stable scheme for the time discretization allowing to treat a wide range of regimes
(from rarefied to hydrodynamic) [20]. Then, Section 5 is devoted to numerical simulations for one
and two dimensional, time dependent and stationary problems. Finally, in the last section we draw
conclusions.

2. The Boltzmann equation in a bounded domain

The Boltzmann equation describes the behavior of a dilute gas of particles when the only inter-
actions taken into account are binary elastic collisions. It reads for x ∈ Ω ⊂ R

d, v ∈ R
d (d ≥ 2):

(2.1)
∂f

∂t
+ v · ∇xf =

1

ε
Q(f),

where f := f(t, x, v) is the time-dependent particles distribution function in the phase space. The
parameter ε > 0 is the dimensionless Knudsen number defined as the ratio of the mean free path
over a typical length scale such as the size of the spatial domain, which measures if the gas is
rarefied. The Boltzmann collision operator Q is a quadratic operator local in (t, x). The time t
and position x only act as parameters in Q and therefore will be omitted in its description

(2.2) Q(f)(v) =

∫

v⋆∈Rd

∫

σ∈Sd−1

B(|v − v⋆|, cos θ)
(

f ′
⋆f

′ − f⋆f
)

dσ dv⋆.

We used the shorthand f = f(v), f⋆ = f(v⋆), f ′ = f(v′), f ′
⋆ = f(v′⋆). The velocities of the colliding

pairs (v, v⋆) and (v′, v′⋆) are related by










v′ = v − 1

2

(

(v − v⋆) − |v − v⋆|σ
)

,

v′⋆ = v − 1

2

(

(v − v⋆) + |v − v⋆|σ
)

,
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with σ ∈ S
d−1. The collision kernel B is a non-negative function which by physical arguments of

invariance only depends on |v − v⋆| and cos θ = u · σ, where u = (v − v⋆) and û = u/|u| is the
normalized relative velocity. In this work we are concerned with short-range interaction models
and we assume that B is locally integrable. These assumptions are satisfied for the so-called hard
spheres model B(u, cos θ) = |u|, and it is known as Grad’s angular cutoff assumption when it
is (artificially) extended to interactions deriving from a power-law potentials. As an important
benchmark model for the numerical simulation we therefore consider in this paper variable hard
spheres model (VHS), which writes

(2.3) B(u, cos θ) = Cγ |u|γ ,

for some γ ∈ (0, 1] and a constant Cγ > 0.
Boltzmann’s collision operator has the fundamental properties of conserving mass, momentum

and energy
∫

Rd

Q(f)





1
v
|v|2



 dv = 0,

and it satisfies well-known Boltzmann’s H theorem

dH

dt
(t) := − d

dt

∫

Rd

f log f dv = −
∫

Rd

Q(f) log(f) dv ≥ 0,

where the functional H is called the entropy of the solution. Boltzmann’s H theorem implies that
any equilibrium distribution function, i.e., any function which is a maximum of the entropy, has
the form of a locally Maxwellian distribution

M[ρ, u, T ](v) =
ρ

(2π kB T )d/2
exp

(

−|u − v|2
2 kB T

)

,

where kB is the Boltzmann constant, ρ, u, T are the density, macroscopic velocity and temperature
of the gas, defined by

(2.4) ρ =

∫

Rd

f(v) dv, u =
1

ρ

∫

Rd

v f(v) dv, T =
1

dρ

∫

Rd

|u − v|2 f(v) dv.

For further details on the physical background and derivation of the Boltzmann equation we refer
to Cercignani, Illner, Pulvirenti [9] and Villani [40].

In order to define completely the mathematical problem for equation (2.1) suitable boundary
conditions on ∂Ω should be considered. The most simple model for these is due to Maxwell [25], in
which it is assumed that the fraction (1−α) of the emerging particles has been reflected elastically
at the wall, whereas the remaining fraction α is thermalized and leaves the wall in a Maxwellian
distribution. The parameter α is called accommodation coefficient [8].

More precisely, we consider equation (2.1) supplemented with the following boundary conditions
for x ∈ ∂Ω. The smooth boundary ∂Ω is assumed to have a unit outer normal n(x) at every x ∈ ∂Ω
and for v · n(x) ≥ 0, we assume that at the solid boundary a fraction α of particles is absorbed
by the wall and then re-emitted with the velocities corresponding to those in a still gas at the
temperature of the solid wall, while the remaining portion (1 − α) is perfectly reflected. This is
equivalent to impose for the ingoing velocities

(2.5) f(t, x, v) = (1 − α)Rf(t, x, v) + αM f(t, x, v), x ∈ ∂Ω, v · n(x) ≥ 0,

with 0 ≤ α ≤ 1 and

(2.6)







Rf(t, x, v) = f(t, x, v − 2 (n(x) · v)n(x)),

Mf(t, x, v) = µ(t, x) fw(v).
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If we denote by kB the Boltzmann’s constant and by Tw the temperature of the solid boundary, fw

is given by

fw(v) := exp

(

− v2

2kBTw

)

,

and the value of µ(t, x) is determined by mass conservation at the surface of the wall for any t ∈ R+

and x ∈ ∂Ω

(2.7) µ(t, x)

∫

v·n(x)≥0
fw(v) v · n(x) dv = −

∫

v·n(x)<0
f(t, x, v) v · n(x) dv.

Hence, we have

Proposition 2.1. Assume that f is a smooth solution to the Boltzmann equation (2.1) with
boundary conditions (2.5)-(2.7). Then we have for any x ∈ ∂Ω

(2.8)























∫

v·n(x)≥0
Rf(t, x, v) v · n(x) dv = −

∫

v·n(x)<0
f(t, x, v) v · n(x) dv,

∫

v·n(x)≥0
Rf(t, x, v) v · τ(x) dv = +

∫

v·n(x)<0
f(t, x, v) v · τ(x) dv,

where τ(x) belongs to the hyperplane orthogonal to n(x), and

(2.9)

∫

v·n(x)≥0
Mf(t, x, v) v · n(x) dv = −

∫

v·n(x)<0
f(t, x, v) v · n(x) dv.

Both equalities (2.8) and (2.9)guarantee the global conservation of mass.

Proof. First the equality (2.9) is straightforward by construction of the constant µ(t, x).
Then, to prove (2.8) for any x ∈ ∂Ω, we multiply Rf(t, x, f) by a function η(v) in (2.6) and

integrate on the set {v ∈ R
d, (v·n(x) ≥ 0}. Applying the change of variable v∗ = v−2(v·n(x))n(x),

it yields
∫

v·n(x)≥0
Rf(t, x, v) η(v) dv =

∫

v∗·n(x)≤0
f(t, x, v∗) η (v∗ − 2(v∗ · n(x))n(x)) dv∗.

Taking respectively η(v) = v · n(x) and η(v) = v · τ(x) we get the result. �

3. General framework for the discretization of the Boltzmann operator

We consider the spatially homogeneous Boltzmann operator written in the following general form

(3.1) Q(f) =

∫

C
B(y)

[

f ′f ′
⋆ − f⋆f

]

dy, v ∈ R
d,

with
v′ = v + Θ′(y), v′⋆ = v + Θ′

⋆(y), v⋆ = v + Θ⋆(y).

In the equations above, C is some given (unbounded) domain for y, and Θ, Θ′, Θ′
⋆ are suitable

functions, to be defined later. This general framework emphasizes the translation invariance prop-
erty of the collision operator, which is crucial for the spectral methods. We will be more precise in
the next paragraphs for some changes of variables allowing to reduce the classical operator (2.2) to
the form (3.1).

In this section we remind the basic principles leading to Fourier-Galerkin approximation of the
Boltzmann operator, the method is based on the following three steps:

1) periodized truncations of the Boltzmann collision operator Q(f),
2) expansion of the distribution function in a truncated Fourier series of degree N = (n, . . . , n) ∈

Nd,
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3) projection of the quadratic operator in the set of trigonometric polynomial of degree N .

3.1. Periodized truncations of the Boltzmann collision operator. Any deterministic nu-
merical method requires to work in a bounded velocity space. Here, the idea only consists in adding
some non physical binary collisions by periodizing the function and the collision operator. This im-
plies the loss of some local invariants (some non physical collisions are added). Thus the scheme is
not conservative anymore, although it still preserves the mass if the periodization is done carefully.
However in this way the structural properties of the collision operator are maintained and thus
they can be exploited to derive fast algorithms. This periodization is the basis of spectral methods
and we shall discuss below this non physical truncation (associated with limit conditions) of this
velocity space.

Let us consider the space homogeneous Boltzmann equation in a bounded domain in velocity
DL = [−L,L]d with 0 < L < ∞. We truncate the integration in y and z in (3.1) since periodization
would yield infinite result if not: we set y and z to belong to some truncated domain CR ⊂ C (the
parameter R refers to its size and will be defined later).

Then the truncated collision operator reads

(3.2) QR(f) =

∫

CR

B(y)
(

f ′
⋆ f ′ − f⋆ f

)

dy,

for v ∈ DL (the expression for v ∈ R
d is deduced by periodization). By making some changes of

variable on v, one can easily prove for the two choices of variables y of the next subsections, that
for any function ϕ periodic on DL the following weak form is satisfied:

(3.3)

∫

DL

QR(f)ϕ(v) dv =
1

4

∫

DL

∫

CR

B(y) f⋆ f
(

ϕ′
⋆ + ϕ′ − ϕ⋆ − ϕ

)

dy dv.

Now, we use the representation QR to derive spectral methods.

3.2. Expansion of the distribution function f . Hereafter, we use just one index to denote
the d-dimensional sums with respect to the vector k = (k1, .., kd) ∈ Z

d, hence we set |k| :=
max{|ki|, 1 ≤ i ≤ d} and the approximate function fN is represented as the truncated Fourier
series with N = (n, . . . , n) and

(3.4) fN(v) =
∑

|k|≤n

f̂k ei π
L

k·v,

with the Fourier coefficient f̂k given by

f̂k =
1

(2L)d

∫

DL

f(v) e−i π
L

k·v dv.

In a Fourier-Galerkin method the fundamental unknowns are the coefficients f̂k(t), for |k| ≤ n. We

obtain a set of ODEs for the coefficients f̂k by requiring that the residual of (3.2) be orthogonal to
all trigonometric polynomials of degree less than n. Hence for |k| ≤ n

∫

DL

(

∂fN

∂t
−QR(fN )

)

e−i π
L

k·v dv = 0.

By substituting expression (3.4) in (3.3) we get

QR(fN ) =
∑

|l|≤n

∑

|m|≤n

β̂(l,m) f̂l f̂m ei π
L

(l+m)·v,(3.5)
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where the kernel modes β̂ are defined by

(3.6) β̂(l,m) =

∫

CR

B(y, z)

[

ei π
L

(

l·Θ′(y)+m·Θ′
⋆(y)

)

− ei π
L

m·Θ⋆(y)

]

dy.

3.3. Projection of the quadratic operator QR(fN ). The spectral equation is the projection of
the collision equation in PN , the (2n + 1)d-dimensional vector space of trigonometric polynomials
of degree at most n in each direction, with N = (n, . . . , n) i.e.,

∂fN

∂t
= PN QR(fN ),

where PN denotes the orthogonal projection on PN in L2(DL). A straightforward computation
leads to the following set of ordinary differential equations on the Fourier coefficients

∂f̂k

∂t
=

∑

l+m=k

|l|,|m|≤n

β̂(l,m) f̂l f̂m, |k| ≤ n.

3.4. Application I: the classical spectral method. In the classical spectral method [31], a
simple change of variables in (2.2) permits to write

(3.7) Q(f) =

∫

Rd

∫

Sd−1

Bc(u, σ)
(

f(v′)f(v′⋆) − f(v)f(v⋆)
)

dσ du,

with u = v − v⋆ ∈ R
d, σ ∈ S

d−1, and

(3.8)















v′ = v − 1
2(u − |u|σ),

v′⋆ = v − 1
2(u + |u|σ),

v⋆ = v + u.

Then, we set C := R
d × S

d−1 and

Θ′(u, σ) := −1

2
(u − |u|σ), Θ′

⋆(u, σ) := −1

2
(u + |u|σ), Θ⋆(u, σ) := u.

Finally the collision kernel Bc is defined by

(3.9) Bc(u, σ) = B
(

|u|, û · σ
)

, with û =
u

|u| .

Thus, the Boltzmann operator (3.7) is now written in the form (3.1). Therefore, we consider a
distribution function f such that supp (f) ⊂ BS, where Bs is the ball centred in 0 with radius S > 0,
the domain of the Boltzmann integral operator is then reduced to BR × Sd−1 with R ≥ 2S and
the computational domain DL = [−L,L]d is chosen in order to prevent intersections of the regions
where f is different from zero when we compute discrete convolution based on FFT (this is the

so-called dealiasing condition), that is, L ≥ (3 +
√

2)S/2 (we refer to [31] for a precise explanation
of this choice). The truncated operator reads in this case

QR(f)(v) =

∫

BR×Sd−1

Bc(u, σ)
(

f(v′∗)f(v′) − f(v∗)f(v)
)

dσ du.

Then, we apply the spectral algorithm (3.5) and get for the kernel modes (3.6),

β̂c(l,m) =

∫

BR

∫

Sd−1

B(|u|, cos θ)

[

e−i π
L

(

u· (l+m)
2

−i|u|σ· (m−l)
2

)

− e−i π
L

u·m
]

dσ du.
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Using the conservation of momentum Θ′ + Θ′
⋆ = Θ⋆, we recover the algebraic structure of the

Boltzmann operator where the loss term is an exact convolution,

β̂c(l,m) = βc(l,m) − βc(m,m),

with

βc(l,m) =

∫

BR

∫

Sd−1

B(|u|, cos θ) e−i π
L

(

u· (l+m)
2

−i|u|σ· (m−l)
2

)

dσ du.

Let us emphasize that explicit computations of Fourier coefficients βc(l,m) have been done in
[31, 19] in the VHS case where B is given by (2.3) :

β(l,m) = 16Cγ π2(2λπ)3+γFγ(ξ, η),

where

Fγ(ξ, η) ≡
∫ 1

0
r2+γ Sinc(ξr) Sinc(ηr) dr

where ξ = |l + m|λπ, η = |l −m|λπ and r = |g|/2λπ with λ = 2/(3 +
√

2). For integer values of γ,
Fγ has an explicit analytical expression.

3.5. Application II: the fast spectral method. Here we shall approximate the collision op-
erator starting from a representation which conserves more symmetries of the collision operator
when one truncates it in a bounded domain. This representation was used in [4, 24] to derive finite
differences schemes and it is close to the classical Carleman representation (cf. [7]). Hence, the
collision operator (2.2) can be written as

(3.10) Q(f)(v) =

∫

Rd×Rd

Bf(y, z) δ(y · z)
[

f(v + z)f(v + y) − f(v + y + z)f(v)
]

dy dz,

with

Bf(y, z) = 2d−1 B

(

|y + z|,−y · (y + z)

|y| |y + z|

)

|y + z|−(d−2).

Thus, the collision operator is now written in the form (3.1) with C := R
d ×R

d,

B(y, z) = Bf(y, z) δ(y · z),

and

v′⋆ = v + Θ′
⋆(y, z), v′ = v + Θ′(y, z), v⋆ = v + Θ⋆(y, z),

with

Θ′
⋆(y, z) := z, Θ′(y, z) := y, Θ⋆(y, z) := y + z.

To compute the computational domain, we proceed as before if f has compact support included
in BS, we have R = 2S and choose L ≥ (3

√
2+ 1)S/2. Then the domain of the Boltzmann integral

operator is reduced to BR × S
d−1 and the computational domain DL = [−L,L]d. The (truncated)

operator now reads

(3.11) QR(f)(v) =

∫

CR

Bf(y, z) δ(y · z)
(

f(v + z)f(v + y) − f(v + y + z)f(v)
)

dy dz,

for v ∈ DL. This representation of the collision kernel yields better decoupling properties between
the arguments of the operator and allows to lower significantly the computation cost of the method
by using the fast Fourier transform (see [26, 18]). From now, we can apply the spectral algorithm
(3.5) to this collision operator and the corresponding kernel modes (3.6) are given by

β̂f (l,m) =

∫

BR

∫

BR

Bf(y, z) δ(y · z)

[

ei π
L

(

l·y+m·z
)

− ei π
L

m·
(

y+z
)

]

dy dz.
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As before, the kernel β̂f (l,m) can be written as

β̂f (l,m) = βf (l,m) − βf (m,m),

with

βf (l,m) =

∫

BR

∫

BR

Bf(y, z) δ(y · z) ei π
L

(

l·y+m·z
)

dy dz.

Now we consider the case of Maxwellian molecules in dimension d = 2, and hard spheres in dimen-
sion d = 3 (the most relevant kernel for applications) for which Bf is constant Bf = C.

We first change to spherical coordinates and then we integrate first e′ on the intersection of the
unit sphere with the plane e⊥, then we get

βf (l,m) =
C
4

∫

Sd−1

φR(l · e)
[∫

Sd−1

δ(e · e′)φR(m · e′) de′
]

de,

where using the parity of the sin function, we only have

φR(s) =

∫ R

−R
|ρ|d−2 cos

(π

L
ρs

)

dρ.

Moreover, thanks to the parity property of φR we can adopt the following parametrization

βf (l,m) = C
∫

S
d−1
+

φR(l · e)
[

∫

S
d−1
+

δ(e · e′)φR

(

m · e′) de′
]

de,

where S
d−1
+ denotes the half-sphere. Now since the function e 7→ φR(l · e) is periodic on S

d−1
+ ; we

take a spherical parametrization of S
d−1
+ and a uniform grid of size M for the angle discretization,

it yields

(3.12) βf (l,m) ≃ C m(Sd−1
+ )

M

M
∑

p=1

αp(m)α′
p(l),

where m(Sd−1
+ ) represents the size of the domain parametrizing the unit sphere and αp, α′

p are
defined according to a quadrature formula. Therefore, this latter approximation allows to construct
a fast algorithm for the gain term as a sum of discrete convolutions.

Let us emphasize that the decomposition (3.12) is possible for various kernels up to a quadra-
ture formula based for instance to a multipole expansion but in that case the expression of βf is
complicated. Here we give two examples, which lead to a nice expression of the kernel βf (l,m) :
the first one is in 2dv for Maxwellian molecules, that is, B ≡ 1 and the second one is in 3dv for
hard sphere molecules B(u, cos(θ)) = C |u|.
Example 3.1. For d = 2 and Maxwellian molecules, that is, B(u, cos(θ)) = 1, then Bf(y, z) = 2
and

φR(s) = 2R Sinc

(

πR s

L

)

.

The kernel βf (l,m) can be decomposed as

βf (l,m) = 2 × π

M

M−1
∑

p=0

αp(l)α
′
p(m)

with
αp(l) = φR(l · ep), α′

p(m) = φR(m · e′p),
where ep = (cos θp, sin θp), e′p = (− sin θp, cos θp) and M is the number of equally spaced points in
[0, π] and θp = π p/M .



ON DETERMINISTIC APPROXIMATION OF THE BOLTZMANN EQUATION IN A BOUNDED DOMAIN 9

Example 3.2. For d = 3 and hard sphere molecules, that is, B(u, cos(θ)) = |u|. Thus, Bf (x, y) = 4
and the function φR is given by

φR(s) = R2

[

2Sinc

(

πR s

L

)

− Sinc2

(

πR s

2L

)]

.

The kernel βf (l,m) can be decomposed as

βf (l,m) =
4π2

M2

M
∑

p=1

M
∑

q=1

αp,q(l)α′
p,q(m)

with














αp,q(l) = φR(l · ep,q) sin(ϕq),

α′
p(m) =

∫

S2
+∩e⊥p,q

φR(m · e′)de′ =

∫ π

0
φR

(

|Πe⊥p,q
(m)| cos θ

)

dθ,

where M2 is the number of equally spaced points in [0, π]2 and the unit vector ep,q is given by ep,q

= (cos θp sin ϕq, sin θp sin ϕq, cos ϕq), for θp = pπ/M and ϕq = qπ/M , p, q ∈ {1,M}.

4. Space and time discretization

In this section, we first focus on the discretization of the transport step and omit for sake of clarity
the collisional operator and the velocity variable is fixed vl = l∆v ∈ R

d, with l = (l1, · · · , ld) ∈ Z
d

(4.13)











∂f

∂t
+ v · ∇xf = 0, ∀ (t, x) ∈ R

+ × Ω,

f(t = 0, x, v) = f0(x, v), x ∈ Ω, v ∈ R
d.

We shall develop the scheme in the context of Finite Volume methods for the approximation of
the transport part. We consider T a mesh of the space domain Ω ⊂ R

d. For any control volume
Ti ∈ T we denote by N (i) the set of the neighbours of i. If j ∈ N (i), σi,j is the common interface
between Ti and Tj and nσi,j

is the unit normal vector to σi,j oriented from Ti to Tj and we have
nσi,j

= −nσj,i
. Let mi be the Lebesgue measure of the control volume Ti, ∆t > 0 be the time

step and tn = n ∆t. We set fn
i (vl) an approximation of the distribution function at time tn in the

control volume Ti

fn
i (vl) ≃

1

mi

∫

Ti

f(tn, x, vl)dx.

We integrate the transport equation (4.13) over the control volume [tn, tn+1]×Ti and then construct
a discrete approximation which satisfies

(4.14)



























mi
fn+1

i (vl) − fn
i (vl)

∆t
+

∑

j∈N (i)

Fn(vl, σi,j) = 0, Ti ∈ T , n ∈ N,

f0
i (vl) =

1

mi

∫

Ti

f0(x, v)dx,

where Fn(vl, σi,j) represents a numerical flux on [tn, tn+1] × σi,j

Fn(vl, σi,j) = m(σi,j)
(

v · nσi,j

)

fn
i,j(vl)
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and fn
i,j is an approximation of the edge-based fluxes between times tn and tn+1. This formula

defines a class of finite volume schemes. For instance a second order upwind scheme is obtained by
taking

fn
i,j(vl) =















fn
i (vl) + δi,j

(

fn
j (vl) − fn

i (vl)
)

, if
(

v · nσi,j

)

> 0,

fn
j (vl) + (1 − δi,j)

(

fn
i (vl) − fn

j (vl)
)

, else,

where δi,j defines a slope limiter such that for all k ∈ N (i) there exists 0 < βi,k < 1 satisfying


































0 ≤
∑

k∈N (i),
k 6=j

βi,k ≤ 1,

δi,j

(

fn
j (vl) − fn

i (vl)
)

=
∑

k∈N (i),
k 6=j

βi,k (fn
i (vl) − fn

k (vl)) .

4.1. Boundary conditions. The most difficult part in the actual implementation of finite volume
methods for kinetic equations is that of boundary conditions. We will discuss here the situation of
solid walls.

Let σi be an edge of the control volume Ti, with σi ∈ ∂Ω and let us denote by n(σi) a unit outer
vector to the edge σi. We define the boundary solution on σi by

(4.15) fn
σi

(vl) =











(1 − α)R fn
σi

(vl) + αM fn
σi

(vl), if v · n(σi) ≥ 0,

fn
i (vl), if v · n(σi) < 0,

where Rfn
σi

(vl) and Mfn
σi

(vl) are defined by (2.6). On the one hand, we compute an approximation
of the operator describing specular reflection Rfn

σi
(vl), it gives for vl · n(σi) ≥ 0,

R∗fn
σi

(vl) = fn
σi

(v∗), with v∗ = vl − 2(vl · n(σi))n(σi).

Unfortunately, the distribution function fn
σi

(.) is not necessarily known on v∗ and a piecewise
linear interpolation is applied to compute the value at v∗. Then, to guarantee the local flux
conservation we modify the boundary solution by considering the re-normalized boundary solution
for vl · n(σi) ≥ 0

(4.16) Rfn
σi

(vl) = ξn(σi) R∗fn
σi

(vl),

where the nonnegative constant ξn(σi) is given by

ξn(σi)∆vd
∑

vl·n(σi)≥0

vl · n(σi) fn
σi

(vl) = −∆vd
∑

vl·n(σi)<0

vl · n(σi) fn
i (vl).

Clearly R fn
σi

is constructed to guarantee a global zero flux property at the boundary σi and
preserves nonnegativity of the distribution at the boundary.

On the other hand, diffusive boundary conditions are also implemented such that the global flux
at the boundary

(4.17) Mfn
σi

(vl) = µn(σi) exp

(

− v2
l

2kBTw

)

,
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where the constant µn(σi) ≥ 0 is computed to ensure the zero flux condition on σi ⊂ ∂Ω

µn(σi)∆vd
∑

vl·n(σi)≥0

vl · n(σi) exp

(

− v2
l

2kBTw

)

= −∆vd
∑

vl·n(σi)<0

vl · n(σi) fn
i (vl).

From this construction, we easily prove the following property, which is the analogous result of
Proposition 2.1.

Proposition 4.1. The scheme (4.14) supplemented with the discrete boundary conditions (4.15)-
(4.17) satisfies for all n ∈ N and σi ∈ ∂Ω

∑

l

∆vd Fn(vl, σi) = 0.

Moreover, global mass is preserved over time

∑

l

∆vdmif
n
i (vl) =

∑

l

∆vdmif
0
i (vl).

4.2. Stable time discretization. Another difficulty in the numerical resolution of the Boltzmann
equation (2.1) is due to the nonlinear stiff collision (source) terms induced by small mean free
or relaxation time. In [20], we propose to penalize the nonlinear collision term by a BGK-type
relaxation term, which can be solved explicitly even if discretized implicitly in time. Since the
convection term in (2.1) is not stiff, we will treat it explicitly. The source terms on the right hand
side of (2.1) will be handled using the ODE solver in the previous section. For example, if a first
order IMEX scheme is used, we have [20]

(4.18)



























mi
fn+1

i − fn
i

∆t
+

∑

j∈N (i)

Fn(vl, σi,j) = mi
Q(fn

i ) − P(fn
i )

ε
+ mi

P(fn+1
i )

ε
,

f0
i (vl) =

1

mi

∫

Ti

f0(x, vl)dx .

Using the relaxation structure of P(f) given by

P(f) = λ (M[ρ, u, T ](v) − f(v) ) ,

where λ := C0 2π ρ for Maxwellian molecule in 2dv and λ is chosen λ ≥ L(f) in the general case,
(4.18) can be written as

mi f
n+1
i =

ε

ε + λn+1∆t



mi f
n
i − ∆t

∑

j∈N (i)

Fn(v, σi,j)



 + ∆t mi
Q(fn

i ) − P(fn
i )

ε + λn+1∆t

+ mi
λn+1∆t

ε + λn+1∆t
Mn+1

i ,(4.19)

where λn = λ[ρn, T n] and Mn
i is the local Maxwellian distribution M[ρn, un, T n] computed from

fn
i in the control volume Ti. Moreover, a second order IMEX scheme can also be implemented [20].
Let us mention that a similar approach is proposed by G. Dimarco & L. Pareschi using expo-

nential Runge-Kutta methods for stiff kinetic equations [12].



12 FRANCIS FILBET

5. Numerical tests

In this section, we present a large variety of test cases in 1dx × 2dv and 2dx × 2dv showing the
effectiveness of our method to get an accurate solution of the Boltzmann equation. Since we only
consider two dimensional velocity problems we restrict ourselve to Maxwellian molecules kernel in
order to apply the fast algorithm. However, let us emphasize that our approach also includes the
more realistic case 3dv problems with hard sphere but the computational cost is in that case much
more important. We first give some examples (propagation of discontinuities, flow generated by
gradients of temperature and Poiseuille flow), which have already been treated by DSMC.

Finally, we present two numerical results in 1dx×2dv for the trend to equilibrium of the solution
to the nonlinear Boltzmann equation with specular reflection at the boundary and in the 2dx × 2dv

dimensional phase space, we reproduce small effects (ghost effects) in the asymptotic limit ε goes
to zero by considering diffusive boundary conditions. The solution is then compared with the one
obtained by discretizing the Navier-Stokes equations in order to illustrate the non validity of the
Navier-Stokes equations in this limit.

5.1. Propagation of discontinuities. This first test is devoted to the numerical approximation
of the distribution function by the fast spectral method for discontinuous solutions. Of course in
that case, spectral accuracy cannot be achieved and any numerical method cannot be more than
first order accurate. We consider the Boltzmann equation











∂f

∂t
+ vx

∂f

∂x
=

1

ε
Q(f),

f(t = 0) = f0,

with ε = 0.1, an initial datum f0 which is a constant state in space and a Maxwellian distribution
function in velocity with a temperature T0,

f0(x, v) =
1

(2πkBT0)
exp

(

− |v|2
2kBT0

)

, x ∈ (−0.5, 0.5), v ∈ R
2,

with kB = T0 = 1. Then, at time t = 0, we suddenly change the temperature at the boundary
x = −1/2, where we consider purely diffusive boundary conditions with a wall temperature Tw =
2T0. Therefore, a discontinuous distribution function in velocity is generated at the boundary and
propagates in the physical domain, then it is damped due to the effect of the collision operator.

Notice that I. Gamba & S. H. Tharkabhushanam [21, 22] already performed such numerical
simulations in 1dx × 3dv using the method based on the Fourier transform [4]. Here, we want to
illustrate the effect of the angle discretization (3.12) for discontinuous solutions. Indeed, in [26] it
has been shown that for smooth solutions, the angle discretization parameter M does not affect
the accuracy of the spectral method and can be chosen small, that is M ≃ 4.

We present several numerical simulations with ∆t = 0.001, the final time is tend = 1, a compu-
tational domain in space x ∈ [−1/2, 1/2] with nx = 128, a domain in velocity [−8, 8]2, and take
respectively n = 32, 64 and 128 and also choose several values for M = 4, 8 and 12. Surprisingly,
we still observe a good agreement between the different numerical results even when M is small.
Actually, we cannot distinguish the curves for the different values of n = 32, 64 and 128, but also
of M = 4, 8 and 12 (see Figure 1).

In Figure 1-(4), we present the time evolution of the distribution function at x = −0.4961 on the
right hand side of the wall for n = 32 with M = 4, 8 and n = 128 with M = 16. Let us notice that
for n = 32, which is relatively small, the discontinuity of the distribution function is a bit smeared
but we do not observe any spurious osccilations. The smearing is only due to the fact that there
are few points to describe the discontinuous function.
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Also, let us emphasize that the spectral algorithm applied to discretize the Boltzmann collision
operator does not preserve the nonnegativity of the distribution function. However, the algorithm
does not produce spurious oscillations even if for large velocities, some negative values may be
induced, they do not affect the accuracy of the results.

 0.85

 0.9

 0.95

 1

 1.05

 1.1

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2

Density profile ρ

x

ρ

t=0.02
t=0.04

t=0.06
t=0.08

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15

Mean velocity profile u

x

u
t=0.08

t=0.06

t=0.04

t=0.02

(1) (2)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1
x

T

Temperature profile T

t=0.02

t=0.04

t=0.06

t=0.08

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

f(v)

Distribution profile f(v) at x=-0.5

t=0.02

t=0.04

t=0.06

t=0.08

(3) (4)

Figure 1. Propagation of discontinuities: (1) density (2) mean velocity (3) tem-
perature and (4) zoom of the distribution function at x = −0.4961 for n = 32 and
various numbers of angle discretization M = 4, 8 with dots and n = 128, M = 16
with lines.

Finally the results are in good agreement with those presented in [21, 22] and surprisingly
the accuracy does not become worse when the number of angle discretization M becomes small.
Therefore, the fast algorithm seems to be very robust and accurate even for non smooth distribution
functions.

5.2. Flow generated by a gradient of temperature. We consider the Boltzmann equation
(2.1)-(2.2),



















∂f

∂t
+ vx

∂f

∂x
=

1

ε
Q(f), x ∈ (−1/2, 1/2), v ∈ R

2,

f(t = 0, x, v) =
1

2π kB T0(x)
exp

(

− |v|2
2kB T0(x)

)

,
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with kB = 1, T0(x) = 1 + 0.44 (x − 1/2) and we assume purely diffusive boundary conditions on
x = −1/2 and x = 1/2, which can be written as

f(t, x, v) = µ(t, x) fw(v), if (x, vx) ∈ {−1/2} ×R
+ and (x, vx) ∈ {1/2} ×R

−,

where µ is given by (2.7). This problem has already been studied in [34] using DSMC for the
Boltzmann equation or using deterministic approximation using a BGK model for the Boltzmann
equation in [23]. Here we apply our deterministic scheme and choose a computational domain
[−8, 8] × [−8, 8] in the velocity space with a number grid points n = 32 in each direction, the
number of angle discretization is M = 4, whereas for the space direction we take nx = 120 and the
time step ∆t = 0.001.

In Figure 2, we represent the stationary solution (obtained approximately at time tend = 25 for
ε = 0.1 up to tend = 75 for ε = 0.025) of the temperature and the pressure profile. The results are
in a qualitative good agreement with those already obtained in [34] with DSMC. More precisely,
the boundary layer (Knudsen layer) appears in the density and temperature as well as the pressure,
but it is small for all the quantities. The magnitude in the dimensionless density, temperature, and
pressure is of order of ε and the thickness of the layer is, say O(3ε). In the density and temperature
profiles, we cannot observe it unless we magnify the profile in the vicinity of the boundary (see
the zoom in Figure 2). Instead, since the pressure is almost constant in the bulk of the gas, we
can observe perfectly the boundary layer by magnifying the entire profile. Let us emphasize that,
as it is shown in Figure 2 the Knudsen layer is a kinetic effect, which disappears in the fluid limit
(ε → 0).

These results provide strong evidence that the present deterministic method can be used to
determine the state of a gas under highly non-equilibrium conditions. Using deterministic methods,
we can investigate the behavior of gases for situations in which molecular diffusion is important
e.g., thermal diffusion.

Also let us mention that a quantitative comparison between the present results (2dv with Maxwell
molecule kernel) and [34] (3dv Boltzmann with hard sphere potential) or [23] (3dv BGK) shows
that the thickness and the amplitude of the Knudsen layer are much more smaller for Maxwell
molecules.

5.3. Poiseuille-type flow driven by a uniform external force. The Poiseuille flow is a classical
example to study by means of the Navier-Stokes equations. Usually the Poiseuille flow is understood
to be driven by an externally imposed pressure gradient, but it is trivially equivalent to applying
a gravitational force over each particle. For small velocities (small Reynolds or Mach number) the
flow is known to be laminar and stationary and the velocity profile is parabolic. There is, however,
a critical Knudsen number above which an unstable regime starts and the flow can be described
using Burnett equations.

Here, we consider an ideal gas between two parallel infinite plates at rest with a common uniform
temperature. When the gas is subject to a uniform external force in the direction parallel to the
plates, a steady unidirectional flow of the gas is caused between the plates. Assume that the plates
are at rest and located at x = 0 and x = 1 and kept at temperature Tw = 1. The gas is subject
to a uniform external force in the y-direction, i.e., in the direction parallel to the plates. There is
no pressure gradient in the y-direction. We investigate the steady flow of the gas caused by the
external force on the basis of kinetic theory for a wide range of the Knudsen number, paying special
attention to the behavior for small Knudsen numbers. Our basic assumptions are as follows:

• the behavior of the gas is described by the Boltzmann model (2.1)-(2.2),
• the gas molecules are reflected diffusely on the plates.
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Figure 2. Flow generated by a gradient of temperature: (1) temperature (2) pres-
sure for various Knudsen numbers ε = 0.025, 0.05 and 0.1.

The Boltzmann equation in the present problem is written as














∂f

∂t
+ vx

∂f

∂x
+ a

∂f

∂vy
=

1

ε
Q(f),

f(t = 0) = f0,

with purely diffusive boundary conditions and a = 0.5. In this section, we give some numerical
results for intermediate values of the Knudsen number in the case where a is fixed. We apply our
deterministic scheme and choose a computational domain [−8, 8]× [−8, 8] in the velocity space with
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a number grid points n = 32 in each direction, the number of discrete angles M = 4 and for the
space direction nx = 64. Finally we take ∆t = 0.002 and the final time is tend = 35 for ε = 0.3 and
tend = 100 for ε = 0.05.

In Figures 3, we show the profiles of the density, flow velocity, and temperature for various
Knudsen numbers ε > 0 but for a fixed value of the force parameter a = 0.5. In that case, the
driven force amplitude a is small and then the flow speed is naturally low, and thus the density
and temperature profiles are nonuniform.

We do not present the plot of the pressure, which is not uniform but its non-uniformity is quite
small since it is proportional to ǫ2. The most interesting remark is that the temperature profile is
not parabolic and its non-uniformity is dominated by a x4 term. The temperature at this order
has a minimum at the center of the channel but it has symmetric maxima quite near the center as
it has been already shown in [38]

The results are in good agreement with those presented in [39] obtained from the BGK model
for the Boltzmann equation. It clearly shows that Boltzmann’s operator implies a gas-dynamics
that has a more complex nature than standard hydrodynamics and most hydrodynamic quantities
show boundary effects. Of course, in this simple configuration (a laminar stationary flow), it is
still possible to derive analytic perturbative expressions for every hydrodynamic field and compare
them with what is obtained in our simulations [38]. The effects beyond standard hydrodynamics
is clearly observable, and are correctly described with our numerical scheme.

5.4. Trend to equilibrium. We consider the full Boltzmann equation in dimension dv = 2

∂f

∂t
+ v · ∇xf =

1

ε
Q(f), x ∈ [0, 1], v ∈ R

2,

with purely specular reflection at the boundary in x. We first introduce the (d + 2) scalar fields of
density ρ, mean velocity u and temperature T defined by (2.4). Whenever f(t, x, v) is a smooth
solution to the Boltzmann equation with specular boundary conditions, one has the global conser-
vation laws for mass and energy. Therefore, without loss of generality we shall impose

∫

[0,1]×R2

f(t, x, v) dx dv = 1,

∫

[0,1]×R2

f(t, x, v)
|v|2
2

dx dv = 1.

These conservation laws are then enough to uniquely determine the stationary state of the Boltz-
mann equation: the normalized global Maxwellian distribution

(5.20) Mg(v) =
1

2πkB
exp

(

− |v|2
2kB

)

.

We shall use the following terminology: a velocity distribution of the form (5.20) will be called a
Maxwellian distribution, whereas a distribution of the form

(5.21) Ml(t, x, v) =
ρ(t, x)

2πkBT (t, x)
exp

(

−|v − u(t, x)|2
2kBT (t, x)

)

will be called a local Maxwellian distribution (in the sense that the constants ρ, u and T appearing
there depend on the position x). We also define the notion of relative local entropy Hl, the entropy
relative to the local Maxwellian, and the relative global entropy Hg, the entropy relative to the
global Maxwellian distribution, by

Hl(t) =

∫

f log

(

f

Ml

)

dx dv, Hg(t) =

∫

f log

(

f

Mg

)

dx dv.

Our goal here is to investigate numerically the long-time behavior of the solution f . If f is any
reasonable solution of the Boltzmann equation, satisfying certain a priori bounds of compactness
(in particular, ensuring that no kinetic energy is allowed to leak at large velocities), then it is
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Figure 3. Poiseuille flow: (1) mean velocity and (2) temperature for various Knud-
sen numbers ε = 0.05, 0.1, 0.2 and 0.3.
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Figure 4. Poiseuille flow: heat flux for various Knudsen numbers ε = 0.05, 0.1,
0.2 and 0.3.

possible to prove that f does indeed converge to the global Maxwellian distribution Mg as t goes
to +∞. More recently, Desvillettes and Villani [11], Guo and Strain [37] were interested in the
study of rates of convergence for the full Boltzmann equation. Roughly speaking in [11], the authors
proved that if the solution to the Boltzmann equation is smooth enough and satisfies bounds from
below, then (with constructive bounds)

‖f(t) −Mg‖ = O(t−∞),

which means that the solution converges almost exponentially fast to the global equilibrium (namely
with polynomial rate O(t−r) with r as large as wanted).

The solution f to the Boltzmann equation satisfies the formula of additivity of the entropy: the
entropy can be decomposed into the sum of a purely hydrodynamic part, and (by contrast) of a
purely kinetic part. In terms of H functional: one can write

Hg(t) = Hl(t) + Hh(t),

with the hydrodynamic entropy Hh

Hh(t) =

∫ 1

0
ρl(t, x) log

(

ρl(t, x)

Tl(t, x)

)

dx.

Moreover in [11], Desvillettes and Villani conjectured that time oscillations should occur on the
evolution of the relative local entropy. In fact their proof does not rule out the possibility that the
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entropy production undergoes important oscillations in time, and actually most of the technical
work is caused by this possibility. In [18], the authors investigate the same problem with periodic
boundary conditions and justify the oscillation frequency and damping rate using a spectral analysis
of the linearized Boltzmann equation (see [13]).

Here, we performed simulations on the full Boltzmann equation in a simplified geometry (one
dimension of space, two dimensions of velocity, with pure specular boundary conditions) for different
values of the Knudsen number ε > 0 with the fast spectral method to observe the evolution of the
entropy and to check numerically if such oscillations occur. Clearly this test is challenging for a
numerical method due to the high accuracy required to capture such oscillating behavior.

Then, we consider an initial datum as a perturbation of the global equilibrium Mg beginequation

(5.22) f0(x, v) =
1

2πv2
th

(1 + A0 sin(2π x))

[

exp

(

−|v − v0|2
2T0(x)

)

+ exp

(

−|v + v0|2
2T0(x)

)]

,

with v0 = 1√
5
(1, 1), the constant A0 = 0.2 and

T0(x) =
2√
5

( 1 + 0.1 cos(2πx) ) , x ∈ [0, 1].

To get accurate results in the velocity space we take a large domain in velocity [−9, 9]2 and
n = 64, but the number of discrete angles M = 4 since this choice does not really affect the
accuracy. Also, on the computational domain x ∈ [0, 1], we take nx = 100 and ∆t = 0.001. For this
choice, the numerical error is expected to be small since the solution is smooth and the variations
of momentum and energy are from 10−6 for ε = 1 to 10−7 when ε is smaller. Therefore, we stop
the numerical simulations when the entropy Hl approaches this threshold. Moreover, to avoid
numerical artefact’s due to negative values, we only consider values of fH , which are above 10−10

for the computation of the entropy.
We present the time evolution of the relative entropies Hg, Hl and Hh in log scale and observe

that initially the entropy is strongly decreasing and when the distribution function becomes close
to a local equilibrium, some oscillations appear for small values of ε ≪ 1 (see Figure 5). The
superimposed curves yield the time evolution respectively of the total Hg functional, of its kinetic
part Hl and the hydrodynamic entropy Hh.

In Figures 5 and 6, we are indeed able to observe oscillations in the entropy production and in
the hydrodynamic entropy, where the strength of the oscillations depends a lot on the parameter
ε.

The first plot corresponds to ε = 1 and the second one to ε = 0.5. Some slight oscillations can
be seen in the case ε = 1, but what is most striking is that after a short while, the kinetic entropy
is very close to the total entropy: an indication that the solution evolves basically in a spatially
homogeneous way (contrary to the intuition of the hydrodynamic regime). For ε = 0.5, the kinetic
entropy Hl is still non-increasing but after a while it becomes much smaller than the hydrodynamic
part and some variations on the decay of the kinetic entropy can be observed.

On the contrary, in the case ε = 0.125 and more clearly for ε = 0.05, the oscillations are
much more important but they appear with a small amplitude and the hydrodynamic entropy is
relatively closed to the entropy relative to the global equilibrium. Here we are in the hydrodynamic
regime and as it has already be mentioned in [18] the oscillation frequency and damping rate of the
entropy can be predicted by a precise spectral analysis of the linearized compressible Euler system
and compressible Navier-Stokes system.

Further note that the equilibration is much more rapid when ε is small, and that the convergence
seems to be exponential. We also observe that the damping rate is related to ε and is in fact
proportional to ε when ε becomes small.
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tropy Hh (1) ε = 1 and (2) ε = 0.5 in log scale.
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5.5. The ghost effect. It has been shown analytically [35, 3] and numerically [36] on the basis of
the kinetic theory that the heat-conduction equation is not suitable for describing the temperature
field of a gas in the continuum limit in an infinite domain without flow at infinity, where the
flow vanishes in this limit. Indeed, as the Knudsen number of the system approaches zero, the
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temperature field obtained by the kinetic equation approaches that obtained by the asymptotic
theory and not that of the heat-conduction equation, although the velocity of the gas vanishes.
Here we review such a phenomenon, called the ghost effect, in the framework of the simulation of
the Boltzmann equation.

We consider a gas between two plates at rest in a finite domain. In this situation, the stationary
state at a uniform pressure (the velocity is equal to zero and the pressure is constant) is an obvious
solution of the Navier-Stokes equations; the temperature field is determined by the heat conduction
equation [35], which is given for dv = 2 and Maxwell molecule kernel, B(u, cos θ) = 1, by

u = 0, ρ T = C, −∇x · (T∇x T ) = 0.

According to the Hilbert expansion with respect to the Knudsen number ε, the density and tem-
perature fields in the continuum limit are affected by the velocity field, which is of order one with
respect to ε. Finally, the heat conduction equation, although extracted from the incompressible
Navier-Stokes system, is not appropriate in a whole class of situations, in particular when isothermal
surfaces are not parallel, thereby giving rise to “ghost effects”.

In this section, we will show that the numerical solution agrees with one obtained by the as-
ymptotic theory and not with the one obtained from the heat conduction equation; this result is
a confirmation of the validity of the asymptotic theory. This problem has been already studied
from the numerical point of view for the time independent BGK operator, but not for the full time
dependent Boltzmann equation for hard sphere molecules.

Consider a rarefied gas between two parallel plane walls at y = 0 and y = 1. Both walls have a
common periodic temperature distribution Tw

Tw(x) = 1 − 0.5 cos(2π x); ∀x ∈ (0, 1),

and a common small mean velocity uw of order ε in its plane

uw(x) = (ε, 0).

On the basis of kinetic theory, we numerically investigate the behavior of the gas, especially the
temperature field, for various small Knudsen numbers ε. Then, we will assume:

• the behavior of the gas is described by the Boltzmann equation for hard sphere molecules.
• the gas molecules make diffuse reflection on the walls (complete accommodation).
• the solution is 1-periodic with respect to x. Then, the average of pressure gradient in the

x direction is zero.

In this example, the walls are moving with a speed of order ε. We apply the deterministic scheme in
2dx × 2dv and choose a computational domain [−7, 7]× [−7, 7] in the velocity space with a number
grid points n = 32 in each direction, M = 4 and for the space direction nx = ny = 50. Finally we
take ∆t = 0.001.

The isothermal lines and the velocity field for ε = 0.02 are shown in Figure 8. These results
are in good agreement with those obtained by discretizing the the BGK operator [35]. Moreover,
according to the numerical simulations presented in [35], the temperature field deviates from one
given by the heat conduction equation and is increasing when the Knudsen number ε goes to zero
whereas the velocity flow is vanishing (Figure 7).

The temperature converges to the temperature given by the Asymptotic theory developed by
Sone et al. [35] and not to the solution of the Heat equation. Let us note that in this particular case,
we cannot compute an accurate solution for very small Knudsen number, because the computational
time to reach the stationary solution with a very good accuracy becomes too large.

Finally, we also present the time evolution of the entropy H(f) with respect to the final state H∞
in order to investigate the rate of convergence to equilibrium. Clearly, this result illustrate that the
boundary effects does affect the rate of convergence, which is strongly influenced by the Knudsen
number ε. In Table 1, we report the rate of convergence obtained from the numerical results with
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(2) mean velocity u at y = 0.5.

ε rate of convergence α ratio α/ε
0.050 0.52 10.40
0.040 0.42 10.50
0.030 0.32 10.66
0.020 0.225 11.25
0.010 0.123 12.30
0.005 0.066 13.20

Table 1. Ghost effect: Influence of the Knudsen number on the damping rate for
ε = 0.005 to 0.05.

respect to ε. From these computations, the rate of convergence is clearly related to the Knudsen
number, but we cannot really conclude that it is only proportional to ε. Let us emphasize that
from our deterministic method we are able to compute the correct stationary state of the kinetic
equation, but also the time evolution of macroscopic quantities and entropy.

Let us mention that the qualitative behavior of the stationary solution is close to the one obtained
in [35, 3]. Of course since here we only consider 2dv for Maxwell molecules whereas the numerical
simulation presented in [35, 3] considered 3dv BGK equation, isothermal lines and the amplitude
of flow differs and is smaller in our case.

6. Conclusions

In this paper we present an accurate deterministic method for the numerical approximation of
the space non homogeneous, time dependent Boltzmann equation in a bonded domain with different
boundary conditions. The method couples a second order finite volume scheme for the treatment
of the transport step with a Fourier spectral method for the collision step. It possesses a high order
of accuracy for this kind of problems. In fact it is second order accurate in space, and spectrally
accurate in velocity. The high accuracy is evident from the quality of the numerical results that
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ε = 0.01 (4) Evolution of the entropy H(f) − H∞ in log scale.

can be obtained with a relatively small number of grid points in velocity domain. An effective time
discretization allows the treatment of problems with a considerable range of mean free path, and
the decoupling between the transport and the collision step makes it possible the use of parallel
algorithms, which become competitive with state-of-the-art numerical methods for the Boltzmann
equation.

The numerical results, and the comparison with other numerical results available in the literature,
show the effectiveness of the present method for a wide class of problems. These results illustrate the
accuracy and the interest of such a method for low Mach number flows or/and low Knudsen number
for which boundary layer may occur. The main inerest concerns application to micro-channels.
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[20] F. Filbet and S. Jin, A class of asymptotic preserving schemes for kinetic equations and related problems with

stiff sources, J. Comput. Phys. 229 (2010), no. 20.
[21] I. Gamba and S. H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium

statistical states. J. Comput. Phys. 228 (2009), no. 6, 20122036.
[22] I. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-Lagrangian methods

for the inhomogeneous Boltzmann transport equation. J. Comput. Math. 28 (2010), no. 4, 430460.
[23] T. Ohwada, Investigation of heat transfer problem of a rarefied gas between parallel plates with different tem-

peratures, Rarefied gas dynamics, ed. C. Shen, Peking University, pp. 217-234
[24] I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid. Computing

69 (2), pp. 163–186 (2002).
[25] J. C. Maxwell, Philos. Trans. R. Soc. London 70, 231 (1867).
[26] C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator. Math. Comp.

[27] G. Naldi, L. Pareschi and G. Toscani, Spectral methods for one-dimensional kinetic models of granular flows and
numerical quasi elastic limit. ESAIM RAIRO Math. Model. Numer. Anal. 37, pp. 73–90 (2003).

[28] K. Nanbu, Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent Gases. J. Phys.

Soc. Japan 52, pp. 2042–2049 (1983).
[29] L. Pareschi, Second order fast conservative schemes for the ergodic approximation of general Boltzmann equa-

tions. In preparation.



ON DETERMINISTIC APPROXIMATION OF THE BOLTZMANN EQUATION IN A BOUNDED DOMAIN 25

[30] L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations. Trans. Theo.

Stat. Phys. 25, pp. 369–382 (1996).
[31] L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I. Spectrally accurate approximation

of the collision operator. SIAM J. Numer. Anal. 37, pp. 1217–1245 (2000).
[32] L. Pareschi, G. Russo and G. Toscani, Fast spectral methods for the Fokker-Planck-Landau collision operator.

J. Comput. Phys. 165, pp. 216–236 (2000).
[33] L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation. Trans.

Theo. Stat. Phys. 29, pp. 431–447 (2000).
[34] D.J. Rader, M.A. Gallis, J.R. Torczynski and W. Wagner, Direct simulation Monte Carlo convergence behavior

of the hard-sphere-gas thermal conductivity for Fourier heat flow Phys. Fluids 18, 077102 (2006)
[35] Y. Sone and M. Wakabayashi, Flow induced by nonlinear thermal stress in a rarefied gas, Proceedings of Sym-

posium on Mechanics of Space Flight Institute of Space Sciences, Tokyo, 1988, p. 14 (in Japanese).
[36] Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A.V. Bobylev, Inappropriateness of the heat-conduction equation

for description of a temperature field of a stationary gas in the continuum limit: examination by asymptotic
analysis and numerical computation of the Boltzmann equation. Phys. Fluids 8 (1996), 628–638.

[37] R. Strain and Y. Guo, Almost exponential decay near Maxwellian. To appear in Comm. Partial Differential

Equations.
[38] M. Tij, M. Sabbane, and A. Santos, Phys. Fluids 10, 1021 (1998).
[39] F. J. Uribe and A. L. Garcia, Burnett description for plane Poiseuille flow, Phys. Rev. E 60, 4063 (1999).
[40] C. Villani, A survey of mathematical topics in kinetic theory. Handbook of fluid mechanics, S. Friedlander and

D. Serre, Eds. Elsevier Publ., (2002).

Francis Filbet

Université de Lyon,
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