
NUMERICAL STUDY OF A NONLINEAR HEAT EQUATION FOR

PLASMA PHYSICS

FRANCIS FILBET, CLAUDIA NEGULESCU AND CHANG YANG

Abstract. This paper is devoted to the numerical approximation of a nonlinear tempera-
ture balance equation, which describes the heat evolution of a magnetically confined plasma
in the edge region of a tokamak. The nonlinearity implies some numerical difficulties, in
particular long time behavior, when solved with standard methods. An efficient numerical
scheme is presented in this paper, based on a combination of a directional splitting scheme
and the IMEX scheme introduced in [4].
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1. Introduction

The description and simulation of the transport, especially the turbulence of magnetically
confined fusion plasmas in the edge region called scrape off layer (SOL) of a tokamak, is
nowadays one of the main problems for fusion generated energy production (ITER). The
understanding of the physics in this edge region is fundamental for the performances of the
tokamak, in particular the plasma-wall interactions as well as the occurring turbulence have
an important impact on the confinement properties of the plasma. From a numerical point
of view, an accurate approximation of the plasma evolution in the edge region is essential
since energy fluxes as well as particle fluxes at the boundary are used as boundary conditions
for the mathematical model applied to describe the plasma evolution in the center region
(core) of the tokamak. The physical properties of these two regions (core/edge) are rather
different, so that different models are used for the respective plasma-evolution modeling: the
gyrokinetic approach for the collisionless core-plasma and the fluid approach for the colli-
sional edge-plasma.

A large variety of models can be found in literature [5, 9] for the description of the SOL,
based on various assumptions and aimed to describe different physical phenomena. We shall
concentrate in this paper on the TOKAM3D model, introduced in [8]. The aim of this model
is the investigation of the instabilities occurring in this plasma edge region, as for example
the Kevin-Helmholtz instability, the electron-temperature-gradient (ETG), ion-temperature-
gradient instabilities (ITG) , etc.
The TOKAM3D model is based on a two-fluid description (ions, electrons) and consists of
the usual continuity equation, equation of motion and energy balance equation, closed by the
so-called “Braginskii closure”. These equations are

(1.1)















∂tnα +∇ · (nαuα) = Snα ,

mαnα [∂tuα + (uα · ∇)uα] = −∇pα + nαeα(E + uα ×B)−∇ ·Πα + Rα ,

3
2nα [∂tTα + (uα · ∇)Tα] + pα∇ · uα = −∇ · qα −Πα : ∇uα + Qα ,

where nα is the particle density (α = e for electrons and α = i for ions), uα the velocity,
Γα := nαuα the particle flux, mα the particle mass, eα the particle charge (ee = −1 for
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electrons and ei = 1 for ions), pα the pressure, Πα the stress (viscosity) tensor, Snα a
particle source term (coming from the core plasma), Rα the friction force due to collisions,
Tα the temperature, qα the energy flux and finally Qα the particle exchange energy term,
due to collisions. In the Braginskii closure, the pressure is specified as pα := nαTα (perfect
gas assumption), the plasma viscosity is supposed negligible, such that ∇ · Πα = 0 and
Π : ∇uα = 0 and the energy flux qα is supposed to have a diffusive form, given in terms of
the temperature gradient, as follows qα := −κα∇Tα (coming from the Fourier law) with κα

the thermal conductivity coefficient. The energy exchange term Qα is taken under the form

Qα := ±3
me

mi

nα

τe
(Te − Ti) ,

where τe is the electron-ion collision time.
Due to the high complexity of the problem, several other hypothesis are assumed, permitting
to concentrate on the desired features and to filter out the insignificant/disturbing details.
These hypothesis, as for example the quasi-neutrality ne ∼ ni, are not detailed here and we
refer the reader to the more physical works [3, 9, 10].

Several difficulties arise when trying to solve numerically the system (1.1). We shall con-
centrate in this paper only on the temperature equation, which requires at the moment still a
lot of effort, due to its inherent numerical burden. The resolution of the two other equations
was the aim of the PhD thesis [8]. The numerical difficulties in solving the temperature
equation are firstly related to the thermal conductivity coefficients, which depend on the
temperature itself, leading thus to a non-linear problem. Secondly, the strong magnetic field
which confines the tokamak plasma introduces a sharp anisotropy into the problem. Indeed,
the charged particles gyrate around the magnetic field lines, moving thus freely along the
field lines, but their dynamics in the perpendicular directions is rather restricted. Quantities
as for example the resistivity or the conductivity, differ thus in several orders of magnitude
when regarded in the parallel or perpendicular directions. Finally, boundary conditions have
to be imposed, which is a rather delicate task from a physical, mathematical and numerical
point of view.

Let us now present in more details the model we are interested in. In this paper, we shall
study a simplified version of the temperature evolution equation, which contains however all
the numerical difficulties of this last one. We shall focus on how to handle with the nonlinear
terms and the boundary conditions, the high anisotropy being the aim of a forthcoming work
[1, 6]. The simulation domain Ω = (0, 1) × (0, 1) with boundary ∂Ω is presented in Figure
1. It consists of a periodic core region, separated by a Separatrix from the non-periodic
SOL region. Its axes represent the direction parallel to the magnetic field lines (s) and the
radial direction (r). We assume in this paper that all quantities are invariant with respect

to the poloidal angle ϕ. The parallel thermal conductivities κs,|| depend on T
5/2
α whereas the

perpendicular ones κs,⊥, governed by the turbulence, are independent of the temperature [2].

The system we are interested in, is composed of the evolution equation

(1.2) ∂tTα − ∂s(K||,α T 5/2
α ∂sTα)− ∂r(K⊥,α ∂rTα) = ±βα(Te − Ti) , (s, r) ∈ Ω ,
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completed with the boundary conditions

(1.3)























































∂rTα = −Q⊥,α , r = 0 , s ∈ (0, 1) ,

∂rTα = 0 , r = 1 , s ∈ (0, 1) ,

K||,α T 5/2
α ∂sTα = γα Tα, r ∈ (1/2, 1) , s = 0 ,

K||,α T 5/2
α ∂sTα = −γα Tα, r ∈ (1/2, 1) , s = 1 ,

T (t, 0, r) = T (t, 1, r) , r ∈ (0, 1/2),

and the initial condition

(1.4) Tα(0) = Tα,0 ≥ 0 .

The diffusion parameters 0 < K⊥,α ≪ K||,α and the core-heat flux Q⊥,α > 0 are considered
as given. The non-linear boundary conditions at the limiter express the fact, that we have
continuity of the heat fluxes at the boundary. Indeed, the heat flux q := γΓ||T at the
boundary is given as the sum of a diffusive and a convective term, like

γ Γ|| T =
5

2
Γ|| T − |κ||| ∂sT , Γ|| = n u|| .

At s = 0 the particle velocity u|| < 0 is negative, whereas at s = 1 we have u|| > 0, which
gives rise to the boundary conditions in (1.3). The constant γα is different for electrons and
ions, in particular γi ∼ 0 for ions and γe ∼ 5/2 for electrons. In the case of ions, we have
thus homogeneous Neumann boundary conditions at the limiter.
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Figure 1: The 2D domain.

The outline of this paper is the following. In Section 2, we will focus on the 1D nonlinear
parabolic problem

∂tT − ∂s(K‖T
5/2∂sT ) = 0,

completed with the nonlinear boundary conditions in s = 0, 1. A mathematical study is firstly
performed. Then, explicit, implicit and IMEX schemes are compared for the resolution of
this 1D problem, with respect to precision and simulation time. In Section 3 we consider the
complete 2D problem for one species (without the source term). A directional Lie splitting
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method is used in order to transform the 2D problem in two 1D problems and to apply the
results of the previous section. Finally, in Section 4 we solve the complete 2D ion-electron
coupled problem. The shapes of the different electron/ion temperatures are compared.

2. The 1D nonlinear problem

Let us consider in this section the 1D nonlinear problem, corresponding to the temperature
balance equation in the parallel direction, i.e.

(2.1)







































∂tT − ∂s(K‖|T |
5/2∂sT ) = 0, (t, s) ∈ R

+ × (0, 1),

K‖|T |
5/2∂sT = γT, s = 0,

K‖|T |
5/2∂sT = −γT, s = 1,

T (0, ·) = T 0,

where γ ≥ 0 is a given constant, K|| ∈ L∞(Ω), T 0 ∈ L2(Ω), with T 0 ≥ 0 and K|| ≥ 0 almost
everywhere. Let us denote in this section the domain by Ω = (0, 1) and the time-space
cylinder by Q := R

+ × (0, 1). The aim of this section is to study from a mathematical point
of view this equation and to introduce an efficient numerical scheme for its resolution. From
a physical point of view, problem (2.1) describes the rapid diffusion process of the initial
temperature T 0 and the outflow through the boundary.

2.1. Mathematical study. Before starting with the numerical discretization, we first es-
tablish some properties of the 1D diffusion problem (2.1), like existence, uniqueness of a
solution, positivity etc. To simplify the presentation, we shall assume for the present study
that K|| ≡ 1, the general case being treated equally.

We also denote p > 2 and p′ its conjugate number 1 < p′ := p
p−1 < 2. The diffusion

coefficient can now be written as a(T ) := |T |p−2. Moreover, let us define the primitive

Λ(T ) :=

∫ T

0
a(x) dx =

1

p− 1
|T |p−2T .

With these notations, the diffusion equation can be simply rewritten under one of the two
forms

∂tT − ∂s (a(T )∂sT ) = 0 , ∂tT − ∂ss (Λ(T )) = 0 .

We shall now introduce the concept of weak solution of problem (2.1) and state the exis-
tence/uniqueness theorem.

Definition 2.1. Let us consider T 0 ∈ L2(Ω) and define W ⊂ Lp(Q) as the space

W :=
{

T ∈ L2(Q), |T |
p−2

2 T ∈ L2
loc(R

+,H1(Ω)), ∂tT ∈ Lp′

loc(R
+, (W 1,p(Ω))∗)

}

,

and we denote by D = C1
c (R+,W 1,p(Ω)) the space of test functions. Then the temperature

T ∈ W is a weak solution to (2.1) if and only it satisfies
∫

R+

∫

Ω
T (t, s) ∂tϕ(t, s) ds dt −

∫

R+

∫

Ω
|T (t, s)|p−2∂sT (t, s)∂sϕ(t, s)dsdt

− γ

∫

R+

[T (t, 1)ϕ(t, 1) + T (t, 0)ϕ(t, 0)] dt +

∫

Ω
T 0(s)ϕ(0, s)ds = 0, ∀ϕ ∈ D.

Remark that all the terms in this variational formulation are well-defined. Moreover, we

observe that a function T ∈ Lp(R+ × Ω) satisfying ∂tT ∈ Lp′

loc(R
+, (W 1,p(Ω))∗) belongs to

C([0, τ ], (W 1,p(Ω))∗), for all τ > 0 by Aubin’s Lemma, such that the initial condition is
well-defined.
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Theorem 2.2. Let T 0 ∈ L2(Ω) with T 0 ≥ 0. Then, there exists a unique weak solution
T ∈ W of (2.1), which satisfies T ∈ L∞(R+, L2(Ω)), T ≥ 0 almost everywhere and

d

dt
‖T (t, ·)‖2L2(Ω) ≤ 0.

The proof of this theorem is decomposed in several steps. For the beginning, we shall
suppose that T 0 ∈ L∞(Ω), with ‖T 0‖∞ ≤ M and fixed M > 0. A truncation can be done,
for more general T 0 ∈ L2(Ω).
Two main difficulties arise in the mathematical study of (2.1), the nonlinearity and the
degeneracy, which means that the equation changes its type there where T = 0.

Proof. We shall first regularize the problem, in order to avoid the degeneracy. Then, in a
second step, we shall treat the nonlinearity via a fixed point argument. Finally, a priori
estimates shall help us to pass to the limit, in order to deal with the degenerate problem.
Let us thus detail these steps.
First step: Regularization. Let 0 < ǫ < 1 be fixed and let us define the regularized
diffusion coefficient

aǫ,M(T ) :=
[

ǫ2 + min(|T |2,M2)
]

p−2

2 ,

and the corresponding primitive

Λǫ,M (T ) :=

∫ T

0
aǫ,M(x) dx .

The diffusion coefficients being now bounded from below and above, standard arguments
allow to prove that the regularized problem

(2.2)







































∂tTǫ,M − ∂s(aǫ,M (Tǫ,M)∂sTǫ,M) = 0, (t, s) ∈ R
+ × (0, 1),

aǫ,M(Tǫ,M )∂sTǫ,M = γTǫ,M , s = 0,

aǫ,M(Tǫ,M )∂sTǫ,M = −γTǫ,M , s = 1,

T (0, ·) = T 0,

has a unique weak solution Tǫ,M ∈ L2(R+,H1(Ω)) such that it satisfies the following varia-
tional formulation: for any ϕ ∈ C1

c (R+,H1(Ω))
∫

R+

∫

Ω
Tǫ,M (t, s)∂tϕ(t, s) ds dt −

∫

R+

∫

Ω
aǫ,M(Tǫ,M )∂sTǫ,M (t, s)∂sϕ(t, s) ds dt(2.3)

− γ

∫

R+

[Tǫ,M(t, 1)φ(t, 1) + Tǫ,M(t, 0)φ(t, 0)] dt +

∫

Ω
T 0(s)ϕ(0, s) ds = 0.

These arguments are based on the Schauder fixed point theorem, applied on the mapping T
: BR 7→ BR with

BR :=
{

v ∈ L2(Q), ‖v‖L2(Q) ≤ R
}

,

where for v ∈ BR we associate T v the solution of the linearized problem associated to (2.2).
2nd step: a priori estimates. In order to pass to the limit ǫ → 0, we will need some a
priori estimates for the solution Tǫ,M , independent of ǫ. Taking in the variational formulation
(2.3) as test function Tǫ,M , yields first

1

2

∫

Ω
|Tǫ,M (t, s)|2ds +

∫ t

0

∫

Ω
aǫ,M(Tǫ,M)|∂sTǫ,M |

2dsdτ

+ γ

∫ t

0

[

|Tǫ,M(τ, 1)|2 + |Tǫ,M(τ, 0)|2
]

dτ =
1

2

∫

Ω
|T 0(s)|2ds
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which implies that for all t ≥ 0














‖Tǫ,M(t)‖L2(Ω) ≤ ‖T
0‖L2(Ω) ,

∫ t

0

∫

Ω
aǫ,M(Tǫ,M )|∂sTǫ,M |

2ds dτ ≤ ‖T 0‖2L2(Ω) .

This shows also, that the sequence {|Tǫ,M |
p−2

2 Tǫ,M}ǫ is bounded in L2(R+,H1(Ω)) and hence
{Tǫ,M}ǫ bounded in Lp(Q). Moreover by standard arguments for parabolic problems we

deduce than, that {∂tTǫ,M}ǫ is bounded in Lp′(R+, (W 1,p(Ω))∗).
Third step: passing to the limit. The a priori estimates of the last step permit us to
show, that there is a sub-sequence and a function TM ∈ L2(Q), such that

Tǫ,M ⇀ TM in L2(R+ × Ω) as ǫ→ 0.

Moreover, from standard compactness arguments [7], we show that the following set of mea-
surable functions

F :=

{

u : R
+ → (W 1,p(Ω))∗,

∫

R+

∫

Ω
|u|p−2|∂su|

2 ds dt ≤ C , ∂tu ∈ Lp′(R+, (W 1,p(Ω))∗)

}

,

is compactly embedded in Lp(R+ × Ω), implying thus that, up to a sub-sequence

Tǫ,M → TM , in Lp(R+ × Ω) , as ǫ→ 0

and then Tǫ,M → TM a.e. in Q when ǫ goes to zero. Furthermore, since {|Tǫ,M |
p−2

2 Tǫ,M}ǫ is
bounded in L2(R+,H1(Ω)), one has

|Tǫ,M |
p−2

2 Tǫ,M ⇀ |TM |
p−2

2 TM , in L2(R+,H1(Ω)), as ǫ→ 0,

implying by the weak continuity of the trace application

|Tǫ,M |
p−2

2 Tǫ,M ⇀ |TM |
p−2

2 TM , in L2(R+ × ∂Ω), as ǫ→ 0.

Finally, we also have using the same arguments, when ǫ→ 0






Λǫ,M (Tǫ,M) ⇀ ΛM (TM ), in L2(R+,H1(Ω)),

∂tTǫ,M ⇀ ∂tTM , in Lp′(R+, (W 1,p(Ω))∗).

All these convergences permit us now to pass to the limit in the variational formulation (2.3)
in order to show the existence of a weak solution of problem (2.1). This solution is even
unique and satisfies the maximum principle, which can be shown as in step 2. �

2.2. A finite volume approximation. In this section, we propose to derive a numerical
scheme for (2.1) in which we apply a finite volume approach for the discretization in the space
variable. Let us consider a set of points (si−1/2)0≤i≤ns of the interval (0, 1) with s−1/2 = 0,
sns−1/2 = 1 and ns + 1 represents the number of discrete points. For 0 ≤ i ≤ ns − 1, we
define the control cell Ci by the space interval Ci = (si−1/2, si+1/2). We also denote by si the
middle of Ci and by ∆si the space step ∆si = si+1/2 − si−1/2 where we suppose that there
exists ξ ∈ (0, 1) such that

(2.4) ξ ∆s ≤ ∆si ≤ ∆s, ∀i ∈ {0, . . . , ns − 1},

with ∆s = maxi ∆si.
We shall construct a set of approximations Ti(t) of the average of the solution to (2.1) on

the control volume Ci and first set

T 0
i =

1

∆si

∫

Ci

T0(s) ds.
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Applying a finite volume discretization to (2.1), Ti is solution to a system of ODEs, which
can be written as

(2.5)















dTi

dt
(t) =

Fi+1/2 −Fi−1/2

∆si
, 0 ≤ i ≤ ns − 1,

Ti(t = 0) = T 0
i , 0 ≤ i ≤ ns − 1,

where the numerical flux is given by

(2.6) Fi+1/2 =
4K‖

7

(Ti+1)
7/2 − (Ti)

7/2

∆si+1 + ∆si
, i = 0, . . . , ns − 2.

Moreover, at the boundary s = 0 and s = 1, we apply the boundary conditions,

(2.7) Fi+1/2 =







+γ T0, if i = −1,

−γ Tns−1, if i = ns − 1.

Note that the above discretization on space is first order due to the loss of precision at the
boundary. To complete the discretization to the system (2.1), the finite volume scheme (2.5)-
(2.7) has to be supplemented with a stable and consistent time discretization step. In the
following we present different time discretizations starting from classical explicit and implicit
schemes and then propose a stable and accurate numerical approximation.

2.3. Time explicit discretization. We denote by ∆t > 0 the time step, tn = n∆t for any
n ∈ N and T n is an approximation of the solution T to (2.1) at time tn. Then, we apply a
backward Euler scheme to (2.5)-(2.7), which yields

(2.8)















T n+1
i − T n

i

∆t
=
Fn

i+1/2 −F
n
i−1/2

∆si
, 0 ≤ i ≤ ns − 1,

T 0
i = T0,i, 0 ≤ i ≤ ns − 1,

with Fn
i+1/2 the flux (2.6)-(2.7) computed from the approximation at time T n.

Classically, to guarantee the stability of the scheme (2.8), the time step ∆t is restricted by
a CFL condition.

Proposition 2.3. Consider that the initial datum T0 is nonnegative and T0 ∈ L∞(0, 1) and
assume the stability condition

(2.9) ∆t ≤
ξ2∆s2

max
(

4 K‖

7 ‖T0‖
5/2
∞ , γ∆s

) ,

where ξ is given in (2.4). Then, the numerical solution (T n
i )i,n obtained by the explicit scheme

(2.8) is stable and converges to the exact solution to (2.1).

We don’t give the proof of this result since it is similar to the proof of Proposition 2.5
presented in the next section. Unfortunately, this simple scheme is not really efficient since
it becomes costly when the mesh is very fine, the constraint on the time step becoming too
restrictive.

2.4. Time implicit discretization. To avoid the restrictive constraint on the time step
(2.9), an implicit scheme is more suitable. Therefore, we consider the finite volume scheme
(2.5)-(2.7) to the system of equations (2.1), but apply a forward Euler time discretization.
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This yields,

(2.10)















T n+1
i − T n

i

∆t
=
Fn+1

i+1/2 −F
n+1
i−1/2

∆si
, 0 ≤ i ≤ ns − 1,

T 0
i = T0,i, 0 ≤ i ≤ ns − 1,

with Fn+1
i+1/2 the flux (2.6) computed from the approximation at time T n+1. Hence, a fully

nonlinear system has to be solved at each time step.
The scheme (2.10) coupled with (2.6)-(2.7) is uniformly stable and leads to a numerical

approximation which converges to the exact solution to (2.1).

Theorem 2.4. Consider that the initial datum T0 is nonnegative and T0 ∈ L∞(0, 1). Then
the numerical solution given by the implicit scheme (2.10) coupled with (2.6)-(2.7) is uni-
formly stable in L∞(R+ × (0, 1)) and converges to the weak solution T of (2.1) when h =
(∆t,∆s) goes to zero.

We start with a stability result and then prove convergence of the numerical solution to
the unique weak solution by consistency of the scheme.

Let us first investigate the stability property and prove some a priori estimates on the
numerical solution uniformly with respect to the mesh size h.

Proposition 2.5. Consider that the initial datum T0 is nonnegative and T0 ∈ L∞(0, 1).
Then the numerical solution given by the implicit scheme (2.10) coupled with (2.6)-(2.7) is
unconditionally stable, i.e.

(2.11) 0 ≤ T n
i ≤ ‖T0‖L∞ ,

and

(2.12)

ns−1
∑

i=0

∆si |T
n+1
i |2 ≤

ns−1
∑

i=0

∆si |T
0
i |

2.

Moreover, the following discrete semi-norm is uniformly bounded

(2.13)

Nt
∑

n=0

ns−2
∑

i=0

∆t

[

(

T n+1
i+1

)7/2
−
(

T n+1
i

)7/2
]2

∆si + ∆si+1
≤ C,

where the constant C > 0 only depends on the initial datum T0.

Proof. Let us consider a convex function φ ∈ C1(R, R), then we have

φ(T n+1
i )− φ(T n

i ) ≤ φ′(T n+1
i )(T n+1

i − T n
i ).(2.14)

Thus, we multiply the scheme (2.10) by ∆t ∆si φ
′(T n+1

i ) and sum over i ∈ {0, . . . , ns − 1}, it
gives

ns−1
∑

i=0

∆si φ(T n+1
i ) −

ns−1
∑

i=0

∆si φ(T n
i ) ≤ ∆t

ns−1
∑

i=0

φ′(T n+1
i )

(

Fn+1
i+1/2 −F

n+1
i−1/2

)

,

≤ −∆t

ns−2
∑

i=0

Fn+1
i+1/2

(

φ′(T n+1
i+1 ) − φ′(T n+1

i )
)

− ∆tFn+1
−1/2 φ′(T n+1

0 ) + ∆tFn+1
ns−1/2 φ′(T n+1

ns−1).
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Using the definition of the numerical flux (2.6) and the discrete boundary conditions (2.7),
we get

ns−1
∑

i=0

∆si φ(T n+1
i ) −

ns−1
∑

i=0

∆si φ(T n
i ) ≤ −γ ∆t φ′(T n+1

0 )T n+1
0 − γ ∆t φ′(T n+1

ns−1)T
n+1
ns−1

−
4K‖

7
∆t

ns−2
∑

i=0

[

φ′(T n+1
i+1 )− φ′(T n+1

i )
]

(

T n+1
i+1

)7/2
−
(

T n+1
i

)7/2

∆si + ∆si+1
.

Observing that a similar inequality holds true when φ(x) is only Lipschitzian, we take φ(x) =
x−, and prove the nonnegativity of the approximation T n

i , that is,

0 ≤

ns−1
∑

i=0

∆si (T
n+1
i )− ≤

ns−1
∑

i=0

∆si (T
0
i )− = 0.

Therefore, assuming that T 0
i ≥ 0, for all 0 ≤ i ≤ ns − 1, we obtain that T n

i ≥ 0 for all
0 ≤ i ≤ ns − 1 and n ∈ N. Moreover, taking φ(x) = (x−M)+, with M = ‖T 0‖L∞ , we have

0 ≤

ns−1
∑

i=0

∆si (T
n+1
i −M)+ ≤

ns−1
∑

i=0

∆si (T
n
i −M)+ ≤

ns−1
∑

i=0

∆si (T
0
i −M)+ = 0.

Hence we deduce that 0 ≤ T n
i ≤M , for all 0 ≤ i ≤ ns − 1.

Then we take φ(x) = x2/2, which yields that

ns−1
∑

i=0

∆si

2
(T n+1

i )2 −
ns−1
∑

i=0

∆si

2
(T n

i )2 ≤ C ∆t
ns−2
∑

i=0

[

T n+1
i+1 − T n+1

i

]

(

T n+1
i+1

)7/2
−
(

T n+1
i

)7/2

∆si + ∆si+1

and use the fact that T n
i is uniformly bounded to observe that

|T
7/2
i+1 − T

7/2
i | ≤ C |Ti+1 − Ti|.

Thus, we have the following inequality

1

2

ns−1
∑

i=0

∆si (T
n+1
i )2 ≤

1

2

ns−1
∑

i=0

∆si (T
n
i )2

− C∆t

ns−2
∑

i=0

[

(

T n+1
i+1

)7/2
−
(

T n+1
i

)7/2
]2

∆si + ∆si+1
.

Finally we sum over n ∈ {0, . . . , Nt} and immediately deduce that there exists a constant
C > 0 only depending on the initial datum T0 such that

∆t
Nt
∑

n=0

ns−1
∑

i=1

[

(

T n+1
i

)7/2
−
(

T n+1
i−1

)7/2
]2

∆si + ∆si+1
≤ C.

�

2.5. Proof of Theorem 2.4. To prove the convergence of the discrete solution (T n
i )i,n

towards the weak solution T to (2.1), we construct a piecewise approximation Th, where
h = (∆t,∆s), such that

Th(t, s) :=
∑

n∈N

ns−1
∑

i=0

T n
i 1Ci

(s)1[tn,tn+1[(t),
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From the uniform bounds proved in Proposition 2.5, we get that there exits a sub-sequence,
still denoted by (Th)h, such that Th converges to T ∈ L∞(R+×(0, 1)) as m→∞ in the weak-

* topology, whereas using (2.13) we also get that T
7/2
h converges strongly in L2(R+ × (0, 1)

to T
7/2
h .

Now let us prove that Th converges to the weak solution to (2.1) when h goes to zero. We
consider ϕ ∈ C∞c (R+ × (0, 1)), and we denote ϕn

i = ϕ(tn, si). Then we multiply the scheme
(2.10) by ∆siϕ

n
i , and sum over i ∈ {0, . . . , ns − 1} and n ∈ N, we obtain

E1
h + E2

h = 0,

with E1
h is related to the time discretization and is given by

E1
h :=

∑

n∈N

ns−1
∑

i=0

∆si (T
n+1
i − T n

i )ϕn
i ,

whereas E2
h is related to the space discretization and reads

E2
h := ∆t

∑

n∈N

ns−1
∑

i=0

(

Fn+1
i+1/2 −F

n+1
i−1/2

)

ϕn
i .

On the one hand, we consider E1
h and perform a discrete integration by part with respect to

n ∈ N. Using that ϕ is compactly supported for large t ∈ R
+, it yields

E1
h = −

∑

n∈N∗

ns−1
∑

i=0

∆si T
n
i (ϕn

i − ϕn−1
i ) −

ns−1
∑

i=0

∆si T
0
i ϕ0

i .

= −

∫

R+

∫ 1

0
Th(t + ∆t, s) ∂tϕ(t, s)dsdt −

∫ 1

0
Th(0, s)ϕ(0, s)ds + < µ1

h, ϕ >

where the additional term < µ1
h, ϕ > is given by

< µ1
h, ϕ > = −

∑

n∈N∗

ns−1
∑

i=0

∫ tn

tn−1

∫

Ci

∫ si

s
T n

i ∂2
tsϕ(t, η)dηdsdt

−

ns−1
∑

i=0

∫

Ci

∫ si

s
T 0

i ∂sϕ(0, η)dη ds

and satisfies the following estimate

| < µ1
h, ϕ > | ≤ C ∆s

(

‖∂2
tsϕ‖L1 + ‖∂sϕ(0, .)‖L1

)

.

Therefore, when h tends to zero, we have

E1
h → −

∫

R+

∫ 1

0
T (t, s) ∂tϕ(t, s)dsdt −

∫ 1

0
T0(s)ϕ(0, s)ds.

On the other hand, we apply a first discrete integration by part with respect to i ∈ {0, . . . , ns−
1} to the second term E2

h, which can be written as

E2
h = −

4K‖

7
∆t
∑

n∈N

ns−2
∑

i=0

(

T n+1
i+1

)7/2
−
(

T n+1
i

)7/2

∆si+1 + ∆si

(

ϕn
i+1 − ϕn

i

)

− γ ∆t
∑

n∈N

T n+1
0 ϕn

0 − γ ∆t
∑

n∈N

T n+1
ns−1 ϕn

ns−1.

Then, introducing DhTh a discrete approximation of the gradient of Th by

DhTh(t, s) :=
∑

n∈N

ns−1
∑

i=0

2
T n

i+1 − T n
i

∆si + ∆si+1
1(si,si+1)(s)1[tn,tn+1[(t),
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we have

E2
h =

2K‖

7

∫

R+

∫ sns−1

s0

DhT
7/2
h (t + ∆t, s) ∂sϕ(t, s)dsdt

− γ

∫

R+

Th(t + ∆t, 0)ϕ(t, s0) + Th(t + ∆t, 1)ϕ(t, sns−1)dt

Passing to the limit h→ 0, we get that

E2
h →

2K‖

7

∫

R+

∫ 1

0
∂sT

7/2(t, s) ∂sϕ(t, s)dsdt − γ

∫

R+

T (t, 0)ϕ(t, 0) + T (t, 1)ϕ(t, 1)dt.

Finally, we conclude that T is a weak solution of (2.1). By uniqueness of the solution to (2.1),
it yields that the sequence (Th)h converges to the weak solution of (2.1).

The implicit scheme (2.10) is unconditionally stable, but it requires the numerical reso-
lution of a nonlinear system. For this purpose a Newton method is applied which increases
considerably the computational cost and makes this method inefficient. Another strategy
would consist in applying a semi-implicit scheme for the time discretization, but it still re-
quires the implementation of a new linear system at each time iteration and the computational
cost remains too important. In the following we propose a numerical scheme inspired by the
work of F. Filbet & S. Jin [4] to handle with this problem.

2.6. An implicit-explicit (IMEX) scheme. In [4], the authors proposed to handle with a
stiff and nonlinear problem. The main point is to write the nonlinear problem in a different
form in order to split the nonlinear operator in the sum of a dissipative linear part, which can
be solved in an implicit way and a non dissipative and nonlinear part which will be solved
with a time explicit solver. The main difficulty is to find an adequate decomposition of the
operator. For instance the nonlinear diffusive operator can be written as

K‖∂s

(

T 5/2∂sT
)

= ν ∂2
ssT + ∂s

((

K‖ T 5/2 − ν
)

∂sT
)

and the time discretization to (2.1) becomes

(2.15)



































T n+1 − T n

∆t
− ∂s

(

ν∂sT
n+1
)

= ∂s

((

K‖ (T n)5/2 − ν
)

∂sT
n
)

,

−ν∂sT
n+1(0) + γT n+1(0) =

(

K‖ (T n(0))5/2 − ν
)

∂sT
n(0),

−ν ∂sT
n+1(1)− γT n+1(1) =

(

K‖ (T n(1))5/2 − ν
)

∂sT
n(1).

To choose an appropriate ν for the scheme (2.15), we perform an energy estimate of the
numerical approximation.

Proposition 2.6. Assume that the viscosity term ν is such that

(2.16) K‖ ‖T
n‖5/2

∞ ≤ ν, ∀n ∈ N.

Then the numerical solution satisfies the following

(2.17)
1

2

∫ 1

0

(

T n+1
)2

ds +
ν∆t

2

∫ 1

0

∣

∣∂sT
n+1
∣

∣

2
ds ≤

1

2

∫ 1

0
(T n)2 ds +

ν∆t

2

∫ 1

0
|∂sT

n|2 ds.
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Proof. We multiply (2.15) by T n+1 and integrate on s ∈ (0, 1), hence we have

1

2

∫ 1

0

∣

∣T n+1
∣

∣

2
ds−

1

2

∫ 1

0
|T n|2 ds ≤

∫ 1

0

(

(

T n+1
)2
− T n+1T n

)

ds

≤ ∆t

∫ 1

0

((

ν −K‖ |T
n|5/2

)

∂sT
n∂sT

n+1 − ν
(

∂sT
n+1
)2
)

ds

− ∆tγ
(

(

T n+1
0

)2
+
(

T n+1
ns−1

)2
)

.

Using the assumption that K‖ |T
n|5/2 ≤ ν and applying the Young’s inequality, we obtain

(

ν − |T n|5/2
)

∂sT
n ∂sT

n+1 ≤
ε

2
(∂sT

n)2 +

(

ν − K‖ |T
n|5/2

)2

2 ε

(

∂sT
n+1
)2

≤
ε

2
(∂sT

n)2 +
ν2

2ε

(

∂sT
n+1
)2

.

Therefore with the choice ε = ν, we have

1

2

∫ 1

0

(

T n+1
)2

ds +
ν

2
∆t

∫ 1

0

∣

∣∂sT
n+1
∣

∣

2
ds ≤

1

2

∫ 1

0
(T n)2 ds +

ν

2
∆t

∫ 1

0
|∂sT

n|2 ds.

Hence, the scheme (2.15) is stable when K‖‖T
n‖

5/2
∞ ≤ ν. �

Now, we can give the fully discrete scheme, called in the sequel IMEX, as follows

(2.18)















T n+1
i − T n

i

∆t
=
F

n+1/2
i+1/2 −F

n+1/2
i−1/2

∆si
, 0 ≤ i ≤ ns − 1,

T 0
i = T0,i, 0 ≤ i ≤ ns − 1,

with the numerical flux F
n+1/2
i+1/2 is given for i ∈ {0, . . . , ns − 2} by

(2.19) F
n+1/2
i+1/2 = 2

(

K‖

(

(

T n
i+1

)5/2
+ (T n

i )5/2

2

)

− ν

)

T n
i+1 − T n

i

∆si+1 + ∆si
+ 2 ν

T n+1
i+1 − T n+1

i

∆si+1 + ∆si
,

whereas at the boundary s = 0 and s = 1, we apply the boundary conditions written in the
form (2.15),

(2.20) F
n+1/2
i+1/2 =







+γ T n+1
0 , if i = −1,

−γ T n+1
ns−1, if i = ns − 1.

Moreover, the viscosity ν > 0 is initially chosen as an upper bound of K‖‖T
0‖

5/2
∞ and is then

readjusted along iterations n ∈ N in order to satisfy the condition (2.16):

Algorithm to compute ν

ν := 2K‖‖T
0‖

5/2
∞ and n = 0

while n ≤ NTend
do

compute the numerical solution T n+1

if ν ≤ 5
4 K‖‖T

n+1‖
5/2
∞ then

ν ← 2K‖‖T
n+1‖

5/2
∞

end if
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if ν ≥ 4K‖‖T
n+1‖

5/2
∞ then

ν ← K‖‖T
n+1‖

5/2
∞ / 2

end if

n← n + 1
end while

2.7. Numerical results. To compare the numerical results obtained with the different
schemes, we take γ = 2, K‖ = 1 and the initial temperature is T 0 = 5, whereas the fi-
nal time of the numerical simulation is equal to Tend = 1. On the one hand a reference
solution is computed using the finite volume method with an explicit scheme (2.8) on a uni-
form grid with ns = 450. On the other hand, we basically compare both implicit (2.10) and
IMEX (2.18)-(2.20) schemes with different uniform grids with ns = 50, 150. Furthermore,
we choose the time step equal to ∆t = 10−2, 10−3, 10−4 and 10−5 respectively.

∆t 10−2 10−3 10−4 10−5

Implicit scheme (2.10)
ns = 50 0.05 0.31 2.24 22.06
ns = 150 0.60 4.07 27.49 249.61

IMEX scheme (2.18)-(2.20)
ns = 50 0.01 0.09 0.63 5.34
ns = 150 0.10 0.24 2.24 21.97

Table 1: Computational time for the implicit scheme (2.10) and the IMEX scheme (2.18)-
(2.20) in seconds at the final time of the numerical simulation Tend = 1.

We observe from Table 1 that the IMEX scheme is much more efficient than the implicit
scheme in terms of computational cost since the linear system corresponding to the implicit
part does not depend on the iteration n when the viscosity ν > 0 is large enough. For ns = 50,
the computational time of the IMEX scheme is less than one fourth of the one corresponding
to the implicit scheme whereas for ns = 150, the implicit scheme is ten times more consuming
than IMEX scheme.

∆t 10−2 10−3 10−4 10−5

Implicit scheme (2.10)
ns = 50 0.0580 0.0612 0.0617 0.0617
ns = 150 0.0190 0.0184 0.0187 0.0187

IMEX scheme (2.18)-(2.20)
ns = 50 0.0621 0.0600 0.0598 0.0598
ns = 150 0.0213 0.0182 0.0181 0.0181

Table 2: Relative errors obtained using an implicit scheme, IMEX scheme at time Tend = 1.

Concerning the accuracy and stability, Table 2 shows that the numerical solution computed
with both implicit and IMEX schemes is stable for any time step ∆t and the numerical errors
are of the same order. Moreover, we get similar results when time step is smaller than 10−4.
Of course, when we increase the number of points ns, the numerical error decreases and
the IMEX scheme (2.18)-(2.20) seems to be more accurate for small time steps. Finally, in
Figure 2a, we observe that the large errors appear around the boundary, where large gradients
of temperature occur. The Figure 2b illustrates the temperature evolution at different time
t = 0.25, 0.50, 0.75 and 1. We note that the temperature has a fast decay at the beginning,
then it stabilizes to a steady state when t approaches the final time Tend = 1. Furthermore we
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observe that the temperature develops steep gradients at the boundary modeling the cooling
of the plasma due to the limiter effects. Indeed, on the one hand the thermal diffusion depends
on the term T 5/2 which is large at the beginning and then becomes smaller and smaller. On
the other hand, due to the nonlinear flux at the boundary when the temperature becomes
small, the temperature gradient becomes larger and larger.
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Figure 2: Temperature evolution of problem (2.1). We use the IMEX scheme to approxi-

mate (2.1) and choose time step of ∆t = 10−4. (a) reference solution and the results of IMEX
scheme for ns = 50, 150 at time Tend = 1, (b) results of IMEX scheme for ns = 150 at time
t = 0.25, 0.50, 0.75 and 1.

3. The 2D problem

In this section, we consider the two dimensional problem where the temperature T depends
on time t and two space variables (s, r) ∈ Ω = (0, 1) × (0, 1) with appropriate boundary
conditions

(3.1) ∂tT − ∂s(K‖ T 5/2 ∂sT ) − ∂r(K⊥ ∂rT ) = 0, t ≥ 0, (s, r) ∈ Ω,

where K‖ and K⊥ are nonnegative constants with K⊥ ≪ K‖. For the boundary conditions
we impose a boundary flux in r = 0 and assume that for r = 1 the flux of temperature is
zero, that is,

(3.2)







∂rT (t, s, 0) = −Q⊥, s ∈ (0, 1), r = 0, t ≥ 0,

∂rT (t, s, 1) = 0, s ∈ (0, 1), r = 1, t ≥ 0,

and at the boundary s = 0 and s = 1 we consider either periodic boundary conditions or of
modelling describing the effects of the limiter which allows to decrease the temperature in
the device. At s = 0, we have

(3.3)







K‖T
5/2(t, 0, r) ∂sT (t, 0, r) = γ T (t, 0, r), r ∈ (1/2, 1), t ≥ 0,

T (t, 0, r) = T (t, 1, r), r ∈ (0, 1/2), t ≥ 0,

and s = 1,

(3.4)







K‖ T 5/2(t, 1, r) ∂sT (t, 1, r) = −γ T (t, 1, r), r ∈ (1/2, 1), t ≥ 0,

T (t, 0, r) = T (t, 1, r), r ∈ (0, 1/2), t ≥ 0.
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This model also satisfies an energy estimate given by

1

2

d

dt

∫

Ω
|T (t, s, r)|2dsdr = −

16K‖

81

∫

Ω
|∂sT

9/4|2dsdr − K⊥

∫

Ω
|∂rT |

2dsdr

− γ

∫ 1

1/2
(T (0, r) + T (1, r)) dr + K⊥ Q⊥

∫ 1

0
T (s, 0)ds.

To discretize the system (3.1)-(3.4), we apply a finite volume method in space Ω coupled with
a time splitting scheme for the time discretization. We first present the numerical scheme
and describe precisely the discretization of the boundary conditions. Finally we compare our
numerical results with those obtained by standard explicit and implicit time discretizations.

3.1. Time splitting scheme. We apply a time splitting scheme in both directions. As for
the one dimensional case, we apply an IMEX scheme to treat the nonlinear equation and find
a condition on the viscosity ν > 0 to get a uniformly stable scheme. We first consider the
non linear problem in the s direction,

(3.5)
T ⋆ − T n

∆t
− ∂s

((

K‖(T
n)5/2 − ν

)

∂sT
n
)

− ν∂2
ssT

⋆ = 0, (s, r) ∈ Ω,

with the boundary condition (3.3),

(3.6)











(

K‖ (T n(0, r))5/2 − ν
)

∂sT
n(0, r) = γT ⋆(0, r) − ν ∂sT

⋆(0, r), r ∈ (1/2, 1),

T ⋆(0, r) = T ⋆(1, r), r ∈ (0, 1/2),

and then the condition (3.4),

(3.7)











(

K‖ (T n(1, r))5/2 − ν
)

∂sT
n(1, r) = − γT ⋆(1, r) − ν ∂sT

⋆(1, r), r ∈ (1/2, 1),

T ⋆(1, r) = T ⋆(0, r), r ∈ (0, 1/2),

which allows to compute a first approximation T ⋆. Then we compute a numerical approxi-
mation of the linear heat equation,

(3.8)
T n+1 − T ⋆

∆t
− ∂r(K⊥∂rT

n+1) = 0, (s, r) ∈ Ω,

with non homogeneous Neumann boundary conditions

(3.9)







∂rT
n+1(s, 0) = −Q⊥, s ∈ (0, 1), r = 0,

∂rT
n+1(s, 1) = 0, s ∈ (0, 1), r = 1.

For the sake of clarity we present a stability estimate on this semi-discrete scheme (discrete
in time and continuous in space), but the proof can be easily adapted to the fully discrete
case.

Proposition 3.1. Assume that the viscosity term ν is such that for any r ∈ (0, 1),

K‖ ‖T
n‖5/2

∞ ≤ ν, ∀n ∈ N.

Then the numerical solution satisfies the following

1

2

∫

Ω

(

T n+1
)2

dr ds +
ν∆t

2

∫

Ω
|∂sT

n+1|2 dr ds ≤
1

2

∫

Ω

(

T 0
)2

dr ds +
ν∆t

2

∫

Ω
|∂sT

0|2dr ds

−K⊥ ∆t

n+1
∑

k=1

[
∫

Ω
|∂rT

k|2 dr ds − Q⊥

∫ 1

0
T k(s, 0)ds

]

.
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Proof. Multiplying (3.5) by T ⋆ and integrating in Ω, we obtain

1

2

∫

Ω

(

(T ⋆)2 − (T n)2
)

dr ds ≤ −∆t

∫

Ω

(

K‖ (T n)5/2 − ν
)

∂sT
n ∂sT

⋆ dr ds

−∆t

∫

Ω
ν|∂sT

⋆|2 dr ds

−γ ∆t

∫ 1

1/2
|T ⋆(0, r)|2 + |T ⋆(1, r)|2 dr.

Then, applying the Young inequality and taking ν such that for all r ∈ (0, 1),

0 ≤ K‖ |T
n(s, r)|5/2 ≤ ν, ∀n ∈ N,

we have

(3.10)
1

2

∫

Ω
(T ⋆)2 dr ds +

ν∆t

2

∫

Ω
|∂sT

⋆|2dr ds ≤
1

2

∫

Ω
(T n)2 dr ds +

ν∆t

2

∫

Ω
|∂sT

n|2dr ds.

Similarly, we multiply (3.8) by T n+1 and integrate with respect to (s, r) ∈ Ω, we get

1

2

∫

Ω

(

(

T n+1
)2
− (T ⋆)2

)

drds ≤ −∆t K⊥

∫

Ω

(

∂rT
n+1
)2

drds

+ ∆t Q⊥ K⊥

∫ 1

0
T n+1(s, 0)ds.(3.11)

Furthermore, we derive (3.8) with respect to s and get

∂sT
n+1 − ∂sT

⋆

∆t
−K⊥(∂2

rr∂sT
n+1) = 0.

Then we multiply this latter equality by ν∂sT
n+1 and integrate over (s, r) ∈ Ω,

∫

Ω
ν
[

(

∂sT
n+1
)2
− (∂sT

⋆)2
]

dr ds ≤ −2∆t ν K⊥

∫

Ω
|∂rsT

n+1|2dr ds

+ ν ∆t
[

∂s(∂rT
n+1)∂sT

n+1
]r=1

r=0
.

Hence using that ∂s

(

∂rT
n+1(s, r)

)

= 0, r ∈ {0, 1}, it yields

(3.12)

∫

Ω
ν
[

(

∂sT
n+1
)2
− (∂sT

⋆)2
]

dr ds ≤ 0.

Then, gathering (3.11) and (3.12), we get

1

2

∫

Ω

(

T n+1
)2

dr ds +
ν∆t

2

∫

Ω

[

|∂sT
n+1|2 + K⊥ |∂rT

n+1|2
]

dr ds − ∆t K⊥ Q⊥

∫ 1

0
T n+1(s, 0)ds

≤
1

2

∫

Ω
(T ⋆)2 dr ds +

ν∆t

2

∫

Ω
|∂sT

⋆|2dr ds.

Finally, the latter inequality together with (3.10), it gives

1

2

∫

Ω

(

T n+1
)2

dr ds +
ν∆t

2

∫

Ω

[

|∂sT
n+1|2 + K⊥ |∂rT

n+1|2
]

dr ds − ∆t K⊥ Q⊥

∫ 1

0
T n+1(s, 0)ds

≤
1

2

∫

Ω
(T n)2 dr ds +

ν∆t

2

∫

Ω
|∂sT

n|2dr ds.

By induction and summing over k = 0, . . . , n, we get the result

1

2

∫

Ω

(

T n+1
)2

dr ds +
ν∆t

2

∫

Ω
|∂sT

n+1|2 dr ds ≤
1

2

∫

Ω

(

T 0
)2

dr ds +
ν∆t

2

∫

Ω
|∂sT

0|2dr ds

−K⊥ ∆t

n+1
∑

k=1

[
∫

Ω
|∂rT

k|2 dr ds − Q⊥

∫ 1

0
T k(s, 0)ds

]

.
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�

3.2. A finite volume approximation. For the space discretization, we consider a set of
points (si−1/2)0≤i≤ns a set of points of the interval (0, 1) with s−1/2 = 0, sns−1/2 = 1 and
ns + 1 represents the number of discrete points in the direction s and (rj−1/2)0≤j≤nr a set of
points of the interval (0, 1) with r−1/2 = 0, rnr−1/2 = 1 and nr + 1 represents the number of
discrete points in the direction r. For 0 ≤ i ≤ ns−1, 0 ≤ j ≤ nr−1, we define the control cell
Ci,j by Ci,j = (si−1/2, si+1/2) × (rj−1/2, rj+1/2). We also denote by (ri, si) the center of Ci,j

and by ∆si the space step ∆si = si+1/2−si−1/2 and ∆rj the space step ∆rj = rj+1/2−rj−1/2

where we assume that there exists ξ ∈ (0, 1) such that

(3.13) ξ h ≤ ∆si, ∆rj ≤ h, ∀(i, j) ∈ {0, . . . , ns − 1} × {0, . . . , nr − 1},

with h = maxi,j{∆si, ∆rj}.
We shall construct a set of approximations Ti,j(t) of the average of the solution to (1.2)-

(1.3) on the control volume Ci,j and set

T 0
i,j =

1

|Ci,j|

∫

Ci,j

T0(s, r) ds dr.

Hence, the finite volume discretization to (3.5) can be written as

T ⋆
i,j − T n

i,j

∆t
=
F

n+1/2
i+1/2,j −F

n+1/2
i−1/2,j

∆si
, ∀(i, j) ∈ {0, . . . , ns − 1} × {0, . . . , nr − 1},

where the flux Fi+1/2,j corresponds to the one dimensional flux given by (2.19) and periodic
boundary conditions are applied for rj ∈ (0, 1/2) and conditions (2.20) for rj ∈ (1/2, 1).

Then, the finite volume discretization to (3.5) can be written as

T n+1
i,j − T ⋆

i,j

∆t
=
Gn+1

i,j+1/2 − G
n+1
i,j−1/2

∆rj
, ∀(i, j) ∈ {0, . . . , ns − 1} × {0, . . . , nr − 1}

where Gi,j+1/2 is given by

(3.14) Gi,j+1/2 = 2K⊥

T n+1
i,j+1 − T n+1

i,j

∆rj+1 + ∆rj
, j = 0, . . . , nr − 2.

Moreover, at the boundary r = 0 and r = 1, we apply the boundary conditions,

(3.15) Gi,j+1/2 =







−K⊥ Q⊥, if j = −1,

0, if j = nr − 1.

3.3. Numerical results. In this section we compare the different numerical results related
to the 2D problem (3.1)-(3.4) obtained using a time splitting scheme with an explicit, implicit
and IMEX treatment of each step. As before, we first compute a reference solutions obtained
from an explicit scheme with a small time step satisfying a CFL condition ∆t ∼ h2. In
the following numerical simulations, we choose the different physical parameters as K‖ = 1,

K⊥ = 10−2, γ = 2, Q⊥ = 10. Moreover, the initial temperature is given by

(3.16) T 0(s, r) = 3,

and the final time of the simulation is Tend = 2.
To compute the reference solution, we have chosen ns = 300 and nr = 300, whereas the

numerical results using implicit and IMEX schemes are obtained with ns = 100 and nr = 100
with several time steps ∆t = 10−1, 10−2, 10−3, and 10−4. First, concerning the computational
time we observe in Table 3, that the IMEX scheme is much faster than the implicit scheme.
Furthermore, the numerical error presented in Table 4 for both scheme is of the same order of
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magnitude and thus the IMEX scheme is clearly much more efficient than the fully implicit
scheme.

∆t 10−1 10−2 10−3 10−4

Implicit scheme 4.02 25.64 172.95 1327.50
IMEX scheme 1.62 4.42 36.24 403.63

Table 3: Computational time for the 2D problem (3.1)-(3.4) using implicit and IMEX schemes
at time Tend = 2.

∆t 10−1 10−2 10−3 10−4

Implicit scheme 0.2245 0.0236 0.0020 2.1985e-04
IMEX scheme 0.2093 0.0213 0.0018 2.4385e-04

Table 4: The relative errors for the implicit and IMEX schemes compared with a reference
solution for the 2D problem (3.1)-(3.4) at time Tend = 2.

Now we want to investigate the effect of the splitting scheme on the numerical error and the
computational cost. Therefore, we also propose a comparison between the different schemes.
We first compare the computational time applying the IMEX scheme with and without the
splitting method with a time step ∆t = 10−3, (ns, nr) = (50, 50), (100, 100), (300, 300) and
(500, 500) respectively. On the one hand, we observe in Table 5 that the splitting method is
much faster than the non-splitting method when the number of discrete points increases.

ns × nr 50× 50 100× 100 300 × 300 500 × 500

IMEX Non-splitting scheme 11 60 505 2112
IMEX splitting scheme 16 36 219 601

Table 5: Computational time of IMEX with and without splitting scheme at time Tend = 2.

On the other hand, we compare the numerical errors corresponding to the two strategies
with (ns, nr) = (100, 100), ∆t = 10−3 in Table 6, in particular the fully implicit scheme with
and without splitting and the IMEX scheme with and without splitting. We observe that the
method without splitting is always more accurate than the one with the splitting method.

Scheme Splitting implicit Splitting IMEX Implicit IMEX

Numerical error 2.× 10−3 2.× 10−3 5.× 10−4 5.× 10−4

Table 6: Relative errors for different numerical schemes compared with a reference solution

for (ns, nr) = (100, 100), ∆t = 10−3 at time Tend = 2.

In Figure 3, we present the evolution of the approximation of the temperature (3.1)-(3.4)
in computational domain Ω, which is divided into two regions : the transition layer and the
scrape-off layer (SOL) as illustrated in Figure 1. We first initialize the temperature to a
constant and then observe immediately that temperature decreases rapidly in the scrape-off
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layer and becomes singular around the limiter (which corresponds to the boundary s = 0 and
1 with r ≥ 1/2). On the other hand, in the transition layer, the temperature converges to
a steady state which is homogeneous in s ∈ (0, 1). The different numerical schemes give the
same qualitative behavior of the solution.

(a) t = 0 (b) t = 0.1

(c) t = 0.25 (d) t = 0.5

(e) t = 1 (f) t = 2

Figure 3: Temperature evolution of problem (3.1).
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In Figure 4, we plot the temperature evolution at the section r = 0.25, r = 0.75 and
s = 10−2 and s = 0.5 respectively. According to Kočan et al. [13, 14], the parallel thermal
diffusivity is much larger than the perpendicular one, i.e. K‖ ≫ K⊥. Therefore, the tem-
perature becomes constant along the magnetic field lines, that is for s ∈ (0, 1). We observe
in Figures 4 that the temperature is constant at all time whereas steep gradients develop
at the boundary layer s = 0 and s = 1) in the SOL region. In the perpendicular direction
r, the situation is different. We also observe that at time t = 2 the temperature decreases
linearly with respect to r in the transition layer (0 ≤ r ≤ 0.5), according to the heat flux Q⊥

at edge r = 0, and then decreases exponentially in the scrape-off layer (0.5 ≤ r ≤ 1). These
numerical results correspond to the retarding field analyzer (RFA) [12, 13, 14].
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Figure 4: Temperature evolution at section r = 1/4, r = 3/4, s = 10−2 and s = 1/2 at time
t = 0.1, 0.5, 1 and 2 respectively.

Finally, we present the evolution of the energy dissipation with respect to time:

1

2

d

dt

∫

Ω
|T (t, s, r)|2dsdr = E1 + E2 + E3,



NUMERICAL STUDY OF A NONLINEAR HEAT EQUATION FOR PLASMAS 21

with














































E1 := −

∫

Ω

(

K‖ (T )5/2 |∂sT |
2 + K⊥ |∂rT |

2
)

dr ds,

E2 := −γ

∫ 1

1/2
T (t, 1, r)2 + T (t, 0, r)2 dr,

E3 := +Q⊥ K⊥

∫ 1

0
T (s, 0)ds.

The Figure 5 states the terms E1, E2, E3 as function of t. We plot these terms obtained from
implicit and IMEX schemes. Note that these two figures are almost the same. In fact, at
the beginning of simulation, there is a fast decay of the temperature, thus the quantity −E1
representing the total energy exchange ratio in the domain Ω, is increasing for t < 0.1. Then,
it converges to an equilibrium state for larger time. On the other hand, the quantity −E2
decreases with respect to time, it is due to the anisotropy between K‖ and K⊥. Indeed, the
energy is transferred to the limiters in the scrape-off layer region whereas in the perpendicular
direction r, the thermal diffusivity is small. Finally, as we have seen in Figure 4 on the edge
of of the core, the temperature does not vary significantly, thus the quantity E3 increases
slightly with respect to time.
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(a) Implicit scheme (b) IMEX scheme

Figure 5: Evolution of the energy dissipation with respect to time for problem (3.1), with
∆t = 0.001.

4. The coupling problem

In this section, we consider the full 2D model (1.2) composed of two different particle
species, i.e. ions and electrons. We denote by Ti (resp. Te) the temperature of ions (resp.
electrons) which depends on time t and two space variables (s, r) ∈ Ω. The two equations are
coupled by a non-zero source term which balances the temperature between the two particle
species,

(4.1)







∂tTi − ∂s(K‖,iT
5/2
i ∂sTi)− ∂r(K⊥,i∂rTi) = +β(Ti − Te), for (s, r) ∈ Ω,

∂tTe − ∂s(K‖,eT
5/2
e ∂sTe)− ∂r(K⊥,e∂rTe) = −β(Ti − Te), for (s, r) ∈ Ω,
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where K⊥,i ≪ K‖,i, K⊥,e ≪ K‖,e and β is a negative constant. These two equations are
completed with the same type of boundary conditions as in (3.2)-(3.4).

4.1. Time splitting scheme. Now we discretize the full system (4.1) using a splitting
scheme in three steps. We assume that an approximation of the solution (Te, Ti) at time
tn is known and denote it by (T n

e , T n
i ). Therefore, we first approximate the source part

coupling the two temperatures Te and Ti using an implicit scheme, which yields

(4.2)



















T ⋆
i =

1

2

(

1 −
1

1− 2β∆t

)

T n
e +

1

2

(

1 +
1

1− 2β∆t

)

T n
i ,

T ⋆
e =

1

2
(1 +

1

1− 2β∆t
)T n

e +
1

2
(1−

1

1− 2β∆t
)T n

i .

It is clear that (4.2) guarantees the positivity of the temperature. Then we apply the same
time splitting steps as before in direction s and in direction r as follows. On the one hand
we compute T ⋆⋆

α for α ∈ {i, e} by solving (3.5)-(3.7). On the other hand we apply the last
step (3.8)-(3.9) in the direction r.

Furthermore, for the scheme (3.5)-(3.7), (3.8)-(3.9) and (4.2), we also prove an energy
estimate

Proposition 4.1. Consider that the initial datum T0 is nonnegative and T0 ∈ L∞(0, 1).
Assume that for α ∈ {i, e}, the viscosity term ν is such that for any r ∈ (0, 1),

max
α∈{i,e}

K‖,α‖T
n
α ‖

5/2
∞ ≤ ν, ∀n ∈ N.

Then the numerical solution, given by (4.2), satisfies the following

1

2

∑

α∈{i,e}

∫

Ω

[

|T n+1
α |2 + ∆t ν |∂sT

n+1
α |2

]

dr ds

≤
1

2

∑

α∈{i,e}

∫

Ω

[

|T 0
α|

2 + ∆t ν |∂sT
0
α|

2
]

dr ds

− ∆t
∑

α∈{i,e}

n+1
∑

k=1

K⊥,α

∫

Ω
|∂rT

k
α |

2 dr ds

+ ∆t
∑

α∈{i,e}

n+1
∑

k=1

K⊥,α Q⊥,α

∫ 1

0
T k

α (s, 0)ds.

Proof. We first observe that the energy estimate of the two last steps in the direction s and
r are the same as the one proved in Proposition 3.1, hence we have

1

2

∫

Ω

[

|T n+1
α |2 + ν ∆t

(

|∂sT
n+1
α |2 + K⊥,α |∂rT

n+1
α |2

) ]

dr ds

≤
1

2

∫

Ω

[

|T ⋆⋆
α |

2 + ∆t ν |∂sT
⋆⋆
α |

2
]

dr ds + ∆t K⊥,α Q⊥,α

∫ 1

0
T n+1

α (s, 0) ds.

Therefore, to achieve the proof on the energy estimate, we only observe that (4.2) can be
written as follows

(4.3)







T ⋆
i − T n

i = + ∆t β (T ⋆
i − T ⋆

e ) ,

T ⋆
e − T n

e = −∆t β (T ⋆
i − T ⋆

e ) .
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Multiplying the first equation (4.3) by T ⋆
i and the second by T ⋆

e and integrating on (r, s) ∈ Ω,
it yields

1

2

∫

Ω
|T ⋆

i |
2 + |T ⋆

e |
2drds ≤

1

2

∫

Ω
|T n

i |
2 + |T n

e |
2drds

Moreover, differentiating (4.3) with respect to s and multiplying the first equation by ν∂sT
⋆
i

and the second one by ν∂sT
⋆
e , we get

ν

2

∫

Ω
|∂sT

⋆
i |

2 + |∂sT
⋆
e |

2drds ≤
ν

2

∫

Ω
|∂sT

n
i |

2 + |∂sT
n
e |

2drds.

Finally, we have

1

2

∑

α∈{i,e}

∫

Ω

[

|T n+1
α |2 + ∆t

(

ν |∂sT
n+1
α |2 + K⊥,α |∂rT

n+1
α |2

) ]

dr ds

≤
1

2

∑

α∈{i,e}

∫

Ω

[

|T n
α |

2 + ∆t
(

ν |∂sT
n
α |

2 + K⊥,α |∂rT
n
α |

2
) ]

dr ds

− ∆t
∑

α∈{i,e}

K⊥,α Q⊥,α

∫ 1

0
T n+1

α (s, 0)ds.

Summing over k = 0, . . . , n, we complete the proof. �

Finally space discretization is performed using the finite volume scheme presented in Sec-
tion 3.2.

4.2. Numerical results. In this section, we compare the numerical results obtained from
the implicit scheme and the IMEX scheme for (4.1). We choose K‖,i = 2 × 0.01, K‖,e = 1,
K⊥,i = 0.01, K⊥,e = 0.01, γi = 0, γe = 2.5, Q⊥,i = Q⊥,e = 10 and β = −0.02. The initial
temperature is such that

T 0
i (s, r) = 3, and T 0

e (s, r) = 3, (s, r) ∈ Ω.

The final time of the simulation is Tend = 1 and the mesh size is chosen as ns = 100,
nr = 100.

We plot the electron and ion temperature and compare their ratio at different time. The
aim is to compare the different behaviors between electron and ion temperatures at the edges
and in the scrape-off layer of a Tokamak [11].

On the one hand, we propose in Figure 6, the temperature evolution. On the left hand
side, we present the electron temperature, whereas on the right hand side we give the ion
temperature. We first notice that the electron parallel thermal diffusivity is about 100 times
larger than the one for ions [2, 10], and the electron energy exchange ratio at the edge

r ∈ (0.5, 1) depends on O(T
−3/2
e ), thus the temperature has a fast decay when it is small

in the scrape-off layer. However, the boundary conditions for ions in the scrape-off layer is
given by the homogeneous Neumann condition ∂sTi = 0, which means that there is no energy
exchange at the limiters. Thus the ion temperature does not vary significantly at scrape-off
layer.

On the other hand, the ratio between electron temperature and ion temperature is pre-
sented in Figure 7. The Figure 7 illustrates that in the transition layer, the ion and electron
temperatures are almost identical. However, in the scrape-off layer, at the final time Tend = 1

the ratio τ becomes large around the limiters due to the boundary condition ∂sTe ∝ T
−3/2
e .

The evolution of the ratio τ in the radial direction is given in Figures 7. We observe that in
the transition layer the ratio τ is almost equal to 1, whereas in the scrape-off layer this ratio
becomes large. For example, at time t = 1 the ratio τ = 6 for s = 1/2 while it is τ = 45 for
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(a) Te at t = 0.25 (b) Ti at t = 0.25

(c) Te at t = 0.5 (d) Ti at t = 0.5

(d) Te at t = 1 (e) Ti at t = 1

Figure 6: Temperature evolution of problem (4.1).

s = 10−2. These behaviors correspond to the experiment results in Kočan et al. [13, 14]. At
last we vary the parameter β to study the equilibrium source term in Figure 8 and observe
that when the parameter |β| is large, the ratio τ decreases.
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Figure 7: Ratio τ = Ti/Te at section r = 1/4, r = 3/4, s = 10−2 and s = 1/2 at time t = 0.1,
0.25 and 1 respectively.

5. Conclusion

We have presented various numerical approximations for a nonlinear temperature balance
equation describing the heat evolution of a magnetically confined plasma in the edge region
of a tokamak. Numerical comparisons show that an IMEX scheme based on a “smart”
decomposition of the nonlinear diffusive operator coupled with a splitting strategy gives an
efficient numerical scheme in terms of accuracy, stability and reasonable computational cost.
The next step would consists to couple the present model with the transport equations for
the plasma density and momentum.
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