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Abstract

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is

challenging due to the stiff nonlinear collision term. A class of asymptotic preserving schemes

was introduced in [5] to handle this kind of problems. The idea is to penalize the stiff collision

term by a BGK type operator. This method, however, encounters its own difficulty when

applied to the quantum Boltzmann equation. To define the quantum Maxwellian (Bose-

Einstein or Fermi-Dirac distribution) at each time step and every mesh point, one has to

invert a nonlinear equation that connects the macroscopic quantity fugacity with density

and internal energy. Setting a good initial guess for the iterative method is troublesome in

most cases because of the complexity of the quantum functions (Bose-Einstein or Fermi-

Dirac function). In this paper, we propose to penalize the quantum collision term by a

‘classical’ BGK operator instead of the quantum one. This is based on the observation

that the classical Maxwellian, with the temperature replaced by the internal energy, has

the same first five moments as the quantum Maxwellian. The scheme so designed avoids

the aforementioned difficulty, and one can show that the density distribution is still driven

toward the quantum equilibrium. Numerical results are present to illustrate the efficiency of

the new scheme in both the hydrodynamic and kinetic regimes. We also develop a spectral

method for the quantum collision operator.

1 Introduction

The quantum Boltzmann equation (QBE), also known as the Uehling-Uhlenbeck equation,
describes the behaviors of a dilute quantum gas. It was first formulated by Nordheim [13] and
Uehling and Uhlenbeck [16] from the classical Boltzmann equation by heuristic arguments. Here
we mainly consider two kinds of quantum gases: the Bose gas and the Fermi gas. The Bose gas is
composed of Bosons, which have an integer value of spin, and obey the Bose-Einstein statistics.
The Fermi gas is composed of Fermions, which have half-integer spins and obey the Fermi-Dirac
statistics.
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Let f(t, x, v) ≥ 0 be the phase space distribution function depending on time t, position x

and particle velocity v, then the quantum Boltzmann equation reads:

∂f

∂t
+ v · ∇xf =

1
ε
Qq(f), x ∈ Ω ⊂ Rdx , v ∈ Rdv . (1.1)

Here ε is the Knudsen number which measures the degree of rarefaction of a gas. It is the ratio
between the mean free path and the typical length scale. The quantum collision operator Qq is

Qq(f)(v) =
∫

Rdv

∫
Sdv−1

B(v − v∗, ω) [f ′f ′∗(1± θ0f)(1± θ0f∗)− ff∗(1± θ0f
′)(1± θ0f

′
∗)] dωdv∗

(1.2)
where θ0 = ~dv , ~ is the rescaled Planck constant. In this paper, the upper sign will always
correspond to the Bose gas while the lower sign to the Fermi gas. For the Fermi gas, we also
need f ≤ 1

θ0
by the Pauli exclusion principle. f , f∗, f ′ and f ′∗ are the shorthand notations for

f(t, x, v), f(t, x, v∗), f(t, x, v′) and f(t, x, v′∗) respectively. (v, v∗) and (v′, v′∗) are the velocities
before and after collision. They are related by the following parametrization:

v′ =
v + v∗

2
+
|v − v∗|

2
ω,

v′∗ =
v + v∗

2
− |v − v∗|

2
ω,

(1.3)

where ω is the unit vector along v′ − v′∗. The collision kernel B is a nonnegative function that
only depends on |v − v∗| and cos θ (θ is the angle between ω and v − v∗). In the Variable Hard
Sphere (VHS) model, it is given by

B(v − v∗, ω) = Cγ |v − v∗|γ (1.4)

where Cγ is a positive constant. γ = 0 corresponds to the Maxwellian molecules, γ = 1 is the
hard sphere model.

When the Knudsen number ε is small, the right hand side of equation (1.1) becomes stiff
and explicit schemes are subject to severe stability constraints. Implicit schemes allow larger
time step, but new difficulty arises in seeking the numerical solution of a fully nonlinear problem
at each time step. Ideally, one wants an implicit scheme allowing large time steps and can be
inverted easily. In [5], for the classical Boltzmann equation, Filbet and Jin proposed to penalize
the nonlinear collision operator Qc by a BGK operator:

Qc = [Qc − λ(Mc − f)] + λ[Mc − f ] (1.5)

where λ is a constant that depends on the spectral radius of the linearized collision operator of Qc

around the local (classical) Maxwellian Mc. Now the term in the first bracket of the right hand
side of (1.5) is less stiff than the second one and can be treated explicitly. The term in the second
bracket will be discretized implicitly. Using the conservation property of the BGK operator, this
implicit term can actually be solved explicitly. Thus they arrive at a scheme which is uniformly
stable in ε, with an implicit source term that can be inverted explicitly. Furthermore, under
certain conditions, one could show that this type of schemes has the following property: the
distance between f and the Maxwellian will be O(ε) after several time steps, no matter what
the initial condition is. This guarantees the capturing of the fluid dynamic limit even if the time
step is larger than the mean free time.
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Back to the quantum Boltzmann equation (1.1), a natural way to generalize the above idea
is to penalize Qq with the quantum BGK operator Mq − f . This means we have to invert a
nonlinear algebraic system that contains the unknown quantum Maxwellian Mq (Bose-Einstein
or Fermi-Dirac distribution) for every time step. As mentioned in [7], this is not a trivial task
compared to the classical case. Specifically, one has to invert a nonlinear 2 by 2 system (can
be reduced to one nonlinear equation) to obtain the macroscopic quantities, temperature and
fugacity. Due to the complexity of the quantum distribution functions (Bose-Einstein or Fermi-
Dirac function), it is really a delicate issue to set a good initial guess for an iterative method
such as the Newton method to converge.

In this work we propose a new scheme for the quantum Boltzmann equation. Our idea is
based on the observation that the classical Maxwellian, with the temperature replaced by the
(quantum) internal energy, has the same first five moments as the quantum Maxwellian. This
observation was used in [7] to derive a ‘classical’ kinetic scheme for the quantum hydrodynamical
equations. Therefore, we just penalize the quantum collision operator Qq by a ‘classical’ BGK
operator, thus avoid the aforementioned difficulty. At the same time, we have to sacrifice a little
bit on the asymptotic property. Later we will prove that for the quantum BGK equation, the so
obtained f satisfies:

fn −Mn
q = O(∆t) for some n > N, any initial data f0, (1.6)

i.e. f will converge to the quantum Maxwellian beyond the initial layer with an error of O(∆t).
Another numerical issue is how to evaluate the quantum collision operator Qq. In fact (1.2)

can be simplified as

Qq(f)(v) =
∫

Rdv

∫
Sdv−1

B(v − v∗, ω) [f ′f ′∗(1± θ0f ± θ0f∗)− ff∗(1± θ0f
′ ± θ0f

′
∗)] dωdv∗ (1.7)

so Qq is indeed a cubic operator. Almost all the existing fast algorithms are designed for the
classical Boltzmann operator based on its quadratic structure. Here we will give a spectral
method for the approximation of Qq. As far as we know, this is the first time to compute the
full quantum Boltzmann collision operator with the spectral accuracy.

The rest of the paper is organized as follows. In the next section, we give a brief introduction
to the quantum Boltzmann equation: the basic properties, the quantum Maxwellians and the
hydrodynamic limits. In section 3, we present the details of computing the quantum collision
operator by the spectral method as well as the numerical accuracy. Our new scheme to capture
the hydrodynamic regime is given in section 4. In section 5, the proposed schemes are tested on
the 1-D shock tube problem of the quantum gas for different Knudsen number ε ranging from
fluid regime to kinetic regime. The behaviors of the Bose gas and the Fermi gas in both the
classical regime and quantum regime are included. Finally some concluding remarks are given
in section 6.

2 The Quantum Boltzmann Equation and its Hydrody-

namic Limits

In this section we review some basic facts about the quantum Boltzmann equation (1.1).
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• At the formal level, Qq conserves mass, momentum and energy.∫
Rdv

Qq(f)dv =
∫

Rdv

Qq(f)vdv =
∫

Rdv

Qq(f)|v|2dv = 0. (2.1)

• If f is a solution of QBE (1.1), the following local conservation laws hold:

∂

∂t

∫
Rdv

fdv +∇x ·
∫

Rdv

vfdv = 0,

∂

∂t

∫
Rdv

vfdv +∇x ·
∫

Rdv

v ⊗ vfdv = 0,

∂

∂t

∫
Rdv

1
2
|v|2fdv +∇x ·

∫
Rdv

v
1
2
|v|2fdv = 0.

(2.2)

Define the macroscopic quantities: density ρ, macroscopic velocity u, specific internal
energy e as

ρ =
∫

Rdv

fdv, ρ u =
∫

Rdv

vfdv, ρe =
∫

Rdv

1
2
|v − u|2fdv (2.3)

and stress tensor P and heat flux q

P =
∫

Rdv

(v − u)⊗ (v − u)fdv, q =
∫

Rdv

1
2
(v − u)|v − u|2fdv, (2.4)

the above system can then be recast as

∂ρ

∂t
+ ∇x · (ρu) = 0,

∂(ρu)
∂t

+ ∇x · (ρu⊗ u + P) = 0,

∂

∂t

(
ρe +

1
2
ρu2

)
+ ∇x ·

((
ρe +

1
2
ρu2

)
u + Pu + q

)
= 0.

(2.5)

• Qq satisfies Boltzmann’s H-Theorem,∫
Rdv

ln
(

f

1± θ0f

)
Qq(f)dv ≤ 0, (2.6)

moreover, ∫
Rdv

ln
(

f

1± θ0f

)
Qq(f)dv = 0 ⇐⇒ Qq(f) = 0 ⇐⇒ f = Mq, (2.7)

where Mq is the quantum Maxwellian given by

Mq =
1
θ0

1

z−1e
(v−u)2

2T ∓ 1
, (2.8)

where z is the fugacity, T is the temperature (see [7] for more details about the derivation
of Mq). This is the well-known Bose-Einstein (‘-’) and Fermi-Dirac (‘+’) distributions.
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2.1 Hydrodynamic Limits

Substituting Mq into (2.3) (2.4), the system (2.5) can be closed, yielding the quantum Euler
equations: 

∂ρ

∂t
+ ∇x · (ρu) = 0,

∂(ρu)
∂t

+ ∇x ·
(

ρu⊗ u +
2
dv

ρeI

)
= 0,

∂

∂t

(
ρe +

1
2
ρu2

)
+ ∇x ·

((
dv + 2

dv
ρe +

1
2
ρu2

)
u

)
= 0.

(2.9)

With the macroscopic variables ρ, u and e, they are exactly the same as the classical Euler
equations. However, the intrinsic constitutive relation is quite different. ρ and e are connected
with T and z (used in the definition of Mq (2.8)) by a nonlinear 2 by 2 system:

ρ =
(2πT )

dv
2

θ0
Q dv

2
(z),

e =
dv

2
T

Q dv+2
2

(z)

Q dv
2

(z)
,

(2.10)

where Qν(z) denotes the Bose-Einstein function Gν(z) and the Fermi-Dirac function Fν(z) re-
spectively,

Gν(z) =
1

Γ(ν)

∫ ∞

0

xν−1

z−1ex − 1
dx, 0 < z < 1, ν > 0; z = 1, ν > 1, (2.11)

Fν(z) =
1

Γ(ν)

∫ ∞

0

xν−1

z−1ex + 1
dx, 0 < z < ∞, ν > 0, (2.12)

and Γ(ν) =
∫∞
0

xν−1e−xdx is the Gamma function.
The physical range of interest for a Bose gas is 0 < z ≤ 1, where z = 1 corresponds to the

degenerate case (the onset of Bose-Einstein condensation). For the Fermi gas we don’t have such
a restriction and the degenerate case is reached when z is very large. For small z (0 < z < 1),
the integrand in (2.11) and (2.12) can be expanded in powers of z,

Gν(z) =
∞∑

n=1

zn

nν
= z +

z2

2ν
+

z3

3ν
+ . . . , (2.13)

Fν(z) =
∞∑

n=1

(−1)n+1 zn

nν
= z − z2

2ν
+

z3

3ν
− . . . . (2.14)

Thus, for z � 1, both functions behave like z itself and one recovers the classical limit.
On the other hand, the first equation of (2.10) can be written as

Q dv
2

(z) =
ρ

(2πT )
dv
2

θ0 (2.15)

where ρ

(2πT )
dv
2

is just the coefficient of the classical Maxwellian, which should be an O(1) quan-

tity. Now if θ0 → 0, then Q dv
2

(z) → 0, which means z � 1 by the monotonicity of the function
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Qν . This is consistent with the fact that one gets the classical Boltzmann equation in QBE (1.1)
by letting θ0 → 0.

The quantum Euler equations (2.9) can be derived via the Chapman-Enskog expansion [3] as
the leading order approximation of the quantum Boltzmann equation (1.1). By going to the next
order, one can also obtain the quantum Navier-Stokes system which differs from their classical
counterparts. In particular, the viscosity coefficient and the heat conductivity depend upon both
ρ and e [1].

3 Computing the Quantum Collision Operator Qq

In this section, we discuss the approximation of the quantum collision operator Qq. The
method we use is an extension of the spectral method introduced in [12, 6] for the classical
collision operator.

We first write (1.2) as

Qq = Qc ± θ0(Q1 +Q2 −Q3 −Q4), (3.1)

where
Qc(f)(v) =

∫
Rdv

∫
Sdv−1

B(v − v∗, ω)[f ′f ′∗ − ff∗]dωdv (3.2)

is the classical collision operator. The cubic terms Q1 – Q4 are

Q1(f)(v) =
∫

Rdv

∫
Sdv−1

B(v − v∗, ω)f ′f ′∗f∗dωdv,

Q2(f)(v) =
∫

Rdv

∫
Sdv−1

B(v − v∗, ω)f ′f ′∗fdωdv,

Q3(f)(v) =
∫

Rdv

∫
Sdv−1

B(v − v∗, ω)ff∗f
′dωdv,

Q4(f)(v) =
∫

Rdv

∫
Sdv−1

B(v − v∗, ω)ff∗f
′
∗dωdv.

(3.3)

In order to perform the Fourier transform, we periodize the function f on the domain DL =
[−L,L]dv (L is chosen such that L ≥ 3+

√
2

2 R, R is the truncation of the collision integral
which satisfies R = 2S, where B(0, S) is an approximation of the support of f [14]). Using the
Carleman representation [2], one can rewrite the operators as (for simplicity we only consider
the 2-D Maxwellian molecules),

Qc(f)(v) =
∫
BR

∫
BR

δ(x · y)[f(v + x)f(v + y)− f(v + x + y)f(v)]dxdy (3.4)
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and 

Q1(f)(v) =
∫
BR

∫
BR

δ(x · y)f(v + x)f(v + y)f(v + x + y)dxdy,

Q2(f)(v) =
∫
BR

∫
BR

δ(x · y)f(v + x)f(v + y)f(v)dxdy,

Q3(f)(v) =
∫
BR

∫
BR

δ(x · y)f(v + x)f(v + x + y)f(v)dxdy,

Q4(f)(v) =
∫
BR

∫
BR

δ(x · y)f(v + y)f(v + x + y)f(v)dxdy.

(3.5)

Now we approximate f by a truncated Fourier series,

f(v) ≈
N
2 −1∑

k=−N
2

f̂kei π
L k·v, f̂k =

1
(2L)dv

∫
DL

f(v)e−i π
L k·vdv. (3.6)

Plugging it into (3.4) (3.5), one can get the k-th mode of Q̂q. The classical part is the same as
those in the previous method [12]. We will mainly focus on the cubic terms.

Define the kernel modes

β(l,m) =
∫
BR

∫
BR

δ(x · y)ei π
L l·xei π

L m·ydxdy. (3.7)

Following [12], β(l,m) can be decomposed as

β(l,m) =
π

M

M−1∑
p=0

αp(l)α′p(m) (3.8)

with
αp(l) = φ(l · (cos θp, sin θp)), α′p(m) = φ(m · (− sin θp, cos θp)), (3.9)

where φ(s) = 2L
πs sin( π

LRs), M is the number of equally spaced points in [0, π
2 ] and θp = π

2
p
M .

Then

• The k-th coefficient of Q̂1 is

N
2 −1∑

l,m,n=−N
2

l+m+n=k

β(l + n, m + n)f̂lf̂mf̂n =
π

M

M−1∑
p=0

N
2 −1∑

n=−N
2


N
2 −1∑

l,m=−N
2

l+m=k−n

αp(l + n)α′p(m + n)f̂lf̂m

 f̂n

=
π

M

M−1∑
p=0

N
2 −1∑

n=−N
2

ĝk−n(n)f̂n. (3.10)

Terms inside the bracket is a convolution (defined as ĝk−n(n)), which can be computed by
the Fast Fourier Transform (FFT). However, the outside structure is not a convolution,
since ĝk−n(n) itself depends on n. So we compute this part directly.
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• The k-th coefficient of Q̂2 is

N
2 −1∑

l,m,n=−N
2

l+m+n=k

β(l,m)f̂lf̂mf̂n =
π

M

M−1∑
p=0

N
2 −1∑

n=−N
2


N
2 −1∑

l,m=−N
2

l+m=k−n

αp(l)α′p(m)f̂lf̂m

 f̂n. (3.11)

In this case, both inside and outside are convolutions. The FFT can be implemented easily.

• The k-th coefficient of Q̂3 is

N
2 −1∑

l,m,n=−N
2

l+m+n=k

β(l + m,m)f̂lf̂mf̂n =
π

M

M−1∑
p=0

N
2 −1∑

n=−N
2

αp(l + m)


N
2 −1∑

l,m=−N
2

l+m=k−n

α′p(m)f̂lf̂m

 f̂n.(3.12)

Factoring out αp(l + m), both inside and outside are convolutions again.

• The k-th coefficient of Q̂4 is

N
2 −1∑

l,m,n=−N
2

l+m+n=k

β(m, l + m)f̂lf̂mf̂n =
π

M

M−1∑
p=0

N
2 −1∑

n=−N
2

α′p(l + m)


N
2 −1∑

l,m=−N
2

l+m=k−n

αp(m)f̂lf̂m

 f̂n.(3.13)

This term can be evaluated similarly as Q̂3.

Remark 3.1 The computational cost of this quantum solver is O(MN4 log N), which mainly
comes from computing Q1. This cost is higher than O(MN4) of the discrete velocity model. But
taking into account the high accuracy and small value of log N (N is not very big in the real
simulation), our method is still more attractive than the quadrature method. The fast algorithm
for the quantum collision operator remains an open problem.

3.1 Numerical Accuracy

To illustrate the accuracy of the above method, we test it on a steady state, namely, we
compute Qq(Mq) and check its max norm. In all the numerical simulations, the particles are
assumed to be the 2-D Maxwellian molecules.

Let ρ = 1, T = 1, from (2.10) one can adjust θ0 to get z that lies in different physical regimes.
When θ0 = 0.01 (~ = 0.1), zBose = 0.001590, zFermi = 0.001593. In this situation, the quantum
effect is very small. The Maxwellians for the Bose gas, classical gas and Fermi gas are almost
the same (Fig.1). When we increase θ0, say θ0 = 9 (~ = 3), zBose = 0.761263, zFermi = 3.188717,
the difference between the quantum gases and the classical gas is evident (Fig.2).

In Table 1, we list the values of ‖ Qc(Mc) ‖L∞ and ‖ Qq(Mq) ‖L∞ computed on different
meshes N=16, 32, 64 (number of points in v direction), M=4 (number of points in angular
direction θp; it is not necessary to put too many points since M won’t effect the spectral accuracy,
see [12]). The computational domain is [−8, 8]× [−8, 8] (L = 8).

These results confirm the spectral accuracy of the method, although the accuracy in the
quantum regime is not as good as that in the classical regime. This is because the regularity of
the quantum Maxwellians becomes worse when θ0 is increasing, or strictly speaking, the mesh
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Figure 1: The Maxwellians at ρ = 1, T = 1, θ0 = 0.01. Left: Bose gas; Center: classical gas;
Right: Fermi gas.
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Figure 2: The Maxwellians at ρ = 1, T = 1, θ0 = 9. Left: Bose gas; Center: classical gas (same
as in Fig.1); Right: Fermi gas.

size ∆v is not small enough to capture the shape of the Maxwellians. To remedy this problem,
one can add more grid points or more effectively, shorten the computational domain. For the
Bose-Einstein distribution, we also include the results computed on [−6, 6]× [−6, 6] in Table 1.
One can clearly see the improvements.
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16× 16 32× 32 64× 64 convergence rate

classical gas 2.1746e-04 3.8063e-12 1.9095e-16 20.0253

Bose gas θ0 = 0.01 2.1084e-04 2.5512e-10 1.9080e-16 20.0036
θ0 = 9 0.4891 0.0310 1.3496e-04 5.9117
θ0 = 9, L = 6 0.1815 0.0052 4.0278e-06 7.7298

Fermi gas θ0 = 0.01 2.2397e-04 1.6485e-10 1.9152e-16 20.0445
θ0 = 9 8.9338e-04 2.0192e-06 1.5962e-10 11.2081

Table 1: Comparison of the quantum collision solver on different Maxwellians (L = 8 unless
specified).

3.2 Relaxation to Equilibrium

Let us consider the space homogeneous quantum Boltzmann equation for the 2-D Maxwellian
molecules. As already mentioned, this equation satisfies the entropy condition, and the equi-
librium states are the entropy minimizers. Hence, we first consider the quantum Boltzmann
equation for a Fermi gas with an initial datum 0 ≤ f0 ≤ 1

θ0
and observe the relaxation to equi-

librium of the distribution function. Then, we take a Bose gas for which the entropy is now
sublinear and fails to prevent concentration, which is consistent with the fact that condensation
may occur in the long-time limit.

Fermi gas. The initial data is chosen as the sum of two Maxwellian functions

f0(v) = exp
(
−|v − v1|2

2

)
+ exp

(
−|v + v1|2

2

)
; v ∈ R2, (3.14)

with v1 = (2, 1). The final time of the simulation is Tend = 0.5, which is very close to the
stationary state.

In the spatially homogeneous setting, Pauli’s exclusion principle facilitates things because
of the additional L∞ bound 0 ≤ f(t) ≤ 1

θ0
. In this case, the convergence to equilibrium in a

weak sense has been shown by Lu [10]. Later Lu and Wennberg proved the strong L1 stability
[11]. However, no constructive result in this direction has ever been obtained, neither has any
entropy-dissipation inequality been established.

In Fig.3 we report the time evolution of the entropy and the fourth and sixth order moments
of the distribution with respect to the velocity variable. We indeed observe the convergence to
a steady state of the entropy and also of high order moments when t →∞.

In Fig.4 we also report the time evolution of the level set of the distribution function
f(t, vx, vy) obtained with N = 64 modes at different times. Initially the level set of the ini-
tial data corresponds to two spheres in the velocity space. Then, the two distributions start to
mix together until the stationary state is reached, represented by a single centered sphere. It is
clear that the spherical shapes of the level sets are described with great accuracy by the spectral
method.

Bose gas. This is an even more challenging problem since there is no convergence result,
due to the lack of a priori bound. Lu [9] has attacked this problem with the well-developed
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Figure 3: Fermi gas. Time evolution of the entropy, fourth and sixth order moments.
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Figure 4: Fermi gas. Time evolution of the distribution function f(t, vx, vy) with N = 64 modes
at times t = 0, 0.02, 0.04 and 0.5.

tools of the modern spatially homogeneous theory and proved that the solution (with a very
low temperature) converges to equilibrium in a weak sense. In [4], the authors studied an one
dimensional model and proved existence theorems, and convergence to a Bose distribution having
a singularity when time goes to infinity because Bose condensation cannot occur in finite time.

Here we investigate the convergence to equilibrium for space homogeneous model in 2-D, for
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which condensation cannot occur. We consider the following initial datum

f0(v) =
1

4π T0
exp

(
−|v − v1|2

2T0

)
+ exp

(
−|v + v1|2

2T0

)
; v ∈ R2, (3.15)

with v1 = (1, 1/2) and T0 = 1/4.
We still observe the convergence to equilibrium and convergence of high order moments when

t →∞ in Fig.5.
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Figure 5: Bose gas. Time evolution of the entropy, fourth and sixth order moments.

In Fig.6 we report the time evolution of the level set of the distribution function f(t, vx, vy)
obtained with N = 64 modes at different times and observe the trend to equilibrium.

4 A Scheme Efficient in the Fluid Regime

So far we have only considered spatially homogeneous quantum Boltzmann equations, now
what happens for spatially inhomogeneous data? Due to the natural bound 0 ≤ f(t) ≤ 1

θ0
,

the Boltzmann-Fermi model seems to be well understood mathematically [17]. The situation is
completely different for the Boltzmann-Bose model, since singular measures may occur [17].

We first review the scheme in [5] for the classical Boltzmann equation

∂f

∂t
+ v · ∇xf =

1
ε
Qc(f). (4.1)

The first-order scheme reads:

fn+1 − fn

∆t
+ v · ∇xfn =

Qc(fn)− λ(Mn
c − fn)

ε
+

λ(Mn+1
c − fn+1)

ε
, (4.2)

where λ is some appropriate approximation of |∇Qc| (can be made time dependent). To solve
fn+1 explicitly, we need to computeMn+1

c first. Since the right hand side of (4.2) is conservative,
it vanishes when we take the moments (multiply by φ(v) = (1, v, 1

2v2)T and integrate with respect
to v). Then (4.2) becomes

Un+1 − Un

∆t
+

∫
φ(v)v · ∇xfndv = 0, (4.3)
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Figure 6: Bose gas. Time evolution of the distribution function f(t, vx, vy) with N = 64 modes
at times t = 0, 0.02, 0.04 and 0.5.

where U = (ρ, ρu, ρe + 1
2ρu2)T is the conserved quantities. Once we get Un+1, Mn+1

c is known.
Now fn+1 in (4.2) is easy to obtain.

When generalizing the above idea to the quantum Boltzmann equation (1.1), the natural
idea is to replace Qc and Mc in (4.2) by Qq and Mq respectively. However, as mentioned in
section 2, one has to invert the nonlinear system (2.10) to get z and T . Experiments show that
the iterative methods do converge when the initial guess is close to the solution (analytically,
this system has a solution [1]). But how to set a good initial guess for every spatial point and
every time step is not an easy task, especially when ρ and e are not continuous.

Here we propose to use a ‘classical’ BGK operator to penalize Qq. Specifically, we replace
the temperature T with the internal energy e in the classical Maxwellian using relation e = dv

2 T

(true for classical monatomic gases) and get

Mc =
ρ

(2πT )
dv
2

e−
(v−u)2

2T = ρ

(
dv

4πe

) dv
2

e−
dv
4e (v−u)2 . (4.4)

An important property of Mc is that it has the same first five moments as Mq.
Now our new scheme for QBE (1.1) can be written as

fn+1 − fn

∆t
+ v · ∇xfn =

Qq(fn)− λ(Mn
c − fn)

ε
+

λ(Mn+1
c − fn+1)

ε
. (4.5)
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Since the right hand side is still conservative, one computes Mn+1
c the same as for (4.2).

It is important to notice that z and T are not present at all in this new scheme, thus one
does not need to invert the 2 by 2 system (2.10) during the time evolution. If they are desired
variables for output, one only needs to convert between ρ, e and z, T at the final output time.

4.1 Asymptotic Property of the New Scheme

In this subsection we show that the new scheme, when applied to the quantum BGK equation,
has the property (1.6). Consider the following time discretization:

fn+1 − fn

∆t
+ v · ∇xfn =

(Mn
q − fn)− λ(Mn

c − fn)
ε

+
λ(Mn+1

c − fn+1)
ε

. (4.6)

Some simple mathematical manipulation on (4.6) gives

fn+1−Mn+1
q =

1 + (λ− 1)∆t
ε

1 + λ∆t
ε

(fn−Mn
q )− ∆t

1 + λ∆t
ε

v·∇xfn+(Mn
q−Mn+1

q )+
λ∆t

ε

1 + λ∆t
ε

(Mn+1
c −Mn

c ).

(4.7)
Assume all the functions are smooth. When λ > 1

2 ,

|fn+1 −Mn+1
q | ≤ α|fn −Mn

q |+ O(ε + ∆t), (4.8)

where 0 < α = |1 + (λ− 1)∆t
ε |/|1 + λ∆t

ε | < 1 uniformly in ε and ∆t. The O(ε) term comes from
the second term of the right hand side of (4.7). The O(∆t) term is from the third and fourth
terms. Then

|fn −Mn
q | ≤ αn|f0 −M0

q|+ O(ε + ∆t) . (4.9)

Since ∆t is taken bigger than ε, this implies the property (1.6). It is interesting to point out
that f approaches Mq, not Mc, with (4.6).

Remark 4.1 The first order (in-time) method can be extended to a second order by an Implicit-
Explicit (IMEX) method (see also [5]):

f∗ − fn

∆t/2
+ v · ∇xfn =

Qq(fn)− λ(Mn
c − fn)

ε
+

λ(M∗
c − f∗)
ε

,

fn+1 − fn

∆t
+ v · ∇xf∗ =

Qq(f∗)− λ(M∗
c − f∗)

ε
+

λ(Mn
c − fn) + λ(Mn+1

c − fn+1)
2ε

.

(4.10)

This scheme can be shown to have the same property (1.6) on the quantum BGK equation.

5 Numerical Examples

In this section, we present some numerical results of our new scheme (4.5) (a second order
finite volume method with slope limiters [8] is applied to the transport part) on the 1-D shock
tube problem. The initial condition is{

(ρl, ul, Tl) = (1, 0, 1) if 0 ≤ x ≤ 0.5,

(ρr, ur, Tr) = (0.125, 0, 0.25) if 0.5 < x ≤ 1.
(5.1)

The particles are again assumed to be the 2-D Maxwellian molecules and we adjust θ0 to get
different initial data for both the Bose gas and the Fermi gas.
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In all the regimes, besides the directly computed macroscopic quantities, we will show the
fugacity z and temperature T as well. They are computed as follows. First, (2.10) (dv = 2)
leads to

Q2
1(z)

Q2(z)
=

θ0

2π

ρ

e
. (5.2)

We treat the left hand side of (5.2) as one function of z, and invert it by the secant method.
Once z is obtained, T can be computed easily using for example the first equation of (2.10). To
evaluate the quantum function Qν(z), the expansion (2.13) is used for the Bose-Einstein function.
The Fermi-Dirac function is computed by a direct numerical integration. The approach adopted
here is taken from [15] (Chapter 6.10).

When approximating the collision operator Qq, we always take M = 4, N = 32 and L = 8,
except L = 6 for the Bose gas in the quantum regime.

5.1 Hydrodynamic Regime

We compare the results of our new scheme (4.5) with the kinetic scheme (KFVS scheme in
[7]) for the quantum Euler equations (2.9). The time step ∆t is chosen by the CFL condition,
independent of ε. Fig.7 shows the behaviors of a Bose gas when θ0 = 0.01. Fig.8 shows the
behaviors of a Bose gas when θ0 = 9. The solutions of a Fermi gas at θ0 = 0.01 are very similar
to Fig.7, so we omit them here. Fig.9 shows the behaviors of a Fermi gas when θ0 = 9. All the
results agree well in this regime, which exactly implies the scheme (4.5) is asymptotic preserving
(when the Knudsen number ε goes to zero, the scheme becomes a fluid solver).

5.2 Kinetic Regime

We compare the results of our new scheme (4.5) with the explicit forward Euler scheme.
The time step ∆t for the new scheme is still chosen by the CFL condition. When the Knudsen
number ε is not very small, 10−1 or 10−2, the above ∆t is also enough for the explicit scheme.
Fig.10 shows the behaviors of a Bose gas when θ0 = 0.01. Fig.11 shows the behaviors of a Bose
gas when θ0 = 9. The solutions of a Fermi gas at θ0 = 0.01 are very similar to Fig.10, so we omit
them here. Fig.12 shows the behaviors of a Fermi gas when θ0 = 9. Again all the results agree
well which means the scheme (4.5) is also reliable in the kinetic regime. To avoid the boundary
effect, all the simulations in this subsection were carried out on a slightly larger spatial domain
x ∈ [−0.25, 1.25].

6 Conclusion

A novel scheme was introduced for the quantum Boltzmann equation, starting from the
scheme in [5]. The new idea here is to penalize the quantum collision operator by a ‘classical’
BGK operator so as to avoid the difficulty of inverting the nonlinear system ρ = ρ(z, T ), e =
e(z, T ). The new scheme is uniformly stable in terms of the Knudsen number, and can capture
the fluid (Euler) limit even if the small scale is not numerically resolved. We have also developed
a spectral method for the quantum collision operator, following its classical counterpart [12, 6].
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Figure 7: Bose gas. ε = 1e− 4, θ0 = 0.01, zl = 0.0016, zr = 7.9546e− 04. Density ρ, velocity u,
fugacity z and temperature T at t = 0.2. ∆t = 0.0013, ∆x = 0.01. Solid line: KFVS scheme [7]
for quantum Euler equations (2.9); ◦: New scheme (4.5) for QBE (1.1).

So far we have not considered the quantum gas in the extreme case. For example, the Bose
gas becomes degenerate when the fugacity z = 1. Many interesting phenomena happen in this
regime. Our future work will focus on this aspect.

Acknowledgments. The second author would like to thank Mr. Bokai Yan for helpful discus-
sions on the spectral method of the collision operator.
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Figure 11: Bose gas. ε = 1e− 1, θ0 = 9, zl = 0.7613, zr = 0.5114. Density ρ, velocity u, fugacity
z and temperature T at t = 0.2. ∆t = 0.0017, ∆x = 0.01. Solid line: Forward Euler scheme for
QBE (1.1); ◦: New scheme (4.5) for QBE (1.1).

20



−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

u

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

2.5

3

3.5
z

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
T

Figure 12: Fermi gas. ε = 1e − 2, θ0 = 9, zl = 3.1887, zr = 1.0466. Density ρ, velocity u,
fugacity z and temperature T at t = 0.2. ∆t = 0.0013, ∆x = 0.01. Solid line: Forward Euler
scheme for QBE (1.1); ◦: New scheme (4.5) for QBE (1.1).
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