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ABSTRACT. The development of accurate and fast algorithms for the Boltzmann collision in-
tegral and their analysis represent a challenging problem in scientific computing and numerical
analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes
for the Boltzmann equation, but very few of them were concerned with the stability analysis of
the method. In particular there was no result of stability except when the method is modified
in order to enforce the positivity preservation, which destroys the spectral accuracy. In this
paper we propose a new method to study the stability of homogeneous Boltzmann equations
perturbed by smoothed balanced operators which do not preserve positivity of the distribu-
tion. This method takes advantage of the “spreading” property of the collision, together with
estimates on regularity and entropy production. As an application we prove stability and con-
vergence of spectral methods for the Boltzmann equation, when the discretization parameter
is large enough (with explicit bound).
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1. INTRODUCTION

This work is the sequel of several papers devoted to the approximation of the Boltzmann
equation using fast spectral methods [27, [I1], 21} [14]. The present paper is devoted to the
stability and convergence analysis of general spectral algorithms.

In a microscopic description of rarefied gas, the particles move by a constant velocity until
they undergo binary collisions. In statistical physics, the properties of the gas are described
by a density function in phase space, f(t,z,v), called the distribution function, which gives
the fraction of particles per unit volume in phase space at time ¢. The distribution function
satisfies the Boltzmann equation, a non-linear integro-differential equation, which describes
the combined effect of the free flow and binary collisions between the particles.
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The main difficulty in the approximation of the Boltzmann equation is due to the mul-
tidimensional structure of the collisional integral, since the integration runs on a highly-
dimensional unflat manifold. In addition the numerical integration requires great care since
the collision integral is at the basis of the macroscopic properties of the equation. Further
difficulties are represented by the presence of stiffness, like the case of small mean free path or
the case of large velocities [10].

For such reasons realistic numerical simulations are based on Monte-Carlo techniques. The
most famous examples are the Direct Simulation Monte-Carlo (DSMC) methods by Bird [1]
and by Nanbu [22]. These methods guarantee efficiency and preservation of the main phys-
ical properties. However, avoiding statistical fluctuations in the results becomes extremely
expensive in presence of non-stationary flows or close to continuum regimes.

Among deterministic approximations, Discrete Velocity Models (DVM) are based on a Carte-
sian grid in velocity and on a discrete collision mechanism on the points of the grid that
preserves the main physical properties. Unfortunately DVM are not competitive with Monte-
Carlo methods in terms of computational cost and their accuracy seems to be less than first
order [23| 24], 251 @].

Another class of numerical methods, based on the use of spectral techniques in the velocity
space, has been developed. The methods were first derived in [26], inspired from spectral meth-
ods in fluid mechanics [6] and by previous works on the use of Fourier transform techniques for
the Boltzmann equation [2]. They are based on approximating in the velocity space the distri-
bution function by a periodic function, and on its representation by Fourier series. The spectral
method has been further developed in [27), 29] where evolution equations for the Fourier modes
were explicitly derived and spectral accuracy of the method was proven. Strictly speaking these
methods are not conservative, since they only preserve mass, whereas momentum and energy
are approximated with spectral accuracy. Moreover, the spectral method has been applied also
to non homogeneous situations [I1], to the Landau equation [10, 28], where fast algorithms
can be readily derived, and to the case of granular gases [I3]. Independently A. Bobylev &
S. Rjasanow [3], 4] have also constructed fast algorithms based on a Fourier transform approx-
imation of the distribution function, but the method is not spectrally accurate (only second
order).

In [21I] a fast spectral method was proposed for a class of particle interactions including
pseudo-Maxwell molecules in dimension 2 and, most importantly, hard spheres in dimension
3, on the basis of the previous spectral method together with a suitable semi-discretization of
the collision operator. This method permits to reduce the computational cost from O(n?) to
O(nlogy n) without loosing the spectral accuracy, thus making the method competitive with
Monte-Carlo.

However an important drawback of the spectral methods up to now had been the lack of
proof of stability. Indeed as compared to discrete velocity methods the difficulties are somehow
opposite: consistency results are easily obtained, whereas the lack of positivity preservation of
the scheme is a major issue when one studies its stability properties. The only paper concerned
with the issue of stability for spectral methods applied to the Boltzmann collision operator is
[29], but in the latter the author introduce some “filters” on the Fourier modes in order to
restore the positivity-preservation of the scheme, which breaks the spectral accuracy.

In this paper we give the first stability result for the spectral methods applied to the Boltz-
mann collision operator. Moreover we propose a method which is likely to have other utiliza-
tions in collisional kinetic theory:

e we write the Galerkin approximation on the first N Fourier modes of the evolution
equation as a a smooth balanced perturbation of the original equation, in the sense of a
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perturbation by some small and mass-preservation (although not positivity-preserving)
error term;

e we prove existence and uniqueness of smooth solution for small times, conditionally to
a bound on the L' norm;

e we use the mixing structure [30} [19] of the collision process to show appearance of
positivity after a small time (depending on the size of the box of truncation and the
approximation parameter N);

e we use the mass conservation to deduce uniform bounds on the L' norm, and therefore
regularity bounds growing at most exponentially in time;

e we perform a detailed analysis of the unperturbed truncated problem, showing uniform
in time regularity and asymptotic convergence to equilibrium;

e finally we use that the equilibrium is unchanged by the smooth balanced perturbation,
and that it is non-linearly stable for the perturbed periodized Boltzmann equation, in
order to prove global in time stability and convergence to equilibrium for the perturbed
Boltzmann equation (we connect the previous point for initial times together with the
stability of equilibrium for asymptotic times).

Hence our paper introduces a general method on how to exploit fine mixing properties of the
collision process in the study of stability of a particular class of perturbed Boltzmann equation,
with the application in mind to the stability of spectral methods.

The outline of this paper is as follows. The Boltzmann equation and its basic features are
presented in Section In Section [3| we explain the truncation and periodization associated
with spectral methods and fast spectral methods and we formulate the problem of stability of
these methods in the general framework of the stability properties of the Boltzmann equation
with respect to a smooth balanced perturbation. Section {}is devoted to the proof of the main
stability result in the general framework. Section [5]is devoted to the study of the asymptotic
behavior of the truncated problem on the basis of the entropy production theory. Finally in
Section [6] we apply the latter result to the spectral method and establish some stability and
convergence results of the numerical solution.

2. THE BOLTZMANN EQUATION

The Boltzmann equation describes the behavior of a dilute gas of particles when the only
interactions taken into account are binary elastic collisions. It reads for z € Q, v € R% where
Q € R? is the spatial domain (d > 2):

of

a‘i'v'vzf:Q(faf)

where f := f(t,x,v) is the time-dependent particles distribution function in the phase space.
The Boltzmann collision operator @ is a quadratic operator local in (¢,z). The time ¢ and
position x act only as parameters in () and therefore will be omitted in its description

(2.) arn@=[ [ Blo—ulcost) (1 = 1.f) dod.

We used the shorthand f = f(v), fi = f(vs), [/ = f(V), fl. = f(v}). The velocities of the
colliding pairs (v, v,) and (v/,v}) are related by

v =v— %((v—v*)— \v—v*la),

1
Ui:v—i((v—v*)—|—|v—v*\a),
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with o € S*1. The collision kernel B is a non-negative function which by physical arguments
of invariance only depends on |v — v,| and cosf = u - o, where u = (v — v,)/|v — v4| is the
normalized relative velocity.

In this work we are concerned with short-range interaction models. More precisely we assume
that B is locally integrable. Here are the hypothesis on the collision kernel:

(2.2) B(|ul,cos0) = ®(|ul) b(cos b)),
with
(2.3) O(z) =27, zeR4, forsome v € (0,+00)

and b smooth such that

(2.4) / b(cos §) sin?2 0 df < +oo.
0

These assumptions are satisfied for the so-called hard spheres model B(u) = |u|, and it is known
as Grad’s angular cutoff assumption when it is (artificially) extended to interactions deriving
from a power-law potentials. As an important benchmark model for the numerical simulation
we therefore introduce the so-called variable hard spheres model (VHS), which writes

B(Jul, cos 6) = C, |ul?,

for some v € (0, 1] and a constant C,, > 0.
For this class of models, one can split the collision operator as

QUL f) = QY (f, ) — LN T,
with
QT (f, f) = / B(|v — vy, cos ) f' fi do duy,
]Rd Sd—l
and

L(f) = /Rd /Sdl_1 B(|v — vy, cos0) fy do dv,.

Boltzmann’s collision operator has the fundamental properties of conserving mass, momen-
tum and energy: at the formal level

L QUpotdr=0. o) = Lu.Jof,
and it satisfies well-known Boltzmann’s H theorem

& | flograv=—= [ Q. nosts)av = o

The functional — [ flog f is the entropy of the solution. Boltzmann’s H theorem implies that
any equilibrium distribution function, i.e., any function which is a maximum of the entropy,
has the form of a locally Maxwellian distribution

LR O U vf?
(27T)4/2 2T ’
where p, u, T are the density, macroscopic velocity and temperature of the gas, defined by
1 1
p:/ f(v) dv, u:/ v f(v)dv, T:/ lu —v|? f(v) dv.
veRd P JveRrd dp veRd

For further details on the physical background and derivation of the Boltzmann equation we
refer to Cercignani, Illner, Pulvirenti [§] and Villani [31].

M(p,u,T)(v) =
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3. FORMULATION OF A GENERAL STABILITY RESULT

In this section we remind the basic principles leading to the periodized truncations of the
Boltzmann collision operator arising in spectral methods. Then, we present the main result of
this paper: the stability of the spatially homogeneous Boltzmann equation with respect to a
smooth balanced perturbation, preserving mass and smoothness but not non-negativity of the
solution. This stability means that we are able to construct global solutions and estimate the
error between perturbed and unperturbed solutions.

Any deterministic numerical method requires to work on a bounded velocity space. This
therefore supposes a non physical truncation (associated with limit conditions) of this velocity
space, which we shall discuss below.

3.1. General framework. We consider the spatially homogeneous Boltzmann equation writ-
ten in the following general form

)
(3.1) (7{ =Q(f, ),
where Q(f, f) is given by
(3.2) QD = [ B [1i= ff dydz, v eR!
with

UI:U+®/(y7Z)7 Ui:’U—l-@;(y,Z), U*:U"i'@*(yvz)'

In the equations above, C is some given (unbounded) domain for y, z, and ©, ©’, ©) are
suitable functions, to be defined later. This general framework emphasizes the translation
invariance property of the collision operator, which is crucial for the spectral methods. We
will be more precise in the next paragraphs for some changes of variables allowing to reduce
the classical operator to the form .

A problem associated with deterministic methods which use a fixed discretization in the
velocity domain is that the velocity space is approximated by a finite region. Physically the
domain for the velocity is R¢, and the property of having compact support is not preserved by
the collision operator. In general the collision process indeed spreads the support by a factor
V2 in the elastic case (see [30, 19] and also [I8] for similar properties in the inelastic case).
As a consequence, for the continuous equation in time, the function f is immediately positive
in the whole domain R?. Thus, at the numerical level, some non physical condition has to
be imposed to keep the support uniformly bounded. In order to do this there are two main
strategies:

e One can remove the physical binary collisions that will lead outside the bounded ve-
locity domains. This means a possible increase of the number of local invariants, i.e.,
the functions ¢ such that

P+ ¢ — o —9)

is zero everywhere on the domain. If this is done properly (i.e., without removing
too many collisions), the scheme remains conservative and without spurious invariants.
However, this truncation breaks down the convolution-like structure of the collision
operator, which requires the translation invariance in velocity. Indeed the modified
collision kernel depends on v through the boundary conditions. This truncation is the
starting point of most schemes based on Discrete Velocity Models.

e One can add some non physical binary collisions by periodizing the function and the
collision operator. This implies the loss of some local invariants (some non physical
collisions are added). Thus the scheme is not conservative anymore, although it still
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preserves the mass if the periodization is done carefully. However in this way the
structural properties of the collision operator are maintained and thus they can be
exploited to derive fast algorithms. This periodization is the basis of spectral methods.

Therefore, we consider the space homogeneous Boltzmann equation in a bounded domain
in velocity Dy = [~L, L] with 0 < L < co. We truncate the integration in y and z in
since periodization would yield infinite result if not: we set ¥ and z to belong to some
truncated domain Crp C C (the parameter R refers to its size and will be defined later). For a
compactly supported function with support included in Bg, the ball centered at 0 with radius
S > 0, one has to prescribe suitable relations (depending on the precise change of variable
and truncation chosen) between S, R and L in order to retain all possible collisions and at
the same time prevent intersections of the regions where f is different from zero (this is the
so-called dealiasing condition). Then the truncated collision operator reads

(3.3) QRf.f)= | Bz (fif — fuf)dydz

Cr

for v € Dy, (the expression for v € R? is deduced by periodization). By making some changes of
variable on v, one can easily prove for the two choices of variables y, z of the next subsections,
that for any function ¢ periodic on Dy, the following weak form is satisfied:

(3.4 QM Dewdo =y [ [ BuALf (e = o) dyd o
DL D, JCr

Now, we use the representation Q% to derive spectral methods. Hereafter, we use just one
index to denote the d-dimensional sums with respect to the vector k = (ki, .., kq) € Z%, hence
we set

N N

SR

k=—N  ki,...kg=—N

The approximate function fpy is represented as the truncated Fourier series

N
(3.5) )= Y feeth,
k=—N

with
1
2L)? Jp,

In a Fourier-Galerkin method the fundamental unknowns are the coefficients f(t), k =
—N,...,N. We obtain a set of ODEs for the coefficients fi by requiring that the residual
of (3.3) be orthogonal to all trigonometric polynomials of degree less than N. Hence for
k=-N,...,N

(3.6) /D (85? —QR(fw, fN>> eIER gy = 0,

(v) e TR do.

fr =

By substituting expression (3.5)) in (3.4) we get

QY (fn, fn) = QT (fn, fn) — LE(fn) fnv
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with
N A A .

(3.7) LR I = ) Y Blmym) fi fn e 2™,
|[=—N m=—N
N N o

(3.8) QR (fx fn) = D > BUm) fi fme MY,
I=—N m=—N

where

(3.9) B(l,m) = B(y, 2) 'L (10 (2)+m €. (3:2) dy dz.

Cr

The spectral equation is the projection of the collision equation in Py, the (2N + 1)%
dimensional vector space of trigonometric polynomials of degree at most N in each direction,

i.e.,
aafév - PN QR(fN7fN)7

where Py denotes the orthogonal projection on Py in L? (Dyr).

3.2. The truncation associated with classical spectral methods. In the classical spec-
tral method [27], a simple change of variables in (2.1)) permits to write

(3.10) A = [ [ B0 (F0) ) = 10 (0) dwd,

with g =v — v, € R%, w € §1 and

v =v—3(g—|glw),
(3.11) v, =v—%(g+ |glw),
Ve =V+g
Then, we set C := R% x S*1 and
1 1
0'(g,w) = —5(9 = lglw), O, (g,w) := —5(g+9lw),  Ox(g,w) =g.

Finally the collision kernel B2 is defined by
class — ~ d/2—1 N
(3.12) B (g,w) = 247 (1= (3-w) "7 B(lgl, 2(5 - w)? — 1).

Thus, the Boltzmann operator (3.10) is now written in the form (3.2). We consider the
bounded domain Dy, = [—~L, L]?, for the distribution f, and the bounded domain Cr = B x
S9! for some R > 0. The truncated operator reads in this case

G133 QUENE) = [ B (FEDIW) - £(0)f () do dg
BrxSd—1

3.3. The truncation associated with fast spectral methods. Here we shall approximate

the collision operator starting from a representation which conserves more symmetries of the

collision operator when one truncates it in a bounded domain. This representation was used in

[3,[15] to derive finite differences schemes and it is close to the classical Carleman representation

(cf. [7]). The basic identity we shall need is (for u € R?)

1 o )
(3.14) 2/Sdl F(lulo —u)do = = /]Rd 02y -u+|yl°) F(y) dy.
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Using (3.14) the collision operator (2.1)) can be written as

(3.15) Q(f. f)(v) = 20! / ) / B )8 2)
z€RC JyecR4

(fo+2)fv+y) = flo+y+2)f(v)dydz,
with ( )
(y+ =z
Bt (y, 2 :2d_1B(y+z,—y Y ) + 2|72,
(,2) ly+ 2| oy T 7 ly+ 2"
Thus, the collision operator is now written in the form (3.2) with C := R? x R?,

B(y,z) = B™(y,2) 8(y - ),
and
v, =v+0 (y,2), vV=v+0(y,2), v.=1v+06,(y,2).
with
O (y,2) =2, O(y,2):=vy, O(y,2):=y+z
Now we consider the bounded domain Dy, = [~L, L], (0 < L < co) for the distribution f,
and the bounded domain Cr = B x Bgr for some R > 0. The (truncated) operator now reads

(3.16) QR(f,f)(v)Z/c By, 2)8(y - 2) (fo+2)f (v +y) = f(o+y+2)f(v)) dydz,

for v € Dy. This representation of the collision kernel yields better decoupling properties
between the arguments of the operator and allows to lower significantly the computation cost
of the method by using the fast Fourier transform (see [21], [14]).

Let us make a crucial remark about the choice of R. When f has support included in Bg,
S > 0, it is usual (see [27, 2I]) to search for the minimal period L (in order to minimize
the computational cost) which prevents interactions between different periods of f during one
collision process. From now on, we shall always assume that we can take L and R large enough
such that, when needed, R > v/2 L. Hence all the torus is covered (at least once) in the
integration of the variables (g,w) or (y, 2).

3.4. A common abstract formulation for the stability of spectral methods From
now on, Q@ shall denote a periodized truncated collision operator as in or - As
we shall see, using this formulations, both classical and fast spectral methods fall into the
following framework:

QU N+ PN, veDs,
(3.17)

f(0,v) = fore(v), veDgL,
where P. is a “smooth balanced perturbation”, which means that it satisfies the following
(balanced law)

(3.18) /D P.(f)dv=0

and preserves the smoothness of the distribution function, i.e., there exist constants Cy, Cy > 0
such that

[P(Nllr < Collflle 1f]]ze

1P, < Culflloa If s, K =0,

(3.19)
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where || - || mk,, is the usual norm of the Sobolev space of periodic functions ngr(DL).
Moreover the perturbation is supposed to be small in the following sense: there exists a

function ¢(e) such that for any p > 0,
(3.20) 1P (Dl ap,, < #(e),

where p(g) depends on || f|| ;p++ for some k > 0, and goes to zero as € goes to zero.
per

Finally in order to prove global existence with uniform regularity bounds, we shall require
additional assumptions on the relation between the equilibrium distributions of the perturbed
and unperturbed (periodized) Boltzmann equations, and about the stability of the unperturbed
equation (see the following statement).

Let us therefore write the unperturbed equation for reference:

V", veps 150

f(0,v) = fo(v), wveDrL.
Let us state the general stability theorem:

(3.21)

Theorem 3.1. Let us consider a perturbed Boltzmann equation in the torus Dy, where
Q" is defined by (15’13) or m, and for a sequence of smooth balanced perturbations (Pg =
Pg(f))€>0 which satisfy (3.18])-(3.19])-(3.20]).

Assume that the constant functions are equilibria of the perturbed equation (as for
equation ) and that they are nonlinearly locally stable in any ngr(DL) for equation
(13.21)).

We assume that fy is a non-negative function, non zero everywhere, belonging to ngr(DL)
with k € N and k > d/2. We consider a sequence of smooth balanced perturbations fo. of the
initial datum for the perturbed problem (non necessarily positive) such that

foe = / o and lfo— forlm < w(e),
Dy, Dy,

per

with ¥ (g) goes to zero when & goes to zero.

Then, there exists eg > 0 depending only on the collision kernel B, the truncation R, the
constants in (3.19)-(3.20) for the perturbation, and the L'(Dyr) and H;]fer(DL) norms on fo,
such that for any e € (0,¢e¢),

(1) there exists a unique global smooth solution f. to (3.17));

(it) for any p < k, this solution belongs to Hber(Dr) for all times with uniform bounds as
time goes to infinity;

(#i1) this solution remains “essentially non-negative” uniformly in time, in the sense that
there is n(e) > 0 (with n(e) — 0 as € goes to 0) such that the non-positive part is
n(e)-small:

VtZ()? Hfi;(t7)HL°° S”(E)
where f= denotes | f]| 1¢p.<0);

(iv) this solution f. converges in Hber(Dyr) for any p < k, uniformly on any [0,T), T > 0,
to the solution f of the unperturbed equation (3.21) when the parameter e goes to zero;

(v) the solution f. to (3.17) converges in ngr(DL) as time goes to infinity to the constant
equilibrium distribution in the torus prescribed by its mass, and it is “asymptotically
uniformly positive”, that is for t larger than some fized explicit time.

We split the proof into two main steps: first in Section [l we prove existence, uniqueness and
smoothness of a solution on an arbitrary bounded time interval (as the size of perturbation
goes to 0). The main difficulty is to prove that non-negativity of the distribution function is
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recovered in a certain sense. Then, in Section[5]we study the asymptotic behavior and establish
global stability in time. The main issue is there to prove regularizing properties of the gain
operator QT (f, f) and entropy production estimates on QF. Finally in Section |§| we apply
the previous general results to spectral methods, and prove their stability and convergence.

4. PROOF OF STABILITY ON AN ARBITRARY BOUNDED TIME INTERVAL

In this section we first give some technical lemmas and next establish a result showing
existence and uniqueness of a smooth solution on an arbitrary time interval to the perturbed
equation , depending on an assumption of smallness on the size of the perturbation.
Then, in Lemma we prove the control of negative values of f(t).

4.1. Preliminary results. We start this section by a classical result of I” estimates on the
Boltzmann operator Q(g, h) given by

Q%(g,h) = ) B(y,2) (¢ h' — g« h)dydz.
R

Lemma 4.1. Let the collision kernel B satisfy the assumption (2.2))-(2.3)-(2.4)). Then, the

periodized Boltzmann operator QT (defined by or ) satisfies: for all p € [0, 0]
there ezists a constant Cp(R, B) > 0 such that

(4.1) 1Q% (g, W)llze, QT (hyg)llze < Cp(R. B) llgllpr Il
Proof. The proof is exactly similar to the case of the usual Boltzmann collision operator for a
collision kernel bounded with compact support, see for instance [20] for a recent proof. O

Now, we prove smoothness of the solution to the perturbed problem (3.17)) on a fixed time
interval under the assumption of an a priori bound on the L' norm of the solution.

Lemma 4.2. Let us consider a collision kernel B which satisfies the assumptions -@ -
and a sequence of smooth balanced perturbations (Pg = Ps(fs))€>0 which satisfy (3.18)-
(3-19)-(3-20), and let T > 0 be the length of the time interval. Assume that fo € H*(Dyp) for
k € N and that f(t) is a (non necessarily positive) solution to with initial datum fo,
which satisfies the L'-estimate

(12) Vie0,T], (0l < M.
Then, there exists a constant Cy(M) > 0, only depending on M, R, T and ||f0HH§CY such that
(4.3) vie[0,T], [[fOllms, < Ck(M).

Proof of Lemmal[{.9 We proceed by induction on k > 0. For the first stage k = 0, we apply
Lemma with p =2 and g = h = f and we use assumption (3.19) on the perturbation:

. dllf(t)lliz < QYL ) + PPl (D)2

2 di
< (C2(R,B) + Co) [IF O]t | F )72
Hypothesis (4.2)) provides a control on ||f(¢)||;1 and we can apply Gronwall’s lemma to get the

result at stage k = 0.

Let us now assume that holds at stage k£ > 0 and let us prove that it also holds at
stage (k + 1).

Let us first recall a formula on the derivatives of @: from the bilinearity of Q® and the
translation invariance property of the periodized Boltzmann collision operator, one has

VoQE(f, f) = QF(Vuf, f) + QR (£, Vo f),
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which yields a Leibniz formula at any order s € N:

1Q7 (. NIy, = D llo*@%( Dllzs

lv|<s
(1.4) <y ¥ (;)HQwa,aMf)H;.
[v[<s |ul<|v|

Now, using (4.4) with s = k + 1 we have

(45) QL D < CIRME DNy, + ¢ 5 5 (1) )@@ 10 1)
[v|=k+1 |p|<k+1

From Lemma with p = 2 and g = 0*f, h = 0" #f together with the hypothesis , we

get

(4.6) QU s, < CO R F g, 1z, < Calk, R, B) Ci(M)*.

per

Then we split the last term of (4.5) in two parts for u # 0 and p = 0. For p # 0, we again

apply Lemma with p =2 and g = 9*f, h = 9" f and use the fact that both derivatives
d

|l = >2im [kl < kand |v — pf < k:

(4.7) > X ( p ) |Q7(@" £.0" " )ll7> < Cs(k, R, B) Cu(M)*.
|v|=k+1 lnl<k+1
n#0
Finally, for 4 = 0 we apply Lemma withp=2and g=f, h=090"f:
(4.8) Y IQF(8" NI < Calk, B B) f 1l 11 s

lv|=k+1

Then, gathering inequalities from (4.6)) to (4.8]) and using the assumption (3.19)) on the smooth
balanced perturbation P., we have

1d
5 gl < 1QFUF) + Pe(Pll s 1F 1 s
< C (Cy+C3) CR(M)? ||f||H,’§et1 + C(Cy+ O)|fllpm Hf“ill’;ctl‘

Finally using the control (4.2)) on || f(¢)||1 we apply Gronwall’s lemma to get (4.3) at stage
k +1: there exists a constant Cyy1(M), only depending on M, R, T' and || fo|| ;yx+1 such that
per

vte[0,T], [[fOllgrs < Crpa(M).

A

O

Then, we establish existence and uniqueness of a smooth solution for the perturbed problem
(3.17) on a small time interval [0, 7], T > 0.

Proposition 4.3. Let us consider a collision kernel B which satisfies the assumptions (12.2])-
(2.3)-(2.4) and a sequence of smooth balanced perturbations (PE = Pg(f))€>0 which satisfy (3.18])-

(3-19)-(3.20). We assume that fy € H{fer(DL), for k € N and set
(4.9) M =2 foll1-
Then, there exists T = T(M) > 0 such that for all € > 0 the perturbed Boltzmann equation

(13-17) admits a unique solution (non necessarily positive) on the time interval [0, 7|, where the
solution f satisfies

(4.10) Vte (0,7, |IfOln < M.
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Moreover, there exists a constant Ci(M) > 0, only depending on M, R, and HfOHH;’fer such that
(4.11) vie[0,7] [[f O, < Ce(M).
Proof of Proposition [{.3 First, we apply Lemma LI withp=1and g=h = f

1QT(f, D12 < Cr(R, BY I f Il £l 2

Moreover, using assumption (3.19)) on the perturbation, there exists C' > 0 such that for all
e>0
2
1P=(Hllr < C AL
Therefore, we obtain a constant C' > 0, only depending on R and the collision kernel B such
that

d
@l < CUANL:

This implies that

ol
IOl < TghE—.

Now, setting M = 2||fol|z1 and from the latter inequality, we show that there exists 7 <
1/(2C || follz1) such that

vt e [0,7], [[fB)l <M,
which gives (4.10)).

From the estimate in L'(Dy) on the function f(¢) on the time interval [0,7], we prove
existence and uniqueness of a solution by Cauchy-Lipschitz theorem in L'(Dy) (because of the
truncation on Dy, the collision kernel is a bounded bilinear function from L'(Dy) x L'(Dr) to
LY(Dyp)). Finally, from the bound and the smoothness assumption fp € Hé”er(DL) on
the initial datum, we are able to apply Lemma which proves that there exists a constant
Cr(M) > 0, only depending on M, R, T and ||f0”H§er such that

1F s, < Cu(M).

This concludes the proof. O

By iterating Proposition 4.3 and Lemma we observe that uniform control on the L'(Dy)
norm on an arbitrarily large time interval [0, T'] together with smoothness on the initial datum
will ensure existence and uniqueness of a smooth solution on this time interval [0, 7]. Further-
more we observe that the control on the L!(Dy) norm is obvious for the classical Boltzmann
equation thanks to the positivity and mass preservations. Therefore, we shall now focus on
the control of positivity of the solution, showing that the solution remains “almost positive”
for arbitrarily large time interval, hence allowing to produce uniform control on the L'(Dr)
norm for arbitrarily large time interval.

We first state a technical lemma which takes advantage of the mixing property of Q%% in
order to show spreading of the support of a characteristic function of a ball.

Lemma 4.4. Let us consider a collision kernel B which satisfies the assumptions ([2.2])-(2.3])-
(2.4) and a truncated operator QF defined by or . Then for all 0 < r < /2 L, we

have
QR7+(IB(’U,T)’ ]-B(v,'r)) > Cy 1B(v,ur)
for some explicit p = u(R,L) > 1 and Cy > 0.

Remark: Note that for r > /2L, one has 13(s,;) = 1 on the torus [-L, L]¢ and there is
nothing to prove.
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Proof of Lemma[{.4 The invariance by translation allows to reduce the proof to the case v = 0.
The invariance by rotations implies that I, := Q%+ (1 B(0,r)» 1B(0,r)) 18 radially symmetric. More
precisely, taking a C* radially symmetric function ¢ such that ¢ > 0 on B = B(0,7) and ¢ < 1p
on R%, we have

e the function v — Q%% (¢, ¢)(v) is continuous,
( v
)

(v
e for all v € R, I.(v) > QH (¢, 9)(v),
e for all v € B, QR+(¢,¢>)( 0.

As a consequence, for any ball B’ = B(0,r’) strictly included in B, there exists x,» > 0 such
that Ir > Ryt 13/.

In order to conclude, we just need to estimate the support of I, close to the ball B.

Let us fix ' € (0,7) and choose v',v, € B’ such that |[v'| = |v.] = v/ and |v/ — V)| =
min{R;v/2r'}. Then taking o in B’ such that v,v,,v’,v. is a square, we find |v| = V27 if
V21" < R and

_R72 1/2+R
2

. N2
ol = [ -5
else. We define
R 1"* R /3
min 1——— + — = min V1-—9yZ+ (1,
Ho = R/V2<r' <2 L [ 4(7"’)2] 277 /(2fL)<y<1/f( y) 2)

This concludes the proof: we deduce that for any v such that |v| € (7, ug7’), we have

I(v) 2 Q% (4, 4)(v) > 0
since ¢ is strictly positive in the neighborhood of the v’ v} associated to v constructed above.
Hence we deduce by taking 7’ < r close to r that for any 0 < p < g, we have

I > C(,ua T) 18(0,;“")

for some constant C'(u,r) > 0 depending continuously on r. We can choose p = (1 + pp)/2 for
instance, and, for this choice of i, we take

Cy = C(u,r) > 0.
0 = o fninyCln)

0

Finally we establish the following positivity result on the solution to the perturbed problem
(13.17)):

Lemma 4.5. Let us consider a collision kernel B which satisfies the assumptions ——
, a truncated operator Q% defined by or (3.16), and a sequence of smooth balanced
perturbations (P: = Pg(f))E>D which satisfy (3.18)-(3.19)-(3.20).

We assume that fo is a non-negative function such that fo € Hrlfer( L) with k € N and
k > d/2. Moreover, we define M = 2| fo|l;1 and for a smooth balanced perturbation of fo,

which is non necessarily positive and such that

foe= [ S and o~ focllny, < 0E)
Dy, Dy,

where () goes to zero when € goes to zero. We also set T,Ci(M) > 0 the constant defined
in Lemma[4.3 such that from Proposition [[.3 we have

vte 0,7, fOllmg, < Ck(M).

per

Then, there exists T € (0,7) which only depends on M, R and the collision kernel B, and
there exists € > 0 which only depends on 7, Cyx(M), such that for all € such that 0 < € < £ and
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for any smooth solution HE _(Dr) to the perturbed Boltzmann equation (3.17) with perturbed

per
initial datum fo ., we have

Vv e Dg, fa(%,v) > 0.
Moreover there exists n(e), which goes to 0 as € goes to zero, such that the non-positive part of
f satisfies
(4.12) [~ @[ < m(e), te€0,7],

Proof of Lemmal[f.5 Let 7 > 0 be the length of the time interval for which there exists a
smooth solution to the perturbed Boltzmann equation (3.17) with perturbed initial datum fo .
such that (in the following we omit the subscript € for the solution)

1f O, < Ce(M), t € [0,7].

We split the proof into three steps: first, we give a classical estimate on the loss term LR( )
second we establish an estimate of f~ with respect to the amplitude of the perturbation P.(f),
and third we use the spreading properties of QT (f, f) to prove that there exists 7 € (0,7)
such that

f(7,v) >0, v € Dy.

Step 1. Applying Proposition 4.3|for the control of || f(¢)||z: on the time interval [0, 7], we get

(4.13) ILE(N)llz= < CR,B) | fllr < C(R,B) M,

which gives for all t € [0, 7p], with 79 = min{7,In2/(M C(R, B))}

(4.14) 9 > MORB)t 5 o~ [LLR(f(9)ds ~ ,~MCRB)t 5 L
- - - -2

Step 2. Let us split f as f = f+ — f~, with f* = max{0, £} and use the monotonicity of
QT for nonnegative distribution functions; it follows that

QUL = Q¥ (fT=f "= F7)
(4.15) > = [T () +Q% (£ M)

On the time interval [0, 79, we apply Proposition [4.3|to estimate || f(¢)|| ;1 and since || f(¢)]| ;1 <
| f(£)]|11; we get from Lemma [4.1]

(4.16) Q™F (. f7) oo, QT (f7.f ) I < Coo(R. B) M |[f~(1)] £ov,
which yields using
(4.17) QF* (f,f) = —2Cuo(R, B) M || f~ ()] 1oe

Thus from the Duhamel representation of the solution f, we have for v € Dy,

Ftv) = for(v)e Jo LEFE)w)ds
+ / t [QRH(f(s), £(s)) + Po(f(5))] (v) e~ Js LRGN @) du g
0

> —2¢(e) — /0 [QRH(£(s), £()) + Po(£(5))] (v) e Je LEG )@ du g

Hence, we get from the lower estimate (4.17)) of QT*(f, f) and the smallness assumption (3.20))
of the perturbation P.(f), for all v € Dy,

[ (t0) = max{0, = f(t,v)} < 2¢(e) +2/0 (2Co(R, B) M [|f(5)]| o + ¢(e)) ds.
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Finally, we take the supremum in v € Dy, and apply Gronwall’s lemma to get for any 0 < 7 < 79
1F~ Ol < (249(e) + 270 p(e)) e* = BIME = (e), ¢ € (0,70,
which proves on the time interval [0, 79].
Step 3. Let us prove that there exists 7 € (0, 7y) such that
f(7,v) >0, wveDy.
We start again with the Duhamel representation of the solution

Ftv) = foe(v)e o LHUFE))ds

+ /0 [QRH(£(s), £(5)) + Po(f(5))] (v) e~ Js LRGN @) du g

but we now take into account the fact that the first term is essentially positive and we use the
spreading property of the operator Q"+ (Lemma .

On the one hand since the initial datum is smooth enough (k > d/2 is large enough such
that fo . is Holder), there exists an explicit 6 > 0 depending on Cj (M) such that for ¢ small
enough, there exists vg € Dy, such that

foe(v) 2 ngwo,é)(v)—w(&% with 7 = ”(J;OLH)L;

On the other hand, using the lower bound on the gain operator (4.17) and the estimate

(1) of £~ (1), it gives

QYT (£, ) = —2Cu(R, B) M (e)
Finally, using (4.14) and the smallness assumption on P.(f), it first yields for any 0 < 7 < 79
f(t,v) = Ao 1p,.6(v) — ¢1(8),
with
(4.18) Ap =~ wo(e) =270 (2Cs0(R, B) M n(e) + ¢(e)) + ().

Now we choose €1 > 0 small enough such that

AO AO
0 < ? < Ao—g@o(sl) <— 300(81) < 7
Thus, we get on any time interval [0, 7] C [0, 79]
A
2
Hence, using the spreading properties of the operator Q™% (f, f) of Lemma and the mono-

tonicity of Q™1 for nonnegative distribution functions, it follows that

fr(tv) > 15(v0,8) (V)-

A2
QET(fH M > ZO Q™ (18(wy.5)» LB(wo.5))

A?
> ZO Co 13('00,# 5)-

Next, we again use the uniform bounds previously established in on QFF(f*, f7) and
QUH(f f):

Q™ (f, f) QT (M) =™ (=™ (f+, )
A2
> IO CO 18(1}(),/16) -2 COO(R7 B) M (77(5) + @0(6))'

v
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Finally, from the smallness assumption ([3.20]) of the perturbation P.(f), it yields for ¢t € [1/2, 7]
and with (4.14)

fto) = —w(€)+/0 [QPF(£(s), £(5)) + P-(f(5))] (v) e~ Jx EEG D@ du g

T 2
z 3 %Co 15(w08) — 27 [2C0(B, B) M (n(e) +0(2)) + ()] = (e)

= A 18(1}@,#5) - 901(5)
with

A = gA% Cy, p1(e) =279 [2 Cx(R,B) M (77(6) + 900(5)) + ‘70(5)] —P(e).

Now, we proceed by induction: assume that there exists (A;,¢;, ;) such that on the time
interval [7 — 7/27, 7] C [0, 9] and for € € (0,¢;), we have

ftv) > Aj 1B(U0,}Lj 5)(”) - (pj(é“),
where

T\2/-1 j Gj—1_
4= (5) A

and @;(e) = 0as e — 0.
Using the same method as before, we first set ;41 such that

A
f+(t7 U) = 7‘718(U07ﬂj d)
and prove that for ¢ € [T — 57, 7]

A

2
Q10 = () Colsaurns ~ 20x(RB) M (1) + 52

Then, from the Duhamel formula and the smallness assumption of P.(f), we finally get the
following lower bound

ftv) = Ajr1 1gag wtts) — ©i+1(8),
with

Ajpr= %Af Co, ©jr1(e) =270 [2C(R, B) M (n(e) + ¢;(e)) + @(e)] — ¥(e).

Since u > 1, the ball B(vg, 47 §) eventually recovers the periodic box [—~L, L]¢ i.e., for some
J large enough: [—L,L]* C B(vg, u’ 6), and for all t € [ — 57, T|, by applying J’s times the
previous induction we get for € € (0,e):

f(t,’U) > AJ ]-B(vo,/r] 4) (U) - @J(E)‘

Finally, up to reducing e further, we have proved that there exists (7, £) which only depend
on the collision kernel B, the initial datum fy, L and the perturbation function ¢ = ¢(&) such
that for all 0 < € < €,

Vv e D, f(f,v)>0.
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4.2. Existence and regularity on a bounded time interval.

Proposition 4.6. Let us consider a fized time T > 0, a collision kernel B which satisfies the
assumptions —-, a truncation QT defined by or , and a sequence of
smooth balanced perturbations (P: = Ps(f))5>0 which satisfy (3.18))-(3.19))-(3.20).

We assume that fo is a non-negative function, not zero everywhere, and such that fo €
H* (Dp) with k € N and k > d/2. We define M = 2||foll;2 and (foe)eso a sequence of

per
smooth perturbations of fo (which is non necessarily positive) such that

fO,aZ/ fooand o= foellmr, < ¥(e)
Dy, Dy,

where 1(g) goes to zero when € goes to zero.
Then, there exists € > 0, which only depends on the H{jer(DL) and LY(Dr) norms of fo,

such that for all € € (0,€),
(i) there is a unique smooth solution f. = f-(t,-) on [0,T] to the perturbed equation
with initial datum fo.;
(13) this belongs to H{fer(DL) (with bound growing at most exponentially);
(i) there is some explicit n(e) > 0 (with n(e) — 0 as € goes to 0) such that the non-positive
part is n(e)-small:

Vit e [OaT]v er_(ta ')HL“’ < 77(5)

where f= denotes max{0, —f-};
(1v) this solution satisfies for any p < k

Vit e [OvTL ||f(t7 ) - fa(tv ')Hngr < @(5)

where f(t,-) is the solution of unperturbed periodized Boltzmann equation , and
@(e) is another explicit function which goes to zero as £ goes to zero. Hence up to
reducing €, the perturbed solution remains close to the unperturbed solution on the
finite time interval on which we have constructed it.

Proof. We set
(4.19) Mk(T) = Hf()”Hk GCMT.

per
First, applying Proposition [£.3] we have proven that there exists a small 7 > 0 such that the
perturbed Boltzmann equation (3.17)) admits an unique smooth solution on the time interval
[0, 7] with

[fe@lr < M
and

[fOllmy,, < Mp(T) < My(T).

per

Moreover from Lemma there exist 7 < 7 and € > 0, only depending on M, M (7) < My(T),
R and the collision kernel B such that for all 0 < & < &,

VveDr, f(r,v)>0,

£~ @)l < mle), tel0,7].
and )
vie 0,7, IfOlus, < I follge, M3

per per

Then, from the preservation of mass under the action of @ and P.:

o QR(fafa)(v) dv = P.(f:)(v)dv = 0,

DL
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we have that
fe(T,v)dv = fo(v) dv.
DL DL
Since fy is a nonnegative function, it gives that at time 7

=Dl = [l follzr,

and on the time interval ¢t € [0, 7] we have

[fe@llr < M and |[[fo(O)]l gy, < Mp(T).

Therefore, we consider the perturbed Boltzmann equation (3.17) starting from f.(7) as initial
data. On the time interval [7,2 7], we apply Proposition and get that

fe@ller < 20l = 2[lfoller = M, Vi e [7,27]

and

1@l < 1F) g, €M 77

< follag, €M7

per

< Afollmg, M = My(T), Vit € [7,27].

Moreover, since 7 only depends on M, M (T), B and R, we can again apply Lemma on
the time interval [7,2 7], which yields that

fe(27) > 0.

We finally proceed by induction to prove existence and uniqueness of a smooth solution f. of
the perturbed Boltzmann equation on the time interval [0, 7], which proves assertions
(i), (i) and (iii).

To prove (iv), we compute the difference between the solution f(¢) to the unperturbed
problem and the solution f.(t) to (3.17):

8(f_f5) _ 1

ot _5(QR(f_f€7f+f6)+QR(f+f67f_f€))+P€(f€)'
Then, using the smoothness of f and f., we have from Lemma for any p < k
1QF(S = fer F + Sl 1Q7(F + fer f = f)lz., < CoOM)If + Fellz,, I = Fellg,,

per per

and since the perturbation is small (assumption )
PPl g, < (o),
it yields that for all ¢ € [0, 7]
1F(#) = fe@Dl iz, < #(e),

for some function @(g) going to zero as € goes to zero. ]

5. ASYMPTOTIC BEHAVIOR AND GLOBAL IN TIME STABILITY

In this section we shall study the asymptotic behavior of the (unperturbed) periodized
Boltzmann equation based on a regularity study (in the spirit of [20]) and the entropy
— entropy production theory (mainly relying on the method developed in [32]). Finally on the
basis of these results we shall prove a global in times stability result for the perturbed equation
(13.17]).
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5.1. Regularity study of the periodized Boltzmann equation. Let us prove the follow-
ing result

Proposition 5.1. Let us consider 0 < fo € L*(Dr) such that fo € HE,(Dr) for some k > 0.
Then there is a constant C > 0 depending on the L' and HY, (D) norms of fy such that the

per

unique global non-negative solution (f(t))i>o0 to the periodized equation satisfies
VE20, [0l < C.

We proceed as in [20]. In particular we shall extend Lions regularity result on Q% to the
truncated case QM+t [16, 17]. Hence we shall first prove the regularity property on the gain
operator when the collision kernel is smooth and compactly supported, avoiding cancellations
at zero relative velocities. Then, we shall include the non-smooth part of the kernel using the
loss operator.

We shall split the collision kernel into a smooth and a non-smooth part. As a convention,
we shall use subscripts “s” for smooth and “ns” for the non-smooth parts. In terms of the
classical truncation we set

BE(lg, cos 0) = B(|gl, cos 0) x5 (1g]) ¢y(1g]) ©y (cos ),
BE(|g|, cos 0) = BE(|g|, cos §) — BE(|g|, cos b),

where Xf(g) is the mollified ¢ version of 1,4<g, (;(g) is the mollified € version of 14>y,
and ©,, is a ¥ function on [—1,1] whichis 1 on —1+42n <4 <1—2n, and 0 in [—1, -1 +7)
and (1 —n, 1] (the parameter 7 is the mollification parameter).

In terms of the “fast” truncation (3.16)) we set

Bl 1) = Bl o) XD Xl 61+ o) €, (ol )

Bii(lyl, 1)) = B (lyl, 1)) — BE(lyl, |2)),

with the same notations.
We deduce the following decomposition of the collision operator:

R+ _ nR+ R,+
Q - Qs + Qns bl

where for instance, with the variables from the “fast” truncation

(5.1 B = [ BN 2) fo+ ) S+ ) dy

Yy

Under the assumption that both ® and b defined in ([2.2)) are smooth, the regularized truncature
introduced above ensures that there exist two functions @f and bﬁ such that

{ Bff(\z\,cos 0) = @?(]2\) bff(cos 0)
(5.2)
of € 5o (RN\{0},R), b € 65°([-1,1],R).

In the following lemma we shall prove the regularity property of Qf a

Lemma 5.2. Let Bff(|v — Vx|, cos ) satisfy the assumption — and . Then, for

allr € Rt
< Crog(r, BE) [1£ e [1f )1

per’

HQE’—i_(fa f)H 7'+%
H,

per

where the constant Creg (1, BE) only depends on r and on the collision kernel.
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Proof. We closely follow the proof given by Lions [16] [17] and simplified and then reformulated
in [33,20]. Again the preservation of the translation invariance by the truncation is fundamen-
tal. Starting from the collision operator in the form and performing a change of variable
we get for v € Dp,

ST :/d BE(Jv, =l 0" = v]) 6 () —v) - (v =) f(u]) () dv v,

Rd x R4

where B only depends on BE. Then we set [34]

To) = [ BRI o) e ) =gl 2,
y+yt
where
yL:{zeRd, zt-yzo}

and easily get for v € Dy,
QR (S) = [ ) (e Tor ) fo)
R4

Now, we want to estimate Sobolev norms of QSR " as a function defined in the torus Dr.
Applying the Fubini theorem with the discrete and Lebesgue measures and the Cauchy-Schwarz
inequality, it leads to estimate the Sobolev norms of the Radon transform 7" on the torus Dy,

63) QAN < Il /R MO o Tor fIE, s v

On the one hand, since the kernel Bf is compactly supported in y and z, the operator T’
maps periodic functions g to a compactly supported function T'g with supp (T'g) C Br C Dy.
Then, we can consider T'g as a function in the whole space R .

On the other hand, using the regularized truncations Xﬁ and ©, and the smoothness of ®

and b in (2.2), it yields that B = ®F(jv — v,[) bf(cos #) with
O e € °(R,R), b €€ ([-1,1),R).

Then, we can directly apply the result in [20], where the authors proved the following regularity
estimates on the Radon transform 7' for smooth kernels

R
ITgll, i < Cragr, BE) gl

for a function g defined in R%. However in the proof of the latter inequality, we can replace
g by the smooth and compactly supported function g Xff for which supp (Xff g) C Br C Dy.
Thus, for all g defined in the torus Dy, we get

(5.4) ITgll oz = Tl oan < Creg(r,BY) lglay,

per

Finally gathering (5.3) and (/5.4]), we obtain the result
|QFHLNN yazr < Crealr BOIS e £l

per

g

Corollary 5.3. Let Bf(|v — vy|, cos @) satisfy the assumption — and . Then, for
all p € (1,00)

IQEF(f, Nllze < Creglr, BE) I fllzr [1F v
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with
T b T ifpe(1,2]
¢={ 2-g+r(z—1)
pd if p € [2,00).

Proof. 1t is a direct consequence of Sobolev embedding and interpolation between LP spaces.
O

Now we extend the regularity of Q" to general non-smooth kernels.

Lemma 5.4. Let B be a collision kernel satisfying -. Then, for all p > 1, there exist
constants C, k and ¢ < p (q only depending on p and d), such that for all 6 > 0, and for all
measurable function f

Q% (£ Nl < OO I flt 1 fllze + 810t 1o

Proof. We use a decomposition approach and split the operator Q™ as the sum of a smooth
part and a non-smooth part

R+ _ nR+ R+
Q - Qs + Qns 9

where Q%" is given by (5.1). Then, applying Corollary we have for all p € (1,00), there
exist ¢ < p, namely (the role of ¢ and p are exchanged here with respect to Corollary

(2d—1)p .

2P pe(1,2d
) dr@—1p ifpe(1,2d]

g if p € [2d, 00).

and Creg (7, Bf), depending on the the regularization parameter 1 and blowing-up polynomially
when 77 — 0 such that

(5.5) [QEF(f. Nl e < Cregln, BE) [If o [IF e

Now, we need to estimate the remainder Rt = Qft — Qf . To this aim, we split it as

QRH(£. ) = QP (£, H+ QT (£ )+ Q5T (F. )+ QT (f. f),
with

B = [, B

I\

)x (121 XFyl) = xair ()] G O f fLdydz,

Sy 2 xXE(yl) 2D = xE(2D)] ¢ O, f frdydz,

I
T
IS
X
S
& 8
o)
fam
=
~
N
(o9
—~~
<

R,+ _ 5 YR R _ |y‘ 1 gl o
s (ff) = /RdedB(!yv\ )6y - 2) xiy (121) X3 ([y]) o [1 O <|y|2+|z|2>] [ fdyd

B0 = [ B2 D ) € (1= G) f fLdy

On the one hand, we give a first estimate in L'(Dr) applying directly the estimate in Lemma

4.1t
(5.6) Qs < Ci(R.B)Iflleelfllor, o€ {1,2,3,4}).
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On the other hand, we treat for instance the operator Q?’Jr( f, f) and have for a fixed v € Dy,
R+
Q" (£, 1))

< / B(lyl, 12) 6(y - 2) x*(1=1) Xyl = xaf (D] 111 2] dy d=
RdxR4

< [ (B0 b= s =) (o)
< (o — L)) — (o — o) |71 ol ) df
< 1l 1o~ sup (/ BR(2], ul) \XR(!Z\)—an(\ZIHdZ)
yeRd z€ yt
< ColR B0l 1]

Using similar techniques, we prove that for a € {1, 2, 3}
(5.7) 1QF Iz < Coo(B, B) || fll ol Il

For the fourth term, we have using the cancellation of the collision kernel B at small relative
velocities as [v — vy|7:

(5.8) 1QE Nz < Coo( B, BY Y [ fllr [ f 2o

Finally, by the Riesz-Thorin interpolation Theorem, from (5.7H5.8) and (5.6]), we deduce that
for p € [1,400] there exist Cp,(R, B) > 0 and 3 € (0,1] such that

(5.9) Q& (£, Nllee < Co(R, B) 1P| fll oo I £l -

To sum up we have obtained for all p > 1 and n > 0, there exist C' > 0, ¢ < p, k9 > 0 and
B € (0,1) such that

1Q%*(f, Dller < o™ Il If s + 0”1l 17 lzo-

The conclusion follows by choosing 1 small enough. O

Proof of Proposition[5.1 Now the proof of the propagation of regularity bounds is done exactly
as in |20, Section 4 and Subsections 5.1 & 5.2] (except for the simplification that there is no
moments estimates to take care of). g

5.2. Entropy — entropy production inequalities. The periodized equation (3.21)) pre-
serves non-negativity, and for a non-negative distribution f one can formally compute an H
theorem (see [14]):

d
SH(7() = ~D(f(1) 0
with
H(f) = [ fogfde
DL
and
o)== [ @ noesar=g [ = pnyos (%) B s dvdya

Then we can state the result which relates the entropy functional H and the entropy pro-
duction functional D:
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Proposition 5.5. We consider the periodized Boltzmann collision operator for some truncation
parameter R > /2 L, and we assume that the collision kernel satisfies B > by |v —v,|7, v > 0,
for v —vy| < R. Then for any n,a > 0 there is k € N and M, K > 0 (depending only on
n, e, by, v, R) such that

D(f) > K H(flmoo)™, Mo = f dv,

o,
DLl D,

for any o < f € LY(Dy) with HE, (D) norm bounded by M.

per

Remarks:
1. Note that this is a functional inequality independent of the flow of the Boltzmann equation
itself.

2. In the case of the classical Boltzmann equation with v € R the entropy production
functional controls the relative entropy according to the Maxwellian equilibrium. Here the
equilibrium is a constant, defined by the mass of f divided by the total volume of the torus.

We shall adapt the method developed in [32, Proof of Theorem 2.1]. In the first step, we
treat the case of a collision kernel B which is uniformly bounded from below. In this case we
prove the equivalent of the so-called Cercignani conjecture in the context of the Boltzmann
operator periodized in the velocity space.

Remark: Note that the assumption R > V2 L allows to replace in the bound from below,
when needed, the truncation by the integration over the whole torus.

Lemma 5.6. Let us consider a collision kernel B which satisfies B > by > 0, a truncation
QF defined by or , together with R > /2 L. Then there is an explicit constant K
such that for any 0 < f € L*(Dr) we have

D(f) = K H(f[meo).

Proof. We proceed in several steps.

Step 1. Since the entropy production functional is monotonous in terms of the collision kernel
B, it is no restriction to replace B by 1 in the sequel for the estimate from below. Moreover it
is always possible to bound from below the truncation |[v —v'| < R and |v—v}| < R (in case we
performed the truncation for the fast spectral method) by the classical truncation [v—uv,| < R.

Step 2. Using Jensen’s inequality on the sphere integration (coming back to the classical
truncation by the previous remark) and the joint convexity of the function (X,Y) — (X —
Y) (log X —logY) on Ry x Ry we compute

F _
D(f)>C /DL /B(%R)(F—G) logadwdv =: D(f)

where ' = f f, and
1
G=——+F " fi do.
G o 10

Let us study more precisely the function G. As it was already observed by Boltzmann himself,
the function G only depends on v + v, and (|v|?> + |v.|?)/2. Moreover, here it is also periodic
on the torus Dy, since f is periodic. It implies (when f is smooth, but we can always use
mollifications to relax this assumption here) that it in fact only depends on v + v.
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Step 3. Let us denote by S; the semi-group of the heat equation on L'(Dy) (and for brevity
we keep the same notation for its semi-group in L'(D?)). Then the semi-group is compatible
with the symmetries in the sense that:

St(ff*) = St(f) St(f*)
and S;G only depends on v + v, (this follows from a straightforward computation using the
explicit formula for the Green kernel of S;).
Step 4. Then we have the following computation as in [32]:

2

d (F+G),

dt

S,F
£3.G

S, ((F —G) log g) — (S,F — S,G) 1o

_|VF VG
| F G

t=0

where V denotes the gradient with respect to (v, v,) € R4
Then we bound from below the truncation 1p(, g)(vs) by the integration over the whole
torus for v, (since R is large enough), and we compute

d _ VF VG
b = [
DL XDL

—/ A <(F -G) logF> dv dvy
DLXDL G

dt F G
B / VF VG|
DrxDyp,

— — ——| (F+G)dvduv,.
We deduce by the semi-group property that for all ¢t > 0

F G
d - F
—D(Stf)Z/ V.S, _VStG
dt DL XDL
and therefore

202 [ (.,

SiF SiG
Step 5. We now use the fact that the operator
RYx R? +— RY
@B ~ (4-B
is bounded from Dy, x Dy, to Dy,. Hence

VS:F B VS:G PVS:F
StF StG StF
since PVS,G = V,G — V,,G = 0 from the fact that G only depends on v + v,. We deduce

_ +oo V.S V,.S
ooze [T (5% (%)

St f St f
and thus (dropping the term S;G)

iz [ (/DD

2
(F + G) dv dv,

t=0

2
(StF + S:G) dv dv,

VSF  VSG
SiF SG

2
(StF + StG) dv d'l}*> dt.

2
= U1

2

2
(Stf Stf* + StG) dv d’U*> dt

VoSif (vv*Stf>
Sif Stf ).

2
St f St fy dv dv*> dt.
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Step 6. From now on the proof departs slightly more from [32]: it is simpler since we are in
the torus and we have more symmetries. Let us show the following functional inequality: for
any smooth non-negative function h,

/ Voh <Vv*h>
DLXDL h h *

1le) = [ K

The proof only amounts to Jensen’s inequality on the variable v,: since fDL hdv = p,

Voh (V. h\ ? C Voh (V. h
- - h* d’U*
Dy, xDyp, h h * €Dy, h h *

hh,dvdv, > —
P Jpoy
Then as
Vh* dU* — 0
DL

2
h hy dv dv, > Co I(h|mog)

where
2

dv.

h
V. log —
g

2
hdv.

we deduce
2
hh, >C
Dr,

2

Voh hdv = CI(hlmeo).

/ Voh (vm)
DLXDL h h’ *

Step 7. So far we have proved

— +OO
D(f) > D(f) > Cs /0 1(S1f|meso) dt.

Then a trivial computation shows that

SH(S o) = —I(5:flm-o).

Moreover from the explicit formula for .S; we have

H(S,f|meo) =520

and thus we finally obtain
D(f) = D(f) = Cs (H(SofImeo) = 0) = Cs H(f|mog).
O

Now we are ready to prove Proposition [5.5} Since we deal with a bounded velocity domain
we do not care about possible decay of the collision kernel at large relative velocity (as for soft
potentials) and the only cancellation we have to treat is for zero relative velocities.

Proof of Proposition[5.5 We only mention the difference as compared to the previous proof.
The reduction to a collision kernel uniformly bounded from below studied in Lemma [5.6] is
done as in [32][Theorem 4.1]: one write for some small § > 0

B(lv—wvy|) > &7 (BO - 1B(0,6)(|U - U*D)
where By > by > 0 and we deduce

D(f) = & (Do(f) = Ds())

where Dy is the entropy production functional corresponding to By, and
! gl

-1
Ds = 4 /DLxDL /Sd_l(f/fi — ffx) log {;;: 13(0,6)(|[v — vi|) do dv duy.
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Then we have the following Lemma, which is proved exactly similarly as [32, Theorem 4.2].
It is even simpler since Maxwellians are replaced by constant functions and the study of the
tail is not needed (we omit the proof for brevity).

Lemma 5.7. For any € € (0,1) and o > 0, there are constants of smoothness k, M and some
corresponding constant Cgiag > 0 such that

Ds < Cuiag H(flmoo)'~ 5¥/*
for any o < f € LY (D) with H:_(Dr) norm bounded by M.

per

But since we have
Dy(f) > C H(f|mo)

from Lemma [5.6] it is straightforward to get the result by choosing correctly the parameter 4.
O

Now we can proceed to the proof of Theorem

5.3. Proof of the global in time stability. In this subsection we shall turn to the question
of obtaining uniform bounds as well as global existence, in order to conclude the proof of
Theorem Indeed in Section 4 the smallness assumption on the truncation parameter € a
priori depends on T and could go to 0 as T goes to infinity, since it depends on regularity
bounds growing exponentially in times.

In order to overcome this difficulty, we shall combine the following arguments:

e for the unperturbed problem we have a Liapunov structure and the solution con-
verges to a unique prescribed equilibrium from the regularity and entropy production
studies;

e the equilibrium distribution of the unperturbed problem (3.21)) (that is the constant
functions on the torus) are also equilibrium distribution of the perturbed problem
(B.17);

e by taking the size of the perturbation small enough (measured in terms of ¢) it is
possible to construct a solution to the perturbed problem on an arbitrarily large time
interval [0, 7], on which moreover the perturbed solution remains close to the unper-
turbed solution , say in Sobolev norms;

e finally the constant equilibrium functions are non-linearly stable for the perturbed
problem, with a stability domain independent on the size of the perturbation.

Hence we shall deduce that as soon as the time for which the perturbed solution departs
from the unperturbed solution is larger that the time-scale of relaxation to equilibrium for the
unperturbed problem , the perturbed solution shall be trapped by the stability domain
of the equilibrium before instability due to the perturbation can develop. Let us formalize
these arguments in a proof:

Proof of the global stability and asymptotic behavior in Theorem[3.1]. Let us consider some ini-
tial datum 0 < fo € L' which belongs to Hl];er (D), and some smooth balanced perturbations
fo,e of it. These perturbations have the same mass, and therefore are corresponding to the
same equilibrium (this is the reason for this assumption).

Since the smooth balanced perturbation preserves the constant equilibrium of and is
nonlinearly locally stable in any ngr(DL), we fix a 7 > 0 such that the constant distribution
Mmoo = p/|Dr| associated to the mass p of fy on the torus has attraction domain with size 7

in ngr(DL) for the perturbed problem (3.17).
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On the one hand, we show that there exists a unique solution f(t) to (3.21) and from
Proposition [5.1] we obtain uniform regularity bounds for all ¢ > 0

LF @Ol s, < C.

per

Moreover, from Proposition there exists a time T such that the solution f(t) is /2-close
to the equilibrium in Hbe(Dy) (p < k) for t > Ty (using the Csiszar-Kullback inequality in
the torus, see [5, Theorem 1] for instance):

1F(#) = mooll

- < n/2.
On the other hand, applying Proposition [£.6] with 7' = T, we prove that there exists &,
which only depends on the H¥ (Dr) and L'(Dy) norms of fy such that for all & such that

per

0 < € < €, there exists a unique smooth solution f.(t) € ngr(DL) to (3.17) on [0, Tp] such that
vte[0,To], [feM)lag, < C(To),

and (for any p < k)
1f (&) = feOllmz, < e(e),

where f(t) is solution to and @, () goes to zero when € goes to zero.

Then, we fix a perturbation parameter £ small enough such that for € € (0, ) the perturbed
solution f. satisfies

1F(&) = fe Dz, < n/2.

Finally, at time Ty the perturbed solution f. belongs to the stability domain of the constant
distribution for the perturbed problem and it is trapped.

Therefore there exists a unique global smooth solution f., which is uniformly bounded for
all t > 0 and such that for any p < k

Ife@®laz,, < max(C(To),C +n).
This achieves the proof of (i), (ii), (iii) and (iv).

6. APPLICATION: STABILITY AND CONVERGENCE OF SPECTRAL METHODS

In this section we consider the following spectral approximation of ([3.21)

N P Q" ),

where Py denotes the orthogonal projection on Py in L?(Dy) (the space of trigonometric
polynomials with degree less at most N in each direction).
The goal of this section is to prove the following theorem:

Theorem 6.1. Consider any nonnegative initial datum fo € HE, (Dr), with k > d/2, which

is not zero everywhere. Then there exists No € N (depending on the mass and ngr(DL) norm

of f) such that for all N > Ny:
(1) there is a unique global solution fn = fn(t,-) to the following problem

%fév = Py Q% (fn, fn),
(6.1)

fn(t =0) =Py fo;
(ii) for any p < k, there exists C > 0 such that
viz0, fnt)lme, < C

per
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(#i7) this solution is everywhere positive for time large enough, and the mass of its negative
values can be made uniformly (in times) L*° small as N — oo;
(iv) this solution fyn converges to f(t) the solution to with the spectral accuracy,
uniformly in time;
(v) this solution converges exponentially fast to a constant solution on the torus prescribed
by the mass conservation law.

To prove Theorem we want to apply Theorem with the perturbation
P (fn) =Py Q" (fn, fn) — Q" (N, fn),

which preserves the mass:

[ PR = [ (Px@ v tn) - Qh.f) do = 0

DL,

In the next Lemma, we prove a consistency and smoothness result for this approximation.

Lemma 6.2. Consider a nonnegative function f € HE _(Dp), with k > d/2, which is not

per
zero everywhere. Then, there exists C' > 0 depending only on the collision kernel B and the

truncation such that for all p € [0, k] we have
(6.2) 1PF (g, < CUFlr 1 f g,

per
Moreover, for all p € [0, k|

1 ez

(6.3) 1PN (Dl < ClF L~y

Proof. First, we split the operator Py as

IPR (g, < NQECE, Az, + 1PN QS )l a,,

per p
As in the proof of Lemma we get that for all p € [0, k]
(6.4) Q™S NI, < Co(B.B) 1172 1/ 1,

Concerning the interpolation error estimate, the following result holds. If u € Hbe (Dy) for
some p > 1, then

(6.5) lu = Prullpg,, < 5= llullag,

Then, taking p = k in the latter inequality and from (6.4]) we obtain
(6.6) IPNQE(f, litys, < Q%S Pl < Co(RB) 1A £ I,

per per per

Gathering (6.4) and (6.6]), we finally get
1PNz, < Co(R,B) Il 11f 1z,
Moreover, using again the error estimate (6.5)), it yields

1QR(F, 1)l
PRy, < €t e

Nk-p
£l e,
< CRB) flln —gpp
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Let us now perform a linearized study of the perturbed equation (6.1]) by classical Fourier-
basis decomposition. The only equilibrium distributions of the equati are the constant,
prescribed by the mass conservation. Let us consider the linearized version of the perturbed
equation around such a constant m:

0
87{ = Mco EN’R(f)

where
LYE(F) =Py [QF(f,1) +QF (L, f)] -

Let us prove the following lemma:

Lemma 6.3. The operator LN is bounded and self-adjoint in L?>(Dr). Moreover it is non-
negative, its null space is given by the constant functions, and it has a spectral gap X > 0. As a
consequence, the constant are nonlinearly locally stable in any ngr(DL) for the equation ,
with a stability domain independent on N.

Proof. The boundedness is trivial. Then, the periodized operator Q' is translation invariant,
which implies that the Fourier modes

exp [i T (k- )]

€k(U) = ’DL’

for k € Z% are trivially eigenfunctions of £V-®. This provides a complete orthonormal eigenbasis
in L?(Dy). A trivial computation yields

LY (e) = ap e 1<y with ag = —/ 1+ er(y+2) —er(y) —ew(2)] By, z) dy dz.
Cr

In particular we deduce that £V = £V-E Py and the self-adjointness comes from the follow-

ing identity obtained by the usual changes of variables:

/ LN (f) gdv = —% / [Py +Pnfi—Pnf—Pnfi
Dy

DrxCr
X [PNQ/ + Png,. — Png — PNQ*] B(y, z) dy dz dv.

Another formula for a; is readily deduced from the previous representation:

W= _i /D “c [(ex) + (ex)l = (ex) = (ex)s|” Bly, 2) dy dz do.

One sees from the second representation that ar, = a_j, < 0 for any k € Z%, and from the
first representation and Lebesgue theorem it is easily seen that for |k| — oo the coefficients ay
converge as

ay — oo = — | B(y,2)dydz € (—o0,0).
k| —o0 Cr

Hence we deduce that ay € [aeo,0] for any k € Z%, with asymptotic convergence towards aqo
for large k. Moreover the null space can be computed: for some smooth periodic function ¢,
the equation

¢/+¢;_¢_¢*:O
implies that the third-order derivative of ¢ is zero, and the periodicity then imposes that it is
a constant. Thus the null space is spanned by eg. It concludes the proof of the existence of a
spectral gap
Ay :=min {|ag|, k€ [| = N,N[]% k#£0} >0
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which is uniformly bounded from below as N — —+o00, since
AN = Aoo :=min {|ag|, k € 7% k+ 0} >0.

The non-linear stability in L? comes from the fact that for the perturbation h = f — Mee,
we have the following control on the bilinear part:

IPNQT (h Bl s, < C.r 11|17

for some given constant Cz g > 0 independent on N.

Finally using the eigenbasis of the Fourier modes, a similar study can be performed in any
Sobolev space H{fer(DL). O
Remark: Exact computations could be made for particular physical collision kernels B (in a
similar way as the computation of the kernel modes (I, m) in [111, 12| 21, 14]).

6.1. Proof of Theorem Consider the numerical solution fx given by solving (6.1]). We
can formulate the problem as a perturbation of the truncated Boltzmann equation. Indeed
setting

the problem ([6.1)) can be written as

OIN _ Q" (fx, I) + Pr(f).

Then, applying Lemma the perturbation Py satisfies the assumptions of Theorem
Moreover since fo € H* (Dr), we have straightforwardly

per

1N (O, < Ifollag.,,  1/5(0) = follmz,, — O

Ber Der
Hence, we can directly apply Theorem to the perturbation Py, which proves that there
exists Ng large enough and only depending on fy, the kernel B and the truncation, such that
for all N > Ny, the perturbed system admits a unique uniformly smooth solution, which
converges to a constant, and satisfies all the points in Theorem [3.1]
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