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HIGH ORDER RESOLUTION OF THE

MAXWELL-FOKKER-PLANCK-LANDAU MODEL INTENDED FOR ICF

APPLICATIONS

ROLAND DUCLOUS, BRUNO DUBROCA, FRANCIS FILBET AND VLADIMIR TIKHONCHUK

Abstract. A high order, deterministic direct numerical method is proposed for the non-relativistic
2Dx × 3Dv Vlasov-Maxwell system, coupled with Fokker-Planck-Landau type operators. The
magnetic fields, perpendicular to the 2Dx plane surface, and the electric fields, contained in this
plane, are resolved with Maxwell equations. Such a system is devoted to the modelling of the
electronic transport and energy deposition in the general frame of Inertial Confinement Fusion
applications. It is able to describe the kinetics of plasma physics in the nonlocal thermodynamic
equilibrium regime, and permit large anisotropy degree of the distribution function. Strong nu-
merical constraints lead us to develop specific methods and approaches for validation, that might
be used in other fields where couplings between equations, multiscale physics, and high dimen-
sionality are involved. Parallelisation (MPI communication standard) and fast algorithms such as
the multigrid method are employed, that make this direct approach be computationally afford-
able for simulations of hundreds of picoseconds, when dealing with configurations that present
five dimensions in phase space.

Keywords. High order numerical scheme, Fokker-Planck-Landau, NLTE regime, ICF, Magnetic
field, Electronic transport, Energy deposition.
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1. Introduction

In the context of the interaction of intense, short laser pulses with solid targets [1], Inertial
Confinement Fusion (ICF) schemes [2, 3], the energy transport is an important issue. In this
latter field of applications (ICF), it determines the efficiency of plasma heating and the possibility
to achieve the fusion conditions. The appropriate scales under consideration here are about a
hundred micrometers for the typical spatial sizes, and hundreds of picoseconds for the time scales.

Several key features should be accounted for. First of all, in typical ICF configurations, a
significant amount of energetic electrons have a large mean free path, exceeding the characteristic
gradient length of the temperature and the density: the particles motion exhibits nonlocal features.

A wide range of collisional regimes should be dealt with to describe the propagation and the
deposit of energetic electrons from the underdense corona of the target to its dense and compressed
core.

The collisions are important even if the beam particles themselves are collisionless [2] : these
particles, when propagating in a plasma, trigger a return current that neutralizes the incident cur-
rent. This return current is determined by collisions of thermal, background electrons. The struc-
ture of the generated electron distribution function is then often anisotropic, with a strongly inter-
correlated two population structure. For non-relativistic laser intensity, smaller than 1018 W cm−2,
a small angle description for collisions between the two populations is well-suited, leading to the
classical Fokker-Planck-Landau collision model. The Coulomb potential involves multiple colli-
sions with small energy exchanges between particles, so that the Landau form of the Fokker-Planck
operator is required here. Such a configuration with two counterstreaming beams typically leads
to the development of microscopic instabilities that can modify strongly the beam propagation.
We refer to the two-stream and filamentation instabilities, where the wave vector of the pertur-
bation is respectively parallel and perpendicular to the incident beam [4, 5]. A self-consistent
description of electromagnetic fields is then required to describe the plasma behaviour and as-
sociated instabilities. Furthermore in the process of plasma heating, strong magnetic fields are
generated at intensity that can reach a MegaGauss scale and may affect the energy transport
[6, 7, 8]. The sources of magnetic field generation include on the one hand the effects of the
rotational part of the electronic pressure which is a cross gradient ∇T × ∇n effect, and on the
other hand the exponential growth of perturbations of anisotropic distribution functions (Weibel
instability). Some electromagnetic processes can be strongly coupled with nonlocal effects [9, 10].

The plasma model studied in this paper is based on the non-relativistic Vlasov-Maxwell equa-
tions, coupled with Fokker-Planck-Landau collision operators. It gathers the listed requirements
at laser intensities which are relevant for ICF. At higher laser intensities, a relativistic treatment
should be considered [2, 11], and collision operators with large energy exchanges are required if
secondary fast electron production proves to be non-negligible, particularly with dense plasmas.
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There are several numerical methods that treat the Vlasov-Maxwell model together with
Fokker-Planck-Landau type operators. Among them, the collisional Particle-In-Cell (PIC) method,
originally designed to describe accurately the collective effects, gives satisfying results in a limited
range of collisional regimes. It suffers from the “finite grid instability”, that involves numerical
heating. Also the statistical noise and the low resolution of the electron distribution function
by PIC solvers generally lead to an inaccurate treatment of collisions, particularly when dealing
with low temperature and high density plasmas. In the high density regions (hundreds of critical
densities), the computational resources needed by the PIC method become currently excessive.
Recent collisional PIC solvers [12] turn to weighted macro-particles to attain high densities, to-
gether with high order numerical schemes, to reduce the numerical heating.
Another type of widely-used method consists in the expansion of the distribution function in
Legendre polynomials, retaining the lowest order terms [13, 14]. However, with this approach,
a strong anisotropy of the distribution function cannot be treated [2, 13, 15]. To overcome this
difficulty, a method based on spherical harmonic expansion can be employed [16, 2], that proves
to be efficient in various regimes. However, these expansion-based methods may still present
inaccuracies, that need to be quantified, in the regimes where collective effects are important. In
particular, a situation that is to be considered in ICF applications is the configuration where a
collisionless anisotropic fast electron population is coupled to a collision dominated thermal pop-
ulation. Also, a configuration of importance, where an accurate description of collective effects
is required, together with a collisional treatment, concern the beam energy transport in regions
close to the critical density.
Here we propose a different, complementary approach, that could potentially address these com-
plicated situations. It consists in approximating the full model by a direct deterministic numerical
method. Such method do not involve, this should be emphasized here, any perturbative expan-
sion or linearization of the distribution function around an equilibrium state, to obtain reduced
and tractable collision operators. It discretizes directly the initial set of equations and enables
to preserve, at a discrete level, the physical invariants of the model (positivity of the distribu-
tion function, total mass and energy, entropy decreasing behaviour, etc). Many deterministic
schemes of this type have already been considered for homogeneous Fokker-Planck type operators
[17, 18, 19, 20, 21]. The nonhomogeneous case, that includes the transport part (see [22] for a
comparison between Eulerian Vlasov solvers), involves a large computational complexity that can
only be reduced with fast algorithms. Multipole expansion [23] and multigrid [19] techniques, as
well as fast spectral methods [20, 24], have been applied to the Landau equation. For computa-
tional complexity constraints, very few results on the accuracy of these methods are known in the
nonhomogeneous case [25, 24], particularly when the coupling with magnetic fields is considered
[26].

Our starting point for the transport part discretization is a second order finite volume scheme
introduced in [25]. Its main feature is that it preserves exactly the discrete energy, if slope limiters
are not active. We introduce additional dissipation on these limiters in order to successfully
address the two-stream instability test case. We will underline the important role of the limitation
procedure for the accuracy, on the second order scheme. This scheme is compared in this test
case with a fourth order MUSCL scheme [27], with a limitation ensuring the positivity of the
distribution function [28]. A similar approach, with the introduction of a fourth order scheme for
transport to avoid numerical heating, has already been proposed in the context of PIC solvers
[12].
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The discretization of the Maxwell equations is performed with a Crank-Nicholson method,
allowing the time steps to be of the order of the collision time. It is designed to preserve the discrete
total electromagnetic energy, which is a very important numerical constraint when considering the
coupling of Vlasov and Maxwell equations for applications aiming at capturing an accurate energy
deposition. We use for the Landau operator a fast multigrid technique that proves to be accurate
in a wide range of collisional regimes. Moreover, the use of domain decomposition techniques
and distributed memory MPI standard on the space domain leads to affordable computational
cost, and the treatment of time dependent, 2Dx × 3Dv problems. As for the Lorentz electron-ion
collision operator, we insist on discrete symmetry properties that are important when coupling
to the Maxwell equations.

Finally, we propose to validate the numerical method on several physical test cases.
The paper is organized as follows. First, we present the model and its properties, then we discuss

the numerical schemes for the transport part, their properties, and propose several numerical tests.
Then the discretization for the collision operators is treated and we finally present physical test
cases 1Dx × 3Dv and 2Dx × 3Dv that show the accuracy of the present algorithm.

2. Kinetic model

Two particle species are considered: ions which are supposed to be fixed (assuming an electron-
ion mass ratio me/mi ≪ 1), and electrons for which the evolution is described by a distribution
function fe(t,x,v) where for the more general case (x,v) ∈ Ω × R

3, with Ω ⊂ R
3. The non-

relativistic Vlasov equation with Fokker-Planck-Landau (FPL) collision operator is given by

(1)
∂fe
∂t

+ ∇x · (v fe) +
qe
me

∇v · ((E + v ×B) fe) = Ce,e(fe, fe) + Ce,i(fe),

where qe = −e is the charge of an electron and me is the mass of an electron. On the one hand,
electromagnetic fields (E,B) are given by the classical Maxwell system

(2)



















∂E

∂t
− c2 ∇x × B = − J

ǫ0
,

∂B

∂t
+ ∇x × E = 0,

where ǫ0 represents the permittivity of vacuum, c is the speed of light. The electric current is
given by

J(t,x) = qe

∫

R3

fe(t,x,v)v dv.

Moreover, Maxwell system’s is supplemented by Gauss law’s

(3) ∇x ·E =
ρ

ǫ0
, ∇x ·B = 0,

where ρ is the charge density:

ρ = qe (ne − no) = qe

(∫

R3

fe(t,x,v)dv − n0

)

,

and n0/Z is the initial ion density.
In this model, the Vlasov equation stands for the invariance of the distribution function along

the particles trajectories affected by the electric and magnetic fields E and B. The Vlasov
transport terms, in the left-hand side of equation (1), are written in their conservative form,
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but they can also be written in an equivalent non-conservative form, while Maxwell equations
(2)-(3) provide with a complete self-consistent description of electromagnetic fields. The coupling
between both is performed via the Lorentz force term E + v×B in the Vlasov equation, and the
current source terms in Maxwell equations.

On the other hand, in equation (1), the right hand side represents the collisions between
particles, which only act on the velocity variable. Thus we drop the x variable. The FPL
operator Ce,e(fe, fe) stands for the electron-electron collision operator

(4) Ce,e(fe, fe) =
e4 ln Λ

8π ǫ20m
2
e

∇v ·
(∫

R3

Φ(v − v′)
[

fe(v
′)∇vfe(v) − fe(v)∇v′fe(v

′)
]

dv′

)

,

whereas Ce,i(fe) is the electron-ion collision operator

(5) Ce,i(fe) =
Z n0 e

4 ln Λ

8π ǫ20m
2
e

∇v · [Φ(v)∇vfe(v)] .

where ln Λ is the Coulomb logarithm, which is supposed to be constant over the domain and Φ(u)
is an operator acting on the relative velocity u

Φ(u) =
‖u‖2 Id − u⊗ u

‖u‖3
.(6)

The FPL operator is used to describe elastic, binary collisions between charged particles, with
the long-range Coulomb interaction potential. Classical but important properties of the system
(1)-(3) together with operators (4) and (5), are briefly recalled. For detailed proofs, we refer to
[25, 29]. As we assume ions to be fixed, the FPL operator can then be simplified for electron-
ion collisions [25], and reduced to the Lorentz approximation. We refer to [30] for a physical
derivation.

2.1. Transport equation under electromagnetic fields. Let us neglect in this section the
collision operators, and consider a periodic or infinite space domain. The Vlasov-Maxwell system
(1)-(3) with a zero right-hand side is strictly equivalent to (1)-(2) provided Gauss’s laws (3) are
initially satisfied. This gives a compatibility condition at initial time.
The mass and momentum are preserved with respect to time for the Vlasov-Maxwell system, i.e.
system (1)-(2) without collision operators

d

dt

∫

R3×R3

fe(t,x,v)

(

1
v

)

dxdv = 0, t ≥ 0.

Moreover, the conservation of energy can be proved for the Vlasov-Maxwell system by multiplying
equation (1) by me ‖v‖2/2 and integrating it in the velocity space. It gives after an integration
by parts

1

2

d

dt

∫

R3

{

ǫ0 ‖E(t,x)‖2 +
1

µ0
‖B(t,x)‖2 +

[∫

R3

me‖v‖2fe(t,x,v)dv

]}

dx = 0, t ≥ 0,

with c2 ǫ0 µ0 = 1. The Vlasov-Maxwell system also conserves the kinetic entropy

d

dt
H(t) =

d

dt

∫

R3×R3

fe(t,x,v) log(fe(t,x,v))dxdv = 0, t ≥ 0.
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2.2. Collision operators. The FPL operator is used to describe binary elastic collisions between
electrons. Its algebraic structure is similar to the Boltzmann operator, in that it satisfies the
conservation of mass, momentum and energy

∫

R3

Ce,e(fe, fe)(v)





1
v

‖v‖2



dv = 0, t ≥ 0.

Moreover, the entropy is decreasing with respect to time

dH

dt
(t) =

d

dt

∫

R3

fe(v, t) log(fe(v, t))dv ≤ 0, t ≥ 0.

The equilibrium states of the FPL operator, i.e. the set of distribution functions in the kernel of
Ce,e(fe, fe), are given by the Maxwellian distribution functions

Mne,ue,Te(v) = ne

(

me

2π Te

)3/2

exp

(

−me
‖v − ue‖2

2Te

)

,

where ne is the density, ue is the mean velocity and Te is the temperature, defined as










































ne =

∫

R3

fe(v)dv,

ue =
1

ne

∫

R3

fe(v)vdv,

Te =
me

3ne

∫

R3

fe(v)‖v − ue‖2dv.

On the other hand, the operator (5), modelling collisions between electrons and ions, is a Lorentz
operator. It satisfies the conservation of mass and energy

∫

R3

Ce,i(fe)(v)

(

1
‖v − ue‖2

)

dv = 0.

Moreover, the equilibrium states for this operator are given by the set of isotropic functions:

Ker (Ce,i) =
{

fe ∈ L1
(

(1 + ‖v‖2)dv
)

, fe(v) = φ(z), z = ‖v − ue‖2
}

.

Finally, each convex function ψ of fe is an entropy for Ce,i(fe),

d

dt

∫

R3

ψ(fe)dv ≤ 0, t ≥ 0.

In addition to these properties, we present a symmetry property. This property may have some
importance, in particular in presence of magnetic fields. In that case, any break of symmetry due
to an inadequate discretization method could lead to generation of an artificial magnetic field, via
the current source terms, when coupling with the Maxwell equations.

Proposition 2.1. If fe has the following symmetry property with respect to the direction k at
time t0

(7) fe(t0,v) = fe(t0,v
k),
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with components for

vki =

{

+vi if i 6= k,
−vi if i = k.

Then, this symmetry property is preserved with respect to time.

3. Numerical scheme for transport

We present a finite volume approximation for the Vlasov-Maxwell system (1)-(2) without col-
lision operators. Indeed, it is crucial to approximate accurately the transport part of the system
to asses the collective behaviour1 of the plasma, that occurs typically at a shorter scale than the
collision processes. We introduce a uniform 1D space discretization (xi+1/2)i∈I , I ⊂ N, of the
interval (0, L1), in the direction denoted by index 1. The associated space variable is denoted by
x1. We define the control volumes Ci,j = (xi−1/2, xi+1/2) × (vj−1/2,vj+1/2), the size of a control
volume in one direction in space ∆x and velocity ∆v.

The velocity variable v = t(v1, v2, v3) is discretized on the grid vj = j∆v = t(vj1 , vj2, vj3)
with j = t(j1, j2, j3) ∈ Z

3. Moreover we note vj+1/2 = t(j1 + 1/2, j2 + 1/2, j3 + 1/2)∆v. Finally,
the time discretization is defined as tn = n∆t, with n ∈ N.

Let fni,j be an average approximation of the distribution function on the control volume Ci,j at
time tn, that is

fni,j ≃ 1

∆x∆v3

∫

Ci,j

f(tn, x,v)dxdv.

Moreover since the discretization is presented in a simple 1Dx space geometry, the electromag-
netic field has the follownig structure: E = t(E1(t, x1)), E2(t, x1), 0), B = t(0, 0, B3(t, x1)). Hence
t(En1,i, E

n
2,i) is an approximation of the electric field t(E1, E2) whereas Bn

3,i represents an approxi-

mation of the magnetic field B3 in the control volume (xi−1/2, xi+1/2) at time tn.

3.1. Second order approximation of a one dimensional transport equation. For the sake
of simplicity, we focus on the discretization of a 1D transport equation; the extension to higher
dimensions is straightforward on a grid. The generic 1D scheme is applied in the 5 phase space
directions, without requiring time splitting techniques between transport terms. In this section,
the index 1 is dropped both on space and velocity directions, for this simple 1Dx geometry.

Let us consider the following equation for t ≥ 0 and x ∈ (0, L),

(8)
∂f

∂t
+ v

∂f

∂x
= 0 ,

where the velocity v > 0 is given. By symmetry it is possible to recover the case when v is
negative. In the following we skip the velocity variable dependency of the distribution function.
Using a time explicit Euler scheme and integrating the 1D Vlasov equation on a control volume
(xi−1/2, xi+1/2), it yields

(9) fn+1
i = fni − ∆t

∆x

[

Fn
i+1/2 −Fn

i−1/2

]

,

where Fn
i+1/2 represents an approximation of the flux v f(tn, xi+1/2) at the interface xi+1/2.

1By collective effects, we denote here the self-consistent interaction of electromagnetic fields and particles. Some
collective effects are also considered in the collision processes, which make two particles interact via the Coulomb
field. The self-consistent electromagnetic field then screens the long range Coulomb potential and removes the
singularity in the Fokker-Plank-Landau operator.
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The next step consists in approximating the fluxes and to reconstruct the distribution func-
tion. To this aim, we approximate the distribution function f(tn, x) by fh(x) using a second
order accurate approximation of the distribution function on the interval [xi−1/2, xi+1/2), with a
reconstruction technique by primitive [25]

(10) fh(x) = fni + ǫ+i
(x− xi)

∆x
(fni+1 − fni ).

We introduce the limiter

(11) ǫ+i =



























0 if (fni+1 − fni ) (fni − fni−1) < 0,

min

(

1,
2
(

‖f0‖∞ − fni
)

fni − fni+1

)

if (fni+1 − fni ) < 0 ,

min

(

1,
2 fni

fni+1 − fni

)

else,

and set Fn
i+1/2 = v fh(xi+1/2). This type of limiter introduces a particular treatment for extrema.

At this price only (dissipation at extrema), we were able to recover correctly the two-stream in-
stabililty test case, without oscillations destroying the salient features of the distribution function
structure. Another choice for the limitation consits in choosing the “Van Leer’s one parameter
family of the minmod limiters” [31, 32]

(12) ǫ+i = minmod

(

b
(fni+1 − fni )

∆x
,
(fni+1 − fni−1)

2∆x
, b

(fni − fni−1)

∆x

)

,

where

minmod(x, y, z) ≡ max(0,min(x, y, z)) + min(0,max(x, y, z)) , (x, y, z) ∈ R
3,

and b is a parameter between 1 and 2. We will see on the two-stream instability test case the
importance of the choice for limiters.
Finally, this reconstruction ensures the conservation of the average and the positivity on fh(x)
[25].

3.2. Fourth order transport scheme. We turn now to a higher order approximation (fourth
order MUSCL TVD scheme) [27]. This scheme has also been considered in [28], in the frame
of VFRoe schemes for the shallow water equations, where the authors proposed an additional
limitation. Here we note that an optimized limitation procedure is possible in our case, breaking
the similar treatment for both right and left increments, and taking advantage of the structure of
the flux in the non-relativistic Vlasov equation: the force term does not depend of the advection
variable.

For this MUSCL scheme, we only give here the algorithm for the implementation of this scheme
and refer to [28], [27] for the derivation procedure of this scheme.
The high order flux at the interface xi+1/2, at time tn reads

Fn
i+1/2 = F

(

fni,r, f
n
i+1,l

)

=

{

vfni,r if v > 0 ,

vfni+1,l if v < 0 .

This numerical flux involves the reconstructed states: fni,r = fni + (∆f)+i and fni,l = fni + (∆f)−i ,

where (∆f)±i are the reconstruction increments.
9



An intermediate state f∗i , defined by
1

3

(

fni,r + f∗i + fni,l
)

= fni is introduced. It is shown in [28]

that the introduction of this intermediate state preserves, provided the CFL condition is formally
divided by three, the positivity of the distribution function. Following [27] and [28], the fourth
order MUSCL reconstruction reads

Algorithm of reconstruction.

Compute

(∆f)−i = −1

6

(

2∆∗f̄i−1/2 + ∆∗f̃i+1/2

)

,

(∆f)+i =
1

6

(

∆∗f̄i−1/2 + 2∆∗f̃i+1/2

)

,

where
∆∗f̄i−1/2 = minmod(∆∗fi−1/2, 4∆

∗fi+1/2),

∆∗f̃i+1/2 = minmod(∆∗fi+1/2, 4∆
∗fi−1/2)

and

∆∗fi+1/2 = ∆fi+1/2 −
1

6
∆3f̄i+1/2,

∆3f̄i+1/2 = ∆f̄ai−1/2 − 2∆f̄ bi+1/2 + ∆f̄ ci+3/2,

with
∆f̄ai−1/2 = minmod(∆fi−1/2, 2∆fi+1/2, 2∆fi+3/2),

∆f̄ bi+1/2 = minmod(∆fi+1/2, 2∆fi+3/2, 2∆fi−1/2),

∆f̄ ci+3/2 = minmod(∆fi+3/2, 2∆fi−1/2, 2∆fi+1/2),

with the notation ∆fi+1/2 = fi+1 − fi.

Reminding that the minmod limiter is given by

minmod(x, y) =























0, if x y ≤ 0,

x if |x| ≤ |y|,

y else,

with (x, y) ∈ R
3.

The limitation proposed in [28] is then applied.
It allows the positivity of the reconstructed states to be satisfied.

10



Algorithm for the limitation involving the intermediate state.

Compute (∆f)lim,±i such that

fni + (∆f)lim,−i ≥ 0,

fni + (∆f)lim,+i ≥ 0,
and

f∗i = fni − (∆f)lim,−i − (∆f)lim,+i ≥ 0.

This limitation reads:







(∆f)lim,−i = θ max
(

(∆f)−i ,−fni
)

,

(∆f)lim,+i = θ max
(

(∆f)+i ,−fni
)

,
where

θ =















1, if max
(

(∆f)−i ,−fni
)

+ max
(

(∆f)+i ,−fni
)

≤ 0 ,

min

(

1,
fn

i

max((∆f)−i ,−f
n
i )+max((∆f)+i ,−f

n
i )

)

otherwise.

3.3. Application to the Vlasov-Maxwell system. We exactly follow the same idea to design
a scheme for the full Vlasov equation in phase space (x,v) ∈ Ω × R

3. In addition, a centered
formulation for the electromagnetic fields is chosen:

(13) En+1/2 =
1

2

(

En+1 + En
)

and Bn+1/2 =
1

2

(

Bn+1 + Bn
)

.

The discretization of the Maxwell equations (2)-(3) is performed via an implicit θ-scheme, with
θ = 1/2, which corresponds to the Crank-Nicholson scheme and thus preserves the total discrete
energy. This discretization is presented in a simple 1D space geometry. The electric field E =
t(E1, E2, 0) and the magnetic field B = t(0, 0, B3) are collocated data on the discrete grid. These
fields are solution of the system

(14)



















































En+1
1,i − En1,i

∆t
= −

Jn1,i
ǫ0
,

En+1
2,i − En2,i

∆t
+ c2

B
n+1/2
3,i+1 −B

n+1/2
3,i−1

2∆x
= −

Jn2,i
ǫ0
,

Bn+1
3,i −Bn

3,i

∆t
+
E
n+1/2
2,i+1 − E

n+1/2
2,i−1

2∆x
= 0.

This scheme is well suited for the electrodynamics situations that are treated here in the test
cases.
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The approximation for the current in (14) Jn1 and Jn2 has been chosen such as

(15) Jn1,i =
∑

j∈Z3

∆v3 vj1 f
n
i,j and Jn2,i =

∑

j∈Z3

∆v3 vj2 f
n
i,j.

Unfortunately, these expressions do not preserve the total energy when slopes limiters are active,
but we will show that they have the important feature to reproduce the discrete two-stream
dispersion relation.

First, we remind discrete properties concerning positivity, mass and energy conservation [25] of
the second order scheme (9)-(10) coupled with (13)-(15), considering now the magnetic component.

Proposition 3.1. Let the initial datum (f0
i,j)i,j∈Z3 be nonnegative and assume the following CFL

type condition on the time step

(16) ∆t ≤ Cmin (∆x,∆v) ,

where C > 0 is related to the maximum norm of the electric and magnetic fields and the upper
bound of the velocity domain.

Then the scheme (9)-(10) coupled with (13)-(15), when extended to the infinite 3Dx × 3Dv

geometry, gives a nonnegative approximation, preserves total mass and preserves total energy
when slopes limiters are not active on the transport in the velocity directions

1

2

∑

i∈I

∆x3







ǫ0 ‖En
i ‖2 +

1

µ0
‖Bn

i ‖2 + me





∑

j∈Z3

∆v3 ‖vj‖2 fni,j











= C0 , n ∈ N.

Remark 3.2. Both the second order scheme and its fourth order extension preserve the positivity
of the distribution function, provided the CFL criteria is satisfied. The positivity is essential to
describe correctly the high energetic tails of the distribution functions, which present low densities.
In all the test cases presented, the time increment is chosen small enough to satisfy this CFL
condition, together with the diffusive-type CFL condition that comes from the collision operators

�

In addition to these properties, we justify our choice for the numerical current thanks to a
discrete dispersion relation on the two-stream instability. In the rest of the section, we drop the
index 1 on the variables x1, v1, E1 and J1, because the transport is considered 1Dx × 1Dv .

Proposition 3.3. Consider the second order scheme (9)-(10) coupled with (13)-(15), when slope
limiters are not active, to approximate the Vlasov-Ampère system

(17)



















∂f

∂t
+ v

∂f

∂x
+

qe
me

E
∂f

∂v
= 0,

∂E

∂t
= − J

ǫ0
.

Then the definition (15) for the current J defines a discrete dispersion relation that converges
toward the continuous dispersion relation when ∆v, ∆x and ∆t tend to 0.

Proof: The two-stream instability configuration can be fully analyzed with the Vlasov-Ampère
system (17) extracted from equations (1)-(3). The dispersion relation for a perturbation f (1) ∝

12



ei(k x−ω t) of an initial equilibrium state f (0), with ‖f (1)‖ ≪ ‖f (0)‖, then reads

(18) 1 +
q2e

ǫ0me

∫

R

v

ω(ω − k v)

∂f (0)

∂v
dv = 0.

Here the crucial point is the discretization on the velocity part of the phase space, so that we
perform a semi-discrete analysis. In the frame of the discretization (9)-(10) coupled with (13)-(15),
we consider the semi-discrete scheme approximating (17)

(19)























∂f

∂t
+ v

∂f

∂x
+

qe
me

E
fj+1/2 − fj+1/2

∆v
= 0,

∂E

∂t
= −qe

ǫ0

∑

j∈Z

∆v vj fj,

with

fj+1/2 =
fj+1 + fj

2
,

assuming the slope limiter is not active. Then we perform a discrete linearization around an
equilibrium state

fj = f
(0)
j + f

(1)
j ,

where ‖f (1)‖ ≪ ‖f (0)‖. Using f
(1)
j ∝ ei(k x−ωt) in (19), it yields

(20)



























−i (ω − k vj) f
(1)
j +

qe
me

E(1)
f

(0)
j+1/2 − f

(0)
j−1/2

∆v
= 0,

−i ω E(1) = −qe
ǫ0

∑

j∈Z

∆v vj f
(1)
j .

These equations lead to the discrete dispersion relation

(21) 1 +
q2e

ǫ0me

∑

j∈Z

vj
ω (ω − k vj)





f
(0)
j+1/2 − f

(0)
j−1/2

∆v



∆v = 0.

We recover the continuous dispersion relation (18) when passing at the limit ∆v → 0. Any other
choice for the discrete current in (20) would introduce an additional error to the O(∆v2) error in
the relation dispersion (21). For instance, choosing

J =
∑

j∈Z

∆v vj fj+1/2

would have lead to the analogous of (21):

(22) 1 +
q2e

ǫ0me

∑

j∈Z

(vj − ∆v)

ω (ω − k vj)





f
(0)
j+1/2 − f

(0)
j−1/2

∆v



∆v = 0,

which is a “shifted” dispersion relation, with a O(∆v) accuracy, compared to the O(∆v2) accuracy
on relation (21). �
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3.4. boundary conditions. The discretization in the velocity space imposes a truncation of
the infinite velocity domain, and the introduction of boundary conditions. We only need to
consider the direction v1, where the discretized velocity variable is vj1, with j1 ∈ [−Nv1 , Nv1 ] ⊂ Z,
and 2Nv1 is the total number of discretization points. If the second order scheme (respectively
the fourth order scheme) is considered, then the boundary conditions are applied on two ghost
points (respectively three ghost points). This is due to the extension of the stencil. Considering
the second order scheme, the ghost points at the low velocity boundary are vj1 = v−Nv1

and

vj1 = v−Nv1+1. At these points, we impose the boundary condition fn+1
j1

= fnj1.
The boundary conditions for the space directions satisfy also naturally the positivity constraint,
with our scheme. It is indeed designed with reconstructed numerical fluxes, that maintain the
positivity (under CFL condition) if the distribution function at the previous time step is positive.

At a boundary interface (
xi+xi+1

2 = x−1+x0

2 for the left boundary), where the numerical flux
should be computed, the only requirement is to specify a positive distribution at ghost points to
impose the boundary conditions.
We explicit here the non-trivial ghost point used by a zero current left boundary (with temperature
TL) condition, in the direction x1.

fn−1,j =

−
∑

j,vj1
<0

vj1f
n
0,j∆v

3

∑

j,vj1
>0

vj1 exp

(

−1

2

v2
j

TL

)

∆v3

exp

(

−1

2

v2
j

TL

)

,(23)

which is positive, and satisfies
∑

j,v1>0

vj1f
n
−1,j∆v

3 = −
∑

j,vj1
<0

vj1f
n
0,j∆v

3 .(24)

The stencil of the second order scheme requires a second ghost point fn−2,j, which is related to fn1,j
in a similar manner, verifying

∑

j,v1>0

vj1f
n
−2,j∆v

3 = −
∑

j,vj1
<0

vj1f
n
1,j∆v

3 .(25)

4. Validation of the transport schemes

We first propose a validation strategy in the linear, collisionless regime, based on the work of
Sartori and Coppa [33]. They performed a transient analysis, and obtain exact solutions of the
periodic Vlasov-Poisson system, in the non-relativistic and relativistic regime.

Their approach, relying on Green kernels, is recalled in Appendix A, in the non-relativistic
regime. A generalization of the 2D periodic relativistic Vlasov-Maxwell system, including mag-
netic fields, will be presented in a forthcoming paper. Our objective is to capture kinetic effects in
the linear regime, such as the Landau damping and the two-stream instability. A semi-analytical
solution is obtained, with a prescribed accuracy. Moreover, this method allows the exploration
of wavenumber ranges, where other approaches relying on dispersion relations fail. We recall
that classical validations of kinetic solvers dedicated to plasma physics [25, 34] are based on the
calculation of the growth rates (instability), or decrease rates (damping) in the linear regime. We
will show the efficiency of the semi-analytical method on the two-stream instability test case.
The transport schemes are tested with a low number of dimensions 1Dx × 1Dv or 1Dx × 3Dv,
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without collision operators. The computational resources are then very low; the simulations are
affordable with a single processor.

4.1. Scaling with plasma frequency. Scaling parameters can be introduced to obtain a di-
mensionless form of the Vlasov-Maxwell-Fokker-Planck equations. The plasma frequency ωpe,
the Debye length λD, the thermal velocity of electrons vth, and the cyclotron frequency ωce are
defined as follows

ωpe =

√

n0e2

ǫ0me
, λD =

√

ǫ0κBT0

n0e2
, vth =

√

κBT0

me
, ωce =

eB

me
.(26)

These parameters enable us to define dimensionless parameters marked with tilde.

• Dimensionless time, space and velocity, respectively:

(27) t̃ = ωpe t, x̃ =
x

λD
, ṽ =

v

vth
.

• Dimensionless electric field, magnetic field and distribution function, respectively

(28) Ẽ =
eE

me vthωpe
, B̃ =

eB

me ωpe
=

ωce
ωpe

, f̃e = fe
v3
th

n0
.

This leads to the following dimensionless equations

(29)























































∂fe
∂t

+ ∇x · (vfe) −∇v · ((E + v × B)fe) =
ν

Z
Ce,e(fe, fe) + ν Ce,i(fe),

∂E

∂t
− 1

β2
∇x × B = nu,

∂B

∂t
+ ∇x × E = 0,

∇x ·E = (1 − n), ∇x ·B = 0,

where β = vth/c, ν is the ratio between electron-ion collision frequency and plasma frequency

ν =
Z n0 e

4 ln Λ

8π ǫ20m
2
e v

3
th ωpe

=
Z ln Λ

8π n0 λ3
D

=
νe,i
ωpe

with νe,i =
Z n0 e

4 ln Λ

8π ǫ20m
2
e v

3
th

.

The zero and first order moments of the distribution function are


















n(t,x) =

∫

R3

fe(t,x,v)dv,

u(t,x) =
1

n(t,x)

∫

R3

fe(t,x,v)v dv

which are normalized respectively by n0 and vth.
Moreover, in (29) the dimensionless collision operators are considered

(30)















Ce,e(fe, fe) = ∇v ·
(∫

R3

Φ(v − v′)
[

fe(v
′)∇vfe(v) − fe(v)∇v′fe(v

′)
]

dv′

)

,

Ce,i(fe) = ∇v · [Φ(v)∇vfe(v)] ,
15



with Φ given by (6).

4.2. Test 1 : 1D two-stream instability. The ICF physics involves a propagation of electron
beams in plasma. The plasma response to the beam consists in a return current that goes opposite
to the beam in order to preserve the quasineutrality. This leads to a very unstable configuration
favorable to the excitation of plasma waves. We focus here on the instability with a perturbation
wavevector parallel to the beam propagation direction, namely the two-stream instability. Of
course, this stands as an academic test case but it is closely related to the physics of the ICF.
Also it is a very demanding test for numerical schemes of transport, that have to be specially
designed (see Proposition 3.3). In particular, a discrete dispersion relation relative to that problem
is developed to justify numerical choices for the second order scheme. For this scheme also, during
the limitation procedure, an additional dissipation at extrema is introduced, compared to [25],
in order to preserve the solution from spurious oscillations. We will show the sensitivity of the
scheme with respect to the chosen limiter, for this particular test case. Moreover, the fourth
order scheme is introduced to reduce numerical heating, for simulations intended to deal with the
two-stream instability.

The (1Dx × 1Dv) Vlasov-Ampère system (17) is approximated on a Cartesian grid. For this
test case, we consider the scaling (26)-(28). The initial distribution function and electric field are











f0(x, v) =
1

2
[(1 +A cos(kx))M1,vd

(v) + (1 −A cos(kx))M1,−vd
(v)] ,

E0(x) = 0,

where

M1,vd
(v) =

1√
2π

e−‖v−vd‖
2/2

is the Maxwellian distribution function centered around vd.
In order to compare the numerical heating associated with the second order and the fourth

order scheme, we choose a strong perturbation amplitude A = 0.1. The perturbation wavelength
is k = 2π/L and the beam initial mean velocities are vd = ±4, L = 25 being the size of the
periodic space domain. We choose a truncation of the velocity space to be vmax = 12 and time
steps are chosen to be ∆t = 1/200, such as to satisfy the CFL criteria and maintain the positivity
of the distribution function.

The objectives of this numerical simulation are on the one hand to compare the second order
finite volume scheme (specially designed to conserve exactly the discrete total energy, except if the
slope limiters are active) for different slope limiters and the fourth order MUSCL scheme. On the
other hand we want to explore the effect of a reduced number of grid points on the conservation
of the discrete invariants.

In Figure 1, two countersteaming beams that are initially well separated in the phase space (a)
start to mix together. They finally create a complicated vortex structure, involving wave-particle
interactions. This behaviour remains quantitatively the same whatever the transport scheme is
(second or fourth order). However with a reduced number of grid points (smaller than 128 points
in velocity), the second order (with limiter (11)) and fourth order schemes present a different
behaviour for the total electric energy and total energy.

For reduced grid resolutions, of 322 or 642 points, the fourth order scheme proves to be better
than the second order one. For 322 points, plasma oscillations at the plasma frequency in the
nonlinear phase are not reproduced with the second order scheme whereas they can be seen with
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(a) (b)

Figure 1. Beams phase space (a) at initial time, (b) at 20 plasma periods (after
saturation), with 2562 grid points.
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Figure 2. Evolution of the electrostatic energy for 322, 642, 1282, 2562 grid points,
and the semi-analytical solution in the linear regime. Results are shown for (a) the
second order with limiter (11) and (b) fourth order transport scheme

the fourth order scheme (see Figure 2). Moreover for this resolution, the transition from the linear
phase to the nonlinear phase occurs earlier than it should for the second order scheme.
As the grid resolution increases, the accuracy remains better for the fourth order scheme than for
the second order one in the nonlinear phase (Figure 2). The convergence toward curves with 1282

or 2562 resolution grid is indeed better. We recall that quantities in Figure 2 and 3 are plotted
with a logarithmic scale, that smoothes out discrepancies between curves. In addition to these
results, the respect of total discrete energy conservation proves to be better for the fourth order
scheme than for the second order one at a reduced grid resolution, see Figure 4 and 5.
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Figure 3. Evolution of the electrostatic energy for 322, 642, 1282, 2562 grid points,
and the semi-analytical solution in the linear regime. Results are shown here for
the second order scheme with the limiters (12), with b = 2.
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Figure 4. Comparison of the energy evolution for the second (with limiter (11))
and fourth order transport schemes. Results are shown (a) for 322 (b) 642 grid
points

The use of limiters (12) for the second order scheme introduces accuracy improvements on
the convergence behaviour and capture of plasma wave structure at reduce grid resolutions, see
Figure 3. However, the energy dissipation remains quantitatively the same as the second order
scheme with limiter (11), see Figures 4 and 5. Only in the case of the second order scheme
without limiter, could the energy be exactly conserved. The counterpart would be the loss of any
exploitable solution (loss of stability).

As this test case requires both a good preservation of invariants and accuracy when nonlinear
phenomena occur, we might conclude that the fourth order scheme, with a resolution along each
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Figure 5. Comparison of the energy evolution for the second (with limiter (12),
b = 2) and fourth order transport schemes. Results are shown (a) for 322 (b) 642

grid points

velocity direction greater than 32 cell, is well suited for our physical applications. The semi-
analytical solution in the linear regime shown in Figure 2, using a Green function, brings some
improvements compared to the classical validation in the linear regime, based on instabilities
growth rates in the linear regime. In particular it discriminates precisely in time the linear and
nonlinear phases.

4.3. Test 2: 1D X-mode plasma in a magnetic field. This test case stands as a validation of
the schemes in the linear regime for the coupling between Vlasov and Maxwell equations without
collisions. The second order scheme is used for the transport terms in the x1, v1, v2 and v3
directions. A particular initial data is chosen (see the derivation in the appendix B) to trigger
an X-mode plasma wave at a well-defined frequency ω. This type of wave presents a mixed
polarization (longitudinal and transverse with respect to the magnetic field), that propagates in
the plane P⊥, perpendicular to the magnetic field direction.

The chosen frequency ω is a solution of the dispersion relation (74) of the linearized Vlasov-

Maxwell equations, introducing the equilibrium state f (0)
(

‖v‖2
)

. The initial data are chosen

such that f (0), Ê1, Ê2, and B̂3 only depend on ω, B(0), k1 = 2π/L1 and A; where f̂n, B̂3, Ê1 and

Ê2 are the reconstructed (in the appendix B) Fourier transforms of the distribution function and
electromagnetic fields. The magnetic field B(0) is the nonperturbed magnitude of the magnetic
field, L1 is the length of the periodic space domain, A is the perturbation amplitude. The initial
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data can then be constructed with the help of truncated Fourier series






















































f (0)(x1,v) = f (0)(‖v‖2) +

2
∑

n=−2

f̂n(v⊥)eik1 x1 + i nψ, x1 ∈ (0, L1), v ∈ R
3,

E1(t, x1) = Ê1 e
−iωt+ik1x1 , x1 ∈ (0, L1) ,

E2(t, x1) = Ê2e
−iωt+ik1x1 , x1 ∈ (0, L1) ,

B(t, x1) = B(0) + B̂3e
−iωt+ik1x1 , x1 ∈ (0, L1).

We define ψ as the angle in the cylindrical coordinates for the velocity, defined with respect to
the direction of the magnetic field (See appendix B).

The normalizations are defined by relations (26)-(28). We choose B(0) = 2 and a rather strong
amplitude perturbation A = 0.1 with periodic boundary conditions on the space domain. Also we
have set β = vth/c = 0.05. The dispersion relation have been solved for these parameters. One of
the solution ω ≃ 5.1432 is injected in the initial data set.

We considered 126 points along the 1D space direction, and 64 points along each velocity
direction v = t(v1, v2, v3). The dimension of the space domain is L1 = 25 whereas the truncation
of the velocity space occurs at vmax = 7 for each velocity direction. Furthermore, the time step
is ∆t = 1/200, which ensures the positivity of the distribution function here.

The Fourier spectrum in Figure 6 exhibits a well defined frequency f = 1/T ≃ 1.6375 (corre-
sponding to a period T ) for the total magnetic energy, that corresponds to a frequency f/2 for

the magnetic field oscillations. We finally find ω = 2π
(

f
2

)

≃ 5.1443 from the numerical solution,

to be compared with the analytical results 5.1432. This proves a good accuracy of the numerical
results, while the distribution function is greatly affected by the magnetic field. As an illustration,
we show in Figure 7 how the magnetic field makes the distribution function rotate in the velocity
space perpendicular to the magnetic field axis.

5. Approximation of the collision operators

In the following, the presentation is restricted to the space homogeneous equation, for the sake
of simplicity,











∂f

∂t
= Ce,e(f, f) + Ce,i(f),

f(0,v) = f (0)(v),

where Ce,e(f, f) and Ce,i(f) are given by (30).

5.1. Discretization of the Lorentz operator. We consider fj an approximation of the distri-
bution function f(vj) and introduce the operator D, which denotes a discrete form of the usual
gradient operator ∇v whereas D∗ represents its formal adjoint, which represents an approxima-
tion of −∇v·. Therefore, for any test sequence (ψj)j∈Z3 , we set (Dψj)j∈Z3 as a sequence of vectors

of R
3

Dψj = t(D1ψj,D2ψj,D3ψj) ∈ R
3,
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Figure 6. Discrete Fourier spectrum in frequency of the discrete analogous of the

total dimensionless magnetic energy

∫ L1

0

‖B3‖2

2
dx1.

where Ds is an approximation of the partial derivative ∂
∂vs

with s ∈ {1, 2, 3}. In order to preserve
the property of decreasing entropy at the discrete level, we use the log weak formulation of the
Lorentz operator [17]

∫

R3

Ce,i(f)(v)ψ(v)dv = −
∫

R3

Φ(v) f(v)∇v log(f(v)) · ∇vψ(v)dv,

where Φ is given by (6) and ψ is a smooth test function. Then, using the notations previously
introduced, the discrete operator C∆v

e,i (f) is given by

C∆v
e,i (f)(vj) = −D∗

[

1

‖vj‖3
S(ṽj) fj D(log(fj))

]

,(31)

where S(ṽj) is the following matrix

S(ṽj) = ‖ṽj‖2 Id − ṽj ⊗ ṽj.
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Figure 7. Projection on the v1 − v2 velocity domain for the distribution function
is shown at initial time tn = 0 and at tn = 18.72, for a particular point of the
space domain, x1 = 23.0114, v3 = 0.

Now, ṽj has to satisfy the discrete conservation of energy

D1(‖vj‖2)

ṽj1
=

D2(‖vj‖2)

ṽj2
=

D3(‖vj‖2)

ṽj3
.(32)

Then, we consider the 8 uncentered operators Dǫ, with the formalism:

Dǫ = t(Dǫ1
1 ,D

ǫ2
2 ,D

ǫ3
3 ),

with ǫ = t(ǫ1, ǫ2, ǫ3), and ǫi ∈ {+1,−1} for i ∈ {1, 2, 3}. More precisely, the operator Dǫi is the
forward uncentered discrete operator if ǫi = +1 and the backward uncentered discrete operator
if ǫi = −1:

DǫΨj =
1

∆v





ǫ1[Ψj1+ǫ1 − Ψj1]
ǫ2[Ψj2+ǫ2 − Ψj2]
ǫ3[Ψj3+ǫ3 − Ψj3]



(33)

This 8 operators respectively match to 8 expressions of ṽǫj , following (32)

ṽǫj =
1

2
(vj + vj+ǫ) .

This choice has been made to avoid the use of the centered discrete operator that conserves non
physical quantities. On the other hand, the uncentered operators, taken separately, introduce
some artificial asymmetry in the distribution function leading to a loss of accuracy when coupling
to Maxwell equations. To overcome these difficulties, following the idea of [18], we introduce a
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symmetrization of the discrete operator based on the averaging over the eight uncentered dis-
cretizations:

C∆v
e,i (f)(vj) =

1

8

∑

ǫ

Cǫe,i(f)

Cǫe,i(f) = −D∗,ǫ

[

1

‖vj‖3
S(ṽǫj) fj D

ǫ(log(fj))

]

.

This final expression present the desirable properties: mass and energy preservation, an entropy
decreasing behaviour, the positivity preservation of the distribution function in a finite time
sequence. The proofs are not detailed here but can be deduced easily from those presented in
[25]. Also, it introduces an additional discrete symmetry property, compared to the operator
presented in [25]. Indeed, we obtain the operator as an average over the full set of the uncentered
operators. The motivation of this averaging comes from the isotropization effect of the Lorentz
operator: it diffuses in angle. This averaging leads to a discrete analogous of the symmetry
property presented in Proposition 2.1. This symmetry concerns the directions that are aligned
with the grid. We verified that the symmetries along directions that are not aligned are preserved
with marginal errors.

Proposition 5.1. Under the condition (32) on ṽj, the discretization (34) to the Lorentz operator
(5) satisfies the following properties,

• it preserves mass and energy,
• it decreases discrete entropy

H(t) = ∆v3
∑

j∈Z3

fj(t) log(fj(t)),

• there exists a time-sequence ∆tn such that the scheme

fn+1
j

= fnj + ∆t C∆v
e,i (f)(vj),

defines a positive solution at any time i.e.
∑

n ∆tn = +∞.

Furthermore, if fj is symmetric with respect to 0 in the direction jk at time tn, then this property
is preserved at time tn+1,

(34)
∑

j∈Z3

C∆v
e,i (f)(vj)vjk∆v3 = 0.

Proof: The proofs of all the properties but the last can be found in [25]. We prove the last
property and rewrite the operator (34) in a different manner, assuming we have a symmetry
along the velocity direction vjk

(35) C∆v
e,i (f)(vj) =

1

8

∑

ǫ

Cǫe,i(f)(vj) =
1

8

∑

ǫ

[

1

3

3
∑

k=1

1

2

(

Cǫ
+,(k)

e,i (vj) +Cǫ
−,(k)

e,i (vj)
)

]

,

where the notation ǫ±,(k) refers to
{

ǫ
±,(k)
i = ±1 if i = k,

ǫ
±,(k)
i = ǫi if i 6= k.

(36)
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We are interested in the cancellation of the operator
∑

j∈Z3

C∆v
e,i (f)(vj)vjk . This is equivalent to the

cancellation of

Q(k) :=
∑

j∈Z3

(

Cǫ
+,(k)

e,i (vj) + Cǫ
−,(k)

e,i (vj)
)

vjk

=
∑

j∈Z3

1

‖vj‖3
fj

[

S(ṽj
ǫ+,(k)

)Dǫ+,(k)
log(fj)

]

· Dǫ+,(k)
vjk

+
∑

j∈Z3

1

‖vj‖3
fj

[

S(ṽj
ǫ−,(k)

)Dǫ−,(k)
log(fj)

]

·Dǫ−,(k)
vjk .

Then, since Dǫ+,(k)
vjk = Dǫ−,(k)

vjk = ek, it yields

Q(k) =
∑

j∈Z3

1

‖vj‖3
fj





∑

i6=k

(

ṽ
ǫ
+,(k)
i

ji

)2


Dǫ
+,(k)
k (log(fj))

−
∑

j∈Z3

1

‖vj‖3
fjṽ

ǫ
+,(k)
k

jk





∑

i6=k

ṽ
ǫ
+,(k)
i

ji
Dǫ

+,(k)
i (log fj)





−
∑

j∈Z3

1

‖vj‖3
fj





∑

i6=k

(

ṽ
ǫ
−,(k)
i

ji

)2


Dǫ
−,(k)
k (log(fj))

−
∑

j∈Z3

1

‖vj‖3
fjṽ

ǫ
−,(k)
k

jk





∑

i6=k

ṽ
ǫ
−,(k)
i

ji
Dǫ

−,(k)
i (log fj)



 .

Then using definition (36) and the symmetry of fnj with respect to 0 in the velocity direction vjk ,

we obtain Q(k) = 0. Then multiplying (35) by vjk and integrating in the full velocity space gives

the relation (34). This relation implies that fn+1
j

is symmetric with respect to 0 in the direction
vjk . �

5.2. Discrete Landau operator. We consider the discretization of the FPL operator (4) on the
whole 3D velocity space. It is based on the entropy conservative discretization introduced in [17],
where a discrete weak log form of the FPL operator is used. This discretization yields:

(37)



















dfj(t)

dt
= (D∗ρ(t))j j ∈ Z

3,

ρ(t) = ∆v3
∑

m∈Z3

fj(t)fm(t)Φ(vj − vm) (D(log(f(t))j − D(log f(t))m) ,

where D stands for a downwind or upwind finite discrete operator approximating the usual gra-
dient operator ∇v. This uncentered approximation ensures that the only equilibrium states are
the discrete Maxwellian. The use of centered discrete operators would have lead to non physical
conserved quantities. The discretization of the FPL operator is then obtained as the average over
uncentered operators, but here for a different reason as in the previous section, on the electron-ion
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collision operator discretization. In [19], the scheme is rewritten as the sum of two terms: a sec-
ond order approximation and an artificial viscosity term in ∆v2 which kills spurious oscillations.
However the computational cost of a direct approximation of (37) remained too high. Therefore, a
multigrid technique has been used. We refer to [19] and [35] for the details of the implementation
on the FPL operator. Nevertheless, these latter approaches introduce a new approximation than
can affect accuracy. Based on [20], Crouseilles and Filbet proposed another approach and noticed
that the discrete FPL operator (37) in the Fourier space can be written as a discrete convolution,
which directly gives a fast algorithm. Here we adopt the multigrid method, detailed in [19], that
has a complexity of order O(n3

v log n3
v).

This discrete approximation preserves positivity, mass, momentum, energy, and decreases the
entropy. Moreover the discrete equilibrium states are the discrete Maxwellian. We refer to [17] for
the proofs and to [25] for numerical tests cases illustrating these properties in the homogeneous
case.

6. Numerical results

6.1. Scaling with collision frequency. For the analysis of collisional processes, a new scaling is
introduced here, that allows time steps to be of the order of the electron-ion collision time. In order
to account for transport phenomena occurring at the collision time scale, several parameters are
required: the electron-ion collision frequency νe,i, the associated mean free path λe,i, the thermal
velocity vth, and the cyclotron frequency ωce

(38) νe,i =
Z n0 e

4 ln Λ

8π ǫ20m
2
e v

3
th

, λe,i =
vth
νe,i

, vth =

√

κBT0

me
, ωce =

eB

me
,

These parameters enable us to define the dimensionless parameters with tilde.

• Dimensionless time, space and velocity, respectively

(39) t̃ = νe,it, x̃ = x/λe,i, ṽ = v/vth.

• Dimensionless electric field, magnetic field, and distribution function, respectively

(40) Ẽ =
eE

mevthνe,i
, B̃ =

eB

meνe,i
=
ωce
νe,i

, f̃e = fe
v3
th

n0
.

This leads to the following dimensionless equations

(41)















































































∂fe
∂t

+ ∇x · (vfe) −∇v · ((E + v × B)fe) =
1

Z
Ce,e(fe, fe) + Ce,i(fe),

∂E

∂t
− 1

β2
∇x × B =

1

α2
nu,

∂B

∂t
+ ∇x × E = 0,

∇x ·E =
1

α2
(1 − n),

∇x ·B = 0,

where α = νe,i/ωpe and β = vth/c. The collision terms Ce,e(fe, fe) and Ce,i(fe) are given in (30).
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6.2. 1D temperature gradient test case. In the context of laser produced plasma, the heat
conduction is the leading mechanism of energy transport between the laser energy absorption
zone and the target ablation zone.
In such a system, the parameters of importance for the heat flux are

• The effective electron collision mean free path λe.
• The electron temperature gradient length λT .
• The magnetic field B and its orientation with respect to ∇T .

These parameters enable to distinguish different regimes of transport, according to the Knudsen
and the Hall parameters.
The Knudsen number Kn is a mesure of the thermodynamical non-equilibrium of the system

Kn =
λe
λT
.(42)

A regime characterized by Kn → 0 refers to an hydrodynamical description, whereas a regime
characterized by Kn ≥ 1 refers to a kinetic description, where the nonlocal phenomena appear.
The parameters for ICF imply Kn ≥ 0.1, while the classical, local approach fails at Kn ≥ 0.01.
This premature failure of the classical diffusion approach in plasma is explained by a specific
dependence of the electron mean free path on their energy. In our applications the energy is
transported by the fastest electrons, which have a much longer mean free path.
The Hall parameter χ = ωcτ quantifies the relative importance of magnetic and collisional effects.
ωc = eB/me is the electron cyclotron frequency and τ the mean electron-ion collision time

τ =
3

4

16π2ǫ20
√
meT

3/2
e√

2πniZ2e4lnΛ
.(43)

For this test case, a simple gradient temperature configuration is shown in figure (8), modelling the
following situation: through a layer of homogeneous plasma, a laser deposits its energy on the hot
temperature side and the absorbed energy is transported with electrons to the cold temperature
side. A heat flux is created, with negative sign, contributing to the preheating (with the fastest
particles) of the region down the temperature gradient, and the smoothing of this temperature
gradient. The charge separation induced by the movement of particles generates electric currents.
The heat flux and electric field are important in a transient phase, then tend to diminish and
stabilize due to the collisional effect and the return current of cold particles. These quantities
may be inhibited in the direction of the temperature gradient if magnetic fields (constant in the
domain) are present. If this is the case, heat fluxes and electric fields are created in the direction
perpendicular to the temperature gradient.

A Knudsen boundary layer is observed, having the extension of several collision mean free
paths. It is due to the zero boundary current condition, where the populations that leave and
enter the computational domain have different temperatures. However, since the boundaries are
far enough from the temperature gradient, this boundary layer does not influence the heat flux
propagation in the region of the temperature gradient. We observed that the presence of high
magnetic fields enforces the variation of the fluxes inside this boundary layer. The high magnetic
fields are indeed expected to make the particle rotate in and out the domain.

Let us define the average over velocity of a function A(v)
26



Figure 8. Initial configuration for the temperature gradient test case: a tem-
perature profile is considered between to two domains of plasma with particles at
thermodynamical equilibrium. Zero current boundary conditions enable to main-
tain mass conservation. A heat flux is generated wherever there is a nonzero tem-
perature gradient, as well as boundary layers on the heat flux, temperature, and
electromagnetic profiles.

< A >=
1

ne

∫

R3

Afdv ,(44)

where ne(t,x) =

∫

R3

f(t,x,v)dv is the density of electrons.

Following [6, 36], we introduce the macroscopic quantities



































j = qene 〈v〉 ,

q =
1

2
mene 〈(v · v)v〉 ,

R =

∫

R3

mevCe,i(fe)dv,

(45)
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





































p = neTe =
1

3
mene 〈(v− < v >) · (v− < v >)〉 ,

Π =
1

3
mene 〈(v− < v >) ⊗ (v− < v >)〉 − pI,

qloc =
1

2
mene 〈[(v− < v >) · (v− < v >)] (v− < v >)〉 .

(46)

There, j is the electric current, q the total heat flow, R the friction force accounting for the
transfer of momentum from ions to electrons in collisions, Te is the temperature, p is the scalar
intrinsic pressure, Π is the stress tensor, qloc is the intrinsic heat flow and I the unit diagonal
tensor.
Quantities p, Π and qloc are defined in the local reference frame of the electrons, whereas j, q

and R are defined relative to the ion center of mass frame. Ions are supposed to be at rest. We
have the relation

qloc = q + j · (5
2
pI + Π)/(nee) + j(

1

2
mene < v >2)/(nee).(47)

The validation of our Fokker-Planck solver in the domain close to the hydrodynamical regime
(local regime) requires knowledge of transport coefficients. Following the formalism of Braginskii
[6] for the transport relations, the transport coefficients in the hydrodynamical regime have been
calculated by Epperlein in [36]. These coefficients αep, βep, κep, are the electrical resistivity,
thermoelectric and thermal conductivity tensors, respectively. From these quantities, we are able
to compare the heat flux and electric field issued from the Fokker-Planck solver to those calculated
analytically in [36], in the local regime.
The classical derivation procedure to obtain the transport coefficients involves the linearization
of the Fokker-Planck-Landau equation, assuming the plasma to be close to the thermal equilib-
rium. The distribution function is approximated using a truncated Cartesian tensor expansion

f(t,x,v) = f (0)(‖v‖2) +
v

‖v‖ · f (1)(t,x, ‖v‖). Following [36], Π and mene < v >2 are neglected.

Then considering appropriate velocity moments of f (1), electric fields and heat fluxes are expressed
as a function of thermodynamical variables. The coefficients of proportionality, in the obtained
relations, are defined as the transport coefficients.
Several notations can be used, depending on the chosen thermodynamical variables. Adopting
the Braginskii notations, we obtain



















R = ∇p+ eneE − j × B =
αep · j
nee

− βep · ∇Te,

q = −5

2

j

e
Te − κep · ∇Te − βep · jTe

e
.

(48)

We want to compare of the results of the solver with the analytical electric fields and heat fluxes in
the local regime. For that purpose, we use the values of coefficients, for Z = 1, that are tabulated
in [36]. As for the components of these tensors, we make use of the standard notations ||, ⊥, and
∧. Directions denoted with || and ⊥ are respectively parallel and perpendicular to the magnetic
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field. Consequently, the parallel and perpendicular components of a vector u are respectively
u|| = b(u · b) and u⊥ = b× (u × b), where b is the unit vector in the direction of the magnetic
field. The direction defined by the third direction in a direct orthogonal frame is denoted by ∧.
In the system (48), the relation between any transport coefficient tensor ϕ and vector u is defined
by

ϕ · u = ϕ||b(b · u) + ϕ⊥b× (u × b) ± ϕ∧b× u ,(49)

where the negative sign applies only in the case ϕ = αep. These coefficients can be expressed in
dimensionless form































αc
ep = αep

τ

mene
,

βc
ep = βep,

κc
ep = κep

me

neτTe
.

(50)

The dimensionless transport coefficients αc
ep, βc

ep, κc
ep are functions of Z and the Hall parameter

χ = ωcτ only.
The heat flux and the electric field in (48) can then be rewritten in terms of dimensionless
quantities, for the particular 1D geometry of our temperature gradient configuration. In that
case, the normalizations using a collision frequency (38)-(40) are used.



















































q1 = −5

2
Ten

−1
e j1 − χTeB

−1
3 ∇x1Teκ

c
ep,⊥ − Te

(

βc
ep,⊥j1 − βc

ep,∧j2
)

,

q2 = −5

2
Ten

−1
e j2 − χTeB

−1
3 ∇x1Teκ

c
ep,∧ − Te

(

βc
ep,⊥j2 + βc

ep,∧j1
)

,

E1 = ne
−1j2B3 − n−1

e ∇x1p−∇x1Teβ
c
ep,⊥ + ne

−1B3χ
−1(αc

ep,⊥j1 + αc
ep,∧j2),

E2 = −ne−1j1B3 −∇x1Teβ
c
ep,∧ + ne

−1B3χ
−1(αc

ep,⊥j2 − αc
ep,∧j1).

(51)

The Hall parameter χ is expressed in terms of the dimensionless quantities B3 and Te:

χ =
3
√
π

2
√

2

B3T
3/2
e

Z
.(52)

6.2.1. Electron transport in the local regime. In order to validate the numerical scheme in the
local regime, we compare the heat flux QFP and electric field EFP computed from the numerical
solution, with those analytically (denoted by QBR and EBR) computed from the system (51).
The transport coefficients αep, βep, κep have been tabulated in [36].

In this test case the source term can be considered stiff; the discretization of the collision
operator is then of crucial importance and its accuracy can be tested. Moreover we provide, in
this local regime, with validation results for a wide range of Hall parameters corresponding to
ICF applications.
The initial temperature gradient Te(x1) has the form of a step
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Te(x1) =







TRe (x1) if x1 > xm1 ,

TLe (x1) else ,

(53)

where TRe and TLe are third order polynomials in x1 − xm1 , x1 standing for the space coordinate
and xm1 for the mid-point of the 1D domain. The coefficients of these polynomials are chosen such
as they verify the following conditions at xm1



















∂TLe
∂x1

(xm1 ) =
∂TRe
∂x1

(xm1 ) =
TR − TL

(xR1 − xL1 )/λ
,

TLe (xm1 ) = TRe (xm1 ) =
TR + TL

2
,

(54)

and at the boundaries






























TLe (xL1 ) = TL,

TRe (xR1 ) = TR,

∂TLe
∂x1

(xL1 ) =
∂TRe
∂x1

(xR1 ) = 0,

(55)

where TL (resp. TR) is the initial temperature of the leftmost (resp. rightmost) point xL1 (resp.
xR1 ) of the domain. λ is a parameter that determines the initial stiffness of the temperature gra-
dient.

The simulations were performed with the following parameters: the size of the dimensionless
domain L = xR1 − xL1 = 5400, 2× vmax = 12, the ion charge Z = 1, the frequency ratio νe,i/ωpe =
0.01, the electron thermal velocity such as vth/c = 0.05. The magnetic field are resolved by
Maxwell equations; the initial value are B3(t = 0, x1) = 0.001, 0.01, 0.1, or 1. In the test cases in
the local regimes we present, any variation to this initial value proved to be negligible. The initial
electric field is zero over the domain: E1(t = 0, x1) = E2(t = 0, x1) = 0. The initial distribution
function is a Maxwellian depending on the local temperature, the density being constant over
the domain. The initial temperature profile is chosen such as TL = 0.8, TR = 1.2 and λ = 10.
This set of parameters enable us to consider the local regime, close to the hydrodynamics (the
Knudsen number is about 1/500). The second order scheme is used for the transport terms in
the x1, v1, v2 and v3 directions. The dimensionless time step and meshes size are ∆t = 1/500,
∆x1 = L/126, ∆v = 2vmax/32 respectively. The grid has 126 points in space and 323 points
in velocity; 42 processors were used for each simulation (CEA-CCRT-platine facility, which is
a cluster of Novascale 3045 servers, including 932 nodes, each one having 4 Intel Itanium dual
core processors, at 1.6 Ghz. Each processor have a memory of 24 Go. The Novascale servers are
interconnected by a Voltaire network, with technology Infiniband DDR ). Domain decomposition
on the space domain allows each processor to deal only with 3 points in space. The fourth order
scheme on the space and velocity transport terms has been used. The zero current boundary
condition is written explicitly in the section 3.4. The boundary conditions for fields are chosen
with ghost points at their initial value (zero for electric fields and 0.001, 0.01, 0.1, or 1 for the
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magnetic fields. The results are presented in Figures 9-11. The typical run time is 24 hours for
40 collision times, with that set of parameters. The maximum difference between the numerical
and the analytical solution are less than 10% for longitudinal macroscopic quantities (heat flux
and electric field); 20% for transverse ones. Transverse quantities have only been considered for
simulations presented in Figures 10 and 11 where the magnetic field was strong enough so that

• The establishment of transverse heat flux can be achieved during the simulation time.
• Transverse quantities cannot be considered negligible compared to longitudinal ones.

These conditions where fulfilled for B3 = 0.1, 1.
In Figures 9-11, only results for simulations with B3 = 0.001, B3 = 0.1, B3 = 1 are shown,
respectively. The simulation with B3 = 0.01 proved to show no significance differences with those
with B3 = 0.001.
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Figure 9. Longitudinal (along the temperature gradient) ratios
maxx1(QF P )

maxx1 (QBR)

(dashed curve) and
maxx1(EF P )

maxx1 (EBR) (oscillating curve) are shown against the dimen-

sionless time. The dimensionless magnetic field is B3 = 0.001. Asymptotic be-
haviour, where the flux is well established, shows good agreement (less than 5%
error) with analytical solution (Braginskii formalism), denoted by subscript BR.

Results shown Figures 9-11 are revealing an important transient phase before the establish-
ment of a stationary regime. The oscillations are enforced by the magnetic field, Figure 11. The
oscillating electric fields are the consequence of the plasma waves excited by our initial conditions;
they are damped in a few electron-ion collision times. These plasma oscillations are smoothed
out by the large time steps we used in simulations, permitted by the implicit treatment of the
Maxwell equations. However this has a little importance on the asymptotic values and a little im-
portance for accuracy. With a larger magnetic field Figure 11, we observe frequency modulations
at ωc = νe,i (corresponding to B3 = 1), both on electric fields and heat fluxes. The total energy
is conserved with 0.1% accuracy in the case B3 = 0.001,and with 1% accuracy with B3 = 1. The
total density is conserved with 0.01%.

In order to investigate Larmor radius effects for simulations presented in Figures 10 and 11, we
refined the space grid below the dimensionless Larmor radius rL = B−1

3 . Therefore, simulation
presented in Figure 10 has been done again with the same parameters on the same time period: we
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Figure 10. Ratios
maxx1 (QF P )

maxx1(QBR) (curve in bold) and
maxx1 (EF P )

maxx1(EBR) (dashed curve) are

shown against the dimensionless time. Longitudinal quantities (along the temper-
ature gradient) are shown in (a), with about 10% accuracy in the asymptotics.
Transverse quantities are shown in (b), with about 20% accuracy in the asymp-
totics. The dimensionless magnetic field is B3 = 0.1.
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Figure 11. Ratios
maxx1 (QF P )

maxx1(QBR) (curve in bold) and
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maxx1(EBR) (dashed curve) are

shown against the dimensionless time. Longitudinal quantities (along the tem-
perature gradient) are shown in (a), with about 5% accuracy in the asymptotics.
Transverse quantities are shown in (b), with about 20% accuracy in the asymp-
totics. The dimensionless magnetic field is B3 = 1.

have refined the grid to 1260 points in space (420 processors). In the same manner, the simulation
presented in Figure 11 has been done again with 6300 grid points in space (2100 processors) and
∆t = 1/1000 (C.F.L. condition), during the same time period. The results prove to be similar
to those with coarse space grids, both for macroscopic quantities and distribution functions. We
thus show no dependence on the Larmor radius. Here we remark that the cyclotron frequency
is always resolved. The time steps are constrained by the C.F.L. on collision operators. The
positivity property is always maintained.
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6.2.2. Electron transport in the nonlocal regime without magnetic fields. The departure of trans-
port coefficients from their local values is of interest here. We restrict ourselves to cases where
the magnetic field is zero. Then it is possible to obtain directly the ratio of effective thermal
conductivity to the Spitzer-Härm conductivity κ/κSH by the relation:

κ

κSH
=

q1
qSH

.(56)

The Spitzer-Härm regime refers to a local regime with no magnetic field. In (56), q1 is calculated
from the numerical solution and qSH from (51) in the Spitzer-Härm limit.
Transport coefficients are extracted from the domain where the flux and temperature gradient
are maximum.
The wavelength of the temperature perturbation kλe,i in the Fourier space is computed from the
gradient temperature profile. This enables to obtain a range (due to an uncertainty) for kλe,i
corresponding to this temperature gradient.
The results will be compared with the analytical formula from [37]

κ

κSH
=

1

1 + (30kλe,iβ)4/3
,(57)

β =

(

3π

128

3.2(0.24 + Z)

(1 + 0.24Z)

)1/2 Z1/2

2
.(58)

The comparison between the numerical results and the analytical solution holds, owing the fact
that the test procedure involve a large domain of uncertainty. The three runs have been per-
formed with the same precision for the temperature gradient. The CFL conditions are respected,
maintaining the positivity of the distribution function.

Parameters RUN1 RUN2 RUN3
Size of the domain 5400 540 540
Stiffness parameter λ 10 10 100
Number of points along the Gradient 126 126 1260
Number of processors 42 42 420

Results RUN1 RUN2 RUN3
kλe,i 10−3 0.05 ± 0.03 0.2 ± 0.1

Analytical κ/κSH 0.998 [0.93 − 0.67] [0.60 − 0.26]
Numerical κ/κSH 1.03 0.675 0.395

6.2.3. Electron transport in the nonlocal regime with magnetic fields. The objective of this sec-
tion is to illustrate the competition between nonlocal and magnetic effects on the distribution
function. To this end, we consider a situation where the Knudsen number is close to Kn = 1/10.
This corresponds to a situation with a stiffness parameter λ = 100. The 1D domain goes from
0 to L = 540, the grid has 1260 points in space, 420 processors were used for each simulation
(10 collision times), during 6 hours. The other parameters are kept identical to those in the test
cases in the local regime. Two cases are distinguished, respectively with initial low magnetic fields
effects, ωc/νei = 10−2 (see Figures 13 and 14(a) ), and high magnetic fields effecs, ωc/νei = 1 (see
Figures 12(b) and 14(b) ). The magnetic fields are resolved by Maxwell equations; no more than
0.1% departure from the initial value is encountered after 10 collision times. The positivity of the
distribution function is maintained, and the CFL conditions satisfied.
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In the Figures 12 and 13, the averaged distribution function is shown in the region of the tem-
perature gradient

∑

(j2,j3)∈[−Nv,Nv]2

fe(xi, vj1 , vj2 , vj3) ,

where 2Nv is the number of velocity points in one velocity direction. The initial distribution func-
tion, Figure 12(a), is a Maxwellian with a temperature that depends on the space variable x1. It
is symmetric in the v1 direction. After 10 collision times, for the simulation with ωc/νei = 10−2,
Figure 13, the distribution function has the same structure for the bulk electrons. Only the struc-
ture for the fastest electrons is modified. The fast electron population with positive velocity is
depleted in the hot side of the temperature gradient, whereas the fast electron population with
negative velocity is enforced, contributing to the smoothing of the temperature gradient and the
heating of the bulk. These nonlocal effects are important, because the main contribution to the
heat flux come from the fastest particles.
The same distribution fonction is shown in Figure 12(b), at the same time, but for a simulation
with ωc/νei = 1. The distribution fonction is here strongly re-localized. This means that the
important magnetic fields tend to inhibit the electron transport, while forcing the electrons to
rotate along the magnetic field lines.

In order to gain more insight in the processes at stake, we show in Figure 14 the quantity
∑

(j2,j3)∈[−Nv,Nv]2

[fe(xi, vj1 , vj2 , vj3) − fe(x1,−vj1 , vj2 , vj3)] ,

which is odd in the variable vj1. It accounts for the asymmetries between the positive and negative
velocities, along the direction v1. We observe that the fast population contributes to the total
current with a negative sign, whereas the bulk population contributes to the return current, with
a positive sign. If we compare Figures 14(a) and 14(b), we observe that the assymetries are
strongly re-localized in the region of the temperature gradient, with high magnetic fields.
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Figure 12. Averaged distribution function in the v2 and v3 directions, in the
region of the temperature gradient, at initial time (a), and at tνei = 10 (b), for a
simulation with ωc/νei = 1.
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Figure 13. Averaged distribution function in the v2 and v3 directions, in the
region of the temperature gradient, at tνei = 10, for a simulation with ωc/νei =
10−2.
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Figure 14.
∑

(j2,j3)∈[−Nv,Nv]2 [fe(x1, vj1 , vj2 , vj3) − fe(x1,−vj1 , vj2, vj3)], in the

region of the temperature gradient, at the same time tνei = 10, for ωc/νei = 10−2

in Figure (a), and ωc/νei = 1 in Figure (b).

6.3. 2D nonlocal magnetic field generation. We present here results on the nonlocal mag-
netic field generation during the relaxation of cylindrical laser hot spots, having a periodic struc-
ture, and for a domain of initial constant density. This stands as a first step to prove the 2Dx

capabilities of the solver, and also as a validation in the nonlocal regime with a model from the
literature [39]. The extension of the presented numerical schemes is straightforward on a 2Dx

grid. The fourth order scheme is used for the transport terms in the x1, x2, v1, v2 and v3 directions.

We consider a planar geometry with periodic boundary conditions for the distribution function
and fields. For this application, the normalizations using collision frequency (38)-(40) are used.

The initial dimensionless temperature profile is Te(x, t = 0) = 1+0.12 exp
(

− x2

R2

)

, with R = 5.6.

We used the following parameters for the simulation: the frequency ratio is νe,i/ωpe = 0.003,
the ion charge is Z = 5. We do not consider the electron-electron collision operator. Here
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the relaxation only acts with electron-ion collisions on the anisotropic part of the electronic
distribution function. The electron thermal velocity is such as vth/c = 0.05. These parameters
are close to those used in [38]. The size of the simulation domain is L = 70 for one space direction,
2× vmax = 12 for one velocity direction. The initial electric and magnetic fields are zero over the
domain. The initial distribution function is a Maxwellian depending on the local temperature, the
initial density being constant over the domain. The dimensionless time step and meshes size are
∆t = 1/500, ∆x = ∆y = L/100, ∆v = 2vmax/32, respectively. The grid has 1002 points in space
and 323 points in velocity. 625 processors are used for this simulation. With these parameters,
the CFL conditions are satisfied and the distribution function remains positive. The simulation
time is 24 hours.

6.3.1. First order process of temperature relaxation. The dominant process that is at play in this
test case is the temperature relaxation of the hot spot. In our case the ratio size of a hot spot /
distance between hot spots is small enough, such as this process can be analyzed, at first order,
considering hot spots that relax without interaction between them, in a cylindrical geometry.
Therefore we employ the 1Dx non-magnetized nonlocal model [39], to validate this process. This
model is design to take into account nonstationary effects, with an important dependance of
the transport coefficients on time. Two characteristic relaxation regimes are identified in [39],
respectively at an hydrodynamic and collisional kinetic time scale.
Both electron-electron and electron-ion collisions are considered in [39]. Owing the fact that we
have chosen Z = 5, the electron-electron collisions can be considered negligible in the model [39],
for this particular test.
We compare in Figure 15 the evolution of the relaxation of the maximum of the temperature,
between the 2Dx × 3Dv Maxwell-Fokker-Planck-Landau solver and the model, and show good
agreement. The total mass is exactly preserved and the total energy is also preserved with 0.01%
accuracy.
In tests in which the magnetic fields effect become important, several theoritical work could be
mentioned, as suitable to be tested against [40], [41], [42], [43].

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

 1.13

 0  1  2  3  4  5  6  7  8

Dimensionless time

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re

Figure 15. Evolution of the maximum of dimensionless temperature. Compar-
ison between the Maxwell-Fokker-Planck-Landau solver (bold, red curve) and the
model from [39] (dash, green curve).
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6.3.2. Second order process of nonlocal interaction between hot spots. On the other hand, the ratio
size of a hot spot / distance between hot spots is large enough, such as nonlocal magnetic field
generation can develop, even if it is not the dominant process.

The mechanism under consideration here (the magnetic field generation Figure 16), is ex-
plained in [8], as the results of non parallel gradients of the third and fifth moments of the
electronic distribution function. We show the magnetic field in Figure 16(a) and the cross gradi-

ents ∇x

(∫

R3

fe‖v‖3dv

)

×∇x

(∫

R3

fe‖v‖5dv

)

in Figure 16(b).

This mechanism is not due to the magnetic field generation from a ∇ne × ∇Te structure, since
the density ne can be considered constant during the simulation.
This structure with eight lobes is the result of the collision operators (of diffusion type) that make
a particular hot spot interact, after a rapid transient phase, with the other surrounding (similar)
hot spots.
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Figure 16. Dimensionless magnetic field and cross gradients of high order mo-
ments (third and fifth) at tνe,i = 8.

7. Conclusions

In the present paper, we have developed high order numerical methods dedicated to plasma
simulation at a microscopic level.

A fourth order scheme issued from VFRoe schemes has been introduced in our kinetic context.
It brings accuracy improvement on the velocity transport term. The second order scheme remains
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interesting for the linear spatial transport term (which is faced to less robustness and accuracy
constraints) in a 2D, distributed memory context without overlapping between processors (each
processor communicating with its neighbours only). It involves indeed a reduced stencil, with a
lower limit for the number of spatial grid points per processor.
The Maxwell equations have been discretized with a second order, implicit scheme allowing large
time steps. We did not find any dependance on the Larmor radius and show that resolving the
cyclotron frequency is sufficient. The couplings between the equations of the system have intro-
duced a number of constraints (robustness, accuracy, symmetry) both on the transport scheme
and the collision operators. The extension of the methods to non-uniform, cartesian grids, can
be considered without affecting the conservation properties (positivity, energy, mass and momen-
tum conservation, entropy decaying behaviour). Some numerical and physical test cases have
validated our approach in different regimes of interest for ICF applications, and showed that it is
computationally affordable. We also proposed a validation strategy in the linear regime based on
[33], using Green kernels.
Compared to other methods, the method presented here do not make any assumption on the
anisotropy degree of the distribution function, neither perform simplifications on the collision
operators. A distinctive feature of the present model is its flexibility. Indeed, as pointed out
along this presentation, a wide range of regimes can be treated accurately with the method, from
collective to collisional. Potentially, realistic, reference simulations for ICF are realizable at a
hundred picosecond time scale at undercritical and critical density (where collective effects are
important), and at high densities (where collisional effects are dominant). The objective is to
present accurate calculations, on which reduced, but faster models can rely. The counterpart of
this accuracy is the computational cost of the method, despite the use of fast algorithms.
Various fundamental studies can be planned on the basis of the actual version of the solver. Col-
lisional Weibel instability [44], forward and backward collisional Stimulated Brillouin Scattering,
studies on the nonlocal interaction between speckles related to plasma-induced smoothing of laser
beams [45]. Also several axis of development are under consideration to bring more physics to
the model: the ion motion, the extension to regimes relevant to higher laser intensities, including
the relativistic regime and large angle collision terms of Boltzmann type.
Acknowledgments: The authors are thankful to the Commissariat à l’Energie Atomique for
the access to the CEA-CCRT-platine computing facilities. One of the author, Francis Filbet,
would like to express his gratitude to the ANR JCJC-0136 MNEC (Méthode Numérique pour les
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Appendix A. Electrostatic case in the linear regime

The non-relativistic 1Dx × 3DvVlasov-Poisson system extracted from the equations (1)-(3)
reads

∂f

∂t
+ v1

∂f

∂x1
+

qe
me

E1
∂f

∂v1
= 0 ,(59)

∂E1

∂x1
= −qe

ǫ0

(

n0 −
∫

R3

f(t, x1,v)dv

)

.(60)

The distribution function f is assumed to be a perturbation around an equilibrium state f (0)(‖v‖),
E

(0)
1 = 0, n0 =

∫

R3

f (0)(‖v‖)dv. The system (59),(60) is linearized around this equilibrium state

f(t, x1,v) = f (0)(‖v‖) + f (1)(t, x1,v) ,(61)

E
(1)
1 (t, x1) = E

(0)
1 + E

(1)
1 (t, x1) ,(62)

under the hypothesis:

‖f (1)‖ ≪ ‖f (0)‖ ,(63)

‖E(1)
1 ‖ ≪ 1 .(64)
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The Vlasov-Poisson can then be set under the following form (transport equation along the space
directions supplemented by a source term along the v1 direction), after linearization























∂f (1)

∂t
+ v1

∂f (1)

∂x1
= − qe

me
E

(1)
1

∂f (0)

∂v1
,

∂E
(1)
1

∂x1
=
qe
ǫ0

∫

R3

f (1)(t, x1,v)dv .

(65)

If f (1) and E
(1)
1 are periodic and integrable, then their respective normalized Fourier coefficient

are well-defined. A Fourier series expansion gives ∀t > 0














f (1)(t, x1,v) = f̂ (1)(t, k1,v)cos(k1x1) ,

f̂ (1)(t, k1,v) =
1

L

∫ L

0
f (1)(t, x1,v)e−ik1x1dx1 ,

(66)

Where L is the size of the domain. The same reconstruction using Fourier series is used for E
(1)
1 .

These coefficients verify the following equations,obtained by Fourier transformation performed on
the equations of the system (65), for all real k1

∂f̂ (1)

∂t
+ ik1v1f̂

(1) = − qe
me

Ê
(1)
1

∂f (0)

∂v1
,(67)

ik1Ê1 =
qe
ǫ0
n̂1 .(68)

Then introducing the notation f̂ (1)(t = 0, k1,v) = f̂ (10)(k1,v), the equation (67) can be written
in the integral form

f̂ (1)(t, k1,v) = f̂ (10)(k1,v)e−ik1v1t − qe
me

∫ t

0
Ê

(1)
1 (t′, k1)

∂f (0)

∂v1
e−ik1v1(t−t′)dt′ .(69)

Integrating the equation (69) over v and injecting in it the relation (68), one obtains the following
integral equation for the density

n̂(1)(t, k1) = M(t, k1) +

∫ t

0
K(t− t′, k1)n̂

(1)(t′, k1)dt
′ ,(70)

where

K(t, k1) =
iq2e

k1meǫ0

∫

R3

∂f (0)

∂v1
e−ik1v1tdv ,(71)

M(t, k1) =

∫

R3

f̂ (10)(k1,v)e−ik1v1tdv .(72)

These kernels can be computed with the desired accuracy, following [33]. The numerical resolution
of (70) finally reduces to the inversion of a triangular linear system.
Macroscopic quantities such as the density or the heat flux can then be reconstructed using these
latter equations.
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Appendix B. Initialization for the generation of a single X-mode plasma wave

This test case stands as a validation for the couplings of Vlasov and Maxwell equations. We
determine initial conditions that trigger a plasma wave at a given wavelength. To do so, Vlasov-
Maxwell equations are linearized, setting f = f (0) + f̃ , E = Ẽ, B = B(0) + B̃ around the
equilibrium state f = f (0), E = 0, B = B(0). In this appendix, we use the normalization (26)-
(28). We assume periodic boundary conditions. The fluctuations of the total pressure tensor are
neglected with respect to those of the magnetic field.

Using the conservation law
∂n

∂t
+
∂j1
∂x1

= 0, the former hypothesis lead us to solve the system of

six equations with six unknown j̃1, j̃2, Ẽ1, Ẽ2, B̃3 and ñ

(73)











































































∂j̃1
∂t

+ Ẽ1 +B(0)j̃2 = 0 ,

∂j̃2
∂t

+ Ẽ2 −B(0)j̃1 = 0 ,

∂ñ

∂t
+ ∂x1 j̃1 = 0 ,

∂Ẽ1

∂x1
= −ñ ,

∂Ẽ2

∂t
= − 1

β2

∂B̃3

∂x1
+ j̃2 ,

∂B̃3

∂t
= −∂Ẽ2

∂x1
.

Applying time and space Fourier transform to this system, and identifying Fourier components
(ñ = n̂ exp(−iωt+ ik1x1)), the following system is obtain







































−iωĵ1 + Ê1 +B(0)ĵ2 = 0 ,

−iωĵ2 + Ê2 −B(0)ĵ1 = 0 ,

−iωn̂+ ik1ĵ1 = 0 ,

ik1Ê1 = −n̂ ,
−iωÊ2 = − 1

β2
ik1B̂3 + ĵ2 ,

−iωB̂3 = −ik1Ê2 .

The dispersion equation of this system reads

N2 =
k2
1

β2ω2
= 1 − ω2 − 1

ω2(ω2 − 1 − ‖B(0)‖2)
.(74)

In this equation, the plasma frequency is ωpe = 1 and the cyclotron frequency is ωc = qe‖B(0)‖/m,
that is ‖B0‖ in this dimensionless case. The perturbation term of the distribution function at
initial time can be determined for a particular solution ω of this relation dispersion.
The Fourier transform is applied on the linearized Vlasov equation

(75) (−iω + ik1v1)f̂ − Ê1
∂f (0)

∂v1
− Ê2

∂f (0)

∂v2
−B(0)v2

∂f̂

∂v1
+B(0)v1

∂f̂

∂v2
= 0 .
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This equation is expressed in cylindrical coordinates






v1 = v⊥ cos(ψ) ,
v2 = v⊥ sin(ψ) ,
v3 = v‖

where
{

v⊥ = (‖v1‖2 + ‖v2‖2)1/2 ,

tan(ψ) =
v2
v1

.

Recalling that:

∇vf =
∂f

∂v⊥
∇vv⊥ +

∂f

∂ψ
∇vψ +

∂f

∂v‖
∇vv‖ ,







































∂v⊥
∂v1

= cos(ψ) ,

∂v⊥
∂v2

= sin(ψ) ,

∂ψ

∂v1
= − 1

v⊥
sin(ψ)

∂ψ

∂v2
=

1

v⊥
cos(ψ) ,

with ∇vv⊥ = ~e⊥, ∇vvψ = ~eψ and ∇vv‖ = ~e‖, where ~e are vectors in the local basis. Setting

f (0)(‖v‖2) = (2π)
3
2 exp(−‖v‖2

2 ), and writing

(v ∧ B).∇vf̂ = (∇vf̂ ∧ v).B = −B(0) ∂f

∂ψ
, with B = (0, 0, B(0)) ,

the kinetic equation (75) becomes

(76) (−iω + ik1v⊥ cos(ψ))f̂ +B(0) ∂f̂

∂ψ
+ f (0)(‖v‖2)v⊥(Ê1 cos(ψ) + Ê2 sin(ψ)) = 0.

In order to solve this equation, we decompose the distribution function as a Fourier series

f̂ =

+∞
∑

n=−∞

f̂n(v⊥)einψ.

Then from (76),

+∞
∑

n=−∞

(−iω + ik1v⊥ cos(ψ) + inB(0))f̂ne
inψ = −f (0)(‖v‖2)v⊥(Ê1 cos(ψ) + Ê2 sin(ψ)) .

Multiplying this equation by eimψ, integrating from 0 to 2π, we obtain

+∞
∑

n=−∞

∫ 2π

0
eimψ(−iω + ik1v⊥ cos(ψ) + inB(0))f̂ne

inψdψ

= −f (0)(‖v‖2)v⊥

∫ 2π

0
eimψ(Ê1 cos(ψ) + Ê2 sin(ψ))dψ .(77)
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For m = 0, terms are different from zero only for n = −1, 0, 1. From (77) comes

(78) k1v⊥f̂−1 − 2ωf̂0 + k1v⊥f̂1 = 0 .

For m = −1,

(79) ik1v⊥f̂0 − 2i(ω −B(0))f̂1 + ik1v⊥f̂2 = −f0(v
2)v⊥(Ê1 − iÊ2) .

For m = 1,

(80) ik1v⊥f̂−2 − 2i(ω +B(0))f̂−1 + ik1v⊥f̂0 = −f (0)(‖v‖2)v⊥(Ê1 + iÊ2) .

The case m = −2 involves f̂3,

(81) ik1v⊥f̂1 − 2(ω − 2B(0))f̂2 + ik1v⊥f̂3 = 0 .

In the same manner the case m = 2 involves f̂−3,

(82) ik1v⊥f̂−3 − 2(ω + 2B(0))f̂−2 + ik1v⊥f̂−1 = 0 .

In order to close the system, the components f−3 and f3 are neglected, and we deduce from
(78-82),



























−2(ω + 2B(0))f̂−2 + ik1v⊥f̂−1 = 0 ,

ikv⊥f̂−2 − 2i(ω +B(0))f̂−1 + ik1v⊥f̂0 = −f (0)(‖v‖2)v⊥(Ê1 + iÊ2) ,

kv⊥f̂−1 − 2ωf̂0 + k1v⊥f̂1 = 0 ,

ik1v⊥f̂0 − 2i(ω −B(0))f̂1 + ik1v⊥f̂2 = −f (0)(‖v‖2)v⊥(Ê1 − iÊ2) ,

ik1v⊥f̂1 − 2(ω − 2B(0))f̂2 = 0 .

The solution of linearized Vlasov equation can be calculated















f(t, x, v) = f (0)(‖v‖2) +
∑+∞

n=−∞ f̂n(v⊥)e−iωt+ik1x1+inψ ,

E1(t, x) = Ê1e
−iωt+ik1x1 ,

E2(t, x) = Ê2e
−iωt+ik1x1 ,

B(t, x) = B(0) + B̂3e
−iωt+ik1x1 .

The dispersion relation (74) provides with a particular ω. Then we obtain the following results
for the construction of the initial solution,

f(0, x, v) = f (0)(‖v‖2) +

2
∑

n=−2

f̂n(v⊥)eik1x+inψ
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With the expressions

f̂−2

f (0)(‖v‖2)D̂
= i(−4ω3Ê1 − 4 iω3Ê2 + 12 iω2B(0) Ê2 + 12ω2B(0) Ê1 − 8 ‖B(0)‖2

ω Ê1

+ k1
2v⊥

2ω Ê1 + 3 ik1
2v⊥

2ω Ê2 − 8 i‖B(0)‖2
ω Ê2 − 4 ik1

2v⊥
2B(0) Ê2)v⊥

2k1,

f̂−1

f (0)(‖v‖2)D̂
= 2 iv⊥ (Ê1 k1

2v⊥
2ω2 + 4 iB(0) ω3Ê2 − 16 ‖B(0)‖3

ω Ê1 − 16 i‖B(0)‖3
ω Ê2

+ 3 iÊ2 k1
2v⊥

2ω2 − 4 Ê1 ω
4 − 8 iÊ2 k1

2v⊥
2‖B(0)‖2

+ 2 k1
2v⊥

2B(0) ω Ê1

+ 2 ik1
2v⊥

2B(0) ω Ê2 + 16 Ê1 ‖B(0)‖2
ω2 + 16 iÊ2 ‖B(0)‖2

ω2 + 4B(0) ω3Ê1

− 4 iÊ2 ω
4),

f̂0

f (0)(‖v‖2)D̂
= 2 iv⊥

2k1(16 ‖B(0)‖2
ω Ê1 + k1

2v⊥
2ω Ê1 − 4ω3Ê1 + 4 iω2B(0) Ê2

− 16 i‖B(0)‖3
Ê2 + 2 ik1

2v⊥
2B(0) Ê2),

f̂1

f (0)(‖v‖2)D̂
= 2 i(−2B(0) + ω)v⊥ (−4 ik1

2v⊥
2B(0) Ê2 + k1

2v⊥
2ω Ê1 − 3 ik1

2v⊥
2ω Ê2

− 12ω2B(0) Ê1 + 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2 − 8 ‖B(0)‖2
ω Ê1

+ 8 i‖B(0)‖2
ω Ê2),

f̂2

f (0)(‖v‖2)D̂
= ik1v⊥

2(−4 ik1
2v⊥

2B(0) Ê2 + k1
2v⊥

2ω Ê1 − 3 ik1
2v⊥

2ω Ê2 − 12ω2B(0) Ê1

+ 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2 − 8 ‖B(0)‖2
ω Ê1 + 8 i‖B(0)‖2

ω Ê2),

where

D̂ = ω (64 ‖B(0)‖4 − 16 k1
2v⊥

2ω2 + 16ω4 + 16 k1
2v⊥

2‖B(0)‖2
+ 3 k1

4v⊥
4 − 80 ‖B(0)‖2

ω2).

k1v⊥ being small with respect to B(0) and ω, for this particular application (v⊥ must be considered

in the range where the equilibrium distribution function f (0)(‖v‖2) = (2π)
3
2 exp(−‖v‖2

2 ) does not

vanish. If B(0) = 2, ω ≃ 5 and k = 2π/25, then kv⊥ ≪ B(0), ω), the numerical powers of k1v⊥
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can be neglected compared to these terms. The solution can be written

f̂−2

f (0)(‖v‖2)D̂
= iv⊥

2k1(−4ω3Ê1 − 4 iω3Ê2 + 12 iω2B(0) Ê2

+ 12ω2B(0) Ê1 − 8 ‖B(0)‖2
ω Ê1 − 8 i‖B(0)‖2

ω Ê2),

f̂−1

f (0)(‖v‖2)D̂
= 2 iv⊥ (4 iB(0) ω3Ê2 − 16 ‖B(0)‖3

ω Ê1 − 16 i‖B(0)‖3
ω Ê2 − 4 Ê1 ω

4

+ 16 Ê1 ‖B(0)‖2
ω2 + 16 iÊ2 ‖B(0)‖2

ω2 + 4B(0) ω3Ê1 − 4 iÊ2 ω
4),

f̂0

f (0)(‖v‖2)D̂
= 2 iv⊥

2k1(16 ‖B(0)‖2
ω Ê1 + k1

2v⊥
2ω Ê1 − 4ω3Ê1 + 4 iω2B(0) Ê2

− 16 i‖B(0)‖3
Ê2),

f̂1

f (0)(‖v‖2)D̂
= 2 iv⊥ (ω − 2B(0))(−12ω2B(0) Ê1 + 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2

− 8 ‖B(0)‖2
ω Ê1 + 8 i‖B(0)‖2

ω Ê2),

f̂2

f (0)(‖v‖2)D̂
= ik1v⊥

2(−12ω2B(0)) Ê1 + 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2

− 8 ‖B(0)‖2
ω Ê1 + 8 i‖B(0)‖2

ω Ê2),

where
D̂ = ω (64 ‖B(0)‖4

+ 16ω4 − 80 ‖B(0)‖2
ω2).

We choose to initialize the perturbation from the amplitude of the magnetic field:

B̂3 = A where A ∈ [0, 1].

Then from the system (73) and the dispersion relation (74), we deduce the values of Ê1, Ê2 and

thus reconstruct the f̂i,

Ê1 =
−iB̂3

(

ω4β2 − ω2k1
2 − ω2β2 − ‖B(0)‖2

ω2β2 + ‖B(0)‖2
k1

2
)

k1β2B(0)
, Ê2 =

ωB̂3

k1
.
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