Roland Duclous (corresponding author)
Université Bordeaux I,
UMR CELIA CEA, CNRS et Institut de Mathématiques de Bordeaux
351, Cours de la Libération
F-33405 Talence cedex, FRANCE
E-MAIL: duclous@math.u-bordeaux1.fr
Francis Filbet
Université Lyon,
Université Lyon1, CNRS,
UMR 5208 - Institut Camille Jordan,
43, Boulevard du 11 Novembre 1918,
F-69622 Villeurbanne cedex, FRANCE
E-MAIL: filbet@math.univ-lyon1.fr
Bruno Dubroca
Université Bordeaux I,
umr Celia cea, CnRs et Institut de Mathématiques de Bordeaux
351, Cours de la Libération
F-33405 Talence cedex, FRANCE
E-MAIL: dubroca@math.u-bordeaux1.fr
Vladimir Tikhonchuk
Université Bordeaux I, UMR CELIA CEA, CNRS
351, Cours de la Libération
F-33405 Talence cedex, FRANCE
E-MAIL: tikhonchuk@celia.u-bordeaux1.fr

HIGH ORDER RESOLUTION OF THE MAXWELL-FOKKER-PLANCK-LANDAU MODEL INTENDED FOR ICF APPLICATIONS

ROLAND DUCLOUS, BRUNO DUBROCA, FRANCIS FILBET AND VLADIMIR TIKHONCHUK

Abstract

A high order, deterministic direct numerical method is proposed for the non-relativistic $2 D_{\mathbf{x}} \times 3 D_{\mathbf{v}}$ Vlasov-Maxwell system, coupled with Fokker-Planck-Landau type operators. The magnetic fields, perpendicular to the $2 D_{\mathbf{x}}$ plane surface, and the electric fields, contained in this plane, are resolved with Maxwell equations. Such a system is devoted to the modelling of the electronic transport and energy deposition in the general frame of Inertial Confinement Fusion applications. It is able to describe the kinetics of plasma physics in the nonlocal thermodynamic equilibrium regime, and permit large anisotropy degree of the distribution function. Strong numerical constraints lead us to develop specific methods and approaches for validation, that might be used in other fields where couplings between equations, multiscale physics, and high dimensionality are involved. Parallelisation (MPI communication standard) and fast algorithms such as the multigrid method are employed, that make this direct approach be computationally affordable for simulations of hundreds of picoseconds, when dealing with configurations that present five dimensions in phase space.

Keywords. High order numerical scheme, Fokker-Planck-Landau, NLTE regime, ICF, Magnetic field, Electronic transport, Energy deposition.
AMS subject classifications.

Contents

1. Introduction 3
2. Kinetic model 5
2.1. Transport equation under electromagnetic fields 6
2.2. Collision operators 7
3. Numerical scheme for transport 8
3.1. Second order approximation of a one dimensional transport equation 8
3.2. Fourth order transport scheme 9
3.3. Application to the Vlasov-Maxwell system. 11
3.4. boundary conditions 14
4. Validation of the transport schemes 14
4.1. Scaling with plasma frequency 15
4.2. Test $1: 1 D$ two-stream instability 16
4.3. Test 2: $1 D$ X-mode plasma in a magnetic field 19
5. Approximation of the collision operators 20
5.1. Discretization of the Lorentz operator 20
5.2. Discrete Landau operator 24
6. Numerical results 25
6.1. Scaling with collision frequency 25
6.3. 2D nonlocal magnetic field generation
7. Conclusions 37

References
Appendix A. Electrostatic case in the linear regime
Appendix B. Initialization for the generation of a single X-mode plasma wave

1. Introduction

In the context of the interaction of intense, short laser pulses with solid targets [1], Inertial Confinement Fusion (ICF) schemes [2, 3], the energy transport is an important issue. In this latter field of applications (ICF), it determines the efficiency of plasma heating and the possibility to achieve the fusion conditions. The appropriate scales under consideration here are about a hundred micrometers for the typical spatial sizes, and hundreds of picoseconds for the time scales.

Several key features should be accounted for. First of all, in typical ICF configurations, a significant amount of energetic electrons have a large mean free path, exceeding the characteristic gradient length of the temperature and the density: the particles motion exhibits nonlocal features.

A wide range of collisional regimes should be dealt with to describe the propagation and the deposit of energetic electrons from the underdense corona of the target to its dense and compressed core.

The collisions are important even if the beam particles themselves are collisionless [2]: these particles, when propagating in a plasma, trigger a return current that neutralizes the incident current. This return current is determined by collisions of thermal, background electrons. The structure of the generated electron distribution function is then often anisotropic, with a strongly intercorrelated two population structure. For non-relativistic laser intensity, smaller than $10^{18} \mathrm{~W} \mathrm{~cm}^{-2}$, a small angle description for collisions between the two populations is well-suited, leading to the classical Fokker-Planck-Landau collision model. The Coulomb potential involves multiple collisions with small energy exchanges between particles, so that the Landau form of the Fokker-Planck operator is required here. Such a configuration with two counterstreaming beams typically leads to the development of microscopic instabilities that can modify strongly the beam propagation. We refer to the two-stream and filamentation instabilities, where the wave vector of the perturbation is respectively parallel and perpendicular to the incident beam [4, 5]. A self-consistent description of electromagnetic fields is then required to describe the plasma behaviour and associated instabilities. Furthermore in the process of plasma heating, strong magnetic fields are generated at intensity that can reach a MegaGauss scale and may affect the energy transport $[6,7,8]$. The sources of magnetic field generation include on the one hand the effects of the rotational part of the electronic pressure which is a cross gradient $\nabla T \times \nabla n$ effect, and on the other hand the exponential growth of perturbations of anisotropic distribution functions (Weibel instability). Some electromagnetic processes can be strongly coupled with nonlocal effects [9, 10].

The plasma model studied in this paper is based on the non-relativistic Vlasov-Maxwell equations, coupled with Fokker-Planck-Landau collision operators. It gathers the listed requirements at laser intensities which are relevant for ICF. At higher laser intensities, a relativistic treatment should be considered $[2,11]$, and collision operators with large energy exchanges are required if secondary fast electron production proves to be non-negligible, particularly with dense plasmas.

There are several numerical methods that treat the Vlasov-Maxwell model together with Fokker-Planck-Landau type operators. Among them, the collisional Particle-In-Cell (PIC) method, originally designed to describe accurately the collective effects, gives satisfying results in a limited range of collisional regimes. It suffers from the "finite grid instability", that involves numerical heating. Also the statistical noise and the low resolution of the electron distribution function by PIC solvers generally lead to an inaccurate treatment of collisions, particularly when dealing with low temperature and high density plasmas. In the high density regions (hundreds of critical densities), the computational resources needed by the PIC method become currently excessive. Recent collisional PIC solvers [12] turn to weighted macro-particles to attain high densities, together with high order numerical schemes, to reduce the numerical heating.
Another type of widely-used method consists in the expansion of the distribution function in Legendre polynomials, retaining the lowest order terms [13, 14]. However, with this approach, a strong anisotropy of the distribution function cannot be treated $[2,13,15]$. To overcome this difficulty, a method based on spherical harmonic expansion can be employed [16, 2], that proves to be efficient in various regimes. However, these expansion-based methods may still present inaccuracies, that need to be quantified, in the regimes where collective effects are important. In particular, a situation that is to be considered in ICF applications is the configuration where a collisionless anisotropic fast electron population is coupled to a collision dominated thermal population. Also, a configuration of importance, where an accurate description of collective effects is required, together with a collisional treatment, concern the beam energy transport in regions close to the critical density.
Here we propose a different, complementary approach, that could potentially address these complicated situations. It consists in approximating the full model by a direct deterministic numerical method. Such method do not involve, this should be emphasized here, any perturbative expansion or linearization of the distribution function around an equilibrium state, to obtain reduced and tractable collision operators. It discretizes directly the initial set of equations and enables to preserve, at a discrete level, the physical invariants of the model (positivity of the distribution function, total mass and energy, entropy decreasing behaviour, etc). Many deterministic schemes of this type have already been considered for homogeneous Fokker-Planck type operators $[17,18,19,20,21]$. The nonhomogeneous case, that includes the transport part (see [22] for a comparison between Eulerian Vlasov solvers), involves a large computational complexity that can only be reduced with fast algorithms. Multipole expansion [23] and multigrid [19] techniques, as well as fast spectral methods [20, 24], have been applied to the Landau equation. For computational complexity constraints, very few results on the accuracy of these methods are known in the nonhomogeneous case [25, 24], particularly when the coupling with magnetic fields is considered [26].

Our starting point for the transport part discretization is a second order finite volume scheme introduced in [25]. Its main feature is that it preserves exactly the discrete energy, if slope limiters are not active. We introduce additional dissipation on these limiters in order to successfully address the two-stream instability test case. We will underline the important role of the limitation procedure for the accuracy, on the second order scheme. This scheme is compared in this test case with a fourth order MUSCL scheme [27], with a limitation ensuring the positivity of the distribution function [28]. A similar approach, with the introduction of a fourth order scheme for transport to avoid numerical heating, has already been proposed in the context of PIC solvers [12].

The discretization of the Maxwell equations is performed with a Crank-Nicholson method, allowing the time steps to be of the order of the collision time. It is designed to preserve the discrete total electromagnetic energy, which is a very important numerical constraint when considering the coupling of Vlasov and Maxwell equations for applications aiming at capturing an accurate energy deposition. We use for the Landau operator a fast multigrid technique that proves to be accurate in a wide range of collisional regimes. Moreover, the use of domain decomposition techniques and distributed memory MPI standard on the space domain leads to affordable computational cost, and the treatment of time dependent, $2 D_{\mathbf{x}} \times 3 D_{\mathbf{v}}$ problems. As for the Lorentz electron-ion collision operator, we insist on discrete symmetry properties that are important when coupling to the Maxwell equations.

Finally, we propose to validate the numerical method on several physical test cases.
The paper is organized as follows. First, we present the model and its properties, then we discuss the numerical schemes for the transport part, their properties, and propose several numerical tests. Then the discretization for the collision operators is treated and we finally present physical test cases $1 D_{\mathbf{x}} \times 3 D_{\mathbf{v}}$ and $2 D_{\mathbf{x}} \times 3 D_{\mathbf{v}}$ that show the accuracy of the present algorithm.

2. Kinetic model

Two particle species are considered: ions which are supposed to be fixed (assuming an electronion mass ratio $m_{e} / m_{i} \ll 1$), and electrons for which the evolution is described by a distribution function $f_{e}(t, \mathbf{x}, \mathbf{v})$ where for the more general case $(\mathbf{x}, \mathbf{v}) \in \Omega \times \mathbb{R}^{3}$, with $\Omega \subset \mathbb{R}^{3}$. The nonrelativistic Vlasov equation with Fokker-Planck-Landau (FPL) collision operator is given by

$$
\begin{equation*}
\frac{\partial f_{e}}{\partial t}+\nabla_{\mathbf{x}} \cdot\left(\mathbf{v} f_{e}\right)+\frac{q_{e}}{m_{e}} \nabla_{\mathbf{v}} \cdot\left((\mathbf{E}+\mathbf{v} \times \mathbf{B}) f_{e}\right)=C_{e, e}\left(f_{e}, f_{e}\right)+C_{e, i}\left(f_{e}\right) \tag{1}
\end{equation*}
$$

where $q_{e}=-e$ is the charge of an electron and m_{e} is the mass of an electron. On the one hand, electromagnetic fields (\mathbf{E}, \mathbf{B}) are given by the classical Maxwell system

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{E}}{\partial t}-c^{2} \nabla_{\mathbf{x}} \times \mathbf{B}=-\frac{\mathbf{J}}{\epsilon_{0}} \tag{2}\\
\frac{\partial \mathbf{B}}{\partial t}+\nabla_{\mathbf{x}} \times \mathbf{E}=0
\end{array}\right.
$$

where ϵ_{0} represents the permittivity of vacuum, c is the speed of light. The electric current is given by

$$
\mathbf{J}(t, \mathbf{x})=q_{e} \int_{\mathbb{R}^{3}} f_{e}(t, \mathbf{x}, \mathbf{v}) \mathbf{v} \mathbf{d} \mathbf{v} .
$$

Moreover, Maxwell system's is supplemented by Gauss law's

$$
\begin{equation*}
\nabla_{\mathbf{x}} \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}, \quad \nabla_{\mathbf{x}} \cdot \mathbf{B}=0 \tag{3}
\end{equation*}
$$

where ρ is the charge density:

$$
\rho=q_{e}\left(n_{e}-n_{o}\right)=q_{e}\left(\int_{\mathbb{R}^{3}} f_{e}(t, \mathbf{x}, \mathbf{v}) \mathbf{d} \mathbf{v}-n_{0}\right),
$$

and n_{0} / Z is the initial ion density.
In this model, the Vlasov equation stands for the invariance of the distribution function along the particles trajectories affected by the electric and magnetic fields \mathbf{E} and \mathbf{B}. The Vlasov transport terms, in the left-hand side of equation (1), are written in their conservative form,
but they can also be written in an equivalent non-conservative form, while Maxwell equations (2)-(3) provide with a complete self-consistent description of electromagnetic fields. The coupling between both is performed via the Lorentz force term $\mathbf{E}+\mathbf{v} \times \mathbf{B}$ in the Vlasov equation, and the current source terms in Maxwell equations.

On the other hand, in equation (1), the right hand side represents the collisions between particles, which only act on the velocity variable. Thus we drop the \mathbf{x} variable. The FPL operator $C_{e, e}\left(f_{e}, f_{e}\right)$ stands for the electron-electron collision operator

$$
\begin{equation*}
C_{e, e}\left(f_{e}, f_{e}\right)=\frac{e^{4} \ln \Lambda}{8 \pi \epsilon_{0}^{2} m_{e}^{2}} \nabla_{\mathbf{v}} \cdot\left(\int_{\mathbb{R}^{3}} \Phi\left(\mathbf{v}-\mathbf{v}^{\prime}\right)\left[f_{e}\left(\mathbf{v}^{\prime}\right) \nabla_{\mathbf{v}} f_{e}(\mathbf{v})-f_{e}(\mathbf{v}) \nabla_{\mathbf{v}^{\prime}} f_{e}\left(\mathbf{v}^{\prime}\right)\right] \mathbf{d}^{\prime}\right) \tag{4}
\end{equation*}
$$

whereas $C_{e, i}\left(f_{e}\right)$ is the electron-ion collision operator

$$
\begin{equation*}
C_{e, i}\left(f_{e}\right)=\frac{Z n_{0} e^{4} \ln \Lambda}{8 \pi \epsilon_{0}^{2} m_{e}^{2}} \nabla_{\mathbf{v}} \cdot\left[\Phi(\mathbf{v}) \nabla_{\mathbf{v}} f_{e}(\mathbf{v})\right] \tag{5}
\end{equation*}
$$

where $\ln \Lambda$ is the Coulomb logarithm, which is supposed to be constant over the domain and $\Phi(\mathbf{u})$ is an operator acting on the relative velocity \mathbf{u}

$$
\begin{equation*}
\Phi(\mathbf{u})=\frac{\|\mathbf{u}\|^{2} \mathrm{Id}-\mathbf{u} \otimes \mathbf{u}}{\|\mathbf{u}\|^{3}} \tag{6}
\end{equation*}
$$

The FPL operator is used to describe elastic, binary collisions between charged particles, with the long-range Coulomb interaction potential. Classical but important properties of the system (1)-(3) together with operators (4) and (5), are briefly recalled. For detailed proofs, we refer to $[25,29]$. As we assume ions to be fixed, the FPL operator can then be simplified for electronion collisions [25], and reduced to the Lorentz approximation. We refer to [30] for a physical derivation.
2.1. Transport equation under electromagnetic fields. Let us neglect in this section the collision operators, and consider a periodic or infinite space domain. The Vlasov-Maxwell system (1)-(3) with a zero right-hand side is strictly equivalent to (1)-(2) provided Gauss's laws (3) are initially satisfied. This gives a compatibility condition at initial time.
The mass and momentum are preserved with respect to time for the Vlasov-Maxwell system, i.e. system (1)-(2) without collision operators

$$
\frac{d}{d t} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} f_{e}(t, \mathbf{x}, \mathbf{v})\binom{1}{\mathbf{v}} \mathbf{d} \mathbf{x} \mathbf{d} \mathbf{v}=0, t \geq 0
$$

Moreover, the conservation of energy can be proved for the Vlasov-Maxwell system by multiplying equation (1) by $m_{e}\|\mathbf{v}\|^{2} / 2$ and integrating it in the velocity space. It gives after an integration by parts

$$
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}\left\{\epsilon_{0}\|\mathbf{E}(t, \mathbf{x})\|^{2}+\frac{1}{\mu_{0}}\|\mathbf{B}(t, \mathbf{x})\|^{2}+\left[\int_{\mathbb{R}^{3}} m_{e}\|\mathbf{v}\|^{2} f_{e}(t, \mathbf{x}, \mathbf{v}) \mathbf{d} \mathbf{v}\right]\right\} \mathbf{d} \mathbf{x}=0, t \geq 0
$$

with $c^{2} \epsilon_{0} \mu_{0}=1$. The Vlasov-Maxwell system also conserves the kinetic entropy

$$
\frac{d}{d t} H(t)=\frac{d}{d t} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} f_{e}(t, \mathbf{x}, \mathbf{v}) \log \left(f_{e}(t, \mathbf{x}, \mathbf{v})\right) \mathbf{d} \mathbf{x} \mathbf{d} \mathbf{v}=0, t \geq 0
$$

2.2. Collision operators. The FPL operator is used to describe binary elastic collisions between electrons. Its algebraic structure is similar to the Boltzmann operator, in that it satisfies the conservation of mass, momentum and energy

$$
\int_{\mathbb{R}^{3}} C_{e, e}\left(f_{e}, f_{e}\right)(\mathbf{v})\left(\begin{array}{c}
1 \\
\mathbf{v} \\
\|\mathbf{v}\|^{2}
\end{array}\right) \mathbf{d v}=0, t \geq 0
$$

Moreover, the entropy is decreasing with respect to time

$$
\frac{d H}{d t}(t)=\frac{d}{d t} \int_{\mathbb{R}^{3}} f_{e}(\mathbf{v}, t) \log \left(f_{e}(\mathbf{v}, t)\right) \mathbf{d} \mathbf{v} \leq 0, t \geq 0
$$

The equilibrium states of the FPL operator, i.e. the set of distribution functions in the kernel of $C_{e, e}\left(f_{e}, f_{e}\right)$, are given by the Maxwellian distribution functions

$$
\mathcal{M}_{n_{e}, \mathbf{u}_{\mathbf{e}}, T_{e}}(\mathbf{v})=n_{e}\left(\frac{m_{e}}{2 \pi T_{e}}\right)^{3 / 2} \exp \left(-m_{e} \frac{\left\|\mathbf{v}-\mathbf{u}_{\mathbf{e}}\right\|^{2}}{2 T_{e}}\right),
$$

where n_{e} is the density, $\mathbf{u}_{\mathbf{e}}$ is the mean velocity and T_{e} is the temperature, defined as

$$
\left\{\begin{aligned}
n_{e} & =\int_{\mathbb{R}^{3}} f_{e}(\mathbf{v}) \mathbf{d} \mathbf{v} \\
\mathbf{u}_{\mathbf{e}} & =\frac{1}{n_{e}} \int_{\mathbb{R}^{3}} f_{e}(\mathbf{v}) \mathbf{v d v} \\
T_{e} & =\frac{m_{e}}{3 n_{e}} \int_{\mathbb{R}^{3}} f_{e}(\mathbf{v})\left\|\mathbf{v}-\mathbf{u}_{\mathbf{e}}\right\|^{2} \mathbf{d} \mathbf{v} .
\end{aligned}\right.
$$

On the other hand, the operator (5), modelling collisions between electrons and ions, is a Lorentz operator. It satisfies the conservation of mass and energy

$$
\int_{\mathbb{R}^{3}} C_{e, i}\left(f_{e}\right)(\mathbf{v})\binom{1}{\left\|\mathbf{v}-\mathbf{u}_{\mathbf{e}}\right\|^{2}} \mathbf{d} \mathbf{v}=0
$$

Moreover, the equilibrium states for this operator are given by the set of isotropic functions:

$$
\operatorname{Ker}\left(C_{e, i}\right)=\left\{f_{e} \in L^{1}\left(\left(1+\|\mathbf{v}\|^{2}\right) \mathbf{d v}\right), \quad f_{e}(\mathbf{v})=\phi(z), \quad z=\left\|\mathbf{v}-\mathbf{u}_{\mathbf{e}}\right\|^{2}\right\} .
$$

Finally, each convex function ψ of f_{e} is an entropy for $C_{e, i}\left(f_{e}\right)$,

$$
\frac{d}{d t} \int_{\mathbb{R}^{3}} \psi\left(f_{e}\right) \mathbf{d v} \leq 0, t \geq 0
$$

In addition to these properties, we present a symmetry property. This property may have some importance, in particular in presence of magnetic fields. In that case, any break of symmetry due to an inadequate discretization method could lead to generation of an artificial magnetic field, via the current source terms, when coupling with the Maxwell equations.

Proposition 2.1. If f_{e} has the following symmetry property with respect to the direction k at time t_{0}

$$
\begin{equation*}
f_{e}\left(t_{0}, \mathbf{v}\right)=f_{7}\left(t_{0}, \mathbf{v}^{k}\right) \tag{7}
\end{equation*}
$$

with components for

$$
\mathbf{v}_{i}^{k}= \begin{cases}+\mathbf{v}_{i} & \text { if } i \neq k \\ -\mathbf{v}_{i} & \text { if } i=k\end{cases}
$$

Then, this symmetry property is preserved with respect to time.

3. NumERICAL SCHEME FOR TRANSPORT

We present a finite volume approximation for the Vlasov-Maxwell system (1)-(2) without collision operators. Indeed, it is crucial to approximate accurately the transport part of the system to asses the collective behaviour ${ }^{1}$ of the plasma, that occurs typically at a shorter scale than the collision processes. We introduce a uniform $1 D$ space discretization $\left(x_{i+1 / 2}\right)_{i \in I}, I \subset \mathbb{N}$, of the interval $\left(0, L_{1}\right)$, in the direction denoted by index 1 . The associated space variable is denoted by x_{1}. We define the control volumes $C_{i, \mathbf{j}}=\left(x_{i-1 / 2}, x_{i+1 / 2}\right) \times\left(\mathbf{v}_{\mathbf{j}-\mathbf{1} / \mathbf{2}}, \mathbf{v}_{\mathbf{j}+\mathbf{1} / \mathbf{2}}\right)$, the size of a control volume in one direction in space Δx and velocity Δv.

The velocity variable $\mathbf{v}={ }^{t}\left(v_{1}, v_{2}, v_{3}\right)$ is discretized on the grid $\mathbf{v}_{\mathbf{j}}=\mathbf{j} \Delta v={ }^{t}\left(v_{j_{1}}, v_{j_{2}}, v_{j_{3}}\right)$ with $\mathbf{j}={ }^{t}\left(j_{1}, j_{2}, j_{3}\right) \in \mathbb{Z}^{3}$. Moreover we note $\mathbf{v}_{\mathbf{j}+\mathbf{1} / \mathbf{2}}={ }^{t}\left(j_{1}+1 / 2, j_{2}+1 / 2, j_{3}+1 / 2\right) \Delta v$. Finally, the time discretization is defined as $t^{n}=n \Delta t$, with $n \in \mathbb{N}$.

Let $f_{i, \mathbf{j}}^{n}$ be an average approximation of the distribution function on the control volume $C_{i, \mathbf{j}}$ at time t^{n}, that is

$$
f_{i, \mathbf{j}}^{n} \simeq \frac{1}{\Delta x \Delta v^{3}} \int_{C_{i, \mathbf{j}}} f\left(t^{n}, x, \mathbf{v}\right) d x \mathbf{d} \mathbf{v}
$$

Moreover since the discretization is presented in a simple $1 D_{x}$ space geometry, the electromagnetic field has the follownig structure: $\left.\mathbf{E}={ }^{t}\left(E_{1}\left(t, x_{1}\right)\right), E_{2}\left(t, x_{1}\right), 0\right), \mathbf{B}={ }^{t}\left(0,0, B_{3}\left(t, x_{1}\right)\right)$. Hence ${ }^{t}\left(E_{1, i}^{n}, E_{2, i}^{n}\right)$ is an approximation of the electric field ${ }^{t}\left(E_{1}, E_{2}\right)$ whereas $B_{3, i}^{n}$ represents an approximation of the magnetic field B_{3} in the control volume $\left(x_{i-1 / 2}, x_{i+1 / 2}\right)$ at time t^{n}.
3.1. Second order approximation of a one dimensional transport equation. For the sake of simplicity, we focus on the discretization of a $1 D$ transport equation; the extension to higher dimensions is straightforward on a grid. The generic 1 D scheme is applied in the 5 phase space directions, without requiring time splitting techniques between transport terms. In this section, the index 1 is dropped both on space and velocity directions, for this simple $1 D_{x}$ geometry.

Let us consider the following equation for $t \geq 0$ and $x \in(0, L)$,

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}=0 \tag{8}
\end{equation*}
$$

where the velocity $v>0$ is given. By symmetry it is possible to recover the case when v is negative. In the following we skip the velocity variable dependency of the distribution function. Using a time explicit Euler scheme and integrating the $1 D$ Vlasov equation on a control volume $\left(x_{i-1 / 2}, x_{i+1 / 2}\right)$, it yields

$$
\begin{equation*}
f_{i}^{n+1}=f_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{F}_{i+1 / 2}^{n}-\mathcal{F}_{i-1 / 2}^{n}\right] \tag{9}
\end{equation*}
$$

where $\mathcal{F}_{i+1 / 2}^{n}$ represents an approximation of the flux $v f\left(t^{n}, x_{i+1 / 2}\right)$ at the interface $x_{i+1 / 2}$.

[^0]The next step consists in approximating the fluxes and to reconstruct the distribution function. To this aim, we approximate the distribution function $f\left(t^{n}, x\right)$ by $f_{h}(x)$ using a second order accurate approximation of the distribution function on the interval $\left[x_{i-1 / 2}, x_{i+1 / 2}\right)$, with a reconstruction technique by primitive [25]

$$
\begin{equation*}
f_{h}(x)=f_{i}^{n}+\epsilon_{i}^{+} \frac{\left(x-x_{i}\right)}{\Delta x}\left(f_{i+1}^{n}-f_{i}^{n}\right) . \tag{10}
\end{equation*}
$$

We introduce the limiter

$$
\epsilon_{i}^{+}= \begin{cases}0 & \text { if }\left(f_{i+1}^{n}-f_{i}^{n}\right)\left(f_{i}^{n}-f_{i-1}^{n}\right)<0 \tag{11}\\ \min \left(1, \frac{2\left(\left\|f^{0}\right\|_{\infty}-f_{i}^{n}\right)}{f_{i}^{n}-f_{i+1}^{n}}\right) & \text { if }\left(f_{i+1}^{n}-f_{i}^{n}\right)<0 \\ \min \left(1, \frac{2 f_{i}^{n}}{f_{i+1}^{n}-f_{i}^{n}}\right) & \text { else },\end{cases}
$$

and set $\mathcal{F}_{i+1 / 2}^{n}=v f_{h}\left(x_{i+1 / 2}\right)$. This type of limiter introduces a particular treatment for extrema. At this price only (dissipation at extrema), we were able to recover correctly the two-stream instabililty test case, without oscillations destroying the salient features of the distribution function structure. Another choice for the limitation consits in choosing the "Van Leer's one parameter family of the minmod limiters" $[31,32]$

$$
\begin{equation*}
\epsilon_{i}^{+}=\operatorname{minmod}\left(b \frac{\left(f_{i+1}^{n}-f_{i}^{n}\right)}{\Delta x}, \frac{\left(f_{i+1}^{n}-f_{i-1}^{n}\right)}{2 \Delta x}, b \frac{\left(f_{i}^{n}-f_{i-1}^{n}\right)}{\Delta x}\right), \tag{12}
\end{equation*}
$$

where

$$
\operatorname{minmod}(x, y, z) \equiv \max (0, \min (x, y, z))+\min (0, \max (x, y, z)), \quad(x, y, z) \in \mathbb{R}^{3}
$$

and b is a parameter between 1 and 2 . We will see on the two-stream instability test case the importance of the choice for limiters.
Finally, this reconstruction ensures the conservation of the average and the positivity on $f_{h}(x)$ [25].
3.2. Fourth order transport scheme. We turn now to a higher order approximation (fourth order MUSCL TVD scheme) [27]. This scheme has also been considered in [28], in the frame of VFRoe schemes for the shallow water equations, where the authors proposed an additional limitation. Here we note that an optimized limitation procedure is possible in our case, breaking the similar treatment for both right and left increments, and taking advantage of the structure of the flux in the non-relativistic Vlasov equation: the force term does not depend of the advection variable.

For this MUSCL scheme, we only give here the algorithm for the implementation of this scheme and refer to [28], [27] for the derivation procedure of this scheme.
The high order flux at the interface $x_{i+1 / 2}$, at time t^{n} reads

$$
\mathcal{F}_{i+1 / 2}^{n}=\mathcal{F}\left(f_{i, r}^{n}, f_{i+1, l}^{n}\right)=\left\{\begin{array}{lll}
v f_{i, r}^{n} & \text { if } \quad v>0, \\
v f_{i+1, l}^{n} & \text { if } \quad v<0 .
\end{array}\right.
$$

This numerical flux involves the reconstructed states: $f_{i, r}^{n}=f_{i}^{n}+(\Delta f)_{i}^{+}$and $f_{i, l}^{n}=f_{i}^{n}+(\Delta f)_{i}^{-}$, where $(\Delta f)_{i}^{ \pm}$are the reconstruction increments.

An intermediate state f_{i}^{*}, defined by $\frac{1}{3}\left(f_{i, r}^{n}+f_{i}^{*}+f_{i, l}^{n}\right)=f_{i}^{n}$ is introduced. It is shown in [28] that the introduction of this intermediate state preserves, provided the CFL condition is formally divided by three, the positivity of the distribution function. Following [27] and [28], the fourth order MUSCL reconstruction reads

Algorithm of reconstruction.

Compute

$$
\begin{aligned}
& (\Delta f)_{i}^{-}=-\frac{1}{6}\left(2 \Delta^{*} \bar{f}_{i-1 / 2}+\Delta^{*} \tilde{f}_{i+1 / 2}\right) \\
& (\Delta f)_{i}^{+}=\frac{1}{6}\left(\Delta^{*} \bar{f}_{i-1 / 2}+2 \Delta^{*} \tilde{f}_{i+1 / 2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \Delta^{*} \bar{f}_{i-1 / 2}=\operatorname{minmod}\left(\Delta^{*} f_{i-1 / 2}, 4 \Delta^{*} f_{i+1 / 2}\right) \\
& \Delta^{*} \tilde{f}_{i+1 / 2}=\operatorname{minmod}\left(\Delta^{*} f_{i+1 / 2}, 4 \Delta^{*} f_{i-1 / 2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta^{*} f_{i+1 / 2}=\Delta f_{i+1 / 2}-\frac{1}{6} \Delta^{3} \bar{f}_{i+1 / 2} \\
& \Delta^{3} \bar{f}_{i+1 / 2}=\Delta \bar{f}_{i-1 / 2}^{a}-2 \Delta \bar{f}_{i+1 / 2}^{b}+\Delta \bar{f}_{i+3 / 2}^{c} \\
& \Delta \bar{f}_{i-1 / 2}^{a}=\operatorname{minmod}\left(\Delta f_{i-1 / 2}, 2 \Delta f_{i+1 / 2}, 2 \Delta f_{i+3 / 2}\right) \\
& \Delta \bar{f}_{i+1 / 2}^{b}=\operatorname{minmod}\left(\Delta f_{i+1 / 2}, 2 \Delta f_{i+3 / 2}, 2 \Delta f_{i-1 / 2}\right) \\
& \Delta \bar{f}_{i+3 / 2}^{c}=\operatorname{minmod}\left(\Delta f_{i+3 / 2}, 2 \Delta f_{i-1 / 2}, 2 \Delta f_{i+1 / 2}\right)
\end{aligned}
$$

with
with the notation $\Delta f_{i+1 / 2}=f_{i+1}-f_{i}$.

Reminding that the minmod limiter is given by

$$
\operatorname{minmod}(x, y)= \begin{cases}0, & \text { if } x y \leq 0 \\ x & \text { if }|x| \leq|y| \\ y & \text { else }\end{cases}
$$

with $(x, y) \in \mathbb{R}^{3}$.
The limitation proposed in [28] is then applied.
It allows the positivity of the reconstructed states to be satisfied.

Algorithm for the limitation involving the intermediate state.
Compute $(\Delta f)_{i}^{\lim , \pm}$ such that

$$
\begin{aligned}
& f_{i}^{n}+(\Delta f)_{i}^{\lim ,-} \geq 0 \\
& f_{i}^{n}+(\Delta f)_{i}^{\lim ,+} \geq 0 \\
& f_{i}^{*}=f_{i}^{n}-(\Delta f)_{i}^{\lim ,-}-(\Delta f)_{i}^{\lim ,+} \geq 0 .
\end{aligned}
$$

and

This limitation reads:

$$
\left\{\begin{array}{l}
(\Delta f)_{i}^{\text {lim },-}=\theta \max \left((\Delta f)_{i}^{-},-f_{i}^{n}\right), \\
(\Delta f)_{i}^{\text {lim },+}=\theta \max \left((\Delta f)_{i}^{+},-f_{i}^{n}\right),
\end{array}\right.
$$

where

$$
\theta=\left\{\begin{array}{l}
1, \quad \text { if } \quad \max \left((\Delta f)_{i}^{-},-f_{i}^{n}\right)+\max \left((\Delta f)_{i}^{+},-f_{i}^{n}\right) \leq 0, \\
\min \left(1, \frac{f_{i}^{n}}{\max \left((\Delta f)_{i}^{-},-f_{i}^{n}\right)+\max \left((\Delta f)_{i}^{+},-f_{i}^{n}\right)}\right) \quad \text { otherwise. }
\end{array}\right.
$$

3.3. Application to the Vlasov-Maxwell system. We exactly follow the same idea to design a scheme for the full Vlasov equation in phase space $(\mathbf{x}, \mathbf{v}) \in \Omega \times \mathbb{R}^{3}$. In addition, a centered formulation for the electromagnetic fields is chosen:

$$
\begin{equation*}
\mathbf{E}^{n+1 / 2}=\frac{1}{2}\left(\mathbf{E}^{n+1}+\mathbf{E}^{n}\right) \quad \text { and } \quad \mathbf{B}^{n+1 / 2}=\frac{1}{2}\left(\mathbf{B}^{n+1}+\mathbf{B}^{n}\right) . \tag{13}
\end{equation*}
$$

The discretization of the Maxwell equations (2)-(3) is performed via an implicit θ-scheme, with $\theta=1 / 2$, which corresponds to the Crank-Nicholson scheme and thus preserves the total discrete energy. This discretization is presented in a simple $1 D$ space geometry. The electric field $\mathbf{E}=$ ${ }^{t}\left(E_{1}, E_{2}, 0\right)$ and the magnetic field $\mathbf{B}={ }^{t}\left(0,0, B_{3}\right)$ are collocated data on the discrete grid. These fields are solution of the system

$$
\left\{\begin{array}{l}
\frac{E_{1, i}^{n+1}-E_{1, i}^{n}}{\Delta t}=-\frac{J_{1, i}^{n}}{\epsilon_{0}}, \tag{14}\\
\frac{E_{2, i}^{n+1}-E_{2, i}^{n}}{\Delta t}+c^{2} \frac{B_{3, i+1}^{n+1 / 2}-B_{3, i-1}^{n+1 / 2}}{2 \Delta x}=-\frac{J_{2, i}^{n}}{\epsilon_{0}}, \\
\frac{B_{3, i}^{n+1}-B_{3, i}^{n}}{\Delta t}+\frac{E_{2, i+1}^{n+1 / 2}-E_{2, i-1}^{n+1 / 2}}{2 \Delta x}=0 .
\end{array}\right.
$$

This scheme is well suited for the electrodynamics situations that are treated here in the test cases.

The approximation for the current in (14) J_{1}^{n} and J_{2}^{n} has been chosen such as

$$
\begin{equation*}
J_{1, i}^{n}=\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \Delta v^{3} v_{j_{1}} f_{i, \mathbf{j}}^{n} \quad \text { and } \quad J_{2, i}^{n}=\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \Delta v^{3} v_{j_{2}} f_{i, \mathbf{j}}^{n} . \tag{15}
\end{equation*}
$$

Unfortunately, these expressions do not preserve the total energy when slopes limiters are active, but we will show that they have the important feature to reproduce the discrete two-stream dispersion relation.

First, we remind discrete properties concerning positivity, mass and energy conservation [25] of the second order scheme (9)-(10) coupled with (13)-(15), considering now the magnetic component.

Proposition 3.1. Let the initial datum $\left(f_{\mathbf{i}, \mathbf{j}}^{0}\right)_{\mathbf{i}, \mathbf{j} \in \mathbb{Z}^{3}}$ be nonnegative and assume the following $C F L$ type condition on the time step

$$
\begin{equation*}
\Delta t \leq C \min (\Delta x, \Delta v) \tag{16}
\end{equation*}
$$

where $C>0$ is related to the maximum norm of the electric and magnetic fields and the upper bound of the velocity domain.

Then the scheme (9)-(10) coupled with (13)-(15), when extended to the infinite $3 D_{\mathbf{x}} \times 3 D_{\mathbf{v}}$ geometry, gives a nonnegative approximation, preserves total mass and preserves total energy when slopes limiters are not active on the transport in the velocity directions

$$
\frac{1}{2} \sum_{\mathbf{i} \in I} \Delta x^{3}\left\{\epsilon_{0}\left\|\mathbf{E}_{\mathbf{i}}^{n}\right\|^{2}+\frac{1}{\mu_{0}}\left\|\mathbf{B}_{\mathbf{i}}^{n}\right\|^{2}+m_{e}\left[\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \Delta v^{3}\left\|\mathbf{v}_{\mathbf{j}}\right\|^{2} f_{\mathbf{i}, \mathbf{j}}^{n}\right]\right\}=C^{0}, n \in \mathbb{N} .
$$

Remark 3.2. Both the second order scheme and its fourth order extension preserve the positivity of the distribution function, provided the CFL criteria is satisfied. The positivity is essential to describe correctly the high energetic tails of the distribution functions, which present low densities. In all the test cases presented, the time increment is chosen small enough to satisfy this CFL condition, together with the diffusive-type CFL condition that comes from the collision operators

In addition to these properties, we justify our choice for the numerical current thanks to a discrete dispersion relation on the two-stream instability. In the rest of the section, we drop the index 1 on the variables x_{1}, v_{1}, E_{1} and J_{1}, because the transport is considered $1 D_{x} \times 1 D_{v}$.

Proposition 3.3. Consider the second order scheme (9)-(10) coupled with (13)-(15), when slope limiters are not active, to approximate the Vlasov-Ampère system

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}+\frac{q_{e}}{m_{e}} E \frac{\partial f}{\partial v}=0 \tag{17}\\
\frac{\partial E}{\partial t}=-\frac{J}{\epsilon_{0}}
\end{array}\right.
$$

Then the definition (15) for the current J defines a discrete dispersion relation that converges toward the continuous dispersion relation when $\Delta v, \Delta x$ and Δt tend to 0 .

Proof: The two-stream instability configuration can be fully analyzed with the Vlasov-Ampère system (17) extracted from equations (1)-(3). The dispersion relation for a perturbation $f^{(1)} \propto$
$e^{i(k x-\omega t)}$ of an initial equilibrium state $f^{(0)}$, with $\left\|f^{(1)}\right\| \ll\left\|f^{(0)}\right\|$, then reads

$$
\begin{equation*}
1+\frac{q_{e}^{2}}{\epsilon_{0} m_{e}} \int_{\mathbb{R}} \frac{v}{\omega(\omega-k v)} \frac{\partial f^{(0)}}{\partial v} d v=0 \tag{18}
\end{equation*}
$$

Here the crucial point is the discretization on the velocity part of the phase space, so that we perform a semi-discrete analysis. In the frame of the discretization (9)-(10) coupled with (13)-(15), we consider the semi-discrete scheme approximating (17)

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}+\frac{q_{e}}{m_{e}} E \frac{f_{j+1 / 2}-f_{j+1 / 2}}{\Delta v}=0 \tag{19}\\
\frac{\partial E}{\partial t}=-\frac{q_{e}}{\epsilon_{0}} \sum_{j \in \mathbb{Z}} \Delta v v_{j} f_{j}
\end{array}\right.
$$

with

$$
f_{j+1 / 2}=\frac{f_{j+1}+f_{j}}{2}
$$

assuming the slope limiter is not active. Then we perform a discrete linearization around an equilibrium state

$$
f_{j}=f_{j}^{(0)}+f_{j}^{(1)}
$$

where $\left\|f^{(1)}\right\| \ll\left\|f^{(0)}\right\|$. Using $f_{j}^{(1)} \propto e^{i(k x-\omega t)}$ in (19), it yields

$$
\left\{\begin{array}{l}
-i\left(\omega-k v_{j}\right) f_{j}^{(1)}+\frac{q_{e}}{m_{e}} E^{(1)} \frac{f_{j+1 / 2}^{(0)}-f_{j-1 / 2}^{(0)}}{\Delta v}=0 \tag{20}\\
-i \omega E^{(1)}=-\frac{q_{e}}{\epsilon_{0}} \sum_{j \in \mathbb{Z}} \Delta v v_{j} f_{j}^{(1)}
\end{array}\right.
$$

These equations lead to the discrete dispersion relation

$$
\begin{equation*}
1+\frac{q_{e}^{2}}{\epsilon_{0} m_{e}} \sum_{j \in \mathbb{Z}} \frac{v_{j}}{\omega\left(\omega-k v_{j}\right)}\left[\frac{f_{j+1 / 2}^{(0)}-f_{j-1 / 2}^{(0)}}{\Delta v}\right] \Delta v=0 \tag{21}
\end{equation*}
$$

We recover the continuous dispersion relation (18) when passing at the limit $\Delta v \rightarrow 0$. Any other choice for the discrete current in (20) would introduce an additional error to the $O\left(\Delta v^{2}\right)$ error in the relation dispersion (21). For instance, choosing

$$
J=\sum_{j \in \mathbb{Z}} \Delta v v_{j} f_{j+1 / 2}
$$

would have lead to the analogous of (21):

$$
\begin{equation*}
1+\frac{q_{e}^{2}}{\epsilon_{0} m_{e}} \sum_{j \in \mathbb{Z}} \frac{\left(v_{j}-\Delta v\right)}{\omega\left(\omega-k v_{j}\right)}\left[\frac{f_{j+1 / 2}^{(0)}-f_{j-1 / 2}^{(0)}}{\Delta v}\right] \Delta v=0 \tag{22}
\end{equation*}
$$

which is a "shifted" dispersion relation, with a $O(\Delta v)$ accuracy, compared to the $O\left(\Delta v^{2}\right)$ accuracy on relation (21).
3.4. boundary conditions. The discretization in the velocity space imposes a truncation of the infinite velocity domain, and the introduction of boundary conditions. We only need to consider the direction v_{1}, where the discretized velocity variable is $v_{j_{1}}$, with $j_{1} \in\left[-N_{v_{1}}, N_{v_{1}}\right] \subset \mathbb{Z}$, and $2 N_{v_{1}}$ is the total number of discretization points. If the second order scheme (respectively the fourth order scheme) is considered, then the boundary conditions are applied on two ghost points (respectively three ghost points). This is due to the extension of the stencil. Considering the second order scheme, the ghost points at the low velocity boundary are $v_{j_{1}}=v_{-N_{v_{1}}}$ and $v_{j_{1}}=v_{-N_{v_{1}}+1}$. At these points, we impose the boundary condition $f_{j_{1}}^{n+1}=f_{j_{1}}^{n}$.
The boundary conditions for the space directions satisfy also naturally the positivity constraint, with our scheme. It is indeed designed with reconstructed numerical fluxes, that maintain the positivity (under CFL condition) if the distribution function at the previous time step is positive. At a boundary interface ($\frac{x_{i}+x_{i+1}}{2}=\frac{x_{-1}+x_{0}}{2}$ for the left boundary), where the numerical flux should be computed, the only requirement is to specify a positive distribution at ghost points to impose the boundary conditions.
We explicit here the non-trivial ghost point used by a zero current left boundary (with temperature T_{L}) condition, in the direction x_{1}.

$$
\begin{equation*}
f_{-1, \mathbf{j}}^{n}=\frac{-\sum_{\mathbf{j}, v_{j_{1}}<0} v_{j_{1}} f_{0, \mathbf{j}}^{n} \Delta v^{3}}{\sum_{\mathbf{j}, v_{j_{1}}>0} v_{j_{1}} \exp \left(-\frac{1}{2} \frac{v_{\mathbf{j}}^{2}}{T_{L}}\right) \Delta v^{3}} \exp \left(-\frac{1}{2} \frac{v_{\mathbf{j}}^{2}}{T_{L}}\right), \tag{23}
\end{equation*}
$$

which is positive, and satisfies

$$
\begin{equation*}
\sum_{\mathbf{j}, v_{1}>0} v_{j_{1}} f_{-1, \mathbf{j}}^{n} \Delta v^{3}=-\sum_{\mathbf{j}, v_{j_{1}}<0} v_{j_{1}} f_{0, \mathbf{j}}^{n} \Delta v^{3} . \tag{24}
\end{equation*}
$$

The stencil of the second order scheme requires a second ghost point $f_{-2, \mathbf{j}}^{n}$, which is related to $f_{1, \mathbf{j}}^{n}$ in a similar manner, verifying

$$
\begin{equation*}
\sum_{\mathbf{j}, v_{1}>0} v_{j_{1}} f_{-2, \mathbf{j}}^{n} \Delta v^{3}=-\sum_{\mathbf{j}, v_{j_{1}}<0} v_{j_{1}} f_{1, \mathbf{j}}^{n} \Delta v^{3} . \tag{25}
\end{equation*}
$$

4. Validation of the transport schemes

We first propose a validation strategy in the linear, collisionless regime, based on the work of Sartori and Coppa [33]. They performed a transient analysis, and obtain exact solutions of the periodic Vlasov-Poisson system, in the non-relativistic and relativistic regime.

Their approach, relying on Green kernels, is recalled in Appendix A, in the non-relativistic regime. A generalization of the 2D periodic relativistic Vlasov-Maxwell system, including magnetic fields, will be presented in a forthcoming paper. Our objective is to capture kinetic effects in the linear regime, such as the Landau damping and the two-stream instability. A semi-analytical solution is obtained, with a prescribed accuracy. Moreover, this method allows the exploration of wavenumber ranges, where other approaches relying on dispersion relations fail. We recall that classical validations of kinetic solvers dedicated to plasma physics [25,34] are based on the calculation of the growth rates (instability), or decrease rates (damping) in the linear regime. We will show the efficiency of the semi-analytical method on the two-stream instability test case. The transport schemes are tested with a low number of dimensions $1 D_{x} \times 1 D_{v}$ or $1 D_{x} \times 3 D_{v}$,
without collision operators. The computational resources are then very low; the simulations are affordable with a single processor.
4.1. Scaling with plasma frequency. Scaling parameters can be introduced to obtain a dimensionless form of the Vlasov-Maxwell-Fokker-Planck equations. The plasma frequency $\omega_{p e}$, the Debye length λ_{D}, the thermal velocity of electrons $v_{t h}$, and the cyclotron frequency $\omega_{c e}$ are defined as follows

$$
\begin{equation*}
\omega_{p e}=\sqrt{\frac{n_{0} e^{2}}{\epsilon_{0} m_{e}}}, \quad \lambda_{D}=\sqrt{\frac{\epsilon_{0} \kappa_{B} T_{0}}{n_{0} e^{2}}}, \quad v_{t h}=\sqrt{\frac{\kappa_{B} T_{0}}{m_{e}}}, \quad \omega_{c e}=\frac{e B}{m_{e}} . \tag{26}
\end{equation*}
$$

These parameters enable us to define dimensionless parameters marked with tilde.

- Dimensionless time, space and velocity, respectively:

$$
\begin{equation*}
\tilde{t}=\omega_{p e} t, \quad \tilde{x}=\frac{x}{\lambda_{D}}, \quad \tilde{v}=\frac{v}{v_{t h}} . \tag{27}
\end{equation*}
$$

- Dimensionless electric field, magnetic field and distribution function, respectively

$$
\begin{equation*}
\tilde{E}=\frac{e E}{m_{e} v_{t h} \omega_{p e}}, \quad \tilde{B}=\frac{e B}{m_{e} \omega_{p e}}=\frac{\omega_{c e}}{\omega_{p e}}, \quad \tilde{f}_{e}=f_{e} \frac{v_{t h}^{3}}{n_{0}} . \tag{28}
\end{equation*}
$$

This leads to the following dimensionless equations

$$
\left\{\begin{array}{l}
\frac{\partial f_{e}}{\partial t}+\nabla_{\mathbf{x}} \cdot\left(\mathbf{v} f_{e}\right)-\nabla_{\mathbf{v}} \cdot\left((\mathbf{E}+\mathbf{v} \times \mathbf{B}) f_{e}\right)=\frac{\nu}{Z} C_{e, e}\left(f_{e}, f_{e}\right)+\nu C_{e, i}\left(f_{e}\right) \tag{29}\\
\frac{\partial \mathbf{E}}{\partial t}-\frac{1}{\beta^{2}} \nabla_{\mathbf{x}} \times \mathbf{B}=n \mathbf{u} \\
\frac{\partial \mathbf{B}}{\partial t}+\nabla_{\mathbf{x}} \times \mathbf{E}=0 \\
\nabla_{\mathbf{x}} \cdot \mathbf{E}=(1-n), \quad \nabla_{\mathbf{x}} \cdot \mathbf{B}=0
\end{array}\right.
$$

where $\beta=v_{t h} / c, \nu$ is the ratio between electron-ion collision frequency and plasma frequency

$$
\nu=\frac{Z n_{0} e^{4} \ln \Lambda}{8 \pi \epsilon_{0}^{2} m_{e}^{2} v_{t h}^{3} \omega_{p e}}=\frac{Z \ln \Lambda}{8 \pi n_{0} \lambda_{D}^{3}}=\frac{\nu_{e, i}}{\omega_{p e}} \quad \text { with } \quad \nu_{e, i}=\frac{Z n_{0} e^{4} \ln \Lambda}{8 \pi \epsilon_{0}^{2} m_{e}^{2} v_{t h}^{3}} .
$$

The zero and first order moments of the distribution function are

$$
\left\{\begin{aligned}
n(t, \mathbf{x}) & =\int_{\mathbb{R}^{3}} f_{e}(t, \mathbf{x}, \mathbf{v}) \mathbf{d} \mathbf{v} \\
\mathbf{u}(t, \mathbf{x}) & =\frac{1}{n(t, \mathbf{x})} \int_{\mathbb{R}^{3}} f_{e}(t, \mathbf{x}, \mathbf{v}) \mathbf{v} \mathbf{d} \mathbf{v}
\end{aligned}\right.
$$

which are normalized respectively by n_{0} and $v_{t h}$.
Moreover, in (29) the dimensionless collision operators are considered

$$
\left\{\begin{array}{l}
C_{e, e}\left(f_{e}, f_{e}\right)=\nabla_{\mathbf{v}} \cdot\left(\int_{\mathbb{R}^{3}} \Phi\left(\mathbf{v}-\mathbf{v}^{\prime}\right)\left[f_{e}\left(\mathbf{v}^{\prime}\right) \nabla_{\mathbf{v}} f_{e}(\mathbf{v})-f_{e}(\mathbf{v}) \nabla_{\mathbf{v}^{\prime}} f_{e}\left(\mathbf{v}^{\prime}\right)\right] \mathbf{d v}^{\prime}\right) \tag{30}\\
C_{e, i}\left(f_{e}\right)=\nabla_{\mathbf{v}} \cdot\left[\Phi(\mathbf{v}) \nabla_{\mathbf{v}} f_{e}(\mathbf{v})\right]
\end{array}\right.
$$

with Φ given by (6).
4.2. Test 1 : $1 D$ two-stream instability. The ICF physics involves a propagation of electron beams in plasma. The plasma response to the beam consists in a return current that goes opposite to the beam in order to preserve the quasineutrality. This leads to a very unstable configuration favorable to the excitation of plasma waves. We focus here on the instability with a perturbation wavevector parallel to the beam propagation direction, namely the two-stream instability. Of course, this stands as an academic test case but it is closely related to the physics of the ICF. Also it is a very demanding test for numerical schemes of transport, that have to be specially designed (see Proposition 3.3). In particular, a discrete dispersion relation relative to that problem is developed to justify numerical choices for the second order scheme. For this scheme also, during the limitation procedure, an additional dissipation at extrema is introduced, compared to [25], in order to preserve the solution from spurious oscillations. We will show the sensitivity of the scheme with respect to the chosen limiter, for this particular test case. Moreover, the fourth order scheme is introduced to reduce numerical heating, for simulations intended to deal with the two-stream instability.

The $\left(1 D_{x} \times 1 D_{v}\right)$ Vlasov-Ampère system (17) is approximated on a Cartesian grid. For this test case, we consider the scaling (26)-(28). The initial distribution function and electric field are

$$
\left\{\begin{array}{l}
f^{0}(x, v)=\frac{1}{2}\left[(1+A \cos (k x)) \mathcal{M}_{1, v_{d}}(v)+(1-A \cos (k x)) \mathcal{M}_{1,-v_{d}}(v)\right] \\
E^{0}(x)=0
\end{array}\right.
$$

where

$$
\mathcal{M}_{1, v_{d}}(v)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\left\|v-v_{d}\right\|^{2} / 2}
$$

is the Maxwellian distribution function centered around v_{d}.
In order to compare the numerical heating associated with the second order and the fourth order scheme, we choose a strong perturbation amplitude $A=0.1$. The perturbation wavelength is $k=2 \pi / L$ and the beam initial mean velocities are $v_{d}= \pm 4, L=25$ being the size of the periodic space domain. We choose a truncation of the velocity space to be $v_{\max }=12$ and time steps are chosen to be $\Delta t=1 / 200$, such as to satisfy the CFL criteria and maintain the positivity of the distribution function.

The objectives of this numerical simulation are on the one hand to compare the second order finite volume scheme (specially designed to conserve exactly the discrete total energy, except if the slope limiters are active) for different slope limiters and the fourth order MUSCL scheme. On the other hand we want to explore the effect of a reduced number of grid points on the conservation of the discrete invariants.

In Figure 1, two countersteaming beams that are initially well separated in the phase space (a) start to mix together. They finally create a complicated vortex structure, involving wave-particle interactions. This behaviour remains quantitatively the same whatever the transport scheme is (second or fourth order). However with a reduced number of grid points (smaller than 128 points in velocity), the second order (with limiter (11)) and fourth order schemes present a different behaviour for the total electric energy and total energy.

For reduced grid resolutions, of 32^{2} or 64^{2} points, the fourth order scheme proves to be better than the second order one. For 32^{2} points, plasma oscillations at the plasma frequency in the nonlinear phase are not reproduced with the second order scheme whereas they can be seen with

Figure 1. Beams phase space (a) at initial time, (b) at 20 plasma periods (after saturation), with 256^{2} grid points.

Figure 2. Evolution of the electrostatic energy for $32^{2}, 64^{2}, 128^{2}, 256^{2}$ grid points, and the semi-analytical solution in the linear regime. Results are shown for (a) the second order with limiter (11) and (b) fourth order transport scheme
the fourth order scheme (see Figure 2). Moreover for this resolution, the transition from the linear phase to the nonlinear phase occurs earlier than it should for the second order scheme.
As the grid resolution increases, the accuracy remains better for the fourth order scheme than for the second order one in the nonlinear phase (Figure 2). The convergence toward curves with 128^{2} or 256^{2} resolution grid is indeed better. We recall that quantities in Figure 2 and 3 are plotted with a logarithmic scale, that smoothes out discrepancies between curves. In addition to these results, the respect of total discrete energy conservation proves to be better for the fourth order scheme than for the second order one at a reduced grid resolution, see Figure 4 and 5.

Figure 3. Evolution of the electrostatic energy for $32^{2}, 64^{2}, 128^{2}, 256^{2}$ grid points, and the semi-analytical solution in the linear regime. Results are shown here for the second order scheme with the limiters (12), with $b=2$.

Figure 4. Comparison of the energy evolution for the second (with limiter (11)) and fourth order transport schemes. Results are shown (a) for 32^{2} (b) 64^{2} grid points

The use of limiters (12) for the second order scheme introduces accuracy improvements on the convergence behaviour and capture of plasma wave structure at reduce grid resolutions, see Figure 3. However, the energy dissipation remains quantitatively the same as the second order scheme with limiter (11), see Figures 4 and 5 . Only in the case of the second order scheme without limiter, could the energy be exactly conserved. The counterpart would be the loss of any exploitable solution (loss of stability).

As this test case requires both a good preservation of invariants and accuracy when nonlinear phenomena occur, we might conclude that the fourth order scheme, with a resolution along each

Figure 5. Comparison of the energy evolution for the second (with limiter (12), $b=2$) and fourth order transport schemes. Results are shown (a) for $32^{2}(b) 64^{2}$ grid points
velocity direction greater than 32 cell, is well suited for our physical applications. The semianalytical solution in the linear regime shown in Figure 2, using a Green function, brings some improvements compared to the classical validation in the linear regime, based on instabilities growth rates in the linear regime. In particular it discriminates precisely in time the linear and nonlinear phases.
4.3. Test 2: $1 D$ X-mode plasma in a magnetic field. This test case stands as a validation of the schemes in the linear regime for the coupling between Vlasov and Maxwell equations without collisions. The second order scheme is used for the transport terms in the x_{1}, v_{1}, v_{2} and v_{3} directions. A particular initial data is chosen (see the derivation in the appendix B) to trigger an X-mode plasma wave at a well-defined frequency ω. This type of wave presents a mixed polarization (longitudinal and transverse with respect to the magnetic field), that propagates in the plane P_{\perp}, perpendicular to the magnetic field direction.

The chosen frequency ω is a solution of the dispersion relation (74) of the linearized VlasovMaxwell equations, introducing the equilibrium state $f^{(0)}\left(\|\mathbf{v}\|^{2}\right)$. The initial data are chosen such that $f^{(0)}, \hat{E}_{1}, \hat{E}_{2}$, and \hat{B}_{3} only depend on $\omega, B^{(0)}, k_{1}=2 \pi / L_{1}$ and A; where $\hat{f}_{n}, \hat{B}_{3}, \hat{E}_{1}$ and \hat{E}_{2} are the reconstructed (in the appendix B) Fourier transforms of the distribution function and electromagnetic fields. The magnetic field $B^{(0)}$ is the nonperturbed magnitude of the magnetic field, L_{1} is the length of the periodic space domain, A is the perturbation amplitude. The initial
data can then be constructed with the help of truncated Fourier series

$$
\left\{\begin{array}{l}
f^{(0)}\left(x_{1}, \mathbf{v}\right)=f^{(0)}\left(\|\mathbf{v}\|^{2}\right)+\sum_{n=-2}^{2} \hat{f}_{n}\left(\mathbf{v}_{\perp}\right) e^{i k_{1} x_{1}+i n \psi}, \quad x_{1} \in\left(0, L_{1}\right), \mathbf{v} \in \mathbb{R}^{3}, \\
E_{1}\left(t, x_{1}\right)=\hat{E}_{1} e^{-i \omega t+i k_{1} x_{1}}, \quad x_{1} \in\left(0, L_{1}\right), \\
E_{2}\left(t, x_{1}\right)=\hat{E}_{2} e^{-i \omega t+i k_{1} x_{1}}, \quad x_{1} \in\left(0, L_{1}\right), \\
B\left(t, x_{1}\right)=B^{(0)}+\hat{B}_{3} e^{-i \omega t+i k_{1} x_{1}}, \quad x_{1} \in\left(0, L_{1}\right) .
\end{array}\right.
$$

We define ψ as the angle in the cylindrical coordinates for the velocity, defined with respect to the direction of the magnetic field (See appendix B).

The normalizations are defined by relations (26)-(28). We choose $B^{(0)}=2$ and a rather strong amplitude perturbation $A=0.1$ with periodic boundary conditions on the space domain. Also we have set $\beta=v_{t h} / c=0.05$. The dispersion relation have been solved for these parameters. One of the solution $\omega \simeq 5.1432$ is injected in the initial data set.

We considered 126 points along the $1 D$ space direction, and 64 points along each velocity direction $\mathbf{v}={ }^{t}\left(v_{1}, v_{2}, v_{3}\right)$. The dimension of the space domain is $L_{1}=25$ whereas the truncation of the velocity space occurs at $v_{\max }=7$ for each velocity direction. Furthermore, the time step is $\Delta t=1 / 200$, which ensures the positivity of the distribution function here.

The Fourier spectrum in Figure 6 exhibits a well defined frequency $f=1 / T \simeq 1.6375$ (corresponding to a period T) for the total magnetic energy, that corresponds to a frequency $f / 2$ for the magnetic field oscillations. We finally find $\omega=2 \pi\left(\frac{f}{2}\right) \simeq 5.1443$ from the numerical solution, to be compared with the analytical results 5.1432. This proves a good accuracy of the numerical results, while the distribution function is greatly affected by the magnetic field. As an illustration, we show in Figure 7 how the magnetic field makes the distribution function rotate in the velocity space perpendicular to the magnetic field axis.

5. Approximation of the collision operators

In the following, the presentation is restricted to the space homogeneous equation, for the sake of simplicity,

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}=C_{e, e}(f, f)+C_{e, i}(f) \\
f(0, \mathbf{v})=f^{(0)}(\mathbf{v})
\end{array}\right.
$$

where $C_{e, e}(f, f)$ and $C_{e, i}(f)$ are given by (30).
5.1. Discretization of the Lorentz operator. We consider $f_{\mathbf{j}}$ an approximation of the distribution function $f\left(\mathbf{v}_{\mathbf{j}}\right)$ and introduce the operator \mathbf{D}, which denotes a discrete form of the usual gradient operator $\nabla_{\mathbf{v}}$ whereas \mathbf{D}^{*} represents its formal adjoint, which represents an approximation of $-\nabla_{\mathbf{v}} \cdot$. Therefore, for any test sequence $\left(\psi_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{3}}$, we set $\left(\mathbf{D} \psi_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{3}}$ as a sequence of vectors of \mathbb{R}^{3}

$$
\mathbf{D} \psi_{\mathbf{j}}={ }^{t}\left(D_{1} \psi_{\mathbf{j}}, \underset{20}{\left.D_{2} \psi_{\mathbf{j}}, D_{3} \psi_{\mathbf{j}}\right) \in \mathbb{R}^{3}, ~}\right.
$$

Figure 6. Discrete Fourier spectrum in frequency of the discrete analogous of the total dimensionless magnetic energy $\int_{0}^{L_{1}} \frac{\left\|B_{3}\right\|^{2}}{2} d x_{1}$.
where D_{s} is an approximation of the partial derivative $\frac{\partial}{\partial v_{s}}$ with $s \in\{1,2,3\}$. In order to preserve the property of decreasing entropy at the discrete level, we use the log weak formulation of the Lorentz operator [17]

$$
\int_{\mathbb{R}^{3}} C_{e, i}(f)(\mathbf{v}) \psi(\mathbf{v}) \mathbf{d v}=-\int_{\mathbb{R}^{3}} \Phi(\mathbf{v}) f(\mathbf{v}) \nabla_{\mathbf{v}} \log (f(\mathbf{v})) \cdot \nabla_{\mathbf{v}} \psi(\mathbf{v}) \mathbf{d} \mathbf{v},
$$

where Φ is given by (6) and ψ is a smooth test function. Then, using the notations previously introduced, the discrete operator $C_{e, i}^{\Delta v}(f)$ is given by

$$
\begin{equation*}
C_{e, i}^{\Delta v}(f)\left(\mathbf{v}_{\mathbf{j}}\right)=-\mathbf{D}^{*}\left[\frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} S\left(\tilde{\mathbf{v}}_{\mathbf{j}}\right) f_{\mathbf{j}} \mathbf{D}\left(\log \left(f_{\mathbf{j}}\right)\right)\right], \tag{31}
\end{equation*}
$$

where $S\left(\tilde{\mathbf{v}}_{\mathbf{j}}\right)$ is the following matrix

$$
S\left(\tilde{\mathbf{v}}_{\mathbf{j}}\right)=\left\|\tilde{\mathbf{v}}_{\mathbf{j}}\right\|^{2} \mathrm{Id}-\tilde{\mathbf{v}}_{\mathbf{j}} \otimes \tilde{\mathbf{v}}_{\mathbf{j}} .
$$

Figure 7. Projection on the $v_{1}-v_{2}$ velocity domain for the distribution function is shown at initial time $t_{n}=0$ and at $t_{n}=18.72$, for a particular point of the space domain, $x_{1}=23.0114, v_{3}=0$.

Now, $\tilde{\mathbf{v}}_{\mathbf{j}}$ has to satisfy the discrete conservation of energy

$$
\begin{equation*}
\frac{D_{1}\left(\left\|\mathbf{v}_{\mathbf{j}}\right\|^{2}\right)}{\tilde{\mathbf{v}}_{j_{1}}}=\frac{D_{2}\left(\left\|\mathbf{v}_{\mathbf{j}}\right\|^{2}\right)}{\tilde{\mathbf{v}}_{j_{2}}}=\frac{D_{3}\left(\left\|\mathbf{v}_{\mathbf{j}}\right\|^{2}\right)}{\tilde{\mathbf{v}}_{j_{3}}} \tag{32}
\end{equation*}
$$

Then, we consider the 8 uncentered operators \mathbf{D}^{ϵ}, with the formalism:

$$
\mathbf{D}^{\epsilon}={ }^{t}\left(D_{1}^{\epsilon_{1}}, D_{2}^{\epsilon_{2}}, D_{3}^{\epsilon_{3}}\right)
$$

with $\epsilon={ }^{t}\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$, and $\epsilon_{i} \in\{+1,-1\}$ for $i \in\{1,2,3\}$. More precisely, the operator $D^{\epsilon_{i}}$ is the forward uncentered discrete operator if $\epsilon_{i}=+1$ and the backward uncentered discrete operator if $\epsilon_{i}=-1$:

$$
\mathbf{D}^{\epsilon} \Psi_{\mathbf{j}}=\frac{1}{\Delta v}\left(\begin{array}{l}
\epsilon_{1}\left[\Psi_{j_{1}+\epsilon_{1}}-\Psi_{j_{1}}\right] \tag{33}\\
\epsilon_{2}\left[\Psi_{j_{2}+\epsilon_{2}}-\Psi_{j_{2}}\right] \\
\epsilon_{3}\left[\Psi_{j_{3}+\epsilon_{3}}-\Psi_{j_{3}}\right]
\end{array}\right)
$$

This 8 operators respectively match to 8 expressions of $\tilde{\mathbf{v}}_{\mathbf{j}}^{\epsilon}$, following (32)

$$
\tilde{\mathbf{v}}_{\mathbf{j}}^{\epsilon}=\frac{1}{2}\left(\mathbf{v}_{\mathbf{j}}+\mathbf{v}_{\mathbf{j}+\epsilon}\right) .
$$

This choice has been made to avoid the use of the centered discrete operator that conserves non physical quantities. On the other hand, the uncentered operators, taken separately, introduce some artificial asymmetry in the distribution function leading to a loss of accuracy when coupling to Maxwell equations. To overcome these difficulties, following the idea of [18], we introduce a
symmetrization of the discrete operator based on the averaging over the eight uncentered discretizations:

$$
\begin{gathered}
C_{e, i}^{\Delta v}(f)\left(\mathbf{v}_{\mathbf{j}}\right)=\frac{1}{8} \sum_{\epsilon} C_{e, i}^{\epsilon}(f) \\
C_{e, i}^{\epsilon}(f)=-\mathbf{D}^{*, \epsilon}\left[\frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} S\left(\tilde{\mathbf{v}}_{\mathbf{j}}^{\epsilon}\right) f_{\mathbf{j}} \mathbf{D}^{\epsilon}\left(\log \left(f_{\mathbf{j}}\right)\right)\right] .
\end{gathered}
$$

This final expression present the desirable properties: mass and energy preservation, an entropy decreasing behaviour, the positivity preservation of the distribution function in a finite time sequence. The proofs are not detailed here but can be deduced easily from those presented in [25]. Also, it introduces an additional discrete symmetry property, compared to the operator presented in [25]. Indeed, we obtain the operator as an average over the full set of the uncentered operators. The motivation of this averaging comes from the isotropization effect of the Lorentz operator: it diffuses in angle. This averaging leads to a discrete analogous of the symmetry property presented in Proposition 2.1. This symmetry concerns the directions that are aligned with the grid. We verified that the symmetries along directions that are not aligned are preserved with marginal errors.

Proposition 5.1. Under the condition (32) on $\tilde{\mathbf{v}}_{\mathbf{j}}$, the discretization (34) to the Lorentz operator (5) satisfies the following properties,

- it preserves mass and energy,
- it decreases discrete entropy

$$
H(t)=\Delta v^{3} \sum_{\mathbf{j} \in \mathbb{Z}^{3}} f_{\mathbf{j}}(t) \log \left(f_{\mathbf{j}}(t)\right),
$$

- there exists a time-sequence Δt_{n} such that the scheme

$$
f_{\mathbf{j}}^{n+1}=f_{\mathbf{j}}^{n}+\Delta t C_{e, i}^{\Delta v}(f)\left(\mathbf{v}_{\mathbf{j}}\right),
$$

defines a positive solution at any time i.e. $\sum_{n} \Delta t_{n}=+\infty$.
Furthermore, if $f_{\mathbf{j}}$ is symmetric with respect to 0 in the direction j_{k} at time t^{n}, then this property is preserved at time t^{n+1},

$$
\begin{equation*}
\sum_{\mathbf{j} \in \mathbb{Z}^{3}} C_{e, i}^{\Delta v}(f)\left(\mathbf{v}_{\mathbf{j}}\right) v_{j_{k}} \Delta v^{3}=0 . \tag{34}
\end{equation*}
$$

Proof: The proofs of all the properties but the last can be found in [25]. We prove the last property and rewrite the operator (34) in a different manner, assuming we have a symmetry along the velocity direction $v_{j_{k}}$

$$
\begin{equation*}
C_{e, i}^{\Delta v}(f)\left(\mathbf{v}_{\mathbf{j}}\right)=\frac{1}{8} \sum_{\epsilon} C_{e, i}^{\epsilon}(f)\left(\mathbf{v}_{\mathbf{j}}\right)=\frac{1}{8} \sum_{\epsilon}\left[\frac{1}{3} \sum_{k=1}^{3} \frac{1}{2}\left(C_{e, i}^{\epsilon^{+,(k)}}\left(\mathbf{v}_{\mathbf{j}}\right)+C_{e, i}^{\epsilon^{-,(k)}}\left(\mathbf{v}_{\mathbf{j}}\right)\right)\right], \tag{35}
\end{equation*}
$$

where the notation $\epsilon^{ \pm,(k)}$ refers to

$$
\left\{\begin{align*}
\epsilon_{i}^{ \pm,(k)}= \pm 1 & \text { if } i=k, \tag{36}\\
\epsilon_{i}^{ \pm,(k)}=\epsilon_{i} & \text { if } i \neq k .
\end{align*}\right.
$$

We are interested in the cancellation of the operator $\sum_{\mathbf{j} \in \mathbb{Z}^{3}} C_{e, i}^{\Delta v}(f)\left(\mathbf{v}_{\mathbf{j}}\right) v_{j_{k}}$. This is equivalent to the cancellation of

$$
\begin{aligned}
Q^{(k)} & :=\sum_{\mathbf{j} \in \mathbb{Z}^{3}}\left(C_{e, i}^{\epsilon^{+,(k)}}\left(\mathbf{v}_{\mathbf{j}}\right)+C_{e, i}^{\epsilon^{-,(k)}}\left(\mathbf{v}_{\mathbf{j}}\right)\right) v_{j_{k}} \\
& =\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} f_{\mathbf{j}}\left[S\left(\tilde{\mathbf{v}}_{\mathbf{j}}^{\epsilon^{+,(k)}}\right) \mathbf{D}^{\epsilon^{+,(k)}} \log \left(f_{\mathbf{j}}\right)\right] \cdot \mathbf{D}^{\epsilon^{+,(k)}} v_{j_{k}} \\
& +\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} f_{\mathbf{j}}\left[S\left(\tilde{\mathbf{v}}_{\mathbf{j}}^{\epsilon^{-,(k)}}\right) \mathbf{D}^{\epsilon^{-,(k)}} \log \left(f_{\mathbf{j}}\right)\right] \cdot \mathbf{D}^{\epsilon^{-,(k)}} v_{j_{k}}
\end{aligned}
$$

Then, since $\mathbf{D}^{\epsilon^{+,(k)}} v_{j_{k}}=\mathbf{D}^{\epsilon^{-,(k)}} v_{j_{k}}=\mathbf{e}_{\mathbf{k}}$, it yields

$$
\begin{aligned}
Q^{(k)} & =\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} f_{\mathbf{j}}\left(\sum_{i \neq k}\left(\tilde{v}_{j_{i}}^{\epsilon_{i}^{+,(k)}}\right)^{2}\right) D^{\epsilon_{k}^{+,(k)}}\left(\log \left(f_{\mathbf{j}}\right)\right) \\
& -\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} f_{\mathbf{j}} \tilde{v}_{j_{k}}^{\epsilon_{k}^{+,(k)}}\left(\sum_{i \neq k} \tilde{v}_{j_{i}}^{\epsilon_{i}^{+,(k)}} D^{\epsilon_{i}^{+,(k)}}\left(\log f_{\mathbf{j}}\right)\right) \\
& -\sum_{\mathbf{j} \in \mathbb{Z}^{3}} \frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} f_{\mathbf{j}}\left(\sum_{i \neq k}\left(\tilde{v}_{j_{i}}^{\epsilon_{i}^{-,(k)}}\right)^{2}\right) D^{\epsilon_{k}^{-,(k)}}\left(\log \left(f_{\mathbf{j}}\right)\right) \\
- & \sum_{\mathbf{j} \in \mathbb{Z}^{3}} \frac{1}{\left\|\mathbf{v}_{\mathbf{j}}\right\|^{3}} f_{\mathbf{j}} \tilde{v}_{j_{k}}^{\epsilon_{k}^{-,(k)}}\left(\sum_{i \neq k} \tilde{v}_{j_{i}}^{\epsilon_{i}^{-,(k)}} D^{\epsilon_{i}^{-,(k)}}\left(\log f_{\mathbf{j}}\right)\right)
\end{aligned}
$$

Then using definition (36) and the symmetry of $f_{\mathbf{j}}^{n}$ with respect to 0 in the velocity direction $v_{j_{k}}$, we obtain $Q^{(k)}=0$. Then multiplying (35) by $v_{j_{k}}$ and integrating in the full velocity space gives the relation (34). This relation implies that $f_{\mathbf{j}}^{n+1}$ is symmetric with respect to 0 in the direction $v_{j_{k}}$.
5.2. Discrete Landau operator. We consider the discretization of the FPL operator (4) on the whole 3D velocity space. It is based on the entropy conservative discretization introduced in [17], where a discrete weak log form of the FPL operator is used. This discretization yields:

$$
\left\{\begin{array}{l}
\frac{d f_{\mathbf{j}}(t)}{d t}=\left(\mathbf{D}^{*} \rho(t)\right)_{\mathbf{j}} \quad \mathbf{j} \in \mathbb{Z}^{3} \tag{37}\\
\rho(t)=\Delta v^{3} \sum_{\mathbf{m} \in \mathbb{Z}^{3}} f_{\mathbf{j}}(t) f_{\mathbf{m}}(t) \Phi\left(\mathbf{v}_{\mathbf{j}}-\mathbf{v}_{\mathbf{m}}\right)\left(\mathbf{D}\left(\log (f(t))_{\mathbf{j}}-\mathbf{D}(\log f(t))_{\mathbf{m}}\right)\right.
\end{array}\right.
$$

where \mathbf{D} stands for a downwind or upwind finite discrete operator approximating the usual gradient operator $\nabla_{\mathbf{v}}$. This uncentered approximation ensures that the only equilibrium states are the discrete Maxwellian. The use of centered discrete operators would have lead to non physical conserved quantities. The discretization of the FPL operator is then obtained as the average over uncentered operators, but here for a different reason as in the previous section, on the electron-ion
collision operator discretization. In [19], the scheme is rewritten as the sum of two terms: a second order approximation and an artificial viscosity term in Δv^{2} which kills spurious oscillations. However the computational cost of a direct approximation of (37) remained too high. Therefore, a multigrid technique has been used. We refer to [19] and [35] for the details of the implementation on the FPL operator. Nevertheless, these latter approaches introduce a new approximation than can affect accuracy. Based on [20], Crouseilles and Filbet proposed another approach and noticed that the discrete FPL operator (37) in the Fourier space can be written as a discrete convolution, which directly gives a fast algorithm. Here we adopt the multigrid method, detailed in [19], that has a complexity of order $O\left(n_{v}^{3} \log n_{v}^{3}\right)$.

This discrete approximation preserves positivity, mass, momentum, energy, and decreases the entropy. Moreover the discrete equilibrium states are the discrete Maxwellian. We refer to [17] for the proofs and to [25] for numerical tests cases illustrating these properties in the homogeneous case.

6. Numerical Results

6.1. Scaling with collision frequency. For the analysis of collisional processes, a new scaling is introduced here, that allows time steps to be of the order of the electron-ion collision time. In order to account for transport phenomena occurring at the collision time scale, several parameters are required: the electron-ion collision frequency $\nu_{e, i}$, the associated mean free path $\lambda_{e, i}$, the thermal velocity $v_{t h}$, and the cyclotron frequency $\omega_{c e}$

$$
\begin{equation*}
\nu_{e, i}=\frac{Z n_{0} e^{4} \ln \Lambda}{8 \pi \epsilon_{0}^{2} m_{e}^{2} v_{t h}^{3}}, \quad \lambda_{e, i}=\frac{v_{t h}}{\nu_{e, i}}, \quad v_{t h}=\sqrt{\frac{\kappa_{B} T_{0}}{m_{e}}}, \quad \omega_{c e}=\frac{e B}{m_{e}} \tag{38}
\end{equation*}
$$

These parameters enable us to define the dimensionless parameters with tilde.

- Dimensionless time, space and velocity, respectively

$$
\begin{equation*}
\tilde{t}=\nu_{e, i} t, \quad \tilde{x}=x / \lambda_{e, i}, \quad \tilde{v}=v / v_{t h} \tag{39}
\end{equation*}
$$

- Dimensionless electric field, magnetic field, and distribution function, respectively

$$
\begin{equation*}
\tilde{E}=\frac{e E}{m_{e} v_{t h} \nu_{e, i}}, \quad \tilde{B}=\frac{e B}{m_{e} \nu_{e, i}}=\frac{\omega_{c e}}{\nu_{e, i}}, \quad \tilde{f}_{e}=f_{e} \frac{v_{t h}^{3}}{n_{0}} \tag{40}
\end{equation*}
$$

This leads to the following dimensionless equations

$$
\left\{\begin{array}{l}
\frac{\partial f_{e}}{\partial t}+\nabla_{\mathbf{x}} \cdot\left(\mathbf{v} f_{e}\right)-\nabla_{\mathbf{v}} \cdot\left((\mathbf{E}+\mathbf{v} \times \mathbf{B}) f_{e}\right)=\frac{1}{Z} C_{e, e}\left(f_{e}, f_{e}\right)+C_{e, i}\left(f_{e}\right) \tag{41}\\
\frac{\partial \mathbf{E}}{\partial t}-\frac{1}{\beta^{2}} \nabla_{\mathbf{x}} \times \mathbf{B}=\frac{1}{\alpha^{2}} n \mathbf{u} \\
\frac{\partial \mathbf{B}}{\partial t}+\nabla_{\mathbf{x}} \times \mathbf{E}=0 \\
\nabla_{\mathbf{x}} \cdot \mathbf{E}=\frac{1}{\alpha^{2}}(1-n) \\
\nabla_{\mathbf{x}} \cdot \mathbf{B}=0
\end{array}\right.
$$

where $\alpha=\nu_{e, i} / \omega_{p e}$ and $\beta=v_{t h} / c$. The collision terms $C_{e, e}\left(f_{e}, f_{e}\right)$ and $C_{e, i}\left(f_{e}\right)$ are given in (30).
6.2. 1 D temperature gradient test case. In the context of laser produced plasma, the heat conduction is the leading mechanism of energy transport between the laser energy absorption zone and the target ablation zone.
In such a system, the parameters of importance for the heat flux are

- The effective electron collision mean free path λ_{e}.
- The electron temperature gradient length λ_{T}.
- The magnetic field B and its orientation with respect to ∇T.

These parameters enable to distinguish different regimes of transport, according to the Knudsen and the Hall parameters.
The Knudsen number K_{n} is a mesure of the thermodynamical non-equilibrium of the system

$$
\begin{equation*}
K_{n}=\frac{\lambda_{e}}{\lambda_{T}} \tag{42}
\end{equation*}
$$

A regime characterized by $K_{n} \rightarrow 0$ refers to an hydrodynamical description, whereas a regime characterized by $K_{n} \geq 1$ refers to a kinetic description, where the nonlocal phenomena appear. The parameters for ICF imply $K_{n} \geq 0.1$, while the classical, local approach fails at $K_{n} \geq 0.01$. This premature failure of the classical diffusion approach in plasma is explained by a specific dependence of the electron mean free path on their energy. In our applications the energy is transported by the fastest electrons, which have a much longer mean free path.
The Hall parameter $\chi=\omega_{c} \tau$ quantifies the relative importance of magnetic and collisional effects. $\omega_{c}=e B / m_{e}$ is the electron cyclotron frequency and τ the mean electron-ion collision time

$$
\begin{equation*}
\tau=\frac{3}{4} \frac{16 \pi^{2} \epsilon_{0}^{2} \sqrt{m_{e}} T_{e}^{3 / 2}}{\sqrt{2 \pi} n_{i} Z^{2} e^{4} \ln \Lambda} \tag{43}
\end{equation*}
$$

For this test case, a simple gradient temperature configuration is shown in figure (8), modelling the following situation: through a layer of homogeneous plasma, a laser deposits its energy on the hot temperature side and the absorbed energy is transported with electrons to the cold temperature side. A heat flux is created, with negative sign, contributing to the preheating (with the fastest particles) of the region down the temperature gradient, and the smoothing of this temperature gradient. The charge separation induced by the movement of particles generates electric currents. The heat flux and electric field are important in a transient phase, then tend to diminish and stabilize due to the collisional effect and the return current of cold particles. These quantities may be inhibited in the direction of the temperature gradient if magnetic fields (constant in the domain) are present. If this is the case, heat fluxes and electric fields are created in the direction perpendicular to the temperature gradient.

A Knudsen boundary layer is observed, having the extension of several collision mean free paths. It is due to the zero boundary current condition, where the populations that leave and enter the computational domain have different temperatures. However, since the boundaries are far enough from the temperature gradient, this boundary layer does not influence the heat flux propagation in the region of the temperature gradient. We observed that the presence of high magnetic fields enforces the variation of the fluxes inside this boundary layer. The high magnetic fields are indeed expected to make the particle rotate in and out the domain.

Let us define the average over velocity of a function $A(\mathbf{v})$

Figure 8. Initial configuration for the temperature gradient test case: a temperature profile is considered between to two domains of plasma with particles at thermodynamical equilibrium. Zero current boundary conditions enable to maintain mass conservation. A heat flux is generated wherever there is a nonzero temperature gradient, as well as boundary layers on the heat flux, temperature, and electromagnetic profiles.

$$
\begin{equation*}
<A>=\frac{1}{n_{e}} \int_{\mathbb{R}^{3}} A f \mathbf{d v} \tag{44}
\end{equation*}
$$

where $n_{e}(t, \mathbf{x})=\int_{\mathbb{R}^{3}} f(t, \mathbf{x}, \mathbf{v}) \mathbf{d} \mathbf{v}$ is the density of electrons.
Following $[6,36]$, we introduce the macroscopic quantities

$$
\left\{\begin{array}{l}
\mathbf{j}=q_{e} n_{e}\langle\mathbf{v}\rangle, \tag{45}\\
\mathbf{q}=\frac{1}{2} m_{e} n_{e}\langle(\mathbf{v} \cdot \mathbf{v}) \mathbf{v}\rangle, \\
\mathbf{R}=\int_{\mathbb{R}^{3}} m_{e} \mathbf{v} C_{e, i}\left(f_{e}\right) \mathbf{d v},
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
p=n_{e} T_{e}=\frac{1}{3} m_{e} n_{e}\langle(\mathbf{v}-<\mathbf{v}>) \cdot(\mathbf{v}-<\mathbf{v}>)\rangle \tag{46}\\
\boldsymbol{\Pi}=\frac{1}{3} m_{e} n_{e}\langle(\mathbf{v}-<\mathbf{v}>) \otimes(\mathbf{v}-<\mathbf{v}>)\rangle-p \mathbf{I}, \\
\mathbf{q}_{\mathbf{l o c}}=\frac{1}{2} m_{e} n_{e}\langle[(\mathbf{v}-<\mathbf{v}>) \cdot(\mathbf{v}-<\mathbf{v}>)](\mathbf{v}-<\mathbf{v}>)\rangle .
\end{array}\right.
$$

There, \mathbf{j} is the electric current, \mathbf{q} the total heat flow, \mathbf{R} the friction force accounting for the transfer of momentum from ions to electrons in collisions, T_{e} is the temperature, p is the scalar intrinsic pressure, $\boldsymbol{\Pi}$ is the stress tensor, $\mathbf{q}_{\text {loc }}$ is the intrinsic heat flow and \mathbf{I} the unit diagonal tensor.
Quantities $p, \boldsymbol{\Pi}$ and $\mathbf{q}_{\text {loc }}$ are defined in the local reference frame of the electrons, whereas \mathbf{j}, \mathbf{q} and \mathbf{R} are defined relative to the ion center of mass frame. Ions are supposed to be at rest. We have the relation

$$
\begin{equation*}
\mathbf{q}_{\mathbf{l o c}}=\mathbf{q}+\mathbf{j} \cdot\left(\frac{5}{2} p \mathbf{I}+\boldsymbol{\Pi}\right) /\left(n_{e} e\right)+\mathbf{j}\left(\frac{1}{2} m_{e} n_{e}<\mathbf{v}>^{2}\right) /\left(n_{e} e\right) . \tag{47}
\end{equation*}
$$

The validation of our Fokker-Planck solver in the domain close to the hydrodynamical regime (local regime) requires knowledge of transport coefficients. Following the formalism of Braginskii [6] for the transport relations, the transport coefficients in the hydrodynamical regime have been calculated by Epperlein in [36]. These coefficients $\alpha_{\text {ep }}, \beta_{\mathrm{ep}}, \kappa_{\mathrm{ep}}$, are the electrical resistivity, thermoelectric and thermal conductivity tensors, respectively. From these quantities, we are able to compare the heat flux and electric field issued from the Fokker-Planck solver to those calculated analytically in [36], in the local regime.
The classical derivation procedure to obtain the transport coefficients involves the linearization of the Fokker-Planck-Landau equation, assuming the plasma to be close to the thermal equilibrium. The distribution function is approximated using a truncated Cartesian tensor expansion $f(t, \mathbf{x}, \mathbf{v})=f^{(0)}\left(\|\mathbf{v}\|^{2}\right)+\frac{\mathbf{v}}{\|\mathbf{v}\|} \cdot \mathbf{f}^{(\mathbf{1})}(t, \mathbf{x},\|\mathbf{v}\|)$. Following [36], $\boldsymbol{\Pi}$ and $m_{e} n_{e}<\mathbf{v}>^{2}$ are neglected. Then considering appropriate velocity moments of $\mathbf{f}^{(\mathbf{1})}$, electric fields and heat fluxes are expressed as a function of thermodynamical variables. The coefficients of proportionality, in the obtained relations, are defined as the transport coefficients.
Several notations can be used, depending on the chosen thermodynamical variables. Adopting the Braginskii notations, we obtain

$$
\left\{\begin{array}{l}
\mathbf{R}=\nabla p+e n_{e} \mathbf{E}-\mathbf{j} \times \mathbf{B}=\frac{\alpha_{\mathbf{e p}} \cdot \mathbf{j}}{n_{e} e}-\beta_{\mathbf{e p}} \cdot \nabla T_{e} \tag{48}\\
\mathbf{q}=-\frac{5}{2} \frac{\mathbf{j}}{e} T_{e}-\kappa_{\mathbf{e p}} \cdot \nabla T_{e}-\beta_{\mathbf{e p}} \cdot \mathbf{j} \frac{\mathbf{T}_{\mathbf{e}}}{e}
\end{array}\right.
$$

We want to compare of the results of the solver with the analytical electric fields and heat fluxes in the local regime. For that purpose, we use the values of coefficients, for $Z=1$, that are tabulated in [36]. As for the components of these tensors, we make use of the standard notations $\|, \perp$, and \wedge. Directions denoted with $\|$ and \perp are respectively parallel and perpendicular to the magnetic
field. Consequently, the parallel and perpendicular components of a vector \mathbf{u} are respectively $u_{\|}=\mathbf{b}(\mathbf{u} \cdot \mathbf{b})$ and $u_{\perp}=\mathbf{b} \times(\mathbf{u} \times \mathbf{b})$, where \mathbf{b} is the unit vector in the direction of the magnetic field. The direction defined by the third direction in a direct orthogonal frame is denoted by \wedge. In the system (48), the relation between any transport coefficient tensor φ and vector \mathbf{u} is defined by

$$
\begin{equation*}
\varphi \cdot \mathbf{u}=\varphi_{\|} \mathbf{b}(\mathbf{b} \cdot \mathbf{u})+\varphi_{\perp} \mathbf{b} \times(\mathbf{u} \times \mathbf{b}) \pm \varphi_{\wedge} \mathbf{b} \times \mathbf{u} \tag{49}
\end{equation*}
$$

where the negative sign applies only in the case $\varphi=\alpha_{\mathbf{e p}}$. These coefficients can be expressed in dimensionless form

$$
\left\{\begin{array}{l}
\alpha_{\mathbf{e p}}^{\mathbf{c}}=\alpha_{\mathbf{e p}} \frac{\tau}{m_{e} n_{e}} \tag{50}\\
\beta_{\mathbf{e p}}^{\mathbf{c}}=\beta_{\mathbf{e p}} \\
\kappa_{\mathbf{e p}}^{\mathbf{c}}=\kappa_{\mathbf{e p}} \frac{m_{e}}{n_{e} \tau T_{e}}
\end{array}\right.
$$

The dimensionless transport coefficients $\alpha_{\mathbf{e p}}^{\mathbf{c}}, \beta_{\mathbf{e p}}^{\mathbf{c}}, \kappa_{\mathbf{e p}}^{\mathbf{c}}$ are functions of Z and the Hall parameter $\chi=\omega_{c} \tau$ only.
The heat flux and the electric field in (48) can then be rewritten in terms of dimensionless quantities, for the particular 1D geometry of our temperature gradient configuration. In that case, the normalizations using a collision frequency (38)-(40) are used.

$$
\left\{\begin{array}{l}
q_{1}=-\frac{5}{2} T_{e} n_{e}^{-1} j_{1}-\chi T_{e} B_{3}^{-1} \nabla_{x_{1}} T_{e} \kappa_{\mathbf{e p}, \perp}^{\mathbf{c}}-T_{e}\left(\beta_{\mathbf{e p}, \perp}^{\mathbf{c}} j_{1}-\beta_{\mathbf{e p}, \wedge}^{\mathbf{c}} j_{2}\right) \tag{51}\\
q_{2}=-\frac{5}{2} T_{e} n_{e}^{-1} j_{2}-\chi T_{e} B_{3}^{-1} \nabla_{x_{1}} T_{e} \kappa_{\mathbf{e p}, \wedge}^{\mathbf{c}}-T_{e}\left(\beta_{\mathbf{e p}, \perp}^{\mathbf{c}} j_{2}+\beta_{\mathbf{e p}, \wedge}^{\mathbf{c}} j_{1}\right) \\
E_{1}=n_{e}^{-1} j_{2} B_{3}-n_{e}^{-1} \nabla_{x_{1}} p-\nabla_{x_{1}} T_{e} \beta_{\mathbf{e p}, \perp}^{\mathbf{c}}+n_{e}^{-1} B_{3} \chi^{-1}\left(\alpha_{\mathbf{e p}, \perp}^{\mathbf{c}} j_{1}+\alpha_{\mathbf{e p}, \wedge,}^{\mathbf{c}} j_{2}\right) \\
E_{2}=-n_{e}^{-1} j_{1} B_{3}-\nabla_{x_{1}} T_{e} \beta_{\mathbf{e p}, \wedge}^{\mathbf{c}}+n_{e}^{-1} B_{3} \chi^{-1}\left(\alpha_{\mathbf{e p}, \perp}^{\mathbf{c}} j_{2}-\alpha_{\mathbf{e p}, \wedge}^{\mathbf{c}} j_{1}\right)
\end{array}\right.
$$

The Hall parameter χ is expressed in terms of the dimensionless quantities B_{3} and T_{e} :

$$
\begin{equation*}
\chi=\frac{3 \sqrt{\pi}}{2 \sqrt{2}} \frac{B_{3} T_{e}^{3 / 2}}{Z} \tag{52}
\end{equation*}
$$

6.2.1. Electron transport in the local regime. In order to validate the numerical scheme in the local regime, we compare the heat flux $\mathbf{Q}_{\mathbf{F P}}$ and electric field $\mathbf{E}_{\mathbf{F P}}$ computed from the numerical solution, with those analytically (denoted by $\mathbf{Q}_{\mathbf{B R}}$ and $\mathbf{E}_{\mathbf{B R}}$) computed from the system (51). The transport coefficients $\alpha_{\mathbf{e p}}, \beta_{\mathbf{e p}}, \kappa_{\mathbf{e p}}$ have been tabulated in [36].

In this test case the source term can be considered stiff; the discretization of the collision operator is then of crucial importance and its accuracy can be tested. Moreover we provide, in this local regime, with validation results for a wide range of Hall parameters corresponding to ICF applications.
The initial temperature gradient $T_{e}\left(x_{1}\right)$ has the form of a step

$$
T_{e}\left(x_{1}\right)= \begin{cases}T_{e}^{R}\left(x_{1}\right) & \text { if } \quad x_{1}>x_{1}^{m}, \tag{53}\\ T_{e}^{L}\left(x_{1}\right) & \text { else },\end{cases}
$$

where T_{e}^{R} and T_{e}^{L} are third order polynomials in $x_{1}-x_{1}^{m}, x_{1}$ standing for the space coordinate and x_{1}^{m} for the mid-point of the 1D domain. The coefficients of these polynomials are chosen such as they verify the following conditions at x_{1}^{m}

$$
\left\{\begin{array}{l}
\frac{\partial T_{e}^{L}}{\partial x_{1}}\left(x_{1}^{m}\right)=\frac{\partial T_{e}^{R}}{\partial x_{1}}\left(x_{1}^{m}\right)=\frac{T_{R}-T_{L}}{\left(x_{1}^{R}-x_{1}^{L}\right) / \lambda}, \tag{54}\\
T_{e}^{L}\left(x_{1}^{m}\right)=T_{e}^{R}\left(x_{1}^{m}\right)=\frac{T_{R}+T_{L}}{2},
\end{array}\right.
$$

and at the boundaries

$$
\left\{\begin{array}{l}
T_{e}^{L}\left(x_{1}^{L}\right)=T_{L}, \tag{55}\\
T_{e}^{R}\left(x_{1}^{R}\right)=T_{R}, \\
\frac{\partial T_{e}^{L}}{\partial x_{1}}\left(x_{1}^{L}\right)=\frac{\partial T_{e}^{R}}{\partial x_{1}}\left(x_{1}^{R}\right)=0,
\end{array}\right.
$$

where T_{L} (resp. T_{R}) is the initial temperature of the leftmost (resp. rightmost) point x_{1}^{L} (resp. x_{1}^{R}) of the domain. λ is a parameter that determines the initial stiffness of the temperature gradient.

The simulations were performed with the following parameters: the size of the dimensionless domain $L=x_{1}^{R}-x_{1}^{L}=5400,2 \times v_{\max }=12$, the ion charge $Z=1$, the frequency ratio $\nu_{e, i} / \omega_{p e}=$ 0.01 , the electron thermal velocity such as $v_{t h} / c=0.05$. The magnetic field are resolved by Maxwell equations; the initial value are $B_{3}\left(t=0, x_{1}\right)=0.001,0.01,0.1$, or 1 . In the test cases in the local regimes we present, any variation to this initial value proved to be negligible. The initial electric field is zero over the domain: $E_{1}\left(t=0, x_{1}\right)=E_{2}\left(t=0, x_{1}\right)=0$. The initial distribution function is a Maxwellian depending on the local temperature, the density being constant over the domain. The initial temperature profile is chosen such as $T_{L}=0.8, T_{R}=1.2$ and $\lambda=10$. This set of parameters enable us to consider the local regime, close to the hydrodynamics (the Knudsen number is about $1 / 500$). The second order scheme is used for the transport terms in the x_{1}, v_{1}, v_{2} and v_{3} directions. The dimensionless time step and meshes size are $\Delta t=1 / 500$, $\Delta x_{1}=L / 126, \Delta v=2 v_{\max } / 32$ respectively. The grid has 126 points in space and 32^{3} points in velocity; 42 processors were used for each simulation (CEA-CCRT-platine facility, which is a cluster of Novascale 3045 servers, including 932 nodes, each one having 4 Intel Itanium dual core processors, at 1.6 Ghz. Each processor have a memory of 24 Go. The Novascale servers are interconnected by a Voltaire network, with technology Infiniband DDR). Domain decomposition on the space domain allows each processor to deal only with 3 points in space. The fourth order scheme on the space and velocity transport terms has been used. The zero current boundary condition is written explicitly in the section 3.4 . The boundary conditions for fields are chosen with ghost points at their initial value (zero for electric fields and $0.001,0.01,0.1$, or 1 for the
magnetic fields. The results are presented in Figures 9-11. The typical run time is 24 hours for 40 collision times, with that set of parameters. The maximum difference between the numerical and the analytical solution are less than 10% for longitudinal macroscopic quantities (heat flux and electric field); 20% for transverse ones. Transverse quantities have only been considered for simulations presented in Figures 10 and 11 where the magnetic field was strong enough so that

- The establishment of transverse heat flux can be achieved during the simulation time.
- Transverse quantities cannot be considered negligible compared to longitudinal ones.

These conditions where fulfilled for $B_{3}=0.1,1$.
In Figures 9-11, only results for simulations with $B_{3}=0.001, B_{3}=0.1, B_{3}=1$ are shown, respectively. The simulation with $B_{3}=0.01$ proved to show no significance differences with those with $B_{3}=0.001$.

Figure 9. Longitudinal (along the temperature gradient) ratios $\frac{\max _{x_{1}}\left(Q_{F P}\right)}{\max _{x_{1}}\left(Q_{B R}\right)}$ (dashed curve) and $\frac{\max _{x_{1}}\left(E_{F P}\right)}{\max _{x_{1}}\left(E_{B R}\right)}$ (oscillating curve) are shown against the dimensionless time. The dimensionless magnetic field is $B_{3}=0.001$. Asymptotic behaviour, where the flux is well established, shows good agreement (less than 5\% error) with analytical solution (Braginskii formalism), denoted by subscript BR.

Results shown Figures 9-11 are revealing an important transient phase before the establishment of a stationary regime. The oscillations are enforced by the magnetic field, Figure 11. The oscillating electric fields are the consequence of the plasma waves excited by our initial conditions; they are damped in a few electron-ion collision times. These plasma oscillations are smoothed out by the large time steps we used in simulations, permitted by the implicit treatment of the Maxwell equations. However this has a little importance on the asymptotic values and a little importance for accuracy. With a larger magnetic field Figure 11, we observe frequency modulations at $\omega_{c}=\nu_{e, i}$ (corresponding to $B_{3}=1$), both on electric fields and heat fluxes. The total energy is conserved with 0.1% accuracy in the case $B_{3}=0.001$, and with 1% accuracy with $B_{3}=1$. The total density is conserved with 0.01%.

In order to investigate Larmor radius effects for simulations presented in Figures 10 and 11, we refined the space grid below the dimensionless Larmor radius $r_{L}=B_{3}^{-1}$. Therefore, simulation presented in Figure 10 has been done again with the same parameters on the same time period: we

Figure 10. Ratios $\frac{\max _{x_{1}}\left(Q_{F P}\right)}{\max _{x_{1}}\left(Q_{B R}\right)}$ (curve in bold) and $\frac{\max _{x_{1}}\left(E_{F P}\right)}{\max _{x_{1}}\left(E_{B R}\right)}$ (dashed curve) are shown against the dimensionless time. Longitudinal quantities (along the temperature gradient) are shown in (a), with about 10% accuracy in the asymptotics. Transverse quantities are shown in (b), with about 20% accuracy in the asymptotics. The dimensionless magnetic field is $B_{3}=0.1$.

Figure 11. Ratios $\frac{\max _{x_{1}}\left(Q_{F P}\right)}{\max _{x_{1}}\left(Q_{B R}\right)}$ (curve in bold) and $\frac{\max _{x_{1}}\left(E_{F P}\right)}{\max _{x_{1}}\left(E_{B R}\right)}$ (dashed curve) are shown against the dimensionless time. Longitudinal quantities (along the temperature gradient) are shown in (a), with about 5% accuracy in the asymptotics. Transverse quantities are shown in (b), with about 20% accuracy in the asymptotics. The dimensionless magnetic field is $B_{3}=1$.
have refined the grid to 1260 points in space (420 processors). In the same manner, the simulation presented in Figure 11 has been done again with 6300 grid points in space (2100 processors) and $\Delta t=1 / 1000$ (C.F.L. condition), during the same time period. The results prove to be similar to those with coarse space grids, both for macroscopic quantities and distribution functions. We thus show no dependence on the Larmor radius. Here we remark that the cyclotron frequency is always resolved. The time steps are constrained by the C.F.L. on collision operators. The positivity property is always maintained.
6.2.2. Electron transport in the nonlocal regime without magnetic fields. The departure of transport coefficients from their local values is of interest here. We restrict ourselves to cases where the magnetic field is zero. Then it is possible to obtain directly the ratio of effective thermal conductivity to the Spitzer-Härm conductivity $\kappa / \kappa_{S H}$ by the relation:

$$
\begin{equation*}
\frac{\kappa}{\kappa_{S H}}=\frac{q_{1}}{q_{S H}} . \tag{56}
\end{equation*}
$$

The Spitzer-Härm regime refers to a local regime with no magnetic field. In (56), q_{1} is calculated from the numerical solution and $q_{S H}$ from (51) in the Spitzer-Härm limit.
Transport coefficients are extracted from the domain where the flux and temperature gradient are maximum.
The wavelength of the temperature perturbation $k \lambda_{e, i}$ in the Fourier space is computed from the gradient temperature profile. This enables to obtain a range (due to an uncertainty) for $k \lambda_{e, i}$ corresponding to this temperature gradient.
The results will be compared with the analytical formula from [37]

$$
\begin{align*}
& \frac{\kappa}{\kappa S H}=\frac{1}{1+\left(30 k \lambda_{e, i} \beta\right)^{4 / 3}} \tag{57}\\
& \beta=\left(\frac{3 \pi}{128} \frac{3.2(0.24+Z)}{(1+0.24 Z)}\right)^{1 / 2} \frac{Z^{1 / 2}}{2} \tag{58}
\end{align*}
$$

The comparison between the numerical results and the analytical solution holds, owing the fact that the test procedure involve a large domain of uncertainty. The three runs have been performed with the same precision for the temperature gradient. The CFL conditions are respected, maintaining the positivity of the distribution function.

Parameters	RUN1	RUN2	RUN3
Size of the domain	5400	540	540
Stiffness parameter λ	10	10	100
Number of points along the Gradient	126	126	1260
Number of processors	42	42	420
Results	RUN1	RUN2	RUN3
$k \lambda_{e, i}$	10^{-3}	0.05 ± 0.03	0.2 ± 0.1
Analytical $\kappa / \kappa_{S H}$	0.998	$[0.93-0.67]$	$[0.60-0.26]$
Numerical $\kappa / \kappa_{S H}$	1.03	0.675	0.395

6.2.3. Electron transport in the nonlocal regime with magnetic fields. The objective of this section is to illustrate the competition between nonlocal and magnetic effects on the distribution function. To this end, we consider a situation where the Knudsen number is close to $K n=1 / 10$. This corresponds to a situation with a stiffness parameter $\lambda=100$. The 1D domain goes from 0 to $L=540$, the grid has 1260 points in space, 420 processors were used for each simulation (10 collision times), during 6 hours. The other parameters are kept identical to those in the test cases in the local regime. Two cases are distinguished, respectively with initial low magnetic fields effects, $\omega_{c} / \nu_{e i}=10^{-2}$ (see Figures 13 and 14(a)), and high magnetic fields effecs, $\omega_{c} / \nu_{e i}=1$ (see Figures 12(b) and 14(b)). The magnetic fields are resolved by Maxwell equations; no more than 0.1% departure from the initial value is encountered after 10 collision times. The positivity of the distribution function is maintained, and the CFL conditions satisfied.

In the Figures 12 and 13, the averaged distribution function is shown in the region of the temperature gradient

$$
\sum_{\left(j_{2}, j_{3}\right) \in\left[-N_{v}, N_{v}\right]^{2}} f_{e}\left(x_{i}, v_{j_{1}}, v_{j_{2}}, v_{j_{3}}\right),
$$

where $2 N_{v}$ is the number of velocity points in one velocity direction. The initial distribution function, Figure 12(a), is a Maxwellian with a temperature that depends on the space variable x_{1}. It is symmetric in the v_{1} direction. After 10 collision times, for the simulation with $\omega_{c} / \nu_{e i}=10^{-2}$, Figure 13 , the distribution function has the same structure for the bulk electrons. Only the structure for the fastest electrons is modified. The fast electron population with positive velocity is depleted in the hot side of the temperature gradient, whereas the fast electron population with negative velocity is enforced, contributing to the smoothing of the temperature gradient and the heating of the bulk. These nonlocal effects are important, because the main contribution to the heat flux come from the fastest particles.
The same distribution fonction is shown in Figure 12(b), at the same time, but for a simulation with $\omega_{c} / \nu_{e i}=1$. The distribution fonction is here strongly re-localized. This means that the important magnetic fields tend to inhibit the electron transport, while forcing the electrons to rotate along the magnetic field lines.

In order to gain more insight in the processes at stake, we show in Figure 14 the quantity

$$
\sum_{\left(j_{2}, j_{3}\right) \in\left[-N_{v}, N_{v}\right]^{2}}\left[f_{e}\left(x_{i}, v_{j_{1}}, v_{j_{2}}, v_{j_{3}}\right)-f_{e}\left(x_{1},-v_{j_{1}}, v_{j_{2}}, v_{j_{3}}\right)\right],
$$

which is odd in the variable $v_{j_{1}}$. It accounts for the asymmetries between the positive and negative velocities, along the direction v_{1}. We observe that the fast population contributes to the total current with a negative sign, whereas the bulk population contributes to the return current, with a positive sign. If we compare Figures $14(\mathrm{a})$ and $14(\mathrm{~b})$, we observe that the assymetries are strongly re-localized in the region of the temperature gradient, with high magnetic fields.

(a) Initial time

(b) At $t \nu_{e i}=10, \omega_{c} / \nu_{e i}=1$

Figure 12. Averaged distribution function in the v_{2} and v_{3} directions, in the region of the temperature gradient, at initial time (a), and at $t \nu_{e i}=10$ (b), for a simulation with $\omega_{c} / \nu_{e i}=1$.

Figure 13. Averaged distribution function in the v_{2} and v_{3} directions, in the region of the temperature gradient, at $t \nu_{e i}=10$, for a simulation with $\omega_{c} / \nu_{e i}=$ 10^{-2}.

Figure 14. $\sum_{\left(j_{2}, j_{3}\right) \in\left[-N_{v}, N_{v}\right]^{2}}\left[f_{e}\left(x_{1}, v_{j_{1}}, v_{j_{2}}, v_{j_{3}}\right)-f_{e}\left(x_{1},-v_{j_{1}}, v_{j_{2}}, v_{j_{3}}\right)\right]$, in the region of the temperature gradient, at the same time $t \nu_{e i}=10$, for $\omega_{c} / \nu_{e i}=10^{-2}$ in Figure (a), and $\omega_{c} / \nu_{e i}=1$ in Figure (b).
6.3. 2D nonlocal magnetic field generation. We present here results on the nonlocal magnetic field generation during the relaxation of cylindrical laser hot spots, having a periodic structure, and for a domain of initial constant density. This stands as a first step to prove the $2 D_{x}$ capabilities of the solver, and also as a validation in the nonlocal regime with a model from the literature [39]. The extension of the presented numerical schemes is straightforward on a $2 D_{x}$ grid. The fourth order scheme is used for the transport terms in the $x_{1}, x_{2}, v_{1}, v_{2}$ and v_{3} directions.

We consider a planar geometry with periodic boundary conditions for the distribution function and fields. For this application, the normalizations using collision frequency (38)-(40) are used. The initial dimensionless temperature profile is $T_{e}(\mathbf{x}, t=0)=1+0.12 \exp \left(-\frac{\mathrm{x}^{2}}{R^{2}}\right)$, with $R=5.6$. We used the following parameters for the simulation: the frequency ratio is $\nu_{e, i} / \omega_{p e}=0.003$, the ion charge is $Z=5$. We do not consider the electron-electron collision operator. Here
the relaxation only acts with electron-ion collisions on the anisotropic part of the electronic distribution function. The electron thermal velocity is such as $v_{t h} / c=0.05$. These parameters are close to those used in [38]. The size of the simulation domain is $L=70$ for one space direction, $2 \times v_{\max }=12$ for one velocity direction. The initial electric and magnetic fields are zero over the domain. The initial distribution function is a Maxwellian depending on the local temperature, the initial density being constant over the domain. The dimensionless time step and meshes size are $\Delta t=1 / 500, \Delta x=\Delta y=L / 100, \Delta v=2 v_{\max } / 32$, respectively. The grid has 100^{2} points in space and 32^{3} points in velocity. 625 processors are used for this simulation. With these parameters, the CFL conditions are satisfied and the distribution function remains positive. The simulation time is 24 hours.
6.3.1. First order process of temperature relaxation. The dominant process that is at play in this test case is the temperature relaxation of the hot spot. In our case the ratio size of a hot spot / distance between hot spots is small enough, such as this process can be analyzed, at first order, considering hot spots that relax without interaction between them, in a cylindrical geometry. Therefore we employ the $1 D_{x}$ non-magnetized nonlocal model [39], to validate this process. This model is design to take into account nonstationary effects, with an important dependance of the transport coefficients on time. Two characteristic relaxation regimes are identified in [39], respectively at an hydrodynamic and collisional kinetic time scale.
Both electron-electron and electron-ion collisions are considered in [39]. Owing the fact that we have chosen $Z=5$, the electron-electron collisions can be considered negligible in the model [39], for this particular test.
We compare in Figure 15 the evolution of the relaxation of the maximum of the temperature, between the $2 D_{x} \times 3 D_{v}$ Maxwell-Fokker-Planck-Landau solver and the model, and show good agreement. The total mass is exactly preserved and the total energy is also preserved with 0.01% accuracy.
In tests in which the magnetic fields effect become important, several theoritical work could be mentioned, as suitable to be tested against [40], [41], [42], [43].

Figure 15. Evolution of the maximum of dimensionless temperature. Comparison between the Maxwell-Fokker-Planck-Landau solver (bold, red curve) and the model from [39] (dash, green curve).
6.3.2. Second order process of nonlocal interaction between hot spots. On the other hand, the ratio size of a hot spot / distance between hot spots is large enough, such as nonlocal magnetic field generation can develop, even if it is not the dominant process.

The mechanism under consideration here (the magnetic field generation Figure 16), is explained in [8], as the results of non parallel gradients of the third and fifth moments of the electronic distribution function. We show the magnetic field in Figure 16(a) and the cross gradients $\nabla_{\mathbf{x}}\left(\int_{\mathbb{R}^{3}} f_{e}\|\mathbf{v}\|^{3} d \mathbf{v}\right) \times \nabla_{\mathbf{x}}\left(\int_{\mathbb{R}^{3}} f_{e}\|\mathbf{v}\|^{5} d \mathbf{v}\right)$ in Figure 16(b).
This mechanism is not due to the magnetic field generation from a $\nabla n_{e} \times \nabla T_{e}$ structure, since the density n_{e} can be considered constant during the simulation.
This structure with eight lobes is the result of the collision operators (of diffusion type) that make a particular hot spot interact, after a rapid transient phase, with the other surrounding (similar) hot spots.

(b) Cross gradients of high order moments

Figure 16. Dimensionless magnetic field and cross gradients of high order moments (third and fifth) at $t \nu_{e, i}=8$.

7. Conclusions

In the present paper, we have developed high order numerical methods dedicated to plasma simulation at a microscopic level.

A fourth order scheme issued from VFRoe schemes has been introduced in our kinetic context. It brings accuracy improvement on the velocity transport term. The second order scheme remains
interesting for the linear spatial transport term (which is faced to less robustness and accuracy constraints) in a 2D, distributed memory context without overlapping between processors (each processor communicating with its neighbours only). It involves indeed a reduced stencil, with a lower limit for the number of spatial grid points per processor.
The Maxwell equations have been discretized with a second order, implicit scheme allowing large time steps. We did not find any dependance on the Larmor radius and show that resolving the cyclotron frequency is sufficient. The couplings between the equations of the system have introduced a number of constraints (robustness, accuracy, symmetry) both on the transport scheme and the collision operators. The extension of the methods to non-uniform, cartesian grids, can be considered without affecting the conservation properties (positivity, energy, mass and momentum conservation, entropy decaying behaviour). Some numerical and physical test cases have validated our approach in different regimes of interest for ICF applications, and showed that it is computationally affordable. We also proposed a validation strategy in the linear regime based on [33], using Green kernels.
Compared to other methods, the method presented here do not make any assumption on the anisotropy degree of the distribution function, neither perform simplifications on the collision operators. A distinctive feature of the present model is its flexibility. Indeed, as pointed out along this presentation, a wide range of regimes can be treated accurately with the method, from collective to collisional. Potentially, realistic, reference simulations for ICF are realizable at a hundred picosecond time scale at undercritical and critical density (where collective effects are important), and at high densities (where collisional effects are dominant). The objective is to present accurate calculations, on which reduced, but faster models can rely. The counterpart of this accuracy is the computational cost of the method, despite the use of fast algorithms.
Various fundamental studies can be planned on the basis of the actual version of the solver. Collisional Weibel instability [44], forward and backward collisional Stimulated Brillouin Scattering, studies on the nonlocal interaction between speckles related to plasma-induced smoothing of laser beams [45]. Also several axis of development are under consideration to bring more physics to the model: the ion motion, the extension to regimes relevant to higher laser intensities, including the relativistic regime and large angle collision terms of Boltzmann type.
Acknowledgments: The authors are thankful to the Commissariat à l'Energie Atomique for the access to the CEA-CCRT-platine computing facilities. One of the author, Francis Filbet, would like to express his gratitude to the ANR JCJC-0136 MNEC (Méthode Numérique pour les Equations Cinétiques) funding.

References

[1] J.J. Santos et al. Fast-electron transport and induced heating in aluminium foils, Physics of Plasmas, 14, 103107, 2007.
[2] A.R. Bell, A.P.L. Robinson, M. Sherlock, R.J. Kingham and W. Rozmus Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov-Fokker-Planck equation, Plasma Physics and controlled fusion, 48, R37-R57, 2006.
[3] M. Tabak et al. Ignition and high gain with ultrapowerful lasers, Physics of Plasmas 1, 1626, 1994.
[4] A. Bret, M.-C. Firpo, C. Deutsch Characterization of the Initial Filamentation of a Relativistic Electron Beam Passing through a Plasma, Physical Review Letters, 94, 115002, 2005.
[5] A. Bret, L. Gremillet, D. Bénisti, E. Lefebvre Exact Relativistic Kinetic Theory of an Electron-beamPlasma System: Hierarchy of the Competing Modes in the system-Parameter Space, Physical Review Letters, 100, 205008, 2008.
[6] S. I. Braginskii, Reviews of plasma physics, Consultants Bureau, New York, 1965, Vol.1, p. 205
[7] M.G. Haines Magnetic-field generation in laser fusion and hot-electron transport, Can. J. Phys., 64, 912, 1986.
[8] R. J. Kingham, A. R. Bell, Nonlocal Magnetic-Field Generation in Plasmas without Density Gradients, Phys. Rev. Letter, 88, 045004, 2002.
[9] C. P. Ridgers, R. J. Kingham, and A. G. R. Thomas, Magnetic cavitation and the reemergence of nonlocal transport in lasers plasmas, Phys. Rev. Letter, 1, 2008.
[10] D. H Froula, J. S. Ross,B. B. Pollock, P. Davis, A. N. James, L. Divol, M. J. Edwards, A. A. Offenbaerger, D. Price, R. P. J. Town, G. R. Tyran, and S. H. Glenzer, Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering, Phys. Rev. Letter, 98, 2007.
[11] T. Yokota, Y. Nakao, T. Johzaki, K. Mima Two-dimensional relativistic Fokker-Planck model for core plasma heating in fast ignition targets, Physics of Plasmas, 13, 022702, 2006.
[12] Y. Sentoku, A.J. Kemp Numerical method for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents, Journal of Computational Physics, 227, 68466861, 2008.
[13] R.J. Kingham, A.R. Bell An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields Journal of Computational Physics, 194, 1-34, 2004.
[14] J. Limpouch et al. Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas, Laser and Particle Beams 12, 101-110, 1994.
[15] F. Alouani-Bibi, M.M. Shoucri, J.-P. Matte Different Fokker-Planck approaches to simulate electron transport in plasmas Computer Physics Communication, 164, 60-66, 2004.
[16] J.-P. Matte, J. Virmont Electron heat transport down steep Temperature Gradients, Phys. Rev. Lett., 49, 26, 1982.
[17] P. Degond, B. Lucquin-Desreux, An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory, Numer. Math. 68 (1994) 239-262
[18] C. Buet, S. Cordier, Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation, Numer. Anal. 36 (1999) 953-973.
[19] C. Buet, S. Cordier, P. Degong, M. Lemou, Fast algorithm for numerical, conservative and entropy approximation of the Fokker-Planck-Landau equation, J. Comput. Physics 133 310-322, 1997.
[20] L. Pareshi, G. Russo, G. Toscani, Fast spectral method for Fokker-Planck-Landau collision operator, J. Comput. Physics 165, 2000 216-236.
[21] O. Larroche Kinetic simulations of fuel ion transport in ICF target implosions, Euro. Phys. J. D 27, 131, 2003
[22] F. Filbet, E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications, 150, 3, pp. 247-266(20), 2003.
[23] M. Lemou Multipole expansions for the Fokker-Planck-Landau operator, Numer. Math., 78, 597-618, 1998.
[24] F. Filbet, L. Pareshi Numerical method for the accurate solution of the Fokker-Planck-Landau equation in the non-homogeneous case, Journal of Computational Physics, 179, 1-26, 2002.
[25] N. Crouseilles, F. Filbet, Numerical approximation of collisional plasmas by high order methods, Journal of Computational Physics, 201, 546-572, 2004.
[26] Z. Xiong, R.H. Cohen, T.D. Rognlien, X.Q. Xu A high order Finite Volume algorithm for Fokker-Planck collisions in magnetized plasmas, J. Comput. Phys. 227, 7192, 2008.
[27] S. Yamamoto, H. Daiguji High order accurate upwind schemes for solving the compressible Euler and NavierStokes equations, Computers Fluids, 22, 259-270, 1993.
[28] C. Berthon and F. Marche Accepted in SIAM J. SCI. COMP.
[29] A. Decoster, P.A. Markowich, B. Perthame, Modeling of collisions, Research in applied mathematics, Masson, Paris, 1997.
[30] R. Balescu, Transport processes in plasmas vol. 1 classical transport theory, 1988
[31] A. Kurganov, E. Tadmor, Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers, Numerical methods Partial Differential, 218, 584-608, 2002.
[32] B. Van Leer Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 32, 101-136, 1979.
[33] C. Sartori et G.G M. Coppa, Analysis of transient and asymptotic behavior in relativistic Landau damping, Phys. Plasmas 2 (11), 1995.
[34] S. Le Bourdiec, F. de Vuyst, L. Jacquet, Numerical solution of the Vlasov-Poisson system using generalized Hermite functions, Computer Physics Communications 175 528-544, 2006.
[35] C. Buet, S. Cordier, F. Filbet, Comparison of numerical scheme for Fokker-Planck-Landau equation, ESAIM Proc. 10 161-181, 1999.
[36] E. M. Epperlein, M. G. Haines, Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker-Planck equation, Phys. Fluids 29 (4), April 1986.
[37] E. M. Epperlein, Kinetic theory of laser filamentation in plasmas, Phys. Rev. Letter 65, 2145, 1990.
[38] V.K. Senecha, A.V. Brantov, V. Yu Bychenkov, V.T. Tikhonchuk Temperature relaxation in hot spots in a laser-produced plasma, Phys. Review E, 47, 1, 1998.
[39] A. V. Brantov, V. Yu. Bychenkov, and W Rozmus, Relaxation of a Thermal Perturbation in a Collisional Plasma, Plasma Physics Reports, 2006, Vol 32, No 4, pp. 337-343.
[40] A. V. Brantov, V. Yu. Bychenkov et al., Linear theory of nonlocal transport in a magnetized plasma Plasma Physics Reports, Physics of Plasmas, Vol.10, Issue 12, pp. 4633-4644, 2003.
[41] B. Frolov, S. I. Krasheninnikov, R. J. Kingham and J. Edwards, Heat flux calculation in the semicollisionless regime for substantial temperature variations including magnetic field, New J. Phys. 8 56, 2006.
[42] Ph. D. Nicolaï, J.-L. Feugeas, G. P. Schurtz A practical nonlocal model for heat transport in magnetized laser, Phys. Plasma, 13, 032701, 2006.
[43] D. Bennaceur-Doumaz, A. Bendib, Nonlocal electron transport in magnetized plasmas with arbitrary atomic number, Physics of Plasmas, 13, 092308, 2006.
[44] A. Sangam, J.-P. Morreeuw, V.T. Tikhonchuk Anisotropic instability in a laser heated plasma, Phys. Plasmas 14, 053111, 2007.
[45] J.-L. Feugeas, Ph Nicolai, X. Ribeire, G. Schurtz, V. Tikhonchuk and M. Grech, Modelling of two dimensional effects in hot spot relaxation in laser-produced plasmas, Physics of Plasmas, 15, 062701, 2008.
[46] B. Dubroca, M. Tchong, P. Charrier, V.T. Tikhonchuk, J.P. Morreeuw Magnetic field generation in plasmas due to anisotropic laser heating, Phys. Plasma, 11, 3830, 2004.
[47] J. M. Donoso and E. del Rio, Integral propagator solvers for Vlasov-Fokker-Planck equations, J. Phys. A: Math. Theor. 40, F449 (2007).

Appendix A. Electrostatic case in the linear regime

The non-relativistic $1 D_{x} \times 3 D_{\mathbf{v}}$ Vlasov-Poisson system extracted from the equations (1)-(3) reads

$$
\begin{align*}
& \frac{\partial f}{\partial t}+v_{1} \frac{\partial f}{\partial x_{1}}+\frac{q_{e}}{m_{e}} E_{1} \frac{\partial f}{\partial v_{1}}=0 \tag{59}\\
& \frac{\partial E_{1}}{\partial x_{1}}=-\frac{q_{e}}{\epsilon_{0}}\left(n_{0}-\int_{\mathbb{R}^{3}} f\left(t, x_{1}, \mathbf{v}\right) \mathbf{d v}\right) \tag{60}
\end{align*}
$$

The distribution function f is assumed to be a perturbation around an equilibrium state $f^{(0)}(\|\mathbf{v}\|)$, $E_{1}^{(0)}=0, n_{0}=\int_{\mathbb{R}^{3}} f^{(0)}(\|\mathbf{v}\|) \mathbf{d v}$. The system (59),(60) is linearized around this equilibrium state

$$
\begin{align*}
& f\left(t, x_{1}, \mathbf{v}\right)=f^{(0)}(\|\mathbf{v}\|)+f^{(1)}\left(t, x_{1}, \mathbf{v}\right), \tag{61}\\
& E_{1}^{(1)}\left(t, x_{1}\right)=E_{1}^{(0)}+E_{1}^{(1)}\left(t, x_{1}\right), \tag{62}
\end{align*}
$$

under the hypothesis:

$$
\begin{array}{r}
\left\|f^{(1)}\right\| \ll\left\|f^{(0)}\right\|, \\
\left\|E_{1}^{(1)}\right\| \ll 1 \tag{64}\\
40
\end{array}
$$

The Vlasov-Poisson can then be set under the following form (transport equation along the space directions supplemented by a source term along the v_{1} direction), after linearization

$$
\left\{\begin{array}{l}
\frac{\partial f^{(1)}}{\partial t}+v_{1} \frac{\partial f^{(1)}}{\partial x_{1}}=-\frac{q_{e}}{m_{e}} E_{1}^{(1)} \frac{\partial f^{(0)}}{\partial v_{1}} \tag{65}\\
\frac{\partial E_{1}^{(1)}}{\partial x_{1}}=\frac{q_{e}}{\epsilon_{0}} \int_{\mathbb{R}^{3}} f^{(1)}\left(t, x_{1}, \mathbf{v}\right) \mathbf{d} \mathbf{v}
\end{array}\right.
$$

If $f^{(1)}$ and $E_{1}^{(1)}$ are periodic and integrable, then their respective normalized Fourier coefficient are well-defined. A Fourier series expansion gives $\forall t>0$

$$
\left\{\begin{array}{l}
f^{(1)}\left(t, x_{1}, \mathbf{v}\right)=\hat{f}^{(1)}\left(t, k_{1}, \mathbf{v}\right) \cos \left(k_{1} x_{1}\right) \tag{66}\\
\hat{f}^{(1)}\left(t, k_{1}, \mathbf{v}\right)=\frac{1}{L} \int_{0}^{L} f^{(1)}\left(t, x_{1}, \mathbf{v}\right) e^{-i k_{1} x_{1}} d x_{1}
\end{array}\right.
$$

Where L is the size of the domain. The same reconstruction using Fourier series is used for $E_{1}^{(1)}$. These coefficients verify the following equations,obtained by Fourier transformation performed on the equations of the system (65), for all real k_{1}

$$
\begin{align*}
& \frac{\partial \hat{f}^{(1)}}{\partial t}+i k_{1} v_{1} \hat{f}^{(1)}=-\frac{q_{e}}{m_{e}} \hat{E}_{1}^{(1)} \frac{\partial f^{(0)}}{\partial v_{1}} \tag{67}\\
& i k_{1} \hat{E}_{1}=\frac{q_{e}}{\epsilon_{0}} \hat{n}_{1} \tag{68}
\end{align*}
$$

Then introducing the notation $\hat{f}^{(1)}\left(t=0, k_{1}, \mathbf{v}\right)=\hat{f}^{(10)}\left(k_{1}, \mathbf{v}\right)$, the equation (67) can be written in the integral form

$$
\begin{equation*}
\hat{f}^{(1)}\left(t, k_{1}, \mathbf{v}\right)=\hat{f}^{(10)}\left(k_{1}, \mathbf{v}\right) e^{-i k_{1} v_{1} t}-\frac{q_{e}}{m_{e}} \int_{0}^{t} \hat{E}_{1}^{(1)}\left(t^{\prime}, k_{1}\right) \frac{\partial f^{(0)}}{\partial v_{1}} e^{-i k_{1} v_{1}\left(t-t^{\prime}\right)} d t^{\prime} \tag{69}
\end{equation*}
$$

Integrating the equation (69) over \mathbf{v} and injecting in it the relation (68), one obtains the following integral equation for the density

$$
\begin{equation*}
\hat{n}^{(1)}\left(t, k_{1}\right)=M\left(t, k_{1}\right)+\int_{0}^{t} K\left(t-t^{\prime}, k_{1}\right) \hat{n}^{(1)}\left(t^{\prime}, k_{1}\right) d t^{\prime} \tag{70}
\end{equation*}
$$

where

$$
\begin{align*}
K\left(t, k_{1}\right) & =\frac{i q_{e}^{2}}{k_{1} m_{e} \epsilon_{0}} \int_{\mathbb{R}^{3}} \frac{\partial f^{(0)}}{\partial v_{1}} e^{-i k_{1} v_{1} t} \mathbf{d} \mathbf{v} \tag{71}\\
M\left(t, k_{1}\right) & =\int_{\mathbb{R}^{3}} \hat{f}^{(10)}\left(k_{1}, \mathbf{v}\right) e^{-i k_{1} v_{1} t} \mathbf{d} \mathbf{v} \tag{72}
\end{align*}
$$

These kernels can be computed with the desired accuracy, following [33]. The numerical resolution of (70) finally reduces to the inversion of a triangular linear system.
Macroscopic quantities such as the density or the heat flux can then be reconstructed using these latter equations.

This test case stands as a validation for the couplings of Vlasov and Maxwell equations. We determine initial conditions that trigger a plasma wave at a given wavelength. To do so, VlasovMaxwell equations are linearized, setting $f=f^{(0)}+\tilde{f}, E=\tilde{E}, B=B^{(0)}+\tilde{B}$ around the equilibrium state $f=f^{(0)}, E=0, B=B^{(0)}$. In this appendix, we use the normalization (26)(28). We assume periodic boundary conditions. The fluctuations of the total pressure tensor are neglected with respect to those of the magnetic field.
Using the conservation law $\frac{\partial n}{\partial t}+\frac{\partial j_{1}}{\partial x_{1}}=0$, the former hypothesis lead us to solve the system of six equations with six unknown $\tilde{j}_{1}, \tilde{j}_{2}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{B}_{3}$ and \tilde{n}

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{j}_{1}}{\partial t}+\tilde{E}_{1}+B^{(0)} \tilde{j}_{2}=0 \\
\frac{\partial \tilde{j}_{2}}{\partial t}+\tilde{E}_{2}-B^{(0)} \tilde{j}_{1}=0 \\
\frac{\partial \tilde{n}}{\partial t}+\partial_{x_{1}} \tilde{j}_{1}=0 \tag{73}\\
\frac{\partial \tilde{E}_{1}}{\partial x_{1}}=-\tilde{n} \\
\frac{\partial \tilde{E}_{2}}{\partial t}=-\frac{1}{\beta^{2}} \frac{\partial \tilde{B}_{3}}{\partial x_{1}}+\tilde{j}_{2} \\
\frac{\partial \tilde{B}_{3}}{\partial t}=-\frac{\partial \tilde{E}_{2}}{\partial x_{1}}
\end{array}\right.
$$

Applying time and space Fourier transform to this system, and identifying Fourier components $\left(\tilde{n}=\hat{n} \exp \left(-i \omega t+i k_{1} x_{1}\right)\right)$, the following system is obtain

$$
\left\{\begin{array}{l}
-i \omega \hat{j}_{1}+\hat{E}_{1}+B^{(0)} \hat{j}_{2}=0 \\
-i \omega \hat{j}_{2}+\hat{E}_{2}-B^{(0)} \hat{j}_{1}=0 \\
-i \omega \hat{n}+i k_{1} \hat{j}_{1}=0 \\
i k_{1} \hat{E}_{1}=-\hat{n} \\
-i \omega \hat{E}_{2}=-\frac{1}{\beta^{2}} i k_{1} \hat{B}_{3}+\hat{j}_{2} \\
-i \omega \hat{B}_{3}=-i k_{1} \hat{E}_{2}
\end{array}\right.
$$

The dispersion equation of this system reads

$$
\begin{equation*}
N^{2}=\frac{k_{1}^{2}}{\beta^{2} \omega^{2}}=1-\frac{\omega^{2}-1}{\omega^{2}\left(\omega^{2}-1-\left\|B^{(0)}\right\|^{2}\right)} \tag{74}
\end{equation*}
$$

In this equation, the plasma frequency is $\omega_{p e}=1$ and the cyclotron frequency is $\omega_{c}=q_{e}\left\|B^{(0)}\right\| / m$, that is $\left\|B^{0}\right\|$ in this dimensionless case. The perturbation term of the distribution function at initial time can be determined for a particular solution ω of this relation dispersion.
The Fourier transform is applied on the linearized Vlasov equation

$$
\begin{equation*}
\left(-i \omega+i k_{1} v_{1}\right) \hat{f}-\hat{E}_{1} \frac{\partial f^{(0)}}{\partial v_{1}}-\hat{E}_{2} \frac{\partial f^{(0)}}{\partial v_{2}}-B^{(0)} v_{2} \frac{\partial \hat{f}}{\partial v_{1}}+B^{(0)} v_{1} \frac{\partial \hat{f}}{\partial v_{2}}=0 \tag{75}
\end{equation*}
$$

This equation is expressed in cylindrical coordinates

$$
\left\{\begin{array}{l}
v_{1}=v_{\perp} \cos (\psi), \\
v_{2}=v_{\perp} \sin (\psi), \\
v_{3}=v_{\|}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
v_{\perp}=\left(\left\|v_{1}\right\|^{2}+\left\|v_{2}\right\|^{2}\right)^{1 / 2} \\
\tan (\psi)=\frac{v_{2}}{v_{1}}
\end{array}\right.
$$

Recalling that:

$$
\begin{aligned}
& \nabla_{\mathbf{v}} f=\frac{\partial f}{\partial v_{\perp}} \nabla_{\mathbf{v}} v_{\perp}+\frac{\partial f}{\partial \psi} \nabla_{\mathbf{v}} \psi+\frac{\partial f}{\partial v_{\|}} \nabla_{\mathbf{v}} v_{\|} \\
& \left\{\begin{array}{l}
\frac{\partial v_{\perp}}{\partial v_{1}}=\cos (\psi) \\
\frac{\partial v_{\perp}}{\partial v_{2}}=\sin (\psi) \\
\frac{\partial \psi}{\partial v_{1}}=-\frac{1}{v_{\perp}} \sin (\psi) \\
\frac{\partial \psi}{\partial v_{2}}=\frac{1}{v_{\perp}} \cos (\psi)
\end{array}\right.
\end{aligned}
$$

with $\nabla_{\mathbf{v}} v_{\perp}=\vec{e}_{\perp}, \nabla_{\mathbf{v}} v_{\psi}=\vec{e}_{\psi}$ and $\nabla_{\mathbf{v}} v_{\|}=\vec{e}_{\|}$, where \vec{e} are vectors in the local basis. Setting $f^{(0)}\left(\|\mathbf{v}\|^{2}\right)=(2 \pi)^{\frac{3}{2}} \exp \left(-\frac{\|\mathbf{v}\|^{2}}{2}\right)$, and writing

$$
(\mathbf{v} \wedge \mathbf{B}) \cdot \nabla_{\mathbf{v}} \hat{f}=\left(\nabla_{\mathbf{v}} \hat{f} \wedge \mathbf{v}\right) \cdot \mathbf{B}=-B^{(0)} \frac{\partial f}{\partial \psi}, \text { with } \mathbf{B}=\left(0,0, B^{(0)}\right)
$$

the kinetic equation (75) becomes

$$
\begin{equation*}
\left(-i \omega+i k_{1} v_{\perp} \cos (\psi)\right) \hat{f}+B^{(0)} \frac{\partial \hat{f}}{\partial \psi}+f^{(0)}\left(\|\mathbf{v}\|^{2}\right) v_{\perp}\left(\hat{E}_{1} \cos (\psi)+\hat{E}_{2} \sin (\psi)\right)=0 \tag{76}
\end{equation*}
$$

In order to solve this equation, we decompose the distribution function as a Fourier series

$$
\hat{f}=\sum_{n=-\infty}^{+\infty} \hat{f}_{n}\left(v_{\perp}\right) e^{i n \psi}
$$

Then from (76),

$$
\sum_{n=-\infty}^{+\infty}\left(-i \omega+i k_{1} v_{\perp} \cos (\psi)+i n B^{(0)}\right) \hat{f}_{n} e^{i n \psi}=-f^{(0)}\left(\|\mathbf{v}\|^{2}\right) v_{\perp}\left(\hat{E}_{1} \cos (\psi)+\hat{E}_{2} \sin (\psi)\right) .
$$

Multiplying this equation by $e^{i m \psi}$, integrating from 0 to 2π, we obtain

$$
\begin{align*}
& \sum_{n=-\infty}^{+\infty} \int_{0}^{2 \pi} e^{i m \psi}\left(-i \omega+i k_{1} v_{\perp} \cos (\psi)+i n B^{(0)}\right) \hat{f}_{n} e^{i n \psi} d \psi \\
& =-f^{(0)}\left(\|\mathbf{v}\|^{2}\right) v_{\perp} \int_{0}^{2 \pi} e^{i m \psi}\left(\hat{E}_{1} \cos (\psi)+\hat{E}_{2} \sin (\psi)\right) d \psi \tag{77}
\end{align*}
$$

For $m=0$, terms are different from zero only for $n=-1,0,1$. From (77) comes

$$
\begin{equation*}
k_{1} v_{\perp} \hat{f}_{-1}-2 \omega \hat{f}_{0}+k_{1} v_{\perp} \hat{f}_{1}=0 . \tag{78}
\end{equation*}
$$

For $m=-1$,

$$
\begin{equation*}
i k_{1} v_{\perp} \hat{f}_{0}-2 i\left(\omega-B^{(0)}\right) \hat{f}_{1}+i k_{1} v_{\perp} \hat{f}_{2}=-f_{0}\left(v^{2}\right) v_{\perp}\left(\hat{E}_{1}-i \hat{E}_{2}\right) . \tag{79}
\end{equation*}
$$

For $m=1$,

$$
\begin{equation*}
i k_{1} v_{\perp} \hat{f}_{-2}-2 i\left(\omega+B^{(0)}\right) \hat{f}_{-1}+i k_{1} v_{\perp} \hat{f}_{0}=-f^{(0)}\left(\|\mathbf{v}\|^{2}\right) v_{\perp}\left(\hat{E}_{1}+i \hat{E}_{2}\right) \tag{80}
\end{equation*}
$$

The case $m=-2$ involves \hat{f}_{3},

$$
\begin{equation*}
i k_{1} v_{\perp} \hat{f}_{1}-2\left(\omega-2 B^{(0)}\right) \hat{f}_{2}+i k_{1} v_{\perp} \hat{f}_{3}=0 \tag{81}
\end{equation*}
$$

In the same manner the case $m=2$ involves \hat{f}_{-3},

$$
\begin{equation*}
i k_{1} v_{\perp} \hat{f}_{-3}-2\left(\omega+2 B^{(0)}\right) \hat{f}_{-2}+i k_{1} v_{\perp} \hat{f}_{-1}=0 . \tag{82}
\end{equation*}
$$

In order to close the system, the components f_{-3} and f_{3} are neglected, and we deduce from (78-82),

$$
\left\{\begin{aligned}
-2\left(\omega+2 B^{(0)}\right) \hat{f}_{-2}+i k_{1} v_{\perp} \hat{f}_{-1} & =0 \\
i k v_{\perp} \hat{f}_{-2}-2 i\left(\omega+B^{(0)}\right) \hat{f}_{-1}+i k_{1} v_{\perp} \hat{f}_{0} & =-f^{(0)}\left(\|\mathbf{v}\|^{2}\right) v_{\perp}\left(\hat{E}_{1}+i \hat{E}_{2}\right) \\
k v_{\perp} \hat{f}_{-1}-2 \omega \hat{f}_{0}+k_{1} v_{\perp} \hat{f}_{1} & =0 \\
i k_{1} v_{\perp} \hat{f}_{0}-2 i\left(\omega-B^{(0)}\right) \hat{f}_{1}+i k_{1} v_{\perp} \hat{f}_{2} & =-f^{(0)}\left(\|\mathbf{v}\|^{2}\right) v_{\perp}\left(\hat{E}_{1}-i \hat{E}_{2}\right) \\
i k_{1} v_{\perp} \hat{f}_{1}-2\left(\omega-2 B^{(0)}\right) \hat{f}_{2} & =0
\end{aligned}\right.
$$

The solution of linearized Vlasov equation can be calculated

$$
\left\{\begin{aligned}
f(t, x, v) & =f^{(0)}\left(\|\mathbf{v}\|^{2}\right)+\sum_{n=-\infty}^{+\infty} \hat{f}_{n}\left(v_{\perp}\right) e^{-i \omega t+i k_{1} x_{1}+i n \psi}, \\
E_{1}(t, x) & =\hat{E}_{1} e^{-i \omega t+i k_{1} x_{1}}, \\
E_{2}(t, x) & =\hat{E}_{2} e^{-i \omega t+i k_{1} x_{1}}, \\
B(t, x) & =B^{(0)}+\hat{B}_{3} e^{-i \omega t+i k_{1} x_{1}} .
\end{aligned}\right.
$$

The dispersion relation (74) provides with a particular ω. Then we obtain the following results for the construction of the initial solution,

$$
f(0, x, v)=f^{(0)}\left(\|\mathbf{v}\|^{2}\right)+\sum_{n=-2}^{2} \hat{f}_{n}\left(v_{\perp}\right) e^{i k_{1} x+i n \psi}
$$

With the expressions

$$
\begin{aligned}
& \frac{\hat{f}_{-2}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}}=i\left(-4 \omega^{3} \hat{E}_{1}-4 i \omega^{3} \hat{E}_{2}+12 i \omega^{2} B^{(0)} \hat{E}_{2}+12 \omega^{2} B^{(0)} \hat{E}_{1}-8\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{1}\right. \\
& \left.+k_{1}^{2} v_{\perp}{ }^{2} \omega \hat{E}_{1}+3 i k_{1}^{2} v_{\perp}{ }^{2} \omega \hat{E}_{2}-8 i\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{2}-4 i k_{1}{ }^{2} v_{\perp}{ }^{2} B^{(0)} \hat{E}_{2}\right) v_{\perp}{ }^{2} k_{1}, \\
& \frac{\hat{f}_{-1}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}}=2 i v_{\perp}\left(\hat{E}_{1} k_{1}^{2} v_{\perp}{ }^{2} \omega^{2}+4 i B^{(0)} \omega^{3} \hat{E}_{2}-16\left\|B^{(0)}\right\|^{3} \omega \hat{E}_{1}-16 i\left\|B^{(0)}\right\|^{3} \omega \hat{E}_{2}\right. \\
& +3 i \hat{E}_{2} k_{1}^{2} v_{\perp}^{2} \omega^{2}-4 \hat{E}_{1} \omega^{4}-8 i \hat{E}_{2} k_{1}^{2} v_{\perp}^{2}\left\|B^{(0)}\right\|^{2}+2 k_{1}^{2} v_{\perp}^{2} B^{(0)} \omega \hat{E}_{1} \\
& +2 i k_{1}{ }^{2} v_{\perp}{ }^{2} B^{(0)} \omega \hat{E}_{2}+16 \hat{E}_{1}\left\|B^{(0)}\right\|^{2} \omega^{2}+16 i \hat{E}_{2}\left\|B^{(0)}\right\|^{2} \omega^{2}+4 B^{(0)} \omega^{3} \hat{E}_{1} \\
& \text { - } 4 i \hat{E}_{2} \omega^{4} \text {), } \\
& \frac{\hat{f}_{0}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}}=2 i v_{\perp}{ }^{2} k_{1}\left(16\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{1}+k_{1}{ }^{2} v_{\perp}{ }^{2} \omega \hat{E}_{1}-4 \omega^{3} \hat{E}_{1}+4 i \omega^{2} B^{(0)} \hat{E}_{2}\right. \\
& \left.-16 i\left\|B^{(0)}\right\|^{3} \hat{E}_{2}+2 i k_{1}{ }^{2} v_{\perp}{ }^{2} B^{(0)} \hat{E}_{2}\right), \\
& \frac{\hat{f}_{1}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}}=2 i\left(-2 B^{(0)}+\omega\right) v_{\perp}\left(-4 i k_{1}^{2} v_{\perp}{ }^{2} B^{(0)} \hat{E}_{2}+k_{1}{ }^{2} v_{\perp}{ }^{2} \omega \hat{E}_{1}-3 i k_{1}{ }^{2} v_{\perp}{ }^{2} \omega \hat{E}_{2}\right. \\
& -12 \omega^{2} B^{(0)} \hat{E}_{1}+12 i \omega^{2} B^{(0)} \hat{E}_{2}-4 \omega^{3} \hat{E}_{1}+4 i \omega^{3} \hat{E}_{2}-8\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{1} \\
& \left.+8 i\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{2}\right) \text {, } \\
& \frac{\hat{f}_{2}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}}=i k_{1} v_{\perp}{ }^{2}\left(-4 i k_{1}{ }^{2} v_{\perp}{ }^{2} B^{(0)} \hat{E}_{2}+k_{1}{ }^{2} v_{\perp}{ }^{2} \omega \hat{E}_{1}-3 i k_{1}^{2} v_{\perp}{ }^{2} \omega \hat{E}_{2}-12 \omega^{2} B^{(0)} \hat{E}_{1}\right. \\
& \left.+12 i \omega^{2} B^{(0)} \hat{E}_{2}-4 \omega^{3} \hat{E}_{1}+4 i \omega^{3} \hat{E}_{2}-8\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{1}+8 i\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{2}\right),
\end{aligned}
$$

where

$$
\hat{D}=\omega\left(64\left\|B^{(0)}\right\|^{4}-16 k_{1}^{2} v_{\perp}{ }^{2} \omega^{2}+16 \omega^{4}+16 k_{1}^{2} v_{\perp}{ }^{2}\left\|B^{(0)}\right\|^{2}+3 k_{1}{ }^{4} v_{\perp}{ }^{4}-80\left\|B^{(0)}\right\|^{2} \omega^{2}\right) .
$$

$k_{1} v_{\perp}$ being small with respect to $B^{(0)}$ and ω, for this particular application (v_{\perp} must be considered in the range where the equilibrium distribution function $f^{(0)}\left(\|\mathbf{v}\|^{2}\right)=(2 \pi)^{\frac{3}{2}} \exp \left(-\frac{\|\mathbf{v}\|^{2}}{2}\right)$ does not vanish. If $B^{(0)}=2, \omega \simeq 5$ and $k=2 \pi / 25$, then $\left.k v_{\perp} \ll B^{(0)}, \omega\right)$, the numerical powers of $k_{1} v_{\perp}$
can be neglected compared to these terms. The solution can be written

$$
\begin{aligned}
\frac{\hat{f}_{-2}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}} & =i v_{\perp}{ }^{2} k_{1}\left(-4 \omega^{3} \hat{E}_{1}-4 i \omega^{3} \hat{E}_{2}+12 i \omega^{2} B^{(0)} \hat{E}_{2}\right. \\
& \left.+12 \omega^{2} B^{(0)} \hat{E}_{1}-8\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{1}-8 i\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{2}\right), \\
\frac{\hat{f}_{-1}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}} & =2 i v_{\perp}\left(4 i B^{(0)} \omega^{3} \hat{E}_{2}-16\left\|B^{(0)}\right\|^{3} \omega \hat{E}_{1}-16 i\left\|B^{(0)}\right\|^{3} \omega \hat{E}_{2}-4 \hat{E}_{1} \omega^{4}\right. \\
& \left.+16 \hat{E}_{1}\left\|B^{(0)}\right\|^{2} \omega^{2}+16 i \hat{E}_{2}\left\|B^{(0)}\right\|^{2} \omega^{2}+4 B^{(0)} \omega^{3} \hat{E}_{1}-4 i \hat{E}_{2} \omega^{4}\right), \\
\frac{\hat{f}_{0}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}} & =2 i v_{\perp}{ }^{2} k_{1}\left(16\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{1}+k_{1}^{2} v_{\perp}{ }^{2} \omega \hat{E}_{1}-4 \omega^{3} \hat{E}_{1}+4 i \omega^{2} B^{(0)} \hat{E}_{2}\right. \\
& \left.-16 i\left\|B^{(0)}\right\|^{3} \hat{E}_{2}\right), \\
\frac{\hat{f}_{1}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}} & =2 i v_{\perp}\left(\omega-2 B^{(0)}\right)\left(-12 \omega^{2} B^{(0)} \hat{E}_{1}+12 i \omega^{2} B^{(0)} \hat{E}_{2}-4 \omega^{3} \hat{E}_{1}+4 i \omega^{3} \hat{E}_{2}\right. \\
\frac{\hat{f}_{2}}{f^{(0)}\left(\|\mathbf{v}\|^{2}\right) \hat{D}} & \left.=8\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{1}+8 i\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{2}\right), \\
& -8 \| k_{1} v_{\perp}^{2}\left(-12 \omega^{2} B^{(0)} \hat{E}_{1}+12 i \omega^{2} B^{(0)} \hat{E}_{1}+8 i\left\|B^{(0)}\right\|^{2} \omega \hat{E}_{2}\right),
\end{aligned}
$$

where

$$
\hat{D}=\omega\left(64\left\|B^{(0)}\right\|^{4}+16 \omega^{4}-80\left\|B^{(0)}\right\|^{2} \omega^{2}\right) .
$$

We choose to initialize the perturbation from the amplitude of the magnetic field:

$$
\hat{B}_{3}=A \text { where } A \in[0,1] .
$$

Then from the system (73) and the dispersion relation (74), we deduce the values of \hat{E}_{1}, \hat{E}_{2} and thus reconstruct the \hat{f}_{i},

$$
\hat{E}_{1}=\frac{-i \hat{B}_{3}\left(\omega^{4} \beta^{2}-\omega^{2} k_{1}^{2}-\omega^{2} \beta^{2}-\left\|B^{(0)}\right\|^{2} \omega^{2} \beta^{2}+\left\|B^{(0)}\right\|^{2} k_{1}^{2}\right)}{k_{1} \beta^{2} B^{(0)}}, \quad \hat{E}_{2}=\frac{\omega \hat{B}_{3}}{k_{1}} .
$$

[^0]: ${ }^{1}$ By collective effects, we denote here the self-consistent interaction of electromagnetic fields and particles. Some collective effects are also considered in the collision processes, which make two particles interact via the Coulomb field. The self-consistent electromagnetic field then screens the long range Coulomb potential and removes the singularity in the Fokker-Plank-Landau operator.

