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In this paper, we propose a finite volume discretization foitiimensional nonlinear drift-diffusion
system. Such a system arises in semi-conductors modelthgs @omposed of two parabolic equations
and an elliptic one. We prove that the numerical solutiorveages to a steady state when time goes to
infinity. Several numerical tests show the efficiency of thettmd.
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1. Introduction

In the modeling of semi-conductor devices, there existsesahthy of models ranging from the kinetic
transport equations to the drift-diffusion equations, €&%). In semi-conductor simulations, the drift-
diffusion system is the most widely used because it dispbmth computational efficiency and physical
consistency. This system consists of two continuity eguatior the electron density := N(t,x) and the
hole gensinP := P(t,x) and a Poisson equation for the electrostatic potewtiat V/ (t,x) fort € R™ and
x e R".

More precisely, letQ c RY (d > 1) be an open and bounded domain such tBas polygonal or
polyhedral and we sdf = dQ. ForT > 0, we denote byt = (0,T) x Q and/t = (0,T) x I". Then,
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setting all physical parameters equal to 1, the drift-diifun system for a bipolar semiconductor reads

50_':1 —div(Or(N) —NOV) =0, (t,X) € Qr,
% —div(Or(P) +POV) =0, (t,x) € Qr, “y
AV =N-P-C, (t,x)eQr,

whereC € L (Q) is the prescribed doping profile characterizing the devitweun consideration
IC(x)|<C, xe€Q. (1.2)

The usual considerations on which the isentropic hydrodyoanodel are based suggest a pressure of the

form
rs)=s% a>1

The linear case, wher@ = 1, corresponds to the isothermal model. In the general easayill assume
thatr € €1(R), r(0)=r'(0) =0, with r’(s) > cos" 2.
Equations (1.1) are supplemented with initial data at tirae0

N(0,x) = N°(x), P(0,x) = P°(x), xe Q, (1.3)
such that there exist two constants.0n < M satisfying
m < N°(x), PP(x) < M, xeQ. (1.4)

Moreover, we will consider Dirichlet-Neumann boundary ditions. Indeed, the physically motivated
boundary conditions are either Dirichlet boundary cowditionN, P,V or homogeneous Neumann bound-
ary conditions orN, P andV. This means that the boundalryis split into two partd” = lp Uy and, if
we denote by the outward normal té', that the boundary conditions read on the boundary

N(t,x) = N°(x), (t,x) € (0,T) x Ip,
{ P(t,x) = PP(x), (t,x) € (0,T)x Ip, (1.5)
V(t,x) = VP(x), (t.x) € (0,T)x b

and homogeneous Neumann boundary conditiongon
Or(N)-v=0r(P)-v=0OV-v=0o0nly. (1.6)
We assume that the Dirichlet boundary conditions satisfy
m < N°(x), P°(x) < M, xelp. (1.7)

On the one hand, the existence of solutions to the systenr(1L8) has been proven under natural
assumptions. In some situations, the uniqueness of sofuioalso obtained, see (3; 13; 15; 17; 20). On
the other hand, a lot of numerical algorithms for solvingdni&-diffusion system, in the stationary case as
well as in the transient case, have already been proposstdrtéd with 1-D finite difference methods and
the so-called Scharfetter-Gummel scheme (26). In thedipessure case(s) = ), finite element methods
(1; 8; 7; 9; 10; 16; 25), mixed exponential fitting finite elamenethods (4) have also been successfully
developed. The extension of the mixed exponential fittinjefialement methods to the case of nonlinear
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pressuresr(s) = s”) has been considered in (2; 18) and (21) where numericdtsese given in 1-D and
2-D respectively. The convergence of finite volume schemdisa nonlinear case has been established in
(6).

The large time behavior of the solutions to the nonlineatt-diffusion model (1.1)-(1.6) has been
studied in(19). It is proven that the solution to the trans®ystem converges to a solution to the thermal
equilibrium state a$ — o if the boundary conditions (1.5) are in thermal equilibriurfihe stationary
drift-diffusion system reads

—div(Or(N) = NOV) = 0, xe Q,
—div(Or(P) + POV) =0, x€Q, (1.8)
AV =N-P-C, xeQ,

with the boundary conditions (1.5)-(1.6). The thermal &qrium is a steady-state for which electron and
hole currents[{r(N) — NOV andOr (P) + POV) vanish. The existence of a thermal equilibrium has been
provenin (24). Let us introduce the enthalpy functiodefined by

h(s):/lsr/(—r)dr (1.9)

T

and the generalized invergef h, defined by

[ hYs) if h(0*) < s< o,
9(s) = { 0 if s < h(0"),

where we have implicitly assumed thati-«) = «. If the boundary conditions satisfy®, P® > 0 and
h(NP) —VP = ay and h(PP) 4+ VP = ap on/p,
the thermal equilibrium is defined by
N(xX) = glan+V (X)), P(x) = glap—V(X)), x€Q, (1.10)
wheread/ satisfies the following semi-linear elliptic problem

AV =g(an+V)—g(ap—V)—C, in Q,
(1.11)
V(x) = VP(x)onp, OV-v =0only.

In this paper we are concerned by the theoretical study ofalge time behavior of the numerical
solution given by a finite volume scheme for the transierft-diffusion model (1.1)-(1.6) . This work is
motivated by a very practical question. Indeed, in numégaalysis the numerical solution is classically
proven to converge to the exact solution of the continuoudehon a fixed time interval when the mesh
size goes to zero. However, in engineering the numericaitisol is often computed on a fixed mesh
where the final time is increasing and goes to infinity. Thassuch a situation, it becomes crucial to
study the stability and consistency of the numerical sotuth the long time asymptotic limit. Moreover
in engineering numerical solutions are often performednd Btationary solution, then the question of
consistency of the computed solution with respect to thetexae is usually not known.
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This article is the first step of a research program in nurakdoalysis on the long time asymptotic
behavior of discrete solutions (spectral methods for Boedtmn’s equation, finite volume for 2-D Navier-
Stokes equations, etc). Here, we focus on a drift-diffusmmudel for semi-conductors when the thermal
equilibrium holds at the boundary.

We first study the stationary case and propose a finite volwimense for the steady state problem. On
the one hand, we prove existence and uniqueness of a nuhsadfiggon. On the other hand, we establish
a priori estimates which will lead to the convergence of the numksichtion to the exact solution of
the steady state problem. The second part is devoted to thatien problem (1.1)-(1.6). We construct a
new finite volume scheme and rigorously prove that the nuraksolution converges to the solution of the
discrete steady state problem given in the first part. Thefgsdbased on the control of the discrete energy
dissipation.

2. Numerical scheme and main results

In this section, we present the finite volume schemes forhtbamal equilibrium (1.11), with (1.10), and
for the time evolution drift-diffusion system (1.1)-(1.6)hen we give the main results of the paper.

We first define the space discretizationdf An admissible mesh d® is given by a family7 of control
volumes (open and convex polygons in 2-D, polyhedra in 3abamily & of edges in 2-D (faces in 3-D)
and a family of pointgxx )k # Which satisfy Definition 5.1 in (12). It implies that the dght line between
two neighboring centers of cellsk,x_) is orthogonal to the edge = K|L. In the set of edge#’, we
distinguish the interior edges € & and the boundary edgese &ex. Because of the Dirichlet-Neumann
boundary conditions, we sphf into ext = &5 U & where&D, is the set of Dirichlet boundary edges
andé&l, is the set of Neumann boundary edges. For a control vokirge7, we denote byk the set of
its edgeséint k the set of its interior edgeﬁe'?(tK the set of edges df included in/p and&); « the set of
edges oK included inly.

In the sequel, we denote by d the distanc&®fh m the measure iiRY or R9-1. We assume that the
family of mesh considered satisfies the following regwecitnstraint there exists > 0 such that

dxk,0) > &d(xk,x.), forKe .7, foro € &k, 0 =K]|L. (2.1)

The size of the mesh is defined by
0 = max(diam(K)). (2.2)
KeT

For all o € &, we define the transmissibility coefficient:

M, for o € &nt, 0 =KL,
d(XK,XL)
Y7 mo
m(o
f SextK -
d(XK’O')’ oro c extK

Then, we set
G(x,V) =glan+V) —glap—V) — C(X).

The scheme corresponding to the equation (1.11) on the fltérreads

Zg ToDVk.o = M(K) Gk (), Ke .7, (2.3)

€oK
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where thgDVk ¢)gecs are defined by

VL — VW, ifO’E(o@int, O'=K|L,

DVko =< Vo—Vk if 0€&, (2.4)
0 if o€ &Nk
with 1
Vo = W/aVD(X) dx  oe &L, (2.5)
and 1
Gk (V) = W/I(G(X,V)dx, Ke 7. (2.6)

Then, we define an approximate solutMnassociated to the discretization (we recall tha® is the size
of the discretization), which is a piecewise constant fiamct

Vs5(x) = Wk xeK. (2.7)

The scheme leads to a system of nonlinear algebraic eqaatiorthe next section, we will establish
existence and unigueness of a solution to the scheme @2.3B)dnd a priori estimates giving some com-
pactness and allowing to pass to the limit on the sequencppbaimate solution$Vy)s-o towards the
solutionV € HY(Q) NL*(Q) of (1.11) coupled with boundary conditions (1.5)-(1.6). eTtesult is the
following:

THEOREM 2.1 Assume that the boundary conditions satisfy (1.7) with 0 and the thermal equilibrium
onlp
h(NP) —VP = ay, and h(PP) +VP = ap,

where the enthalply is given by (1.9).
The scheme (2.3)-(2.6) admits an unique solution, whidbfged the followind-* estimate and discrete
H? estimate : there exists a const&nt> 0, only depending o'® andg, such that for alK € .7

V| < ¢ VK € 7

2
Skez Yoek To|DVk ol < €.

We may now define the finite volume approximation of the dtiffusion system (1.1)-(1.6) in the case
of mixed Dirichlet-Neumann boundary conditions. The schésmalmost the same as the one proposed in
(5) except that the diffusion is approximated in a differenay.

Let (7,&, (X )kez) be an admissible space discretizatiofdand let us define the time sty and
Mt = E(T/At) in order to get a space-time discretization®f. First of all, the initial and boundary
conditions and the doping profile are approximated by thejsrojections on control volumes or on edges:

1 1 1
o_ - 0 0:— 0 - -
NG — m(K)/KN - m(K)/KP’ Cx m(K)/Kc, Ke 7, 2.8)

1 1 1
Ny = —— [ NP, P:—/PD,V:—/VD, &0 2.9
d m(a)/g 7= M) Jo 7T mio) Jy' T (2.9)
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Forn € N, we construct the approximate potentél from the densityN",P") and then we update the
density(N"*1, P"1) at jteratiom+ 1. On the one hand, for the potentél we use a classical finite volume
scheme

Z oDV g = m(K) (N —P{ —Cx), Ke.Z, (2.10)

oeék

whereDVY ; are defined analogously to (2.4). On the other hand, for therse onN"™1 and P™+1,
we choose a fully implicit discretization, with a standaivinding for the convective fluxes and a new
nonlinear approximation for the diffusive fluxes. Then toheme foN™?! andP™ is given forK € .7
by

Ng+— Ng
m(K) — (2.11)
- > T [min(Ng™, NP1 Dh(N™ )k 6 — (DWR 6) TNET — (DWE 5) N1
i
— To [Min(NgHE,Ng) Dh(N™ )k o — (DVR ) "N — (DV 5) "No] =0,
Ge(oexLK
Pt — Py
KX K 2.12
m(K) At (2.12)
_ Z Tg [min(PE-&-l n+1)Dh(Pn+1)Ko’+(DVK U) Pn+1 (DVIQG) Pn+1}
Py
- To [min(RY™:, Py) Dh(P™ ™)k o + (DVR 5) "Ps + (D o) " PE™] =0,
aegextK
whereDh(P)k ¢ is defined by
h(R) —h(P), if o€ &n, o=K|L,
Dh(P)koc = { h(Po)—h(R) if o€ & (2.13)

0 if o€k

andu®™ = max{u,0} andu~ = min{u,0}.
Then, the approximate solutidiNs, Ps,V;) to the problem (1.1)-(1.6) associated to the discretinatio
2 is defined as piecewise constant function by

Na(t,X) = NIQ+17 P5(t,X) Pn+17 V5(t7X) :VIEH_l (t,X) € [Tnvtn+1) X K7

where{(Ng¢,P¢, V), K € .7, 0< n< Mr + 1} is the solution to the scheme (2.10)-(2.12). We may now
state our main result.

THEOREM 2.2 We assume that there is no doping profie0), that the initial and boundary conditions
satisfy (1.4) and (1.7) with & m < M and that the following condition on the time step is fulfilled

2
AtD < 1, whereD:= MF (2.14)
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Then, the solutioriNs, Ps,Vs) given by the finite volume scheme (2.8)-(2.12) satisfies fmh& €

(NG,RY) —  (Nk,Px) when n— oo,
W — Vk when n— o,

where(Nk, P, Vk ) is an approximation to the solution of the steady state émuét.10)-(1.11) given by
(2.3)-(2.4).

3. Drift diffusion system at thermal equilibrium

In this section, we study the numerical solution corresjogdio the steady state (1.8) with boundary
conditions (1.5), (1.6) in the thermal equilibrium case vehne steady state rewrites (1.10)-(1.11).

3.1 A semi-linear elliptic problem

The aim of this section is to prove the convergence of a finileime scheme for a semi-linear elliptic
problem like (1.11). More precisely, we are interested whpems of the form:

AV = G(x,V), xeQ,
(3.1)
V =VPonlp, OV-v=0only.
The assumptions are the following:
G(x,V) is monotonically increasing with respect\dor all x € Q. (3.2)
There exist function&; (V) andG;(V) monotically increasing such that
G1(V) < G(x,V) < Gy(V) forall x e Q. (3.3)
Moreover,
there exisl; andV; satisfyingGy (V1) = 0 andGy(V,) = 0. (3.4)
Finally, the functio’VP can be extended in the whole dom&nand satisfies
vP e H1(Q). (3.5)

Under such assumptions, the problem (3.1) admits a uniqug@oV € HX(Q)NL®(Q). The proof of
this result can be found in (22). For the thermal equilibriiini1), the assumptions (3.2), (3.3) are clearly
satisfied. Indeed,

G(xV) = glan+V) —g(ap—V) — C(x)

is monotonically increasing with respect\o The function<s; andG; are the following
Gi(V)=g(an+V) —g(ap—V) = C, Gz(V)=g(an+V) —g(ap—V) —C,
whereC = infyc o C(x), C = supco C(x) and since li—._ g(V) = 0 and limy_. ;. g(V) = +c0, we have

M Gu(V) = e, lim Gp(V) = +oo

therefore from the continuity d& we show that there exist andV, such thaG; (Vi) = Gz(V2) = 0 and
(3.4) is satisfied.
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3.2 Existence and unigueness
First we prove that ifVk, V) is solution to the scheme (2.3)-(2.6) exists, it satisfies"aestimate.
LEMMA 3.1 We assume that (3.2), (3.3), (3.4) and (3.5) are satidfietdlis set

V = max{Vy,supv®}, V = min{Vz,iIrJfVD}. (3.6)
) D

If the scheme (2.3)-(2.6) admits a solution, then it sagste followingL™ estimate :

V<V <V, KeZ. (3.7)

Proof. The definition (3.6), combined with the monotonicity®f andG, and with (3.3) lead to
GiV) = Gi(V1) =0 and Gy(V) < Gy(Vo) = 0.

Then, we defin&/y =V for K € 7 andV, = V for o € £2,, andW by

V~\/— VVKZVK—VK, fOI‘KEy,
- Wo' = VU_VU7 fOI‘ o c @@e?(t

From the definitions 061, (3.3) andV, it follows that fork € .7
% TodVi o — M(K)Gk(Vk) < 0—m(K)G1(Vk) < —m(K)Gy(V4) =0
gEb6K
and using tha¥ is a solution to (2.3)-(2.6), it yields for adll € .7
Y TodWio > m(K) (Gk (V) — Gk (Vi) (3.8)

g8k

On the one hand, using the definition\6{3.6), we know thatV, < 0 for all o € &5,
On the other hand, we denote Wk, = }r(nar/xWK and assume that
&3

WKQ = VK0 —\7K0 > 0.

Then, writing (3.8) foK = Kg and using thaGk (V) is nondecreasing with respect\gthe right hand side
is positive whereas the left hand side is negative. Theeefue have shown that for &l € .7, W <0,
hence the upper bound B

W <V, VKeZ.

The lower bound is obtained by the same way. O
The result of existence and uniqueness of a solution to theerigal scheme (2.3)-(2.6) is a consequence
of theL*-estimate (3.7) and comes from an application of Leray-8dbafixed point theorem.

ProOPOSITION3.1 We assume that (3.2), (3.3), (3.4) and (3.5) are satisfibdn, the numerical scheme
(2.3)-(2.6) admits a unique solutidh= (Vk ke~ Which satisfies th&*-estimate (3.7).

Proof. We start by uniqueness and consider two solutidAsandU? to (2.3)-(2.6). Multiplying by
UE —UZ and summing oveK € .7, it follows

23 PO U] 5 miK) [Ge(Ud) - Ge(UR)] [k - Ul =0
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SinceG(x,V) is increasing with respect ¥
1 2 112 .
[Gk (Ug) —Gk(Ug)] [Uk—Ug] >0, VK e T;

we conclude that
7o [DU-U?)c )’ <0
Ke7 oeék
and sincgU! —U?); =0, foro € &5, thenu! =U?2,
For the existence proof, we introduce the applicaion (V,A) — W whereW is the solution to the
linear system
z ToDWk ¢ = Am(K)Gk (W), VKe.Z,
g8k
with

Wgzi/)\VD(X)dy.
g

m(0)
The operatofT is a linear mapping froniR® x [0,1] — RY , where@ is the number of control volumes,
continuous and compact. Furthermore, it satisfies :
e T(V,0)=0,
e forall (V,A) e R® x [0,1] such thafl (V,A) =V, we have V< Vi < V.

Thanks to the Leray-Schauder fixed point theorem, it folltwed T; : V — T(V, 1) admits a unique fixed

point, which concludes the proof of Proposition 3.1. O
From theL® bound, we can now establish a discreté estimate giving strong compactness on the

approximation. Assume thﬁmg)aeégt is given on the boundary®. Foru= (uk)ke7, we define the.2-

norm and thed1-seminorm as follows:

2 2
Julse = > mMK)|uk|
Ke7
ufe = Z Toluc—ul®+ Y Z} To Uk — Ug %
giK”l]IE KeT ggé”exLK

We recall the discrete Poincaré inequality:

LEMMA 3.2 LetQ be an open convex bounded polygonal or polyhedral subget ¢l = 2 or 3). Then,
there exist€q, € R, only depending o2 such that, for all admissible mesh@fsatisfying the regularity
assumption (2.1), for allug )ke o a”d(ua)aeggt satisfyingus = 0 for all o € &5, we have

CoVd
ulloo < Q—\/E|U|1,Q

Proof. We perform a similar proof as in (14). Lel be an admissible mesh and denoteX{y?) the
set of functions from2 to R which are constant over each control voluke .7 and which are zero on
the set of edges C 'p. We considew € X(.7) and since the functiomis piecewise constant and has a
finite number of jumps (which corresponds to the number oksligve get that € BV(Q). Moreover in

(3.9)
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dimensiond, the space oBV functions which are zero on the bounddtyis continuously embedded in
d
La-1(Q) (11, Theorem 3.5). Then, there exists a constant> 0, depending only o®, such that

| Meolaidx < Co [BYQ(v]T,
where
BVo (V) :sup{/ﬂv(x) div(x)dx, ¢ €C2(Q), |p(x)| <1, vXeQ}.

Applying this latter result to our functione X(.7), we get
d-1

d d
< > m(K)|VK|ﬁ> < CaBVo(v)
KeT
and sincer is piecewise constant, for afl € C5(Q)

/Qv(x) divg (x)dx = Kg?vK/divqb(x)dx

K
Thus, applying the Green formula to the smooth and compauapyorted functio
/v(x) divg (x)dx = z VK Z /tp(y)-vK,gdy,
Q KET  0€6mx”’9

wherevk ¢ is the unit normal to the edge, oriented outwardK. Next, we perform a discrete integration
by part

yvoodvggax =5 e—w) [ () wody
Q O€éint s g
o=K]L
< Y m(o)[vk — Vi[9 ]]e,
0€éint
o=K]L
< m(o)|vk —WL|.
0€éint»
o=K|L
Hence, we get
L\
<Z m(K)IvK|ﬁ> < Co Z m(o)[vik — V|-
KeT o<éint,
o=K|L
2(d-1)
Now, we takev = |u|~ @ and use that
2(d-1) 2(d-1) 2(d—1) d-2 d-2
D M e e (M M T
Integrating by parts and applying the Cauchy-Schwarz iakyit yields, thanks to (2.1),
% d-2
<Z m(K)|UK|2> < Co ) Z m(o)[uk| @ |uk —uL|
Ke7 Ke.T o€éint k
o=K]L

2(d-2)

1/2
Cao
< —=|u|p m(o)d(xx,o)|ug|™ T .
\/?Hl'g <KZ%;§K (0)d(Xk, o) uk | )
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Sincey geg M(0) d(xk,0) = dm(K), this gives

a7t 1/2
d1

CoVd 2(d-2)
m(K)|UK|2> < ul1.0 < m(K)|UK|_"_> :

<Kg9 VE Kg?
Finally using the Holder inequality, we get
‘g Ja %
C_Q d 2
m(K)|UK|2> < ——=|uie < m(K)|uk| )
<Kg? VE ' Kg7

and then (3.9). O
The next lemma provides drf estimate and ahl! estimate on the numerical solution to the scheme

(2.3)-(2.6).

LEMMA 3.3 We assume that (3.2), (3.3) , (3.4) and (3.5) are satisfibdn, there existg > 0 such that
the solution(Vk )ke 7, (VC,)UE(O@E:;I to the scheme (2.3)-(2.6) satisfies

> MM+ 5 oMk -VPE S S To M- Vol® < 6 (3.10)
KeZ Ueﬁﬂt KE{yGE'eXLK
o= J

Proof. AsVP € HY(Q), we can defingVi?)ke 7 and(Vg) oc on by

1
VP = —/VDxd forK € 7,
K m(K) Jk (9 dx

1
D _ D D
Vy = —m(o)/gv (x)dx, for g € &gy

Multiplying the scheme byVk —V;?] and summing oveK € .7, we get:

=5 Y Dok —WR] = — 5 m(K)Gk (Vi) [Vik — . (3.11)
KeT ageék KeT

On the one hand, we have the following lower bound for theHaftd side:

_K;?G;k ToDVio Mk =Vl = U;m To ik =V ([Vk = W] — [Vi§ —VP)) +

o=K]L

Z:) To [Vk — Vo] ([Vk — Vo] — V¢ —Vg))
Kefgggexm

1 1
> SMVEo - 5V°Ee (3.12)

On the other hand, applying successivelyltffeestimate (3.7) and Young inequality wi¢h> 0 on the right
hand side of (3.11), there exists a consfént 0 such that

Im(K) Gk (Vk) [Vk —VR]| < ¢ (@ + em(K) [k _VKD]2> .
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Therefore, summing ovét € .7 and applying the discrete Poincaré inequality (3.9), we ge

m(Q
5 mi) v VEl < (T el Vol
KeT

Q
< v (y + e|v_vD|§Q> ,
m(Q
< ¢ (% +2e(|V[iq + |vD|§Q)> (3.13)
It remains to choose small enough to deduce (3.10) from (3.12) and (3.13). O

4. Asymptotic behavior of the time dependent approximate dation
4.1 Classical a priori estimates

We do not detail here the proof of the convergence of the sel{@r8)-(2.12) when space and time steps go
to 0. Indeed, this scheme is very close to the scheme studi@&):ithe only difference is the discretization
of the diffusive fluxes. Therefore the proof of the conveiggeof the scheme towards a weak solution of
the problem (1.1)-(1.6) is similar to the proof done in(5¢t us recall the required hypotheses:

(H1) NO PO ¢ L°(Q), NP, PP € L?2(Q7)NH(Q7) andVP € L*(R*;H(Q));
(H2) there exist two constants andM such that

0<m<N°.P°<M, inQ, andm<NP P°P<M, inQr;

(H3) re CZ(IR{) is strictly increasing ofi0, +);
(H4) C e L*(Q7) with C = ||C||«.

The result is the following. We insist on thepriori estimates which will be used in the proof of
Theorem 2.2.

THEOREM 4.1 Let(H1) — (H4) hold and.7 be an admissible mesh @2. Assume that the following
stability condition is fulfilled

AtDt < 1, whereDt :=Mexp(CT)+C. (4.1)

Then, there exists a unique approximate solutig Ps,Vs) to the scheme (2.8)-(2.12), which satisfies for
alK € 7 andalln=0,1,...,Mr,

mexp—CT) < Ng, P < MexpCT).
In particular, ifC = 0, the maximum principle holds fots andPs, i.e.;
m< Ng, P <M, V(nK)eNxJ. (4.2)

and
IV = V8o + V2o < 4m(Q)2M2, Vne N. (4.3)

Moreover, the approximate solutidiNg, Ps,Vs) converges tdN,P,V) as space and time steps go to O,
where(N,PV) is a weak solution to (1.1)-(1.6).
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4.2 Preliminary results

As in the continuous case, see (19), the study of the largetiehavior of the scheme (2.8)-(2.12) is based
on an energy estimate with the control of the energy dissipat

First, let us recall some notations. We denotgNy, P, Vk) the solution to the discrete thermal equi-
librium. This means thalv) is the solution to (2.3)-(2.7) and

Nk =g(an+Vk), andP = g(ap —Vk),

which is equivalent to
h(NK)—VK = On, h(Fk)—I—VK = dp.

The solution to the time-dependent scheme (2.8)-(2.13motkd(Ng , P?, V).
For the sequel, we need to define

H(s)zflsh(r)dr, 0<s

(with the conventiom(0) = h(0™)). Then we can introduce the discrete version of the deviatidhe total
energy (sum of the internal energies for the electron anel thehsities and the energy due to the electrostatic
potential) from the thermal equilibrium, see (19): foe 0,

" = zym(K) [H(NR) = H(Nk) = h(Nk) (N = Ni)]
Ke.J
+ Kzgmaq [H(PR) — H(Pk) — h(Rc) (P — A)]
£V VR

AsH is a convex function, we hav@" > 0 forn > 0. We also introduce the energy dissipatigiiN™, P"+1 vn):

n+1 pn+ly\/n . : n+1 pn+1 n+1 n 2
FNVEPILVY 5 o min(Ng LN )[D(h(N Y, )K‘o}
0SSint :

o=K|L

+ z ; 7o min(NR2, Ng) [D (h(NnH)_Vn)K ar
KE<70'E'exLK ’

2
+ To min(RYH P [D (h(PnH) +VT 0}
o |

2
+ 3 ; T min(PYL, Py) {D (h(P™ ) +VM) a]
KE.T o€bextk ’

The proof of Theorem 2.2 relies on the control of energy aretgndissipation given by the following
Proposition.

ProPOSITION4.2 Let(H1)— (H4) hold and.7 be an admissible mesh &f. Then, forn > 1,

MZ
e 4 (1— Wm) At 7 (NML pHL vy < gn, (4.4)
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The proof of Proposition 4.2 will be given later. First, wega result to estimate the energy due to the
elecrostatic potential.

LEMMA 4.1 Let(H1) — (H4) hold and.7 be an admissible mesh &f. Then, forn > 0,

1 1
EIV"“—VIiQ _ EIV"—VIiQ < -3 mK) (NZFL— NP — P2 4+ PR) V2 — ]

Keo
MZ
+ — At?2 7 (NML Pl vy, (4.5)
m
and
1 n+1 n M2 2 n+1 pn+1 y/n
é|v ~V"10 < At (N ptl iy, (4.6)

Proof. Substituting the discrete Poisson equation (2.10) at timeandt", we easily obtain foK € .7
T o [DVEL DV o] = m(K) (N2~ NR — RE* L+ RR). 4.7)
oeék

Next, we multiply the latter equality by [V —Vk] and sum oveK € 7. Performing a discrete integration
by part, we classically have

g To (VM= Ve = M= W]) [DIV" = V) o]

o=K|L
+ > To (Vo =V ™ = Vo = W) D(V" = V) o]
KE,7gegean
< = 3 m(K) (NE - NZ — B R MR- V.
KeJ

Thus, using the following equality

a> b 1 )
[a—b]b—E—E—E[a—b] ;

we takea=D(V™! —V)k 5,b=D(V"—V)k ¢ and seW = V"1 V" which give the following inequality

1 1
5 (VPH-VE g VM-V o) - ZWE g

< = 5 mK) (NP =NR =R +RR) V@ —Widl. (4.8)
Ke7
Now, the main step consists in the control of the residuahti¥|2 ,. To this aim, we start again from
(4.7), multiply it by —Wk and sum oveK € 7. We get '

WiEg =~ 5 m(K) (NS =N =B 4+ R Wk < At [li+ 12+ 13+ 1d],

KeT
wherelq, a € {1,..,4} are obtained using the finite volume scheme (2.11), (2.12y%6* andP"*. More
precisely,

=3 To [min(NZ™ N DRN™ )k 5 — (DVE 4) " NET — (DVE o) " NIE| DV o

gEdint
o=K|L
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=Y ZD T |min(Ng™, Ng) Dh(N™ )k 5 — (DVR 5) "NE™ — (DW 5) "No | [DWk o]

Kes ae(’g}exLK

I3 = Z T [min(PE, P DR(P™ )k o + (DV o) PRI+ (DVR o) PR [DWk o
o€t

o=K|L

=Y To |min(PE™, Py) Dh(P™ )k & + (DWR 5) TP + (DV 5) PR | [DWk o -

Kes GegexLK

On the one hand, using thiais a nondecreasing function the following estimate holdd\fo= N,[‘*l and
Ng

|min(Ng™,N) Dh(N" )k 5 — (DVR ) "Ng™ = (DV 5) " N|

< max(NIHL,N) ‘d (h(N™1) —v™), G‘ .

Then, we easily check that

b Y T max(NZ+L N ‘D (h(N™1) —vm) U‘ IDWk o]
0C4int '

o=K|L

and

<y 3 rgmax(N,QH,Ng)‘D(h(N”*l)—V”)K’U‘ IDWk o],

KeT ggé”exLK

On the other hand, performing the same kind of computatienalso get

s < Y o max(PEL R D (NP + V), | DV ]
OESint ’
o=K|L

and
h< 3y T max(PL,Po) D (M(P™4) +-V7), | Do

Kes GegexLK

Then, applying the Cauchy-Schwarz inequality to the lattequalities, it yields

2M?2

WEo < = — A2/ (NTLPYLV),

and gathering the latter result with (4.8), it finally yields

1 1
§|v”+1—V|iQ B §|Vn_v|ig < = Y m(K) (NF—NE - R BR) V2 — V]
KeZ

M2
_’_F Atz j(Nn-s-l’ Pn+1’Vn)'

which concludes the proof of Lemma 4.1. O
Next, we prove another entropy type inequality for the twogdigesN andP, which will be useful later.
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LEMMA 4.2 Let(H1) — (H4) hold and.7 be an admissible mesh &f. Then, forn > 0,

S mK) (NG =NR) [h(NE™) =W — an]

Ke7
< -4t Y 1o min(NEFL NP [D(R(N™L) — V) 4]°
pr
6ty T, Min(NZ™2, Ng) [D(R(N™1) =V 4]°. (4.9)
KeT geé,

extK

and

S m(K) (RE—RR) [h(PE™) + ¢ — ar]
Keo
< MY o min(PYL R D(hP™Y) £V 4]

OEoint
o=K|L

—ar 'y Zo 7o min(PYH Py) [D(h(Pn+1)+Vn)K70]2~

KET oed extK

Proof. First, we multiply the scheme (2.11) it [h(Ng™) — V{2 — an] and sum oveK € 7. Then, we
obtain

T1+T2+T3:07
with
To= 3 mK) (NE - NR) [RONEY) VR an]
KeT
L= Ay S [Min(Ng™, NP4 DR(N™ )i o] [M(NRTY) =V — an]
Ke7 UEETL
At 3 S To[min(NE No) DA™ o] [N(NG™) VR — ],
KE?UE@%@,K
o= 44ty 3 10 [(DWRe) N+ (OW o) NI (NG = WR — an]
Keo Ueil\(L
o

+Aat Yy Z} To [(DWR o) "N+ (DVE 5) "No] [N(NEH) —Vi¢ — an] -

Kes GegextK

Now, we perform a discrete integration by part (using thermsgtny of 7,) and estimate the terif»

T, = +At To min(NgT 2, NI Dh(N™ )k o [D(h(N™1) = VM) 6]
gESnt
o=K|L

+Aat Y Z: o min(NZ™, Ng) Dh(N™ )i 5 [D(h(N™1) —V")k o]

Ke7 ae(’g}exLK
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and next the termis

T3 = —At To [(DVR 6) TN — (DV 5) "N [D(h(N™) —V")k o]
b
-aty To [(DVK o) "NE™ — (DVR ) "N [D(h(N™) — VM) 4] .
KE<7o'eg ’ '

extK

Then, we introduce the teriy

T3 = —At Y 1omin(NGH N DV 5 [D(hN™) =V o]
0€éint
o=K|L

A Z) To min(Ng™™,Ng) DV 5 [D(h(N™1) —=VM)k 6]

Ke7 ggé”exLK

and want to prove thalz > T3

Let us estimate the differendg — T3. On the one hand, using that the functtois nondecreasing, we
show that foN = N, Ng

(DVR )" [N(NFY) —h(N)] [Ng™t —min(NgtEN)] > 0
and forN = N1, Ng
(DVR o)~ [N(NE™) —h(N)] [N —min(Ng™,N)] > o.
On the other hand, using the propertyuof> u*, we have folN = NEH, Ng
(DVR6)* DV g [Nk —min(Ng™,N)] > 0

and forN = N1, Ng

(DVK o)~ DV 5 [N—min(Ng™,N)] > o.

Thus, from these classical inequalities we easily conclhdel; — T3 > 0.
Finally, it follows that

T < —-Th— Tgf.
More precisely, we have

m(K) (Ng™ = NR) [h(Ng™) —Vi2 — an]

Ke7
< At S Tomin(NETLNPHY) [D(RN™L) V) o)
0€dint
o=K]L

-Aaty ZD 7o min(Ng ™, Ng) [D(h(N”+1)—Vn)K,a]2-

Ke7 ggé”exLK
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Using the scheme (2.12), we also prove in the same way that

S m(K) (RE—RR) [h(RE™) + WX — ap]
Ke7

< —At T min(PFTL, P [D(h(PnHH-Vn)K,U]Z
0Cdint

o=K]L

_ At Z) T min(RYTL, Py) [D(h(P™ ) + V™ o],
KeT ge&

extK

]
Now, we give the proof of Proposition 4.Proof. We introduce the nonnegative and convex functions
(o]} and ®,

P1(X) :

H(X) — H(NK) —h(NK) [X — NK]
and

Po(x) 1= H(x) — H(P) —h(F) [x — F]
such that

®1(x) = h(x) — h(Nk), @5(x) =h(x) —h(Pk), and @7 (x) = @3 (x) =h'(x) >0
Therefore, using the convexity #f, it yields

Kgym(K) [@1(Ng) — @1 (NR)]

2 M) HINE) = HONG) = h(Ne) (N = ND)]
< m(K) (Ng™ —NR) [h(Ng™™) —h(Nk)] (4.10)
_ KE7

szm(K) [@2(REH) — @a(RR)]

Ke7

< Y m(K) (R -RR) [h(RT) —h(Pq)] . (4.11)
Now, we apply the result of Lemma 4.ile,

1 1
> VP Vi, — > V" —V[fq

N

KZ;H(K) [[NET—NR] — [P — BR]] Vi — W]

M2
+ W At2 f(NnJrl’ Pn+17vn).

Adding the two latter inequalities and using théhk ) — Vk = an andh(Px) +Vk = ap, it yields

EM—e" <Y mK) (NGTE=NR) [N =V — o] -
Ke7

Ke7
MZ
+ sz F (N pFL vy,

+ 3 m(K) (REH—RR) [h(RE™) + VR — ap]
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Finally a straighforward application of Lemma 4.2 gives aper bound of the right hand side
MZ
EMI_g" < At (1 — Fm) F(NML pL vy,

Thus, under a smallness condition on the time #teg: m/M? the total energy is decreasing with respect
ton. g

4.3 Proof of Theorem 2.2

Now we are ready to achieve the proof of Theorem 2.2. On thehamel, from the convexity of the
functionalH, we show that™"t1 is nonnegative and then applying Proposition 4.2, it yields

M2 n
0< &M 4 (1 — FAt) Z}Atﬂ(Nk”,Pk“,Vk) < &°.
K=

Thus, the serie§ ,cy # (N1, P v is bounded and” (N1 P"1 V) is nonnegative, which means
that

F (N Pl vy o, as n— oo, (4.12)

and since on the boundafis, we haven(NJ 1) — V2 = h(Ng) — Vo = ay andh(PI 1)+ = h(Py) + Vg =
op, it yields
h(NGTH -V —an,  h(PE)+VW —ap,  n— oo

Moreover, applying Lemma 4.1 and using the bound (4.6Y®n" — V", we also get
VLV 0 —0, asn— oo, (4.13)
On the other hand, we have
(x=y) (h() =h(y)) < c(x=y)%,  V(xYy) € [mM].

Hence, applying the Young inequality, we get for any 0

o) 1
23 MK INET NP o S M) (NG — V- a2

Ke7 KeZ
> 3 m(K) [N —Ni] (NG =V — ]
Ke7
>y m(K) NN S m(K) [NET - Nk V- Vi
KeZ7 KeT
and
O S M) PR+ = 3 m(K) (PR + Vi apf?
2&y 20 &
>c Y m(K) (R -RT - Y mK) (R A - Vi

Keo Ke7
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Thus, adding the two latter inequalities and using the seh@mi0) at time"*1, it yields ford < 2¢

o
(c— E) z m(K) ([NEH— NK}2+ P — K] 2) +VME_V1 g
Keo
1
S 25 ( Y mK) h(NgH) =V —anf? + Y m(K)Ih(PQ”)JrVQ”—O{PIz)
Ke7 Ke7
Cao

< (Ih(N™1) —V"—any .o + [h(P™Y) + V" —aply o + 2]V =V o).

25
Therefore, passing to the limit m— o and using (4.12) and (4.13), we finally get the result
N — Nk, P{—P, W—W, asn— oo,

where(Nk, P, Vk) is given by (1.10) and (2.3).

5. Numerical results

In this section, we give numerical results in one and two disiens, obtained by the finite volume scheme
(2.10)-(2.12).

5.1 Thermal equilibrium at the boundary in 1-D

We consider the following initial data fore (0,1)
NO(x) = No—+ (Ng — No) X2, PO(x) = Ry+ (P — Ry)x*/2
with the boundary condition

h(N(t,0)) — h(P(t,0))
2 )

h(N(t, 1)) —h(P(t,1))

2 )
whereh(x) = log(x). The doping profile is taken equal to zero. In this case, wee lpgoven that the
numerical solution converges to a steady state and thee#&ng decreasing with respectto In Figures
1, we clearly observe that the energy is decreasing and mewdo zero when times goes to infinity.
Moreover, the dissipatior? (N", P",V"~1) also converges to zero whargoes to infinity. In Figures 2, the
density(N(t"),P(t")) converges to the steady state obtained from the scheme(263¥or the steady state
problem.

N(t,0)=0.1, P(t,00=09, V(t,0)=

N(t,1) =09, P(t,1)=01, V(1) =

5.2 Thermal equilibrium at the boundary in 1-D with doping

In this second example, we consider the system (1.1) wheréahing profileC is given by

+1 ifxe [0,1/2),
C(X):{—l 'e|xs§[ 2
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0_14 T T T T T 12 T T .T . A T T
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FiG. 1. Thermal equilibrium at the boundary 1-&olution of the numerical energ§/® and its numerical dissipatio? (N", P",v"-1),
n>1

and the pressure law igs) = s°/2. Moreover, Dirichlet boundary conditions are prescribed
N(t,0) =P(t,1) =0.1, P(t,0)=N(t,1)=0.9
and the potentid¥ (t,0) andV (t, 1) such that thermal equilibrium occurs

h(N(t,0)) —h(P(t, o))
2

In this case, we can apply the entropy method to prove thatdhgion converges to an equilibrium even if
theL® estimates oiiN, P) are not valid. We perform numerical simulations using ogoathm and observe
that the densityN, P) converges to a stationary solution given by solving theesponding discrete steady
state problem. In Figure 3, we observe that the energy cgagdp zero, whereas the dengiy, P) goes
to the equilibrium.

V(t,o)= , foro={0,1}.

5.3 Thermal equilibrium at the boundary in 2-D

We present here a test case for a geometry correspondingNej@etion in 2D. The geometry is shown
in Figure 4. The doping profile is piecewise constant, equatltin the N-region and -1 in the P-region.
The Dirichlet boundary conditions are

h(NP) — h(PP)
2

h(NP) —h(PP)
2

Elsewhere, we put Neumann boundary conditions.
We compute the numerical approximation of the thermal dauiim and of the transient drift-diffusion
system on a mesh made of 599 triangles. Figures 5 and 6 artedd¢udhe case where the pressure is linear

NP =0.1, PP = 0.9, VP = ony=1, 0<x<0.25

NP =09, PP =0.1, VP = ony=0
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FIG. 2. Thermal equilibrium at the boundary 1-8volution of the numerical densiti, P), the potential V and the electric field DV,

n>1
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——

Enérgy Diésipatioh I(t) ——

0 005 01 015 02 025 03 035
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FiG. 3. Thermal equilibrium at the boundary 1-D with dopirgyolution of the numerical energy and its dissipation, ameldensity

(N,P),n>1.
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.U
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FiG. 4. Geometry of the PN-junction diode

(r(s) =s). Figure 5 presents the evolution of the density of hdtesomputed with the time-dependent
scheme at three different timés= 0.04,t = 0.2 andt = 0.6 and the approximation d? at the thermal
equilibrium. Figure 6 shows the evolution of the energy ahitsadissipation.

Figures 7 and 8 are devoted to the case where the pressurdirsao  (s) = s” with a = 5/3). Figure
7 presents the evolution of the density of electrbhsomputed with the time-dependent scheme at three
different times = 0.02,t = 0.1 andt = 0.6 and the approximation & at the thermal equilibrium. Figure
8 shows the evolution of the energy and of its dissipation.
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FIG. 7. Thermal equilibrium at the boundary in 2-Bxolution of the density of electrons and thermal equilibriin the non linear
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