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Abstract A finite volume method is presented to discretize the Patlak–Keller–
Segel (PKS) modeling chemosensitive movements. First, we prove existence and
uniqueness of a numerical solution to the proposed scheme. Then, we give a priori
estimates and establish a threshold on the initial mass, for which we show that the
numerical approximation converges to the solution to the PKS system when the
initial mass is lower than this threshold. Numerical simulations are performed to
verify accuracy and the properties of the scheme. Finally, in the last section we
investigate blow-up of the solution for large mass.
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1 Introduction

Chemotaxis is a process by which cells change their state of movement reacting to
the presence of a chemical substance, approaching chemically favorable environ-
ments and avoiding unfavorable ones.

Different aspects of chemotactic motility, especially for the model organisms
Escherichia Coli, have been studied in great detail. These cells have several extra-
cellular helical thread-like structures called flagella. Each flagellum has a rotary
motor at its base, which can rotate in a clockwise or counterclockwise direction.
When individual flagella rotate counterclockwise, they assemble into a coherent
rotating bundle, and this bundle propels the bacterium forward. These runs are
terminated by tumbles, which are short episodes of erratic motion without net
translation. Tumbles are caused by the disintegration of the flagellar bundle, which
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results from the reversal in the rotation direction of the individual flagella from
counterclockwise to clockwise. After each tumble the bacterium moves in a new,
almost random direction.

Another example is the Dictyostelium (amoebae), which has been extensively
studied for its ability to climb gradients of cAMP, a signaling molecule involved
in the development of the slug. Then, cells produce cAMP and interact themselves
(adhesion) and with the spatial gradients of cAMP concentration (chemotaxis). The
interplay of these processes causes the amoebae to spatially self-organize leading
to the complex behavior of stream and mound formation, cell sorting and slug
migration all without any change of parameters.

In the simple situation where we only consider cells and a chemical substance
(the chemo-attractant), a model for the space and time evolution of the density
n = n(t, x) of cells and the chemical concentration c = c(t, x) at time t and
position x ∈ � ⊂ R

2 has been introduced by Patlak [22] and Keller and Segel [17]
(PKS) and reads

∂n

∂t
− div (∇ n − χ n∇c) = 0, x ∈ �, t ∈ R+, (1)

∂c

∂t
− �c = n − c, x ∈ �, t ∈ R+, (2)

where � is assumed to be a convex, bounded and open set of R
2, the chemotactic

sensitivity function χ is constant with respect to the chemical concentration c.
Concerning initial conditions, we choose

n(t = 0, x) = n0(x), c(t = 0, x) = c0(x); x ∈ �
and for boundary conditions, we will consider zero flux boundary conditions i.e.,

∇n · ν = ∇c · ν = 0, x ∈ ∂�, t ∈ R+,

where ν is the unit normal to the boundary ∂�.
A different version of the PKS model consists in replacing the Eq. (2) by an

elliptic equation

−�c = n − c, x ∈ �, t ∈ R+. (3)

Before describing more precisely our results, let us recall that the PKS systems
(1),(2) and (1),(3) have been the object of several studies recently. Briefly speak-
ing, these models exhibit singular pattern formation, and in particular blow-up
patterns. For the PKS parabolic model (1),(2), the density n of cells concentrates in
the neighborhood of isolated points, these concentration regions becoming more
and more narrow and ultimately leading to finite time point-wise blow-up. We refer
to [12] for mathematical proofs for spherically symmetric solutions in a ball, the
blow-up point being the center of the ball (and these are the only possible singu-
larities). In the nonsymmetric case blow-up results are established in [14,15], the
blow-up points being located on the boundary. Numerical evidence of this fact may
be found in [19].

The purpose of this work is to present and study a numerical scheme for the
PKS systems (1),(3) and to investigate numerically the occurrence of blow-up,
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when it takes place, and the time evolution behavior otherwise. Numerical meth-
ods have already been developed to solve (1),(3); see, e.g., [19] for finite element
methods, [16] for finite difference methods, and the references therein. However, it
seems that none of the above-mentioned numerical approaches have been studied
theoretically to understand if they give the correct behavior of the solution when it
is effectively smooth and when it blows-up. Indeed, as we will explain later, there
exists a ratio on the initial mass, which determines if either the solution is smooth
(when the mass is small enough) or it blows-up (when the mass is large enough).
Then, we propose a fully implicit finite volume scheme to the PKS system and
prove its convergence to the solution of the PKS system when the initial mass is
small enough.

We now briefly outline the contents of the paper. In the next section, we intro-
duce the numerical approximation of (1),(3) and state the convergence result for
small density initial datum which we prove in Sects. 3 and 4. Two points are worth
mentioning here. First, one difficulty in the analysis of the PKS model, is related
to the existence of a threshold on the global mass

∫
�

n0dx (in dimension 2) for
which either there exist global solutions or solutions blow-up at finite time. At the
discrete level, our approximation also enjoys a similar property and we prove the
convergence of the approximation under a smallness condition on the initial mass.
Secondly, an important step of the convergence proof is the derivation of uniform
estimate on the density n. Indeed, we cannot directly find L∞(�) estimates, which
are usually established for finite volume approximations of parabolic problems [7],
since the main argument leading to global existence is based on the estimation of
L p(�) norms and standard interpolation techniques [11,23]. The final section is
devoted to numerical simulations performed with the numerical scheme presented
in Sect. 2. We investigate numerically the blow-up problem in a bounded domain.

2 Numerical scheme and main results

Before describing our numerical scheme and stating a convergence result, we first
introduce some notations and assumptions and recall previous results on (1),(3). As
already mentioned, we focus on the approximation of the boundary value problem
(1),(3) with Neumann boundary conditions and assume that the initial datum n0

satisfies:

n0 ∈ L2(�) and n0 ≥ a0 > 0 ∀x ∈ �. (4)

Moreover, the initial density n0 satisfies a smallness contition: there exists a
constant CGNS

� > 0 such that

CGNS
� χ ‖n0‖L1(�) < 1,

where CGNS
� represents the best constant in the Gagliardo–Nirenberg–Sobolev

inequality

‖u − u‖2
L2(�)

≤ CGNS
� ‖∇u‖2

L1(�)
; u ∈ W 1,1(�) u = 1

m(�)

∫

�

u(x) dx .
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As a consequence of [11], there is at least a couple of nonnegative function (n, c)
satisfying

n ∈ C([0, T ]; L2(�)) ∩ L2(0, T ; H1(�)), c ∈ L2((0, T ); H1(�))

for each T ∈ R+ and (1), (3). Moreover, mass is conserved with respect to time,
∫

�

n(t, x) dx =
∫

�

n0(x) dx . (5)

Now, we define the finite volume scheme to the problem (1), (3). An admissible
mesh of� is given by a family T of control volumes (open and convex polygons in
2D), a family E of edges and a family of points (xK )K∈T which satisfy Definition
5.1 in [7]. It implies that the straight line between two neighboring centers of cells
(xK, xL) is orthogonal to the edge σ = K |L . In the set of edges E , we distinguish
the interior edges σ ∈ Eint and the boundary edges σ ∈ Eext. For a control volume
K ∈ T , we denote by EK the set of its edges, Eint K , the set of its interior edges,
Eext, K the set of edges of K included in � = ∂�.

In the sequel, we denote by d the distance in R
2, m the measure in R

2 or R.
We assume that the family of mesh considered satisfies the following regularity
constraint: there exists ξ > 0 such that

d(xK , σ ) ≥ ξ d(xK , xL), for K ∈ T , for σ ∈ Eint K , σ = K |L . (6)

The size of the mesh is defined by

δ = max
K∈T

(diam(K)) . (7)

For all σ ∈ E , we define the transmissibility coefficient:

τσ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(σ )

d(xK , xL)
, for σ ∈ Eint, σ = K |L ,

m(σ )

d(xK , σ )
, for σ ∈ Eext K .

Next, X (T ) will be the set of functions from � to R which are constant over each
control volume K ∈ T .

We define the approximation n0
T of the initial datum n0 as usual by

n0
T =

∑

K∈T
n0

K 1K , with n0
K = 1

m(K )

∫

K

n0(x) dx ,

where 1E denotes the characteristic function of the subset E of �. Finally, let
T ∈ R+ be some final time, MT the number of time iterations and put

�t = T

MT
, tk = k �t , 0 ≤ k ≤ MT .
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Denoting by nk
K an approximation of the mean value of n(tk) on K and by

ck
K an approximation of the mean value of c(tk) on K for K ∈ T , the numerical

scheme to be studied in this paper reads

m(K )
nk+1

K − nk
K

�t
−

∑

σ∈EK

τσ Dnk+1
K ,σ

+χ
∑

σ∈EK
σ=K |L

τσ

[(
Dck+1

K ,σ

)+
nk+1

K −
(

Dck+1
K ,σ

)−
nk+1

L

]

= 0

(8)

and

−
∑

σ∈EK

τσ Dck+1
K ,σ = m(K )

(
nk+1

K − ck+1
K

)
, (9)

for all K ∈ T and 0 ≤ k ≤ MT − 1, where v+ = max(v, 0), v− = max(−v, 0)
and

Dck
K ,σ =

{
ck

L − ck
K , if σ = K |L ∈ Eint,K ,

0, if σ ∈ Eext,K ,
(10)

for all K ∈ T and 0 ≤ k ≤ MT .
Before stating some properties on the scheme (8)–(10), let us briefly comment

on its derivation which relies obviously on a fully implicit Euler scheme for the
time variable and on a finite volume approach for the volume variable (see, e.g.,
[7]). The implicit scheme allows here to establish L2(�) estimates, which are not
valid with explicit schemes (see Proposition 3.1 below). Under the condition (23),
the solution (nk

K , ck
K ) enjoys similar properties to (n, c) (see Propositions 3.1 and

3.2).
We next define the numerical approximation (nT , cT ) of (n, c) by

nT (t, x) =
∑

K∈T
nk+1

K 1K (x), cT (t, x) =
∑

K∈T
ck+1

K 1K (x); t ∈ (tk, tk+1]

(11)

for k ∈ {0, . . . ,MT − 1}. We also define an approximation of the gradient DcT
(as well as DnT ) following [3]. For K ∈ T and σ = K |L ∈ EK with common
vertexes (y j

K ,L)1≤ j≤J , (J ∈ N). Let Tσ (respectively TK ,σ , σ ∈ Eext,K ) be the
open and convex polygon built by taking the convex envelope of vertexes (xK , xL)

(respectively xK ) and (y j
K ,L)1≤ j≤J . Then, the domain � can be decomposed as

� =
⋃

K∈T

((

∪σ∈EK T σ

)

∪
(

∪σ∈Eext,K T K ,σ

))

.

The approximation of the gradient DcT is then given by

DcT (t, x) =
⎧
⎨

⎩

m(σ )
m(Tσ )

Dck+1
K ,σ νK ,σ if (t, x) ∈ (tk, tk+1] × Tσ and σ = K |L

0 if (t, x) ∈ (tk, tk+1] × TK ,σ ,

(12)
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for all K ∈ T and 0 ≤ k ≤ MT − 1, where νK ,σ stands for the unit normal to σ
outward from K .

Finally, for any function u ∈ X (T ) with zero flux boundary condition, we
define the discrete H1(�)-norm

‖u‖2
1,T :=

∑

K∈T
m(K )|uK |2 +

∑

σ∈Eint
σ=K |L

τσ |uL − uK |2.

We first establish an existence and uniqueness theorem for the numerical solu-
tion (nT (tk), cT (tk)), for all k ≥ 0.

Theorem 2.1 Assume that the following CFL condition

χ �t DT ,1 < 1, with DT ,1 := 2 ||n0||L1(�)

minK∈T {m(K )} (13)

is fulfilled and that the initial datum n0 satisfies (4). Then, there exists a unique
solution (nT , cT ) to the scheme (8)–(10), which satisfies

nk
K ≥ ak := a0

(1 + DT ,1 χ �t)k
> 0 and ck

K ≥ 0 (14)

for all k ≥ 0, K ∈ T and
∑

K∈T
m(K ) nk

K =
∑

K∈T
m(K ) n0

K = ‖n0‖L1(�). (15)

Moreover, the numerical approximation of the chemical concentration cT is such
that

cT (t
k) ∈ H : =

{

u ∈ X (T ); sup
K∈T

∣
∣
∣
∣
∣
∣

∑

σ∈EK

τσ DuK ,σ

∣
∣
∣
∣
∣
∣
≤ 2 ||n0||L1(�); ||u||1,T

≤ DT ,2

}

(16)

with DT ,2 := ‖n0‖L1(�)√
minK∈T {m(K )} for all k ≥ 0.

Proof The proof is based on the application of the Brower fixed point theorem.
Let us proceed by induction on k ∈ {0, . . . ,MT −1} and first consider the case

k = 0. The assertions (14) and (15) are obvious in that case while (16) follows
from a classical discrete H1(�) estimate for a finite volume approximation to an
elliptic equation (see [7, Chapt. 3])

||cT (t
0)||1,T ≤ ||nT (t

0)||L2(�) ≤ ‖nT (t0)‖L1(�)√
minK∈T {m(K )} = DT ,2.

Thus, we have checked that Theorem 2.1 is valid for k = 0.
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Assume now k ∈ {0, . . . ,MT − 1} such that the assertions (14)–(16) hold
true. To prove the existence of a couple (nT (tk+1), cT (tk+1)), we will construct
an application based on the linearization of the scheme (8)–(10). We first choose a
nonnegative function c such that c ∈ H and solve the following linearized problem:
we construct n∗ using the linear scheme

m(K )
n�K − nk

K

�t
−

∑

σ∈EK

τσ Dn�K ,σ

+χ
∑

σ∈EK
σ=K |L

τσ

[(
DcK ,σ

)+
n�K − (

DcK ,σ
)−

n�L

]
= 0.

We next compute c� from n� by solving the discrete Poisson equation

−
∑

σ∈EK

τσ Dc�K ,σ = m(K )
(
n�K − c�K

)
, (17)

for all K ∈ T supplemented by zero flux boundary conditions for (17) and (17).
On the one hand, using classical arguments on finite volume approximations

for a parabolic equation [7, Chap. 4] and [3], we set n�K0
:= minK∈T {n�K } and

obtain

m(K0)(n
�
K0

− nk
K0
) ≥ −χ �t

∑

σ∈EK0

τσ DcK0,σ n�K0
.

Under the CFL condition (13) and the assumption that c ∈ H, we know that

χ �t
∑

σ∈EK0

τK0,σ DcK0,σ < m(K0)

and then using the assumption (14) on nk , we deduce a lower bound on the density
n�

n�K0
≥ nk

K0

1 + χ �t DT ,1
≥ a0

(1 + χ �t DT ,1)k+1 > 0, (18)

which shows the assertion (14) for n�. On the other hand, using zero flux boundary
conditions in (17), we easily obtain the mass conservation

∑

K∈T
m(K ) n�K =

∑

K∈T
m(K ) nk

K = ‖n0‖L1(�). (19)

Gathering (18) and (19), we get a L1(�) estimate on n�.
Now, we turn on the estimates to c�. First, using Neumann boundary conditions

on the discrete Poisson equation, we get by summing over K ∈ T
∑

K∈T
m(K ) c�K =

∑

K∈T
m(K ) n�K ≤ ||n0||L1(�). (20)
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Moreover, setting c�K0
= minK∈T

{
c�K

}
, and using the scheme (17), we have

m(K0) c�K0
=

∑

σ∈EK0

τσ Dc�K0,σ
+ m(K0) n�K0

≥ m(K0) n�K0
≥ 0, (21)

which proves that c�K is nonnegative for all K ∈ T .
Next, multiplying the scheme (17) by c�K and performing a discrete integration

by part, we easily obtain the second estimate of (16)
∑

K∈T
m(K ) |c�K |2 +

∑

K∈T

∑

σ∈EK

τσ |Dc�K ,σ |2 ≤
∑

K∈T
m(K )|n�K |2

≤
||n�||2

L1(�)

minK∈T {m(K )} ≤ D2
T ,2.

(22)

Finally, from the scheme (17) and using the previous estimates (20) and (21) on
c�, we get the first estimate of (16)

∣
∣
∣
∣
∣
∣

∑

σ∈EK

τσ Dc�K ,σ

∣
∣
∣
∣
∣
∣

≤ m(K )
(|n�K | + |c�K |) ≤ 2 ||n0||L1(�).

Thus, following this algorithm we have defined an application S, such that

S : H −→ H
c −→ c� = S (c).

Now, in order to apply the Brower fixed point theorem, it remains to prove that
this application is continuous. We consider a sequence (cα)α∈N such that cα → c
as α goes to infinity, we want to show that (cα �)α∈N converges to c� as α → ∞
where cα � = S(cα) and c� = S(c). Using the scheme (17), we first construct nα �

(respectively n�) from cα (respectively c) and then from the discrete scheme for
the Poisson equation (17); we get cα � (respectively c�).

We first prove that nα � − n� → 0, as α → ∞. Indeed, denoting by p� =
nα � − n�, we have

m(K ) p�K = �t
∑

σ∈EK
σ=K |L

τσ (p
�
L − p�K )

−χ �t
∑

σ∈EK
σ=K |L

τσ

[(
DcαK ,σ

)+
p�K − (

DcαK ,σ
)−

p�L

]

−χ �t
∑

σ∈EK
σ=K |L

τσ

[((
DcαK ,σ

)+ − (
DcK ,σ

)+)
n�K

]

+χ �t
∑

σ∈EK
σ=K |L

τσ

[((
DcαK ,σ

)− − (
DcK ,σ

)−)
n�L

]
.
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Thus, we multiply the latter equality by sign(p�K ) and sum over K ∈ T to get
∑

K∈T
m(K ) |p�K | ≤ −�t

∑

K∈T

∑

σ∈EK
σ=K |L

τσ
(|p�L | − |p�K |)

−χ �t
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

((
DcαK ,σ

)+ |p�K | − (
DcαK ,σ

)− |p�L |
)

+χ �t
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

{∣∣
∣
(
DcαK ,σ

)+ − (
DcK ,σ

)+∣
∣
∣ n�K

}

+χ �t
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

{∣∣
∣
(
DcαK ,σ

)− − (
DcK ,σ

)−∣
∣
∣ n�L

}
.

On the one hand, we use the following identity
∑

K∈T

∑

σ∈EK
σ=K |L

τσ
(|p�K | − |p�L |) = 0

to cancel the first term of the right-hand side of the latter inequality. On the

other hand, since for σ = K |L ,
(

DcαK ,σ

)
= −

(
DcαL ,σ

)
we have

(
DcαL ,σ

)+ =
(

DcαK ,σ

)−
, which yields

∑

K∈T

∑

σ∈EK
σ=K |L

τσ

((
DcαK ,σ

)+ |p�K | − (
DcαK ,σ

)− |p�L |
)

= 1

2

∑

K∈T

∑

σ∈EK
σ=K |L

τσ

((
DcαK ,σ

)+ |p�K | − (
DcαK ,σ

)− |p�L |
)

= 0.

Finally, using that |a+ − b+| ≤ |a − b| and the Cauchy–Schwarz inequality, we
only have

∑

K∈T
m(K ) |p�K | ≤ χ �t

(
∑

K∈T
|n�K |2

)1/2
⎛

⎝
∑

K∈T

∑

σ∈EK

τσ |D(cα − c)K ,σ |2
⎞

⎠

1/2

.

Since n� is uniformly bounded with respect toα in L1(�) (the mesh T is fixed here)
and cα converges to c, as α goes to infinity; we have proven that nα,� converges to
n�, as α goes to infinity.

Now, using the numerical scheme (9) for the chemical concentrations ck � and
c� with the source term nα � and n�, we easily show that

∑

σ∈EK

τσ
(
Dcα �K ,σ − Dc�K ,σ

) = m(K )
[
(nα �K − n�K )− (

cα �K − c�K
)]
.
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From a classical discrete H1(�) estimate and using that nα �K − n�K goes to zero as
α goes to infinity, we easily prove that cα �K converges to c�K , as α → ∞ and then
the application S is continuous.

Moreover, H is a convex, closed and bounded set of X (T ). Thus, applying
the Brower fixed point, the application S admits a fixed point. We denote it by
cT (tk+1) and it satisfies (16). Finally, from cT (tk+1), we construct nT (tk+1) using
the scheme (17) with c = cT (tk+1) and easily check that it satisfies (14) and (15).
Using the same strategy as for the continuity of S, the uniqueness of the solution
at each time step follows directly. ��

Remark 2.1 The CFL condition given in (13) is unusual for a fully implicit scheme.
However, it is only due to the lack of estimates we get on the linearized scheme
(17)–(17). In fact, we only need that

χ �t
∑

σ∈EK

τσ Dck
K ,σ < m(K ); K ∈ T , k ∈ N. (23)

Then, this CFL condition will be sensitively improved using the estimates of the
next section and it will be shown in the sequel that the time step is not sensitive to
the mesh size but depends on the smoothness of the solution (L∞ bound on nT is
enough).

We may now state our main result.

Theorem 2.2 Assume that the CFL condition (23) on the time step is fulfilled and
that the initial datum n0 satisfies (4). Moreover, n0 satisfies the smallness assump-
tion: there exists a constant C� > 0, only depending on the domain �, such that

∑

K∈T
m(K ) n0

K <
2 ξ

9 C� χ
, (24)

where ξ is given by (6). Then, the solution (nT , cT ) given by the finite volume
scheme (8)–(10) satisfies

nT −→ n in L2(�T ) ,

cT ⇀ c in L∞(0, T ; L2(�)) ,

DcT ⇀ ∇c in L∞(0, T ; L2(�)) ,

with �T = (0, T ) × � and (n, c) is the weak solution to the PKS system (1), (3)
on [0, T ] with initial datum n0. More precisely, (n, c) is a couple of nonnegative
functions satisfying

⎧
⎨

⎩

n ∈ C([0, T ]; L2(�)) ∩ L2
(
0, T ; H1(�)

)
,

c ∈ L∞(0, T ; H1(�)) ,
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and for all test functions ψ ∈ C1(�T ),
∫

�T

n
∂ψ

∂t
− ∇n · ∇ψ + χ n ∇c · ∇ψ dxdt +

∫

�

n0 ψ(0, x) dx = 0, (25)

∫

�T

∇c · ∇ψ dxdt =
∫

�T

(n − c) ψ dxdt. (26)

In addition, mass is conserved with respect to time (5).

3 A priori estimates

This section is devoted to the proof of uniform a priori estimates with respect to
the mesh T on the numerical solution (nT , cT ). The aim is to prove strong com-
pactness in L2(�T ) on the density nT while L2(�T ) uniform estimates on DcT
are sufficient.

Lemma 3.1 Let φ : R → R be an increasing C1-function. Then, the solution to
the numerical scheme (8)–(10) satisfies for all k ∈ N

∑

K∈T
m(K )

(
nk+1

K − nk
K

)
φ(nk+1

K ) ≤ − �t

2

∑

K∈T

∑

σ∈EK

τσ

[

Dnk+1
K ,σ

√

φ′
(

ñk+1
σ

)
]2

+ χ �t

2

∑

K∈T

∑

σ∈EK

τσ ñk+1
σ φ′ (ñk+1

σ

)

× Dck+1
K ,σ Dnk+1

K ,σ ,

where σ = K |L and ñk+1
σ = tσ nk+1

K + (1 − tσ ) nk+1
L and tσ ∈ (0, 1).

Proof Multiplying the scheme (8) by �t φ(nk+1
K ) and summing for K ∈ T , we

obtain
∑

K∈T
m(K )

(
nk+1

K − nk
K

)
φ(nk+1

K ) = − (G1 + G2) ,

where

G1 = �t
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

[
nk+1

K − nk+1
L

]
φ(nk+1

K ),

G2 = χ �t
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

[
(Dck+1

K ,σ )
+nk+1

K − (Dck+1
K ,σ )

−nk+1
L

]
φ(nk+1

K ).

We first deal with the term G1. We set σ = K |L and using a Taylor expan-
sion of φ(.) at nk+1

K , we show that there exists tσ ∈ (0, 1) such that ñk+1
σ =

tσ nk+1
K + (1 − tσ ) nk+1

L and
[
nk+1

K − nk+1
L

] [
φ(nk+1

K )− φ(nk+1
L )

]
=

[
nk+1

K − nk+1
L

]2
φ′ (ñk+1

σ

)
. (27)
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Next, using the symmetry of τσ and the Taylor expansion of the function φ, we get

G1 = �t

2

∑

K∈T

∑

σ∈EK
σ=K |L

τσ

[
nk+1

K − nk+1
L

] [
φ(nk+1

K )− φ(nk+1
L )

]

= �t

2

∑

K∈T

∑

σ∈EK
σ=K |L

τσ

[
(

nk+1
L − nk+1

K

) √

φ′
(

ñk+1
σ

)
]2

. (28)

Now, we perform a discrete integration by part (using the symmetry of τσ ) and
estimate the term G2

G2 = χ �t

2

∑

K∈T

∑

σ∈EK
σ=K |L

τσ

[
(Dck+1

K ,σ )
+ nk+1

K − (Dck+1
K ,σ )

− nk+1
L

]

×
[
φ(nk+1

K )− φ(nk+1
L )

]
.

Then, we set

G�
2 = χ �t

2

∑

K∈T

∑

σ∈EK
σ=K |L

τσ ñk+1
σ Dck+1

K ,σ

[
φ(nk+1

K )− φ(nk+1
L )

]
,

where ñk+1
σ is given by the Taylor expansion (27); and let us show that G2 ≥ G�

2.
Indeed, reordering the sum and using the expression of ñ, it yields

2 (G2 − G�
2)

χ �t
=

∑

K∈T

∑

σ∈EK
σ=K |L

τσ

(
Dck+1

K ,σ

)+ [
φ(nk+1

K )− φ(nk+1
L )

] (
nk+1

K − ñk+1
σ

)

+
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

(
Dck+1

K ,σ

)− [
φ(nk+1

K )− φ(nk+1
L )

]

×
(

ñk+1
σ − nk+1

L

)

=
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

(
Dck+1

K ,σ

)+
(1 − tσ )

[
φ(nk+1

K )− φ(nk+1
L )

]

×
(

nk+1
K − nk+1

L

)

+
∑

K∈T

∑

σ∈EK
σ=K |L

τσ

(
Dck+1

K ,σ

)−
tσ

[
φ(nk+1

K )− φ(nk+1
L )

]

×
(

nk+1
K − nk+1

L

)
.

Finally, since φ is an increasing function, we show that

G2 − G�
2 ≥ 0. (29)
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Thus, gathering (28) and (29), we get
∑

K∈T
m(K )

(
nk+1

K − nk
K

)
φ(nk+1

K ) = −G1 − G2 + G�
2 − G�

2

≤ −G1 − G�
2,

= − �t

2

∑

K∈T

∑

σ∈EK

τσ

[

Dnk+1
K ,σ

√

φ′
(

ñk+1
σ

)
]2

+ χ �t

2

∑

K∈T

∑

σ∈EK

τσ ñk+1
σ Dck+1

K ,σ D

×
[
φ(nk+1)

]

K ,σ
.

Finally, using the Taylor expansion (27), we obtain the final result

∑

K∈T
m(K )

(
nk+1

K − nk
K

)
φ(nk+1

K ) ≤ − �t

2

∑

K∈T

∑

σ∈EK

τσ

[

Dnk+1
K ,σ

√

φ′
(

ñk+1
σ

)
]2

+ χ �t

2

∑

K∈T

∑

σ∈EK

τσ ñk+1
σ φ′ (ñk+1

σ

)

× Dck+1
K ,σ Dnk+1

K ,σ .

��
We also give a discrete version of the Poincaré–Wirtinger inequality.

Lemma 3.2 Let� be an open convex bounded polygonal (Lipschitz domain) sub-
set of R

2 and T be an admissible mesh of � satisfying (6). Then, there exists a
constant C� > 0, only depending on�, such that for all admissible meshes T and
all u ∈ X (T ), u ≥ 0,

∑

K∈T
m(K )|uK |2 ≤ 4 C�

ξ

(
∑

K∈T
m(K )uK

)
⎛

⎜
⎝

1

2

∑

K∈T

∑

σ∈EK
σ=K |L

τσ |D(√u)K ,σ |2
⎞

⎟
⎠

+ m(�) u2, (30)

where u is the average of u in � and C� corresponds to the best constant in the
BV version of the Gagliardo–Nirenberg–Sobolev inequality

∑

K∈T
m(K )|uK − u|2 ≤ C�

⎡

⎣1

2

∑

K∈T

∑

σ∈EK

m(σ )
∣
∣DuK ,σ

∣
∣

⎤

⎦

2

. (31)

Proof Let T be an admissible mesh and u ∈ X (T ), since the function u is piece-
wise constant and has a finite number of jumps (which corresponds to the number
of edges), we get that u ∈ BV (�). Moreover, in dimension d = 2 and for a
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Lipschitz domain �, the space BV (�) is continuously embedded in L2(�) [6,
Theorem 3.5]. Then, there exists a constant C�, only depending on the shape of
�, such that

∫

�

|u(x)− u|2dx =
∫

�

|u(x)|2dx − m(�) u2 ≤ C� [BV�(u)]
2 ,

where

u = 1

m(�)

∫

�

u(x)dx,

and

BV�(u) = sup

⎧
⎨

⎩

∫

�

u(x) divϕ(x)dx, ϕ ∈ C∞
o (�), |ϕ(x)| ≤ 1, ∀x ∈ �

⎫
⎬

⎭
.

Applying this latter result to the function u ∈ X (T ), we get

∑

K∈T
m(K )|uK − u|2 = ‖u − u‖2

L2(�)
≤ C� [BV�(u)]

2

and since u is piecewise contant, for all ϕ ∈ C∞
o (�)

∫

�

u(x) divϕ(x)dx =
∑

K∈T
uK

∫

K

divϕ(x)dx .

Thus, applying the Green formula to the smooth and compactly supported function
ϕ

∫

�

u(x) divϕ(x)dx =
∑

K∈T
uK

∑

σ∈EK

∫

σ

ϕ(γ ) · νK ,σdγ,

where νK ,σ is the unit external normal to the edge σ . Next, we perform a discrete
integration by part

∫

�

u(x) divϕ(x)dx = 1

2

∑

K∈T

∑

σ∈EK
σ=K |L

(uK − uL)

∫

σ

ϕ(γ ) · νK ,σdγ,

≤ 1

2

∑

K∈T

∑

σ∈EK

m(σ ) |DuK ,σ | ||ϕ||∞,

= 1

2

∑

K∈T

∑

σ∈EK

m(σ ) |DuK ,σ |.
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Finally, we have proven the discrete version of a Gagliardo–Nirenberg–Sobolev
inequality: there exists a constant C� such that

∑

K∈T
m(K )|uK − u|2 ≤ C�

⎡

⎣1

2

∑

K∈T

∑

σ∈EK

m(σ )
∣
∣DuK ,σ

∣
∣

⎤

⎦

2

.

On the other hand, by definition of Du we have

1

2

∑

K∈T

∑

σ∈EK

m(σ )|DuK ,σ | = 1

2

∑

K∈T

∑

σ∈EK
σ=K |L

m(σ )|uK − uL |

and since u ≥ 0

|uK − uL | = |√uK − √
uL | (√uK + √

uL),

it follows that

1

2

∑

K∈T

∑

σ∈EK

m(σ )|DuK ,σ | =
∑

K∈T

∑

σ∈EK

√
m(σ )

dK ,σ
|D(√u)K ,σ |√m(σ ) dK ,σ

√
uK .

Hence, we apply the Cauchy–Schwarz inequality and since in dimension
2
∑
σ∈EK

m(σ ) d(K , σ ) ≤ 2 m(K ) and (6); we get

1

2

∑

K∈T

∑

σ∈EK

m(σ )|DuK ,σ | ≤ 2√
ξ

⎛

⎝1

2

∑

K∈T

∑

σ∈EK

τσ |D(√u)K ,σ |2
⎞

⎠

1/2

×
(

∑

K∈T
m(K )uK

)1/2

. (32)

Finally, gathering the two inequalities (31) and (32), we obtain the result: there
exists a constant C� > 0 such that

∑

K∈T
m(K ) |uK |2 ≤ 4 C�

ξ

(
∑

K∈T
m(K ) uK

) ⎛

⎝1

2

∑

K∈T

∑

σ∈EK

τσ |D(√u)K ,σ |2
⎞

⎠

+ m(�) u2.

��

Proposition 3.1 Assume the initial datum fulfills (4) and satisfies the smallness
condition (24), where C� corresponds to the best constant in Lemma 3.2. Then,
the solution (nk

K , ck
K ), K ∈ T and k ∈ N to the scheme (8)–(10) satisfies there
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exists a constant C > 0, only depending on n0, χ , T , � and ξ [given by (6)], such
that for all k ∈ {0, . . . ,MT − 1}

∑

K∈T
m(K )nk+1

K log(nk+1
K )

+ 1

2

(

1 − χ
4 C�
ξ

‖n0‖L1

) k∑

l=0

∑

K∈T

∑

σ∈EK

�t τσ
∣
∣
∣D(

√
nl+1)K ,σ

∣
∣
∣
2 ≤ C

(33)

and

∑

K∈T
m(K )|nk+1

K |2+
(

1 − χ
9 C�
2 ξ

‖n0‖L1

) k∑

l=0

∑

K∈T

∑

σ∈EK

�t τσ |Dnl+1
K ,σ |2 ≤ C.

(34)

Proof To prove (33), we start with the identity

nk+1
K log(nk+1

K )− nk
K log(nk

K )

�t
= nk+1

K − nk
K

�t
log(nk+1

K )

+ nk
K

log(nk+1
K )− log(nk

K )

�t
. (35)

From a Taylor expansion of x �→ log(x) at x = nk
K , we get

nk
K

log(nk+1
K )− log(nk

K )

�t
≤ nk+1

K − nk
K

�t
,

which gives an upper bound of the second term of (35). Then, multiplying (35) by
m(K ), summing over K ∈ T and using the conservation of mass, we obtain the
following inequality

∑

K∈T
m(K )

nk+1
K log(nk+1

K )− nk
K log(nk

K )

�t
≤

∑

K∈T
m(K )

nk+1
K − nk

K

�t
log(nk+1

K ).

(36)

Now, applying Lemma 3.1 with φ(n) = log(n), it yields

∑

K∈T
m(K )

nk+1
K − nk

K

�t
log(nk+1

K ) ≤ − 1

2

∑

K∈T

∑

σ∈EK

τσ

⎡

⎣
Dnk+1

K ,σ√
ñk+1
σ

⎤

⎦

2

+ χ

2

∑

K∈T

∑

σ∈EK

τσ Dck+1
K ,σ Dnk+1

K ,σ .

(37)
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Let us estimate the right-hand side of the latter inequality. Using a discrete integra-
tion by part of the latter term and the numerical scheme for the Poisson equation
(9), we get

1

2

∑

K∈T

∑

σ∈EK

τσ Dck+1
K ,σ Dnk+1

K ,σ = −
∑

K∈T

⎛

⎝
∑

σ∈EK

τσ Dck+1
K ,σ

⎞

⎠ nk+1
K

=
∑

K∈T
m(K ) |nk+1

K |2 −
∑

K∈T
m(K ) nk+1

K ck+1
K .

Hence, applying Lemma 3.2 with u = nk+1, we estimate the L2(�) norm of nk+1

with respect to the L2(�) norm of D
√

nk+1

1

2

∑

K∈T

∑

σ∈EK

τσ Dck+1
K ,σ Dnk+1

K ,σ ≤
∑

K∈T
m(K ) |nk+1

K |2

≤ 2 C�
ξ

‖n0‖L1

∑

K∈T

∑

σ∈EK

τσ

∣
∣
∣D(

√
nk+1)K ,σ

∣
∣
∣
2

+ m(�)
∣
∣n0

∣
∣2 . (38)

Gathering inequalities (36),(37) and (38), it yields

∑

K∈T
m(K )

nk+1
K log(nk+1

K )− nk
K log(nk

K )

�t

≤ − 1

2

∑

K∈T

∑

σ∈EK

τσ

⎧
⎪⎨

⎪⎩

⎡

⎣
Dnk+1

K ,σ√
ñk+1
σ

⎤

⎦

2

− χ
4 C�
ξ

‖n0‖L1

∣
∣
∣D(

√
nk+1)σ

∣
∣
∣
2

⎫
⎪⎬

⎪⎭

+ m(�) χ
∣
∣n0

∣
∣2 .

Moreover, we set σ = K |L and use that

−|nk+1
L − nk+1

K |
√

ñk+1
σ

= −
√

nk+1
K +

√
nk+1

L
√

ñk+1
σ

∣
∣
∣
∣

√
nk+1

L −
√

nk+1
K

∣
∣
∣
∣

≤ −
∣
∣
∣
∣

√
nk+1

L −
√

nk+1
K

∣
∣
∣
∣

to get the following estimate

∑

K∈T
m(K )

nk+1
K log(nk+1

K )− nk
K log(nk

K )

�t

≤ −1

2

(

1 − χ
4 C�
ξ

‖n0‖L1

) ∑

K∈T

∑

σ∈EK

τσ

∣
∣
∣D(

√
nk+1)K ,σ

∣
∣
∣
2

+ m(�) χ
∣
∣n 0

∣
∣2 .
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Finally, multiplying the latter inequality by �t and summing over l ∈ {0, . . . , k}
with k ≤ MT − 1, we get the first result (33): there exists a constant C > 0, only
depending on n0, χ , T , � and ξ , such that

∑

K∈T
m(K )nk+1

K log(nk+1
K )

+ 1

2

(

1 − χ
4 C�
ξ

‖n0‖L1

) k∑

l=0

∑

K∈T

∑

σ∈EK

�t τσ
∣
∣
∣D(

√
nl+1)K ,σ

∣
∣
∣
2 ≤ C.

To prove (34), we first proceed as in the proof of Lemma 3.1 with φ(n) = n and
get that

∑

K∈T
m(K )

nk+1
K − nk

K

�t
nk+1

K ≤ − 1

2

∑

K∈T

∑

σ∈EK

τσ

[
Dnk+1

K ,σ

]2

+ χ

2

∑

K∈T

∑

σ∈EK

τσ nk+1
K Dck+1

K ,σ Dnk+1
K ,σ ,

≤ − 1

2

∑

K∈T

∑

σ∈EK

τσ

[
Dnk+1

K ,σ

]2

− χ

2

∑

K∈T

⎛

⎝
∑

σ∈EK

τσ Dck+1
K ,σ

⎞

⎠
∣
∣
∣nk+1

K

∣
∣
∣
2
.

Using the numerical scheme (9) for the Poisson equation, we easily obtain

∑

K∈T
m(K )

nk+1
K − nk

K

�t
nk+1

K ≤ −1

2

∑

K∈T

∑

σ∈EK

τσ

[
Dnk+1

K ,σ

]2

+χ
2

∑

K∈T
m(K )|nk+1

K |3.

(39)

From this last inequality, we need to control the L3(�) norm of nk+1 with respect
to the discrete H1(�) norm of nk+1. Therefore, we apply the discrete Sobolev–
Gagliardo–Nirenberg inequality (31) with u = |nk+1|3/2

∑

K∈T
m(K ) |nk+1

K |3 ≤ C�

⎛

⎝1

2

∑

K∈T

∑

σ∈EK

m(σ ) D
(
|nk+1|3/2

)

K ,σ

⎞

⎠

2

+ 1

m(�)

(
∑

K∈T
m(K ) |nk+1

K |3/2
)2

.
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Now, since for σ = K |L , |n3/2
K − n3/2

L | ≤ 3
2 (n

1/2
K + n1/2

L ) |nK − nL |; we have

∑

K∈T
m(K ) |nk+1

K |3 ≤ 9 C�
4

⎛

⎝
∑

K∈T

∑

σ∈EK

m(σ )
√

nk+1
K |Dnk+1

K ,σ |
⎞

⎠

2

+ 1

m(�)

(
∑

K∈T
m(K ) |nk+1

K |3/2
)2

.

Then, applying the Cauchy–Schwarz inequality; we deduce that

∑

K∈T
m(K ) |nk+1

K |3 ≤ 9 C�
4

⎛

⎝
∑

K∈T

∑

σ∈EK

m(σ ) dK ,σ |nk+1
K |

⎞

⎠

×
⎛

⎝
∑

K∈T

∑

σ∈EK

m(σ )
|Dnk+1

K ,σ |2
dK ,σ

⎞

⎠

+ ‖n0‖L1

m(�)

∑

K∈T
m(K ) |nk+1

K |2.

Since
∑
σ∈EK

m(σ ) dK ,σ ≤ 2m(K ) and using the condition (6), this gives

∑

K∈T
m(K ) |nk+1

K |3 ≤ 9 C�
2 ξ

‖n0‖L1

∑

K∈T

∑

σ∈EK

τσ |Dnk+1
K ,σ |2

+ ‖n0‖L1

m(�)

∑

K∈T
m(K ) |nk+1

K |2. (40)

Substituting this latter inequality in (39), it yields

1

2

∑

K∈T
m(K )

|nk+1
K |2 − |nk

K |2
�t

≤
∑

K∈T
m(K )

nk+1
K − nk

K

�t
nk+1

K

≤ −1

2

(

1 − χ
9 C�
2 ξ

‖n0‖L1

)

×
∑

K∈T

∑

σ∈EK

τσ

∣
∣
∣Dnk+1

K ,σ

∣
∣
∣
2

+ χ ‖n0‖L1

2 m(�)

∑

K∈T
m(K ) |nk+1

K |2.
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Next, multiplying the latter inequality by�t and summing over l ∈ {0, . . . , k}, we
get

∑

K∈T
m(K )|nk+1

K |2 +
(

1 − χ
9 C�
2 ξ

‖n0‖L1

) k∑

l=0

1

2

∑

K∈T

∑

σ∈EK

�t τσ
∣
∣
∣Dnl+1

K ,σ

∣
∣
∣
2

≤ 1

2

∑

K∈T
m(K ) |n0

K |2 + χ ‖n0‖L1

2 m(�)

k∑

l=0

∑

K∈T
�t m(K ) |nl+1

K |2

(41)

The last step consists in controlling the last term nT in L2(0, T ; L2(�)) that is

MT∑

l=0

∑

K∈T
�t m(K ) |nl

K |2.

Thus, we apply Lemma 3.2 to the density nT (t l , ·) and get for all l ∈ {0, . . . ,MT }

∑

K∈T
m(K ) |nl

K |2 ≤ 4 C�
ξ

‖n0‖L1

⎛

⎝1

2

∑

K∈T

∑

σ∈EK

τσ |D
√

nl
K ,σ |2

⎞

⎠ + ||n0||2
L1

m(�)
.

Therefore, from (33), we control the right-hand side i.e., there exists a constant
C > 0, only depending on n0, χ , T , � and ξ , such that

k+1∑

l=0

∑

K∈T
�t m(K ) |nl

K |2 ≤ 4 C�
ξ

‖n0‖L1

⎛

⎝1

2

k+1∑

l=0

∑

K∈T

∑

σ∈EK

�t τσ |D
√

nl
K ,σ |2

⎞

⎠

+T ||n0||2
L1

m(�)
≤ C. (42)

Finally, gathering (41) and (42), there exists a constant C > 0, only depending on
n0, χ , T , � and ξ , such that

∑

K∈T
m(K )|nk+1

K |2+
(

1 − χ
9 C�
2 ξ

‖n0‖L1

) k+1∑

l=0

1

2

∑

K∈T

∑

σ∈EK

�t τσ
∣
∣
∣Dnl

K ,σ

∣
∣
∣
2 ≤C,

which concludes the proof. ��

From this last result, we are now able to prove a uniform estimate on the discrete
H1(�) norm of the chemical concentration cT (t, x)
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Proposition 3.2 Assume the initial datum fulfills (4) and satisfies the smallness
condition (24), where C� corresponds to the best constant in Lemma 3.2. Then,
the concentration cT solution to the discrete Poisson equation (9) satisfies, there
exists a constant C > 0 such that

MT∑

k=0

∑

K∈T
�t m(K )|ck

K |2 + 1

2

MT∑

k=0

∑

K∈T

∑

σ∈EK

�t τσ |Dck
K ,σ |2

≤
MT∑

k=0

∑

K∈T
�t m(K )|nk

K |2 ≤ C. (43)

Proof We multiply the discrete scheme (9) by ck+1
K , sum over K ∈ T and apply

a discrete integration by part

1

2

∑

K∈T

∑

σ∈EK

τσ |Dck+1
K ,σ |2 +

∑

K∈T
m(K ) |ck+1

K |2

≤
(

∑

K∈T
m(K ) |nk+1

K |2
)1/2 (

∑

K∈T
m(K ) |ck+1

K |2
)1/2

.

Then, the uniform estimate (34) on nT obtained in Proposition 3.1 allows to con-
clude. ��

4 Convergence of the finite volume scheme

In this section, we show the convergence of the approximate solutions (nT , cT )T
to a global solution (n, c) to the PKS system (1),(3). The key point is to pass to the
limit in the numerical scheme (8) and to treat the nonlinear term. For this purpose
the strong compactness of (nT )T is required.

Proposition 4.1 There are a subsequence of (nT , cT )T (not relabeled) and a cou-
ple of nonnegative functions n ∈ L2(0, T ; H1(�)) and c ∈ L∞(0, T ; H1(�))
such that

cT ⇀ c, weakly in L∞(0, T ; L2(�)),

DcT ⇀ ∇c, weakly in L∞(0, T ; L2(�))

and

nT → n, strongly in L2(�T ))

DnT ⇀ ∇n, weakly in L2(�T );
as the parameter δ (mesh size) goes to zero.
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Proof We first introduce the space

X p(�) =
{

u ∈ L p(�); ∀ω ⊂ �, sup
η

∥
∥
∥
∥

u(· + η)− u(·)
|η|1/2

∥
∥
∥
∥

L2(ω)

< +∞
}

.

(44)

From [2, Corollary IV.26], we can prove that X p(�) is included in L2(�) with
compact embedding for p > 2.

Let us first consider the set of approximate solutions (nT )T and prove that it is
bounded in L2(0, T ; X3(�)). On the one hand we have shown in Proposition 3.1
that nT is bounded in L∞(0, T ; L2(�)) uniformly with respect to the mesh size
δ and from the discrete Sobolev–Gagliardo–Nirenberg inequality established in
(40), there exists a constant C > 0, only depending on � and n0, such that

‖nT (·, ·)‖L3(�T )
≤ C.

On the other hand, following the classical proof of [7, Theorem 3.7], we show that
for all compact set ω ⊂ � and η such that |η| < d(ω,�c)

MT −1∑

k=0

�t‖nT (t, · + η)− nT (t, ·)‖2
L2(ω)

≤ |η| (|η| + 2 h)
MT −1∑

k=0

�t ‖nT ‖2
1,T .

Thus, using the uniform estimate on the discrete H1(�)-norm of nT (34) given in
Proposition 3.1, we prove that there exists a constant C > 0, only depending on �
and n0, such that for |η| small enough

MT −1∑

k=0

�t ‖nT (t, · + η)− nT (t, ·)‖2
L2(ω)

≤ C |η|.

Therefore, the set of approximate solutions nT for all admissible mesh T is bounded
in L2(0, T ; X3(�)). Moreover, using the discrete scheme (8) and for all ϕ ∈
H4(�); we denote by ϕK the average of ϕ in the control volume K and show that

∑

K∈T
m(K )(nk+1

K − nk
K ) ϕK ≤ �t

2

∑

K∈T

∑

σ∈EK

τσ

(
|Dnk+1

K ,σ |

+χ nk+1
K |Dck+1

K ,σ |
)

|DϕK ,σ |
≤ �t

(‖nT ‖1,T ‖ϕT ‖1,T
+χ ‖nT ‖L3(�T )

‖cT ‖1,T ‖DϕT ‖L6(�T )

)

≤�t
(‖nT ‖1,T + χ‖nT ‖L3(�T )

‖cT ‖1,T
) ||ϕ||H4(�).

Then, we sum over k ∈ {0, . . . ,MT − 1} and apply the Holder inequality with the
results (34) of Proposition 3.1 and (43) of Proposition 3.2, which establish uniform
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bounds on nT and cT . Finally, we get the following estimate: there exists a constant
C > 0, only depending on � and n0, such that

MT −1∑

k=0

∑

K∈T
m(K )(nk+1

K − nk
K ) ϕK ≤ C

⎛

⎝
T∫

0

||ϕ(t)||2H4(�)
dt

⎞

⎠

1/2

. (45)

Using a time translate estimate on nT and this latter inequality, we prove that there
exists a constant C > 0, only depending on � and n0, such that for all τ ∈ (0, T )

T −τ∫

0

∫

�

[nT (t + τ, x)− nT (t, x)] ϕ(t, x) dxdt ≤ C τ ‖ϕ‖L2(0,T ; H4(�)),

which gives a uniform estimate of the time translation of nT in L2(0, T ; (H4(�))′).
Now, since nT is bounded in L2(0, T ; X3(�)), where X3(�) is included in L2(�)
with compact embedding and the uniform estimates of time translation of nT
in L2(0, T ; (H4(�))′) with L2(�) ⊂ (H4(�))′; we can apply the compactness
result of Simon [24] showing that there exists a subsequence of (nT )T (still labeled
(nT )T ) such that

nT → n, strongly in L2(�T ).

Moreover, DnT is also bounded in L2(�T ), then there exist a subsequence of
(DnT )T (still labeled (DnT )T ) and a function � ∈ L2(�T ) such that

DnT ⇀ �, weakly in L2(�T ).

We refer to [3, Lemma 4.4] to prove that � = ∇n.
Finally, the uniform bound on the discrete L2(0, T ; H1(�)) norm of cT , ob-

tained in Proposition 3.2, gives compactness in L2(�T ) for cT and DcT given
by the definitions (11) and (12). Thus, there exist a subsequence of (cT )T (still
labeled (cT )T ) and a couple of functions (c, γ ) ∈ (L∞(0, T ; L2(�)))2 such that

cT ⇀ c, weakly in L∞(0, T ;L2(�)), DcT ⇀ γ, weakly inL∞(0, T ; L2(�)).

We also refer to [3, Lemma 4.4] to prove that γ = ∇c. ��

From Proposition 4.1, the convergence of the scheme is now the main task. It
will be achieved for the Poisson equation and the continuity equations in Proposi-
tions 4.2 and 4.3 separately. In particular, it implies the results of Theorem 2.2.

Proposition 4.2 The nonnegative functions n and c defined in Proposition 4.1 sat-
isfy the Poisson equation in the sense of (26) with Neumann boundary condition.

Proof Let ψ ∈ C2(�T ) be a test function and ψk
K = ψ(tk, xK ) for all K ∈ T and

k = 0,…,MT − 1. We introduce:

F10(δ) = −
∫

�T

DcT · ∇ψ dxdt and F20(δ) =
∫

�T

(nT − cT ) ψ dxdt
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On the one hand, from the weak convergence of (DcT )T to ∇c and the weak
convergence of nT − cT to n − c in L2 (�T ), as δ goes to zero, obtained in
Proposition 4.1, we have

F10(δ)+ F20(δ) → −
∫

�T

∇c · ∇ψ dxdt +
∫

�T

(n − c) ψ dxdt, as δ → 0.

On the other hand, multiplying the scheme (9) by �t ψk
K and summing for K and

k, we get

F1(δ)+ F2(δ) = 0,

with

F1(δ) = �t
MT −1∑

k=0

∑

K∈T

∑

σ∈EK

τσ Dck+1
K ,σ ψ

k
K ,

F2(δ) = �t
MT −1∑

k=0

∑

K∈T
m(K )(nk+1

K − ck+1
K ) ψk

K .

Now, we prove the limits Fj (δ)− Fj0(δ) → 0 as δ → 0 for j = 1, 2, which imply
that the functions (n, c) satisfy the Poisson equation (26). We start with j = 2.

A straightforward computation gives

F2(δ)− F20(δ) =
MT −1∑

k=0

∑

K∈T

tk+1∫

tk

∫

K

(nk+1
K − ck+1

K ) (ψk
K − ψ(t, x)) dxdt.

Since (nT )T and (cT )T are uniformly bounded in L2(�T ) and ψ is smooth, it is
easy to obtain

|F2(δ)− F20(δ)| ≤ (
T ‖ψ‖C1(�T )

[‖nT ‖L2(�T )
+ ‖cT ‖L2(�T )

])
δ,

which yields F2(δ)− F20(δ) → 0 as δ → 0.
Next, using the definition of Dck+1

K |L and the symmetry of K |L , we have

F1(δ) = −�t

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK

τσ Dck+1
K ,σ Dψk

K ,σ .

Let us rewrite F10(δ) as

F10(δ) = −1

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK

tk+1∫

tk

∫

Tσ

DcT · ∇ψ dxdt.
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Therefore, by the definition of τσ and DcT ,

F1(δ)− F10(δ)

= − 1

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK
σ=K |L

m(σ ) Dck+1
K ,σ

tk+1∫

tk

(
Dψk

K ,σ

d(xK , xL)

− 1

m(Tσ )

∫

Tσ

∇ψ · νK ,σ dx

)

dt.

On the one hand, since the straight line (xK ,xL ) is orthogonal to σ , we have
xK −xL = d(xK , xL) νL ,K . It follows from the regularity of ψ that

Dψk
K ,σ

d(xK , xL)
= ∇ψ(tk, xL)+ O(h) = ∇ψ(t, x) · νK ,σ

+O(δ), (t, x) ∈ [tk, tk+1)× Tσ .

By taking the mean value over Tσ , there exists a constant C > 0, only depending
on ψ , such that

∣
∣
∣
∣
∣
∣
∣

tk+1∫

tk

⎛

⎜
⎝

Dψk
K ,σ

d(xK , xL)
− 1

m(Tσ )

∫

Tσ

∇ψ · νK ,σ dx

⎞

⎟
⎠ dt

∣
∣
∣
∣
∣
∣
∣
≤ C�t δ.

On the other hand, since the mesh T is regular, there exists a constant C > 0, only
depending on the dimension of the domain and the geometry of T , such that for
σ = K |L

d(xK , xL)m(σ ) ≤ Cm(Tσ ).

Using the definition of τσ , we then have

m(σ )|ck+1
L − ck+1

K | = √
τσ |ck+1

L − ck+1
K |√d(xK , xL)m(σ ),

≤ √
τσ |ck+1

L − ck+1
K |√C m(Tσ ).

Hence, applying the Cauchy–Schwarz inequality and using the discrete L∞(0, T ;
H1(�)) estimate established in Proposition 3.2, we obtain

|F1(δ)− F10(δ)| ≤ C δ,

where C > 0 is a constant. This shows that F1(δ)− F10(δ) → 0 as δ → 0. ��

Proposition 4.3 The functions n and c defined in Proposition 4.1 satisfy the conti-
nuity equation in the sense of (25) with Neumann boundary conditions. Moreover,

∫

�

n(t, x)dx =
∫

�

n0(x)dx; t ∈ R+.
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Proof Let ψ ∈ C2(�T ) be a test function. We define

G10(δ) = −
∫

�T

nT
∂ψ

∂t
dxdt −

∫

�

nT (0, x)ψ(0, x) dx,

G20(δ) =
∫

�T

DnT · ∇ψ dx dt,

G30(δ) = −χ
∫

�T

nT DcT · ∇ψ dxdt

and

ε(δ) = − [G10(δ)+ G20(δ)+ G30(δ)] .

Let ψk
K = ψ(tk, xK ) for all K ∈ T and k = 0,1,...,MT . Multiplying the scheme

(8) by �t ψk
K and summing for K and k, we obtain

G1(δ)+ G2(δ)+ G3(δ) = 0,

where

G1(δ) =
MT −1∑

k=0

∑

K∈T
m(K )(nk+1

K − nk
K )ψ

k
K ,

G2(δ) = −�t
MT −1∑

k=0

∑

K∈T

∑

σ∈EK

τσ Dnk+1
K ,σ ψ

k
K ,

G3(δ) = �t χ
MT −1∑

k=0

∑

K∈T

∑

σ∈EK
σ=K |L

τσ

[
(Dck+1

K ,σ )
+ nk+1

K − (Dck+1
K ,σ )

−nk+1
L

]
ψk

K .

From the weak convergence of the sequences (DcT )T to ∇c and the strong con-
vergence of the sequence (nT )T to n in L2(�T ), it is easy to see that,

ε(δ) →
∫

�T

(

n
∂ψ

∂t
− ∇n · ∇ψ + n∇c · ∇ψ

)

dxdt

+
∫

�

n0(x)ψ(0, x)dx, as δ → 0.

Therefore, it remains to show that ε(δ) converges to zero as δ goes to zero, which
will be achieved from the limits: G j (δ)− G j0(δ) converges to zero for j = 1,2,3.

In view of the expression of G2(δ) and G20(δ), it is easy to see that the proof
of G2(δ) − G20(δ) converges to zero is similar to the study of F1(δ) − F10(δ) in
Proposition 4.2. Hence, we only show G1(δ)− G10(δ) and G3(δ)− G30(δ) go to
zero.
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For the first limit, we have

G1(δ) =
MT −1∑

k=0

∑

K∈T
m(K )nk+1

K (ψk
K − ψk+1

K )−
∑

K∈T
m(K ) n0

Kψ
0
K

= −
MT −1∑

k=0

∑

K∈T

tk+1∫

tk

∫

K

nk+1
K

∂ψ

∂t
(t, xK )dxdt −

∑

K∈T

∫

K

n0
Kψ(0, xK )dx,

G10(δ) = −
MT −1∑

k=0

∑

K∈T

tk+1∫

tk

∫

K

nk+1
K

∂ψ

∂t
dxdt −

∑

K∈T

∫

K

n0
Kψ(0, x)dx .

Hence, it follows from the regularity of ψ that

|G1(δ)− G10(δ)| ≤ [
(T + 1)m(�) ‖nT ‖L2(�T )

‖ψ‖C2(�T )

]
h → 0, as δ → 0.

For the second limit, we set σ = K |L and using the relation

(Dck+1
K ,σ )

+ nk+1
K − (Dck+1

K ,σ )
−nk+1

L = 1

2
|Dck+1

K ,σ | (nk+1
K − nk+1

L )

+1

2
Dck+1

K ,σ (n
k+1
K + nk+1

L ),

we may write G3(δ) = G31(δ)+ G32(δ), with

G31(δ) = −χ �t

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK

τσ |Dck+1
K ,σ | Dnk+1

K ,σ ψ
k
K ,

= χ �t

4

MT −1∑

k=0

∑

K∈T

∑

σ∈EK

τσ |Dck+1
K ,σ |Dnk+1

K ,σ ) Dψk
K ,σ ,

G32(δ) = χ �t

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK
σ=K |L

τσ Dck+1
K ,σ (n

k+1
K + nk+1

L ) ψk
K ,

= −χ �t

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK

τσ Dck+1
K ,σ nk+1

K Dψk
K ,σ .

From the definition of nT , we also have

G30(δ) = −
MT −1∑

k=0

∑

K∈T

∑

σ∈EK

tk+1∫

tk

∫

Tσ

nT DcT · ∇ψ dxdt,

= G310(δ)+ G320(δ)
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with

G310(δ) = −1

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK
σ=K |L

tk+1∫

tk

∫

SL ,σ

Dnk+1
K ,σ − DcT · ∇ψ dxdt,

G320(δ) = −1

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK

tk+1∫

tk

∫

Tσ

nk+1
K DcT · ∇ψ dxdt,

where SL ,σ = L ∩ Tσ . Therefore, the convergence result follows if we prove that
G31, G310(δ) → 0 and |G32(δ) − G320(δ)| → 0 as δ → 0. First of all, by the
Cauchy–Schwarz inequality and using the results of Propositions 3.1 and 3.2, we
obtain

|G31(δ)| ≤ χ h

4
‖ψ‖C1 ‖nT ‖1,T ‖cT ‖1,T → 0, as δ → 0.

Next, noting that from (12), DcT = d(xK ,xL )
m(Tσ )

DcK ,σ · νK ,σ in Tσ and SL ,σ ⊂ Tσ ,
we obtain again from the Cauchy–Schwarz inequality,

|G310(δ)| ≤ χ

2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK
σ=K |L

d(xK , xL) τσ |Dck+1
K ,σ | |Dnk+1

K ,σ | ‖ψ‖C1 ,

≤ χ h ‖ψ‖C1 ‖nT ‖1,T ‖cT ‖1,T , as δ → 0.

Finally,

G32(δ)− G320(δ) = −χ
2

MT −1∑

k=0

∑

K∈T

∑

σ∈EK

m(σ ) nk+1
K Dck+1

K ,σ

tk+1∫

tk

(
Dψk

K ,σ

d(xK , xL)

− 1

m(Tσ )

∫

Tσ

∇ψ · νK ,σdx

)

dt.

Using the L2(0, T ; X3(�)) bound for nT and cT , we obtain G32(δ) − G320(δ)
converges to zero as δ goes to zero similarly to that of F1(δ)-F10(δ) → 0. This
ends the proof of Theorem 2.2. ��

5 Numerical Simulations

In [4,21], the authors formulated the following conjecture for the solution to (1),(2)
in dimension 2:

• the density n cannot form a δ function if the total density in � is less than a
critical number d�.

• density n can form a δ function singularity if the total density in � is larger
than a critical number D�.
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In the recent years, one was led to believe that the equality d� = D� should
hold for the critical values mentioned in the conjecture. In [13], Herrero and Ve-
lazquez showed the existence of radially symmetric solutions to (1),(2), which
blow-up at the center of the disk in finite time provided that

n0 χ > 8π, n0 = 1

|�|
∫

�

n0(x) dx .

Moreover in the 2D case, assuming that 4π < χ n0 < 8π , Hortsmann showed that
under the additional assumption that the solution to (1)–(2) blows-up, the function
c has to blow-up at the boundary of the domain.

We present several numerical results to observe the evolution of cell density
bumps under the influence of a chemoattractant given by the system (1),(2) in
dimension two using the finite volume method (8)–(10). The initial datum is a
Gaussian function

Fig. 1 Initial datum with a radial symmetry: n0 = 10π , evolution of the numerical solution at
time t = 0.04, t = 0.09, t = 0.13 and t = 0.18
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n0(x, y) = n0

2π T
exp

(

− (x − x0)
2 + (y − y0)

2

2T

)

,

where T = 5 × 10−3, the total mass is n0 = 10π and the domain is the box
(−1/2, 1/2) × (−1/2, 1/2). The time step is �t = 1 × 10−3 and the number of
points is 100 × 100.

On the one hand, we choose a radially symmetric solution (x0, y0) = (0, 0),
for which we know that the solution blows-up at finite time. We solve the sys-
tem (1),(2) without boundary conditions. (We choose the domain large enough to
avoid boundary condition effect.) This first test is performed to check the ability
of the method to recover blowing-up solutions. In Fig. 1, the cell density is plotted
at different times and we observe that, as expected, the solution blows-up at the
center of the domain (0, 0).

On the other hand, we choose a nonsymmetric initial Gaussian (x0, y0) =
(0.1, 0.1) with the same initial mass as before. In this case, the solution moves to

Fig. 2 Nonsymmetric initial datum: n0 = 10π , evolution of the cell density n at time t = 0.03,
t = 0.06, t = 0.09 and t = 0.12
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the boundary and finally also blows-up, but now at the boundary (see Fig. 2). Let
us remark that in [19], the author solved the same system with Dirichlet boundary
conditions for c and observed that the solution always blows-up inside the domain
but not at the center. We also have performed such simulations which agree well
with these results. Thus, from these different numerical results, it seems that bound-
ary conditions have a strong influence on the solution and on the localization of
the blow-up.

Finally, in [13] it is proven that for intermediate mass

4π ≤ n0 ≤ 8π,

if the solution blows-up it is necessary at the boundary. We illustrate this result in
Fig. 3 with the same nonsymmetric initial datum as before, but with the total mass
n0 = 6π . Then, the solution first hesitates between converging to a steady state
or blowing-up and finally moves to the boundary to blow-up. We also observe that

Fig. 3 Blow-up at the boundary for n0 = 6π : time evolution of the cell density at time t = 0.07,
t = 0.14, t = 0.21 and t = 0.28
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the blow-up is always point-wise for this system. Moreover, the corners seem to
be more attractive for the blow-up.

Acknowledgments The author thanks ananymous referees for useful comments on the proof of
Lemma 3.2 and Clément Mouhot for enlightening discussions.
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