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SOLVING THE BOLTZMANN EQUATION IN N log2 N∗

FRANCIS FILBET† , CLÉMENT MOUHOT‡ , AND LORENZO PARESCHI§

Abstract. In [C. Mouhot and L. Pareschi, “Fast algorithms for computing the Boltzmann colli-
sion operator,” Math. Comp., to appear; C. Mouhot and L. Pareschi, C. R. Math. Acad. Sci. Paris,
339 (2004), pp. 71–76], fast deterministic algorithms based on spectral methods were derived for the
Boltzmann collision operator for a class of interactions including the hard spheres model in three
dimensions. These algorithms are implemented for the solution of the Boltzmann equation in two
and three dimensions, first for homogeneous solutions, then for general nonhomogeneous solutions.
The results are compared to explicit solutions, when available, and to Monte Carlo methods. In
particular, the computational cost and accuracy are compared to those of Monte Carlo methods as
well as to those of previous spectral methods. Finally, for inhomogeneous solutions, we take advan-
tage of the great computational efficiency of the method to show an oscillation phenomenon of the
entropy functional in the trend to equilibrium, which was suggested in the work [L. Desvillettes and
C. Villani, Invent. Math., 159 (2005), pp. 245–316].
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1. Introduction. The construction of approximate methods of a solution for the
Boltzmann equation has a long history and can be traced back to Hilbert, Chapmann,
and Enskog [13] at the beginning of the last century. The mathematical difficulties
related to the Boltzmann equation make it extremely difficult, if not impossible, to
determine analytic solutions in most physically relevant situations. Only in recent
years, starting in the 1970s with the pioneering works by Chorin [14] and Sod [46],
has the problem been tackled numerically with particular care given to accuracy
and computational cost. Even nowadays the deterministic numerical solution of the
Boltzmann equation still represents a challenge for scientific computing.

Most of the difficulties are due to the multidimensional structure of the colli-
sional integral, since the integration runs on a highly dimensional unflat manifold.
In addition the numerical integration requires great care since the collision integral
is at the basis of the macroscopic properties of the equation. Further difficulties are
represented by the presence of stiffness, such as the case of small mean free path [24]
or the case of large velocities [19].

For such reasons realistic numerical simulations are based on Monte Carlo tech-
niques. The most famous examples are the direct simulation Monte Carlo (DSMC)
methods by Bird [3] and Nanbu [36]. These methods guarantee efficiency and preser-
vation of the main physical properties. However, avoiding statistical fluctuations in
the results becomes extremely expensive in the presence of nonstationary flows or
when close to continuum regimes.
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Among deterministic approximations, perhaps the most popular method is rep-
resented by the so-called discrete velocity models (DVM) of the Boltzmann equation.
These methods [29, 45, 6, 10, 39] are based on a Cartesian grid in velocity and on a
discrete collision mechanism on the points of the grid that preserves the main phys-
ical properties. Unfortunately DVM are not competitive with Monte Carlo methods
in terms of computational cost, and their accuracy seems to be less than first or-
der [37, 38, 39]. In this work we are interested in high-order deterministic methods
and therefore we shall not discuss algorithms based on DVM. We refer the reader to
the work in preparation [34].

More recently a new class of numerical methods based on the use of spectral
techniques in the velocity space has been developed. The methods were first derived
in [40], inspired from spectral methods in fluid mechanics [11] and by previous works
on the use of Fourier transform techniques for the Boltzmann equation (see [5], for
instance). The numerical methods are based on approximating the distribution func-
tion by a periodic function in the phase space and on its representation by Fourier
series. The resulting Fourier–Galerkin approximation can be evaluated with a com-
putational cost of O(n2) (where n is the total number of discretization parameters in
velocity), which is lower than that of previous deterministic methods (but still larger
than that of Monte Carlo methods).

The new methods were further developed in [41, 43], where evolution equations
for the Fourier modes were explicitly derived and spectral accuracy of the methods
was proven. Strictly speaking these methods are not conservative, since they pre-
serve mass, whereas momentum and energy are approximated with spectral accuracy.
This trade-off between accuracy and conservation seems to be an unavoidable com-
promise in the development of numerical schemes for the Boltzmann equation (with
the noticeable exception of [28]).

We recall here that the spectral method has been applied also to nonhomogeneous
situations [20, 22]; to the Landau equation [19, 42], where fast algorithms can be
readily derived; and to the case of granular gases [35, 21]. For a recent introduction
to numerical methods for the Boltzmann equation and related kinetic equations we
refer the reader to [15]. Finally, let us mention that Bobylev and Rjasanow [7, 8] have
also constructed fast algorithms based on a Fourier transform approximation of the
distribution function.

In [33, 32] a fast spectral method was proposed for a class of particle interac-
tions, including pseudo-Maxwell molecules (in dimension 2) and hard spheres (in
dimension 3), on the basis of the previous spectral method together with a suitable
semidiscretization of the collision operator. This method permits us to reduce the
computational cost from O(n2) to O(n log2 n) without losing the spectral accuracy,
and thus making the method competitive with Monte Carlo. The principles and basic
features of this new method will be presented in the following sections.

The rest of the paper is organized as follows. Section 2 is devoted to a short
introduction on the Boltzmann equation and its physical properties. In section 3
we explain the principles of the different spectral algorithms used to compute the
collision operator. Several numerical results and comparisons to exact solutions as
well as to Monte Carlo methods are given in section 4. An application to a challenging
nonhomogeneous test case is finally given in section 5. Some final considerations close
the paper in the last section.

2. The Boltzmann equation. The Boltzmann equation describes the behavior
of a dilute gas of particles when the only interactions taken into account are binary
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elastic collisions. It reads as x ∈ Ω, v ∈ R
d, where Ω ⊂ R

d is the spatial domain
(d ≥ 2)

∂f

∂t
+ v · ∇xf = Q(f, f),

where f(t, x, v) is the time-dependent particles distribution function in the phase
space. The Boltzmann collision operator Q is a quadratic operator local in (t, x). The
time and position act only as parameters in Q and therefore will be omitted in its
description

Q(f, f)(v) =

∫
v∗∈Rd

∫
σ∈Sd−1

B(|v − v∗|, cos θ) (f ′
∗f

′ − f∗f) dσ dv∗.(2.1)

In (2.1) we used the shorthand f = f(v), f∗ = f(v∗), f
′ = f(v′), f ′

∗ = f(v′∗). The
velocities of the colliding pairs (v, v∗) and (v′, v′∗) are related by

v′ = v − 1

2

(
(v − v∗) − |v − v∗|ω

)
, v′∗ = v − 1

2

(
(v − v∗) + |v − v∗|ω

)
.

The collision kernel B is a nonnegative function which by physical arguments of
invariance depends only on |v− v∗| and cos θ = ĝ ·ω (where ĝ = (v− v∗)/|v− v∗|). In
this work we are concerned with short-range interaction models. More precisely we
assume that B is locally integrable. This assumption is satisfied by the hard spheres
(HS) model, which in dimension d = 3 is written as

B(|v − v∗|, cos θ) = |v − v∗|(2.2)

and is known as Grad’s angular cutoff assumption when it is (artificially) extended to
interactions deriving from power-law potentials. As an important benchmark model
for the numerical simulation we therefore introduce the so-called variable hard spheres
(VHS) model, which is written as

B(|v − v∗|, cos θ) = Cγ |v − v∗|γ ,(2.3)

for some γ ∈ [0, 1] and a constant Cγ > 0.
For this class of model, one can split the collision operator into

Q(f, f) = Q+(f, f) − L(f) f,

with

Q+(f, f) =

∫
Rd

∫
Sd−1

B(|v − v∗|, cos θ)f ′f ′
∗ dσ dv∗,(2.4)

L(f) =

∫
Rd

∫
Sd−1

B(|v − v∗|, cos θ)f∗ dσ dv∗.(2.5)

Boltzmann’s collision operator has the fundamental properties of conserving mass,
momentum, and energy∫

v∈Rd

Q(f, f)φ(v) dv = 0, φ(v) = 1, v, |v|2,
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and satisfies the well-known Boltzmann’s H theorem

− d

dt

∫
v∈Rd

f log f dv = −
∫
v∈Rd

Q(f, f) log(f) dv ≥ 0.

The functional −
∫
f log f is the entropy of the solution. Boltzmann’s H theorem im-

plies that any equilibrium distribution function, i.e., any function which is a maximum
of the entropy, has the form of a locally Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp

(
−|u− v|2

2T

)
,(2.6)

where ρ, u, T are the density, mean velocity, and temperature of the gas, defined,
respectively, by

ρ =

∫
v∈Rd

f(v)dv, u =
1

ρ

∫
v∈Rd

vf(v)dv, T =
1

dρ

∫
v∈Rd

|u− v|2f(v)dv.(2.7)

For further details on the physical background and derivation of the Boltzmann equa-
tion we refer to [13] and [49].

3. The spectral methods. In this section we shall explain the principles of the
algorithms for computing the collision integral for a fixed value of the spatial variable
x. Indeed, it is well known that one can reduce to this case by some splitting strategy
(see [41, 20], for example).

3.1. A general framework. We consider the spatially homogeneous Boltzmann
equation written in the general form

∂f

∂t
= Q(f, f),(3.1)

where Q is given by

Q(f, f) =

∫
{(y,z)∈C}

B(y, z)
(
f ′f ′

∗ − f∗f
)
dy dz, v ∈ R

d,(3.2)

with

v′ = v + Θ′(y, z), v′∗ = v + Θ′
∗(y, z), v∗ = v + Θ∗(y, z).

In the equations above, C is some given unbounded domain, and Θ, Θ′, Θ′
∗ are suitable

functions, to be defined later. This general framework emphasizes the translation
invariance property of the collision operator, which is crucial for the spectral methods.
We will explain more precisely in the next paragraphs some changes of variables which
allow us to reduce the classical operator (2.1) to the form (3.2).

A problem associated with deterministic methods which use a fixed discretization
in the velocity domain is that the velocity space is approximated by a finite region.
Physically the domain for the velocity is R

d, and the property of having compact
support is not preserved by the collision operator. In general the collision process
spreads the support by a factor of

√
2 in the elastic case (see [44, 31] and also [30] for

similar properties in the inelastic case). As a consequence, for the continuous equation
in time, the function f is immediately positive in the whole domain R

d. Thus, at the
numerical level, some nonphysical condition has to be imposed to keep the support
of the function in velocity uniformly bounded. In order to do this there are two main
strategies.
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• One can remove the physical binary collisions that will lead outside the
bounded velocity domain, which means a possible increase of the number of
local invariants (that is, the functions ϕ such that (ϕ′

∗ + ϕ′ − ϕ∗ − ϕ) is zero
everywhere on the domain). If this is done properly (i.e., without removing
too many collisions), the scheme remains conservative (and without spuri-
ous invariants). However, this truncation breaks down the convolution-like
structure of the collision operator, which requires the translation invariance
in velocity. Indeed, the modified collision kernel depends on v through the
boundary conditions. This truncation is the starting point of most schemes
based on DVM in a bounded domain.

• One can add some nonphysical binary collisions by periodizing the function
and the collision operator. This implies the loss of some local invariants (some
nonphysical collisions are added). Thus the scheme is no longer conservative,
except for the mass if the periodization is done carefully. In this way the
structural properties of the collision operator are maintained and thus they
can be exploited to derive fast algorithms. This periodization is the basis of
the spectral methods.

Therefore, we consider the space homogeneous Boltzmann equation in a bounded
domain in velocity DT = [T ;T ]d (0 < T < ∞). We need to truncate the integration
in y and z, since periodization would yield an infinite result if not. Thus we set y and
z to belong to some truncated domain CR ⊂ C (the parameter R refers to its size and
will be defined later). For a compactly supported function with support included in
BS , the ball centered at 0 with radius S > 0, one has to prescribe suitable relations
(depending on the precise change of variable and truncation chosen) between S,R, T
in order to retain all possible collisions and at the same time prevent intersections of
the regions, where f is different from zero (dealiasing condition). Then the truncated
collision operator reads

QR(f, f) =

∫
CR

B(y, z)
(
f ′
∗ f

′ − f∗ f
)
dy dz(3.3)

for v ∈ DT (the expression for v ∈ R
d is deduced by periodization). By making some

changes of variable on v, one can easily prove for the two choices of variables y, z in
the next subsections that for any function ϕ periodic on DT the following weak form
is satisfied:∫

DT

QR(f, f)ϕ(v) dv =
1

4

∫
DT

∫
CR

B(y, z) f∗ f (ϕ′
∗ + ϕ′ − ϕ∗ − ϕ) dy dz dv.(3.4)

Now we use the representation QR to derive spectral methods. Hereafter we use
just one index to denote the d-dimensional sums with respect to the vector k =
(k1, . . . , kd) ∈ Z

d, and hence we set

N∑
k=−N

:=

N∑
k1,...,kd=−N

.

The approximate function fN is represented as the truncated Fourier series

fN (v) =

N∑
k=−N

f̂k e
i π
T k·v,(3.5)

f̂k =
1

(2T )d

∫
DT

f(v) e−i π
T k·v dv.
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In a Fourier–Galerkin method the fundamental unknowns are the coefficients f̂k, k =
−N, . . . , N . We obtain a set of ODEs for the coefficients f̂k by requiring that the
residual of (3.3) be orthogonal to all trigonometric polynomials of degree less than N .
Hence for k = −N, . . . , N

∫
DT

(
∂fN
∂t

−QR(fN , fN )

)
e−i π

T k·v dv = 0.(3.6)

By substituting expression (3.5) in (3.4) we get

QR(fN , fN ) = QR,+(fN , fN ) − LR(fN ) fN ,

with

LR(fN ) fN =

N∑
l=−N

N∑
m=−N

β(m,m) f̂l f̂mei
π
T (l+m)·v,(3.7)

QR,+(fN , fN ) =

N∑
l=−N

N∑
m=−N

β(l,m) f̂l f̂mei
π
T (l+m)·v,(3.8)

where

β(l,m) =

∫
CR

B(y, z)ei
π
T (l·Θ′(y,z)+m·Θ′

∗(y,z)) dy dz.(3.9)

The spectral equation is the projection of the collision equation in PN , the (2N +
1)d-dimensional vector space of trigonometric polynomials of degree at most N in
each direction, i.e.,

∂fN
∂t

= PN QR(fN , fN ),

where PN denotes the orthogonal projection on PN in L2(DT ). A straightforward
computation leads to the following set of ODEs on the Fourier coefficients

∂f̂k
∂t

=

N∑
l+m=k
l,m=−N

β̂(l,m) f̂l f̂m,(3.10)

where β̂(l,m) are the so-called kernel modes, given by

β̂(l,m) = β(l,m) − β(m,m),

with the initial condition

f̂k(0) =
1

(2T )d

∫
DT

f0(v) e
−i π

T k·v dv.(3.11)
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3.2. Classical spectral methods. In the classical spectral method [41], a sim-
ple change of variables in (2.1) permits us to write

Q(f, f) =

∫
Rd

∫
Sd−1

Bc(g, ω)
(
f(v′)f(v′∗) − f(v)f(v∗)

)
dω dg,(3.12)

with g = v − v∗ ∈ R
d, ω ∈ S

d−1, and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′ = v − 1
2 (g − |g|ω) =: v + Θ′(g, ω),

v′∗ = v − 1
2 (g + |g|ω) =: v + Θ′

∗(g, ω),

v∗ = v + g =: v + Θ∗(g, ω).

(3.13)

Finally, Bc is defined by

Bc(g, ω) = 2d−1
(
1 − (ĝ · ω)

)d/2−1
B
(
|g|, 2(ĝ · ω)2 − 1

)
.(3.14)

The Boltzmann operator (3.12) is now written in the form (3.2) with (y, z) =
(g, ω) ∈ R

d×Sd−1 =: C. Moreover, from the conservation of the momentum v′∗ +v′ =
v∗ + v and the energy |v′∗|2 + |v′|2 = |v∗|2 + |v|2, we get the following results [40],
assuming supp f ⊂ BS :

• We have supp Q(f, f) ⊂ B√
2S ;

• the collision operator is then given by

Q(f, f)(v) =

∫
B2S

∫
Sd−1

B(|g|, cos θ)
(
f(v′)f(v′∗) − f(v∗)f(v)

)
dω dg,

with v′, v′∗, v∗ ∈ B(2+
√

2)R.
As a consequence of this result, in order to write a spectral approximation to

(3.1) we consider the distribution function f restricted on [−T, T ]d (0 < T < +∞),
assuming f(v) = 0 on [−T, T ]d \ BS , and extend it by periodicity to a periodic
function on [−T, T ]d. We truncate the domain for (y, z) = (g, ω) as CR = BR × S

d−1

for R > 0 (thus defining QR). Following the previous discussion on the dealiasing
condition, we take R = 2S, and the shortest period can be restricted to [−T, T ]d,
with T ≥ (3 +

√
2)S/2 (for a more detailed discussion see [41]).

Then we apply the spectral algorithm (3.7), (3.8) and get the kernel modes
βc(l,m)

βc(l,m) =

∫
BR

∫
Sd−1

B(|g|, cos θ) e−i π
T (g· (l+m)

2 −i|g|ω· (m−l)
2 ) dω dg.(3.15)

We refer to [41, 22] for the explicit computation of Fourier coefficients βc(l,m) in the
VHS case, where B is given by (2.3). Now the evaluation of the right-hand side of
(3.10) requires exactly O(N2d) operations. We emphasize that the usual cost for a
DVM method based on Nd parameters for f in the velocity space is O(N2dM), where
M is the numbers of angle discretizations.

3.3. Fast spectral methods. Here we shall approximate the collision opera-
tor starting from a representation which conserves more symmetries of the collision
operator when one truncates it in a bounded domain. This representation was used
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in [7, 26] to derive finite differences schemes and is close to the classical Carleman
representation (cf. [12]). The basic identity we shall need is (for u ∈ R

d)

1

2

∫
Sd−1

F (|u|σ − u) dσ =
1

|u|d−2

∫
Rd

δ(2 y · u + |y|2)F (y) dy.(3.16)

Using (3.16) the collision operator (2.1) can be written as

Q(f, f)(v) = 2d−1

∫
x∈Rd

∫
y∈Rd

Bf (y, z) δ(y · z)(3.17)

×
(
f(v + z)f(v + y) − f(v + y + z)f(v)

)
dy dz,

with

Bf (y, z) = 2d−1 B

(
|y + z|,−y · (y + z)

|y||y + z|

)
|y + z|−(d−2).

Thus the collision operator is now written in the form (3.2), with (y, z) ∈ R
d×R

d =: C,
B(y, z) = Bf (y, z) δ(y · z), and v′∗ = v + z =: v + Θ′

∗(y, z), v
′ = v + y =: v + Θ′(y, z),

v∗ = v + y + z =: v + Θ∗(y, z).
Now we consider the bounded domain DT = [T, T ]d (0 < T < ∞) for the dis-

tribution f , and the bounded domain BR × BR for (y, z) (for some R > 0). If f
has support included in BS , S > 0, geometrical arguments similar to the one for
the classical spectral methods (see [41, 33, 32]) show that we can take R = 2S and
T ≥ (1 + 3

√
2)S/2 to get all collisions and prevent intersections of the regions, where

f is different from zero. The (truncated) operator now reads

QR(f, f)(v) =

∫
y∈BR

∫
z∈BR

Bf (y, z) δ(y · z) (f(v + z)f(v + y) − f(v + y + z)f(v)) dy dz

(3.18)

for v ∈ DT . This representation of the collision kernel yields better decoupling prop-
erties between the arguments of the operator. From now on we can apply the spectral
algorithm (3.7), (3.8) to this collision operator, and the corresponding kernel modes
are given by

βf (l,m) =

∫
y∈BR

∫
z∈BR

B̃(y, z) δ(y · z) ei π
T (l·y+m·z) dy dz.

In what follows we shall focus on βf , and one easily checks that βf (l,m) depends
only on |l|, |m|, and |l ·m|.

Remark 3.1. Note that the classical spectral method originates the following form
of the kernel modes in the y, z notation:

βc(l,m) =

∫
y∈BR

∫
z∈BR

Bf (y, z) δ(y · z)χ|y+z|≤R ei
π
T (l·y+m·z) dy dz.

One can notice that the condition |y + z|2 = |y|2 + |z|2 ≤ R2 couples the modulus
of y and z such that the ball is not completely covered (for instance, if y and z are
orthogonal both with modulus R, the condition is not satisfied, since |y+ z| =

√
2R).

This explains the better decoupling properties between the arguments of the collision
operator of this representation.
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4. Fast algorithms. The search for fast deterministic algorithms for the colli-
sion operator, i.e., algorithms with a cost lower than O(N2d+ε) (with typically ε = 1
for DVM, or ε = 0 for the classical spectral method), consists mainly of identifying
some convolution structure in the operator (see, for example, [8, 42]). The aim is to
approximate each βf (l,m) by a sum

βf (l,m) =

A∑
p=1

αp(l)α
′
p(m).(4.1)

This gives a sum of A discrete convolutions, and thus the algorithm can be computed
in O(ANd log2 N) operations by means of standard fast Fourier transform (FFT)
techniques [11]. To this purpose we shall use a further approximated collision operator,
where the number of possible directions of collision is reduced to a finite set. We start
from representation (3.18) and write y and z in spherical coordinates

QR(f, f)(v) =
1

4

∫
e∈Sd−1

∫
e′∈Sd−1

δ(e · e′) de de′

×
[∫ R

−R

∫ R

−R

ρd−2(ρ′)d−2Bf (ρ, ρ′)
(
f(v + ρ′e′) f(v + ρe)− f(v + ρ′e′ + ρe)f(v)

)
dρ dρ′

]

(note that thanks to the orthogonality condition imposed by the Dirac mass on y and
z, Bf depends only on the modulus of y and z). Let us denote by A a discrete set of
orthogonal couples of unit vectors (e, e′), which is even; i.e., (e, e′) ∈ A implies that
(−e, e′), (e,−e′), and (−e,−e′) belong to A (this property on the set A is required to
preserve the conservation properties of the operator). Now we define QR,A to be

QR,A(f, f)(v) =
1

4

∫
(e,e′)∈A

dA

×
[∫ R

−R

∫ R

−R

ρd−2(ρ′)d−2Bf (ρ, ρ′)
(
f(v+ ρ′e′) f(v + ρe)− f(v + ρ′e′+ ρe)f(v)

)
dρ dρ′

]
,

where dA denotes a discrete measure on A, which is also even in the sense that
dA(e, e′) = dA(−e, e′) = dA(e,−e′) = dA(−e,−e′). It is easy to check that QR,A has
the same conservation properties as QR. We make the decoupling assumption that

∀ y⊥z, Bf (y, z) = a(|y|) b(|z|).(4.2)

This assumption is obviously satisfied if Bf is constant. This is the case of Maxwellian
molecules in dimension d = 2 and hard spheres in dimension d = 3 (the most relevant
kernel for applications). Extensions to more general interactions are discussed in [33].

Let us describe the method in dimension d = 3 with Bf satisfying the decou-
pling assumption (4.2) (see [33] for other dimensions). First we change to spherical
coordinates

βf (l,m) =
1

4

∫
e∈S2

∫
e′∈S2

δ(e · e′)

×
[∫ R

−R

|ρ| a(ρ) ei π
T ρ(l·e) dρ

] [∫ R

−R

|ρ′| b(ρ′) ei π
T ρ′(m·e′) dρ′

]
de de′
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and then we integrate first e′ on the intersection of the unit sphere with the plane e⊥

βf (l,m) =
1

4

∫
e∈S2

φ3
R,a(l · e)

[∫
e′∈S2∩e⊥

φ3
R,b(m · e′) de′

]
de,

where

φ3
R,a(s) =

∫ R

−R

|ρ|a(ρ)ei π
T ρs dρ, φ3

R,b(s) =

∫ R

−R

|ρ|b(ρ)ei π
T ρs dρ.

Thus we get the following decoupling formula with two degrees of freedom:

βR(l,m) =

∫
e∈S2

+

φ3
R,a(l · e)ψ3

R,b(Πe⊥(m)) de,

where S2
+ denotes the half-sphere and

ψ3
R,b(Πe⊥(m)) =

∫ π

0

φ3
R,b

(
|Πe⊥(m)| cos θ

)
dθ,

and Πe⊥ is the orthogonal projection on the plane e⊥. In the particular case where
Bf = 1 (HS model), we can compute the functions φ3

R and ψ3
R

φ3
R(s) = R2

(
2 Sinc(Rs) − Sinc2(Rs/2)

)
, ψ3

R(s) =

∫ π

0

φ3
R

(
s cos θ

)
dθ.

Now the function e �→ φ3
R,a(l · e)ψ3

R,b(Πe⊥(m)) is periodic on S+
2 . Taking a spherical

parametrization (θ, ϕ) of e ∈ S2
+ and taking for the set A uniform grids of respective

size M1 and M2 for θ and ϕ we get

βf (l,m)  π2

M1 M2

M1,M2∑
p,q=0

αp,q(m)α′
p,q(l),

where

αp,q(l) = φ3
R,a(l · eθp,ϕq

), α′
p,q(m) = ψ3

R,b

(
Πe⊥θp,ϕq

(m)
)

and (θp, ϕq) = (pπ/M1, qπ/M2).
We consider this expansion with M = M1 = M2 to avoid anisotropy in the

computational grid. By using the FFT algorithm, the computational cost of the
algorithm is then O(M2N3 logN) (compared to O(M2N6) of a direct discretization
on the grid for a DVM method, and to O(N6) of the classical spectral method).

Let us finally mention that the mathematical analysis of the fast algorithm in [33]
provides the following results:

• It is spectrally accurate according to the parameters N and M ;
• the error on the conservation laws of momentum and energy is spectrally

small according to the parameter N , and no additional error (according to
the speed-up parameter M) is made.

These two properties were the main motivations for the development of the
method of [33] described above to obtain the decomposition (4.1). Other advantages
of this particular decomposition is that it does not introduce instability in the equa-
tion (see [33, Theorem 3.1], for instance) and it is naturally adaptive (as it is based
on the rectangular quadrature rule for approximating integrals of periodic functions).
Finally, another advantage of the proposed method is that it is still easy to implement
since it is based only on FFT.
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Fig. 1. Two-dimensional homogeneous case: evolution of the numerical L1 and L∞ relative
error of f(t, v).

5. Numerical results in the homogeneous case. In this section we will
present several numerical results for the space homogeneous equation which show
the improvement of the fast spectral algorithms with respect to the classical spectral
methods and how they compare with Monte Carlo methods. The time discretization
is performed by suitable Runge–Kutta methods.

5.1. Spatially homogeneous Maxwell molecules in dimension 2.

Comparison to exact solutions. We consider two-dimensional pseudo-Maxwell
molecules (i.e., the VHS model with γ = 0). In this case we have an exact solution
given by

f(t, v) =
exp(−v2/2S)

2π S2

[
2S − 1 +

1 − S

2S
v2

]
,

with S = 1 − exp(−t/8)/2, which corresponds to the well-known exact solution [4].
This test is performed to check spectral accuracy, by comparing the error at a given
time, when using nv = 8, 16, and 32 Fourier modes for each coordinate. We present
the results obtained by the classical spectral method and the fast spectral method
with different numbers of discrete angles.

Figure 1 shows the relative L∞, L1, and L2 norms of the difference between
the numerical and exact solutions as functions of time. These errors are computed
according to the formula

Ep =

(∑N
i=−N |fi(t) − f(vi, t)|p∑N

i=−N |f(vi, t)|p

)1/p

,

with i = (i1, i2) and N = nv/2 for p = 1 and p = 2. A similar expression is used
for the L∞ error. Note that the error increases initially and then decreases almost
monotonically in time. After a long time the error starts increasing again. This effect
is due to aliasing. Indeed, for a fixed computational domain, when the number of
Fourier modes increases, the effect of aliasing becomes dominant over the error due
to the spectral approximation. For this reason, the size of the domain is chosen in
order to minimize the aliasing error. A trade-off should be obtained between aliasing
and spectral error, which means that the size of the domain should be increased when
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Table 1

Comparison of the L1 error in two dimensions between the classical spectral method and the
fast spectral method with different numbers of discrete angles and with a second-order Runge–Kutta
time discretization at time Tend = 1.

Number of Classical Fast spectral Fast spectral Fast spectral
points spectral with M = 4 with M = 6 with M = 8

8 0.02013 0.02778 0.02129 0.02112
16 0.00204 0.00329 0.00238 0.00224
32 1.405E-5 2.228E-5 1.861E-5 1.772E-5

increasing the number of Fourier modes. Roughly speaking, the period should be
chosen in such a way that the two contributions of the error are of the same order
of magnitude. In this test, the radius of the ball, which defines the computational
domain, is T = 4 for nv = 8, T = 5 for nv = 16, and T = 7 for nv = 32. We refer to
[41] for a more detailed discussion about aliasing.

Concerning the comparison between the classical and fast spectral methods, we
observe that for a fixed value of nv, the numerical error of the classical spectral
method and of the fast algorithm is of the same order. Moreover, the influence of
the number of discrete angles is very weak. Indeed, with only M = 4, the results are
quite similar even for large nv and as expected the number of discrete angles does
not affect the variations of energy, which are of the same order of magnitude as the
numerical error (note that there is no variation for the momentum since in the special
case of even solutions, it is preserved at 0 by the spectral scheme). In Table 1, we
give a quantitative comparison of the numerical error E1 at time Tend = 1. We can
also observe the spectral accuracy for the classical and fast methods: the order of
accuracy is about 3 between 8 and 16 grid points, whereas it becomes 7 between 16
to 32 points.

Efficiency and accuracy. Now we still consider two-dimensional pseudo-Maxwell
molecules (i.e., γ = 0) with the initial datum

f(0, v) =
1

4π

[
exp

(
−|v − v0|2

2

)
+ exp

(
−|v + v0|2

2

)]
, v ∈ R

2,

where v0 = (1, 2). In this case, we do not know the exact solution but we want to
study the influence of the number of discrete angles on a nonisotropic solution. Thus,
this test is used to check the energy conservation and the evolution of high-order
moments of the solution.

The time step is chosen small enough to reduce the influence of the time dis-
cretization, i.e., Δt = 0.025. Moreover, the computational domain is taken large
enough with respect to the number of grid points in order to reduce the aliasing error
due to the periodization of the solution. Simulations are performed with nv = 16, 32,
and 64 points.

In Figure 2 the relaxation of the entropy and the temperature components for
the fast and classical spectral methods is shown. The energy is conserved by the
continuous collision operator, but when using the spectral method the total energy can
change with time, which is a good indicator of the accuracy of the numerical solution.
Indeed, the total discrete energy is not exactly conserved over time, but if the aliasing
error is small, it is conserved within spectral accuracy; typically here the variations are
about 10−4 when nv = 32. Moreover, we observe that the number of discrete angles
does not significantly affect the transient regime. For instance, with only four angles
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Fig. 2. Two-dimensional homogeneous case: relaxation of the entropy and the temperature
components for the fast and classical spectral methods with respect to the number of modes per
direction nv and the length box T .
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Fig. 3. Two-dimensional homogeneous case: time evolution of the variations of high-order
normalized moments M4, M5, and M6 of f(t, v) for the fast and classical spectral methods with
respect to the number of modes per direction nv and the length box T .

on the half-sphere, the relaxation of entropy and temperature components is very close
to the numerical solution obtained by the classical spectral method. Finally, we plot in
Figure 3 the time evolution of high-order moments of fN (t, v) given in discrete form by

Mk(t) = Δv2
N∑

l=−N

|vl|k fN (t, vl).

High-order moments give information on the accuracy of the approximate distribution
function tail. Once again, we observe that the number of angles does not affect the
results even if the solution is nonisotropic.

To conclude, we observe that in dimension d = 2, the fast algorithm is really
efficient in terms of accuracy and computational cost compared to the classical spectral
method. In Table 2 we report the computational times of the methods which show
a speed-up of the fast solver independently of the number of points used in our tests
and with a maximum speed-up reached for N = 64, where the fast methods with
M = 4 is more than 17 times faster than the classical method.

5.2. Spatially homogeneous hard spheres in dimension 3. In this section
we consider the three-dimensional HS molecules model. The initial condition is chosen
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Table 2

Comparison of the computational time in two dimensions between the classical spectral method
and the fast spectral method with different numbers of discrete angles and with a second-order Runge–
Kutta time discretization.

Number of Classical Fast spectral Fast spectral Fast spectral
points spectral with M = 4 with M = 6 with M = 8

16 2 sec. 40 1 sec. 15 1 sec. 70 2 sec. 30
32 38 sec. 01 5 sec. 55 8 sec. 47 11 sec. 10
64 616 sec. 35 sec. 50 54 sec. 66 71 sec. 27

Table 3

Comparison of the computational time in three dimensions between the classical spectral method
and the fast spectral method with different numbers of discrete angles and with a second-order Runge–
Kutta time discretization.

Number of Classical Fast spectral Fast spectral Fast spectral
points spectral with M = 4 with M = 6 with M = 8

16 1 min. 14 sec. 3 min. 31 sec. 7 min. 45 sec. 13 min. 44 sec.
32 118 min. 02 sec. 50 min. 31 sec. 105 min. 19 sec. 186 min. 18 sec.
64 125 h 54 min. 8 h 45 min. 22 sec. 21 h 39 min. 35 h 01 min. 28 sec.

as the sum of two Gaussians

f(v, 0) =
1

2(2πσ2)

[
exp

(
−|v − v0|2

2σ2

)
+ exp

(
−|v + v0|2

2σ2

)]
,

with σ = 1 and v0 = (2, 1, 0). The final time of the simulation is Tend = 3 and
corresponds approximately to the time for which the steady state of the solution is
reached. The time step is Δt = 0.1 and the length box is taken as T = 12 when
nv = 16 and as T = 15 when nv = 32.

This test is used to check the evolution of moments and particularly the stress
tensor Pi,j , i, j = 1, . . . , 3 defined as

Pi,j =

∫
R3

f(v)(vi − ui) (vj − uj) dv, (i, j) ∈ {1, 2, 3}2,

where (ui)i are the components of the mean velocity. As in the previous case, we
compare the classical and fast methods in terms of computational time (see Table 3)
and accuracy. In Figure 4, we propose the evolution of the temperature for the two
methods using 32 grid points in each direction. This solution is also compared with the
solution obtained from the Monte Carlo method. The discrete temperatures agree well
in this case and the efficiency of the fast algorithm is verified since the computational
time is highly reduced using only M1 = M2 = 4 discrete angles without affecting the
accuracy of the distribution function. We remark that in dimension d = 3 the speed-
up of the methods becomes really evident for large values of N . Again for N = 64
and M = 4 the fast method is more than 14 times faster.

Comparison with Monte Carlo. Finally, we compare the results obtained
with our spectral method with those obtained by a Monte Carlo scheme. We use a
standard version of Monte Carlo, which may be referred to as the Nanbu–Babovsky
scheme [36, 2].

In the case of Monte Carlo methods, the moments are computed by using unbiased
estimators averaged over several runs. The number of runs Nruns, number of particles
Np, and the time step Δt, have been chosen in such a way to balance the time
discretization error with statistical fluctuations.
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Fig. 4. Three-dimensional homogeneous case: comparison between the fast and classical spectral
methods and the Monte Carlo method for the temperature components relaxation.

The first run consists of taking a large number of particles and making time
averaging in order to minimize the fluctuation errors: Nruns = 103, Np = 104, and
Δt = 0.01. The total computational time for computing the evolution of moments in
this case is 113 min. 23 sec. On the other hand we perform a second run, where we
use more averaging to minimize fluctuation errors: Nruns = 5. 103, Np = 5. 103, and
Δt = 0.01. The computational time is now 100 min.

We remark that the computations have been obtained by using the HS model
(VHS with γ = 1), which is the most realistic. In this case, the computational time of
the Monte Carlo methods becomes larger than in the case when we consider pseudo-
Maxwell molecules (VHS with γ = 0) for which the collision kernel is constant and no
rejection is needed. For the spectral method the computational cost is independent
of the collision kernel.

From the comparison, it is obvious that, for three-dimensional computations,
the greater cost of the classical spectral scheme (with the same number of degrees
of freedom) is compensated by a much greater accuracy, allowing for better results
with the same computational cost. Moreover, with the fast algorithm, the spectral
scheme really becomes competitive in terms of computational time since the accuracy
is not affected when we use fewer discrete angles (for instance, M = 4). In Figure 5,
we compare the accuracy on the evolution of high-order moments with the different
methods: the fourth-order moments are very close, but the results obtained with
the Monte Carlo methods are affected by fluctuations on the tail of the distribution
function, which are difficult to remove (see the evolution of the eighth-order moment).
Note that for two- and three-dimensional pseudo-Maxwell molecules, comparisons had
also been performed between Monte Carlo methods and the classical spectral method
in [41, section 6.3].

5.3. Stability of spectral methods with respect to nonsmooth data. In
this subsection we perform some numerical simulations in order to study the behavior
of the spectral methods when applied to nonsmooth data. We consider the distribution

f0(v) =

{
1 if |v|2 ≤ 1,
0 else

and use a mollified initial datum, which suitably approximates moments. We perform
two numerical simulations using the fast spectral method with 322 and 642 grid points
and plot the evolution of the entropy and the fourth-order moment in Figure 6. Even
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Fig. 5. Three-dimensional homogeneous case: time evolution of the kinetic entropy H and
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Fig. 6. Time evolution of the kinetic entropy and the fourth-order moment with respect to the
number of grid points 322 and 642.

for this discontinuous initial datum, we observe that for the two configurations the
numerical entropy is decreasing and both numerical solutions converge to the same
steady state. Moreover, we plot the evolution of the distribution function with respect
to time in Figure 7: the fast spectral method is very stable for this numerical test
even if spurious oscillations are first generated; the distribution becomes smooth and
converges to an approximated Maxwellian. As expected from a Fourier–Galerkin
method, the accuracy degenerates in the discontinuity region. However, surprisingly
the method seems to remain stable.
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Fig. 7. Time evolution of the distribution function for 64 × 64 grid points.

Finally, let us mention that we have also performed some numerical tests when the
initial datum approximates a Dirac distribution. The spectral method is still stable
even if spurious oscillations are generated, but this problem is inherent to gridded
methods and we refer to [23] for a rescaling method, which follows the variation of
the distribution function and allows us to treat concentrated distributions.

6. Application to the nonhomogeneous case. In [20, 22], we performed sev-
eral numerical simulations to compare the spectral scheme with Monte Carlo methods
and showed that when we are interested in the transient regime, the deterministic
method becomes very efficient. Obviously, the fast spectral method will still improve
the computational cost.

In what follows, since we will be interested in the study of the trend to a global
equilibrium state of the kinetic equation, we avoid the use of a splitting method
by solving the whole nonhomogeneous equation in time by a second-order Runge–
Kutta method. Clearly the spectral methods apply straightforwardly to the collision
operator also in this situation. The transport part is treated by the positive flux
conservative method (see [18, 21, 20] for further details).

6.1. Definition of the problem. We consider the full Boltzmann equation in
dimension d = 2 on the torus

∂f

∂t
+ v · ∇xf = Q(f, f), x ∈ [0, L]2, v ∈ R

2,

with periodic boundary conditions in x. We first introduce the hydrodynamical fields
associated with a kinetic distribution f(t, x, v). These are the (d + 2) scalar fields of
density ρ (scalar), mean velocity u (vector valued), and temperature T (scalar) defined
by the formulas (2.7). Whenever f(t, x, v) is a smooth solution to the Boltzmann
equation with periodic boundary conditions, one has the global conservation laws for
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mass, momentum, and energy

d

dt

∫
[0,L]2×R2

f(t, x, v) dx dv = 0,

d

dt

∫
[0,L]2×R2

f(t, x, v) v dx dv = 0,

d

dt

∫
[0,L]2×R2

f(t, x, v)
|v|2
2

dx dv = 0.

Therefore, without loss of generality we shall impose∫
[0,L]2×R2

f(t, x, v) dx dv = 1,

∫
[0,L]2×R2

f(t, x, v) v dx dv = 0,

and ∫
[0,L]2×R2

f(t, x, v)
|v|2
2

dx dv = 1.

These conservation laws are then enough to uniquely determine the stationary state
of the Boltzmann equation: the normalized global Maxwellian distribution

Mg(v) =
1

2π
exp

(
−|v|2

2

)
.(6.1)

We shall use the following terminology: a velocity distribution of the form (6.1) will
be called a Maxwellian distribution, whereas a distribution of the form

Ml(x, v) =
ρ(x)

2πT (x)
exp

(
−|v − u(x)|2

2T (x)

)
(6.2)

will be called a local Maxwellian distribution (in the sense that the constants ρ, u, and
T appearing there depend on the position x). We also define the notion of relative
local entropy Hl, the entropy relative to the local Maxwellian, and the relative global
entropy Hg, the entropy relative to the global Maxwellian distribution, respectively,
by

Hl(t) =

∫
f log

(
f

Ml

)
dx dv, Hg(t) =

∫
f log

(
f

Mg

)
dx dv.

Our goal here is to investigate numerically the long-time behavior of the solution
f . If f is any reasonable solution of the Boltzmann equation, satisfying certain a pri-
ori bounds of compactness (in particular, ensuring that no kinetic energy is allowed
to leak at large velocities), then it is possible to prove that f does indeed converge to
the global Maxwellian distribution Mg as t goes to +∞. Of course, obtaining these
a priori bounds is extremely difficult; as a matter of fact, they have been estab-
lished only in the spatially homogeneous situation (which means that the distribution
function does not depend on the position variable x; see the survey in [49]) or in a
close-to-equilibrium setting (see in particular [25] for the torus), and it still constitutes
a famous open problem for spatially inhomogeneous initial data far from equilibrium.
More recently, Desvillettes and Villani [16] and Strain and Guo [47] were interested in
the study of rates of convergence for the full Boltzmann equation. Roughly speaking,
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in [16] it was proved that if the solution to the Boltzmann equation is smooth enough
and satisfies bounds from below of the form

∀ t ≥ 0, x ∈ [0, L]2, v ∈ R
2, f(t, x, v) ≥ K0 e

−A0 |v|q0 (A0,K0 > 0, q0 ≥ 2),

(although this bound can be shown to be a consequence of the regularity bounds;
see [31]), then (with constructive bounds)

‖f(t) −Mg‖ = O(t−∞),

which means that the solution converges almost exponentially fast to the global equi-
librium (namely, with polynomial rate O(t−r) with r as large as desired).

The solution f to the Boltzmann equation satisfies the formula of additivity of
the entropy: the entropy can be decomposed into the sum of a purely hydrodynamic
part and (by contrast) of a purely kinetic part. In terms of the H functional, one can
write

Hg(t) = Hl(t) +

∫ L

0

ρl(t, x) log

(
ρl(t, x)

Tl(t, x)

)
dx.

In fact, we can also show that

Hl(t) ≤ Hg(t) ∀t ≥ 0.

Moreover, the Csiszár–Kullback–Pinsker inequality asserts that (when the total mass
of the solution is normalized to 1)

H(f |M) ≥ 1

2
‖f −M‖2

L1 .

In other words, controlling the speed of convergence of the entropy to its equilibrium
value is enough to control the speed of convergence of the solution to its equilibrium
in a very strong sense.

Moreover, in [16] Desvillettes and Villani conjectured that time oscillations should
occur on the evolution of the relative local entropy. In fact their proof does not rule
out the possibility that the entropy production undergoes important oscillations in
time, and actually most of the technical work is caused by this possibility.

6.2. Description and interpretation of the results. Here we performed
simulations on the full Boltzmann equation in a simplified geometry (one dimension
of space, two dimensions of velocity, periodic boundary conditions, fixed Knudsen
number) with the fast spectral method to observe the evolution of the entropy and
to check numerically if such oscillations occur. Clearly this test is challenging for
a numerical method due to the high accuracy required to capture such oscillating
behavior.

Then we considered an initial datum as a perturbation of the global equilibrium
Mg

f0(x, v) =
1

2π
(1 + A0 cos(k0 x)) exp(−|v|2/2), x ∈ [0, L], v ∈ R

2,(6.3)

for some constants A0 > 0 and k0 = 2π/L.
In Figures 8 and 9, we are indeed able to observe oscillations in the entropy

production and in the hydrodynamic entropy. The strength of the oscillations de-
pends a lot on the length L of the domain, which is consistent with the fact that
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Fig. 8. Influence of the length box: relative entropy with respect to the local Maxwellian Hl(t)
using 64 × 64 × 64 for L= π, 2π, 3π, and 4π with A0 = 0.1 in (6.3).
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Fig. 9. Influence of the length box: relative entropy with respect to the local Maxwellian Hl(t)
using 64 × 64 × 64 for L= 2π, 3π, and 4π with A0 = 0.1 in (6.4).

such oscillations are never observed in the spatially homogeneous case (L = 0). The
superimposed curves yield the time evolution of the total H functional and of its
kinetic part, respectively. In all cases, a local Maxwellian distribution is chosen for
the initial datum; the first plot corresponds to L = 1 and the second one to L = 4.
Some slight oscillations can be seen in the case L = 1, but what is most striking is
that after a short while, the kinetic entropy is very close to the total entropy, which
is an indication that the solution evolves basically in a spatially homogeneous way
(contrary to the intuition of the hydrodynamic regime). On the contrary, in the case
L = 4, the oscillations are much more important in frequency and amplitude (note
that this is a logarithmic plot): the solution “hesitates” between states in which it
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Table 4

Influence of the length box: damping rate and oscillation frequency for the relative entropy with
respect to the local Maxwellian Hl(t) using 64 × 64 × 64 with A0 = 0.1 in (6.3).

Length box Oscillation frequency ω ω/L Damping rate α −αL2

L = π/2 01.10 0.701 −6.521 16.04
L = π 02.25 0.716 −2.202 21.71
L = 2π 04.50 0.716 −0.641 25.26
L = 3π 06.61 0.701 −0.285 25.31
L = 4π 08.78 0.699 −0.160 25.27
L = 8π 17.57 0.699 −0.040 25.35

is very close to hydrodynamic and states in which it is not at all. Further note that
the equilibration is much more rapid when the box is small and that the convergence
seems to be exponential.

It is in fact possible to give a simple interpretation of these oscillations thanks to
the work [17]. Since this effect is observed near the global equilibrium one can replace
the Boltzmann collision operator with the linearized Boltzmann collision operator
(moreover, oscillation is effectively observed for the linearized Boltzmann collision
operator as well). Then it is straightforward that the computations above correspond
to observing the time evolution of one Fourier mode in x (here with frequency k0

and amplitude A0). Hence by an obvious rescaling, this evolution is given by the
semigroup T̃k0/L(t), where T̃k(t) is defined in [17] (this is the semigroup for the kth
Fourier mode in x for the linearized equation). An asymptotic study of the spectrum
of its infinitesimal generator for small frequencies k was done in [17]. The dominant
term in terms of long-time behavior (i.e., the one with the lower rate of decrease) is
given by the (d + 2) “hydrodynamical eigenvalues.” Moreover, explicit computations
are available for the expansions of these eigenvalues according to ε = |k| near k = 0.

At first order in ε, the eigenvalues vanish, except for two of them, which are purely
imaginary. They are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I1 = i ε
√

1 + 2/d + O(ε2),

I2 = −i ε
√

1 + 2/d + O(ε2),

I3 = · · · = Id+2 = 0.

Therefore for |k0|/L << 1 (realized, for instance, when k0 is fixed and L is large
enough), this analysis gives us the dominant imaginary term in the eigenvalues. In
this regime, one should thus observe oscillations with frequency

√
1 + 2/d |k0|/L.

Thus, the period of oscillations should be given by 2π(1 + 2/d)−1/2 L/|k0|, which can
be checked with the numerical simulations. Indeed, in Table 4 we give the ratio of
the period of oscillations ω with the length box L. The numerical results agree well
with the analytical computations ω/L  1/

√
2.

We also observe that the damping rate is related to the length box and is pro-
portional to 1/L2 when L becomes large (see Table 4; αL2  constant). This is
coherent with the fact that no real value occurs in the hydrodynamical eigenvalues
until the second order in ε = |k|. The coefficients for the order 2 in the expansion
are computed in [17]; they are purely real and can be expressed simply in terms of
the dimension d, the viscosity coefficient η, and the heat conductivity λ of the gas
(indeed, these coefficients are related to the Navier–Stokes limit of the Boltzmann
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equation). Namely, they are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R1 = R2 = − λ

d + 2
− η

2
,

R3 = · · · = Rd+1 = − η d

2(d− 1)
,

Rd+2 = − λ d

d + 2
.

Therefore for |k0|/L << 1, the damping rate is given by the minimum among these
values.

To conclude these tests, we performed a final numerical experiment to evaluate
the robustness of the theory of the trend to equilibrium. We have chosen an initial
datum which is far from the equilibrium

f0(x, v) =
1

2πv2
th

(1 + A0 cos(k0 x))

[
exp

(
−|v − v0|2

2v2
th

)
+ exp

(
−|v + v0|2

2v2
th

)]
,

(6.4)

with v0 = (1/2, 1/2) and vth =
√

3/2. We present the time evolution of the relative
entropies Hl and Hg in log scale and observe that initially the entropy is strongly
decreasing, and when the distribution function becomes close to a local equilibrium,
some oscillations appear with the good frequency ω/L = 1/

√
2 and damping rate α

(see Figure 9).
Remarks.
1. Now numerical methods for the Boltzmann equation, such as the one presented

in this paper, become able to provide very accurate simulations of the transient regime
towards equilibrium with reasonable cost, even in the inhomogeneous case. This could
be used to explore numerically the spectrum of the linearized Boltzmann collision op-
erator (in the homogeneous case), or, more interestingly, the spectrum of the linearized
Boltzmann collision operator together with the transport term in the inhomogeneous
case. For instance, the exponential rate of convergence is directly readable on the
figures above and provides a numerical estimation of the spectral gap (that is, the real
part of the first nonzero eigenvalue) of this operator (it has been known since Ukai
[48] that this operator has a spectral gap in the torus; see also [13]). Moreover, by a
frequency analysis of the curve of the time evolution of the relative entropy or the L1

distance to the equilibrium, it could be possible also to describe other eigenvalues; as
long as they have a different imaginary part, it should be possible (in principle) to
extract from the frequency analysis the curve corresponding to their contribution in
the evolution semigroup, and then to compute their real part which corresponds to
the exponential rate of decay of this curve.

2. A recent work [27] gave a detailed pointwise study of the Green function for
the linearized Boltzmann equation in the domain x ∈ Ω = R. This particular study
shows that the long-time behavior is governed by “fluid-like waves” (corresponding
to the waves of the linearized Euler and Navier–Stokes equations) whose amplitude
decreases polynomially, whereas the amplitude of the “kinetic part” of the Green
function decreases exponentially. We think it is likely that this study could be ex-
tended to the torus, where the amplitude of both the fluid and the kinetic parts of
the Green function should decrease exponentially. Moreover, the rate of decay of the
kinetic part should not depend on the size of the box, whereas the rate of decay of the
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fluid part should. Hence for a box small enough, the long-time behavior should be
governed by the kinetic part of the Green function (that is, like the spatially homo-
geneous Boltzmann equation), whereas for a box big enough, the long-time behavior
should be governed by the fluid-like waves. This is precisely what we observe numer-
ically, and thus this theoretical study could provide a rigorous proof of the numerical
observations above, at least in the linearized regime.

7. Conclusions. In this paper we have introduced and deeply tested a class of
new fast algorithms for the computation of the Boltzmann collision operator. These
methods allow us to reduce the computational cost from O(n2) to O(n log2 n). We
give computational evidence of the great performance of the schemes which can pro-
vide a dramatic speed-up in computing time of deterministic schemes by making
them competitive with Monte Carlo methods, where higher accuracy is required. A
first numerical application to a nontrivial problem in the space nonhomogeneous case
confirms the strong computing potential of the new schemes.

Other methods such as singular value decomposition, fast multipole methods
[9], separated representations in high-dimensional problems (see, for instance, [1]),
wavelets, etc. could have been used to search for a decomposition of the form (4.1).
However, to our knowledge it is not known at present how to obtain the properties
described above for our decomposition with these methods.

Acknowledgment. We would like to thank Cédric Villani for suggesting the
numerical study of possible oscillations in the relaxation to equilibrium.
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