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APPROXIMATION OF HYPERBOLIC MODELS FOR
CHEMOSENSITIVE MOVEMENT∗

FRANCIS FILBET† AND CHI-WANG SHU‡

Abstract. Numerical methods with different orders of accuracy are proposed to approximate
hyperbolic models for chemosensitive movements. On the one hand, first- and second-order well-
balanced finite volume schemes are presented. This approach provides exact conservation of the
steady state solutions. On the other hand, a high-order finite difference weighted essentially nonoscil-
latory (WENO) scheme is constructed and the well-balanced reconstruction is adapted to this scheme
to exactly preserve steady states and to retain high-order accuracy. Numerical simulations are per-
formed to verify accuracy and the well-balanced property of the proposed schemes and to observe
the formation of networks in the hyperbolic models similar to those observed in the experiments.
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1. Introduction. Chemosensitive movement is a process by which cells change
their direction when reacting to the presence of a chemical substance, approach-
ing chemically favorable environments, and avoiding unfavorable environments. In
the biological literature there is a distinction between chemotaxis and chemokine-
sis. Chemokinesis describes nondirected bias in the movement behavior, which indi-
rectly leads to an oriented movement of the population, whereas chemotaxis denotes
a directed orientation toward or away from a chemical stimulus. However, from a
modeling viewpoint this distinction is not necessary and we will summarize all these
orientation effects in a chemosensitive movement.

In a simple situation, where we consider only cells and one chemical substance (the
chemo-attractant), a model for the space and time evolution of the density n = n(t, x)
of cells and the chemical concentration c = c(t, x) at time t and position x ∈ Ω ⊂ R

d

has been introduced by Patlak [19] and Keller and Segel [13]. This model assumes
that the propagation of cells is performed via a diffusion process and reads

∂n

∂t
− div (∇n− nχ′(c)∇c) = 0,(1)

where χ′(c) ≥ 0 denotes the chemotactic sensitivity and the chemical concentration
c is given either by the following parabolic equation describing the diffusion of the
chemo-attractant created by the cells themselves:

∂c

∂t
−Dc Δc = n− c,(2)
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with Dc ≥ 0 denoting the motility (ability of the cell to move), or in the angiogenesis
case, simply by

∂c

∂t
= −c n.(3)

However, this approach is not always sufficiently precise to describe the evolution
of bacteria movements. Indeed, experiments show that bacteria such as Escherichia
coli move along straight lines, suddenly stop to choose a new direction, and then
continue moving in the new direction. This phenomenon, called run and tumble,
can be modeled by a stochastic process called the velocity-jump process [10, 25]. A
kinetic transport model for describing this velocity-jump process has been introduced
in [18]. In fact, parabolic chemotaxis equations, such as the Patlak–Keller–Segel
(PKS) model (1)–(2), have been obtained as the diffusion limit of this kinetic model,
thus allowing the determination of the motility Dc and the chemotactic sensitivity χ′

[10, 17]. A more recent tendency has been to use hyperbolic equations, which respect
finite propagation speeds and are based on the individual movement patterns of the
cells; see for instance [3, 4, 11, 21].

In this paper, we propose accurate numerical methods to approximate hyperbolic
chemotaxis models. Our approach relies on finite volume schemes and finite difference
schemes with high-order weighted essentially nonoscillatory (WENO) reconstructions
and allows us to exactly preserve a particular class of steady state solutions.

The outline of this paper is as follows. In section 2, we present a hyperbolic
system previously proposed in [21] to describe the early stages of the formation of
blood vessels. In section 3, we first propose a first-order well-balanced (i.e., preserv-
ing exactly certain steady state solutions) finite volume scheme and then extend it to
second-order accuracy. In section 4, we design a high-order well-balanced finite dif-
ference WENO scheme. Finally, in section 5 we perform numerical simulations of the
nonlinear hyperbolic models of chemotaxis to verify accuracy and the well-balanced
property of the proposed finite volume and high-order WENO finite difference schemes
and to observe the formation of networks in the hyperbolic models similar to those
observed in the experiments [4, 5, 21].

2. A hyperbolic model for chemotaxis. In this paper, we consider numerical
approximations of a hyperbolic model introduced in [5, 21], in which the cell density
n(t, x) and the population flux nu(t, x) are solutions of the hyperbolic system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂n

∂t
+ div (nu) = 0,

∂(nu)

∂t
+ div (n u⊗ u + P (n)) = nχ′(c)∇c − σ n u,

(4)

where P (n) is the pressure and σ is the friction coefficient. The evolution of the
chemical concentration c(t, x) is still given by (2).

This model is used to describe vasculogenesis (early formation of blood vessels)
[5, 21] and can be recovered from a hydrodynamic scaling of a kinetic model [4]. Finite
time blowup was proved in [14] for spherically symmetric solutions to the hyperbolic
system (4) coupled with a Poisson-type equation to c,

−Δc = n.

Indeed, the Euler–Poisson system is widely studied in plasma physics and astrophysics
to model star evolution and it is more expected that shock-type structures arise here,
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which could explain why the singularities are not pointwise blow-up typical to the
solution of the parabolic model (1) but are more like line concentrations (high con-
centrations along a line or curve). Such singularities are indeed observed in the
numerical simulations in section 5 (formation of networks) and seem to be compatible
with the experiments on endothelial cells [5, 21]. Moreover, the hyperbolic model (2),
(4) admits an entropy inequality when χ(c) = c, P (n) = n, and Dc = 1,

∂η

∂t
+ divG = −σnu2 −

(
∂c

∂t

)2

≤ 0,

where

η(t, x) = ηh(n, n u) − nc +
1

2

(
c2 +

(
∂c

∂x

)2
)
,

G(t, x) = Gh(n, n u) − nuc− ∂c

∂t

∂c

∂x
,

(5)

and (ηh, Gh) corresponds to the entropy pair for the homogeneous problem without
the source term,

ηh(n, n u) = n(log n− 1) +
1

2
nu2, Gh(n, n u) = nu

(
log n +

1

2
u2

)
.(6)

Finally, we conclude this section with some remarks on the connection between the
hyperbolic chemotaxis model (2)–(4) and the parabolic chemotaxis system (1)–(2).
We first notice that, when P (n) = n Id, it is possible to recover (1) as the strong
friction limit of (4), i.e., when σ goes to infinity. Moreover, the hyperbolic system (4)
admits several types of steady state solutions, but the steady state solutions with a
zero population flux (nu = 0) are particularly important since they are the same as
those of the PKS model (1)–(2). Indeed, such steady state solutions satisfy

nχ′(c)∇c−∇n = 0,(7)

which is the equation satisfied by stationary solutions to the diffusive model for chemo-
taxis [17, 18].

In what follows, we restrict our attention to the one-dimensional case with P (n) =
n: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂n

∂t
+

∂(nu)

∂x
= 0,

∂(n u)

∂t
+

∂

∂x

(
n u2 + n

)
= nχ′(c)

∂c

∂x
− σ n u.

(8)

For future reference, we denote by U the unknown, by F (U) the flux function, and
by S(U) the source term, which for the nonlinear system (8) are given by

U =

(
n
nu

)
, F (U) =

(
nu

nu2 + n

)
, S(U) =

(
0

nχ′(c) ∂c
∂x − σ n u

)
.

(9)
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3. Finite volume approximations. Let us denote by (xi−1/2)i∈Z a mesh of R

and xi = (xi−1/2 + xi+1/2)/2. Finite volume schemes for hyperbolic systems use an
upwinding of the fluxes and in the semidiscrete case they provide a discretized version
of (8) under the form

Δxi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = Δxi Si(10)

where Δxi denotes the mesh size Δxi = xi+1/2 − xi−1/2, and the discrete unknown
Ui(t) is

Ui(t) =

(
ni(t)

ni(t)ui(t)

)
,

which represents an approximation to the cell-average of U in the cell (xi−1/2, xi+1/2).
Fi+1/2 is an approximation of the flux at the point xi+1/2 and Si is an approximation
of the cell-average of the source term S(U) in the cell (xi−1/2, xi+1/2).

3.1. A first-order well-balanced scheme. In a basic first-order accurate
scheme, the fluxes are classically computed as

Fi+1/2 = F(Ui(t), Ui+1(t)),(11)

where the numerical flux F(Ui, Ui+1) is computed via an approximation of the Rie-
mann problem. We assume that the numerical flux F satisfies the following assump-
tions:

1. It is consistent with the physical flux:

F(U,U) = F (U).(12)

2. It preserves the nonnegativity of the density ni(t) for the homogeneous prob-
lem, namely, (8) without the source terms. That is, the scheme

Δxi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = 0,(13)

where the numerical flux Fi+1/2 is defined by (11), maintains ni(t) ≥ 0 if
ni(0) ≥ 0.

3. The scheme (13) with the numerical flux Fi+1/2 defined by (11) satisfies a
cell entropy inequality for the entropy pair (6) for the homogeneous problem.
According to [2], this means that we can find a numerical entropy flux Gh

such that

Gh(Ui+1) + ∇U ηh(Ui+1) (F(Ui, Ui+1) − F (Ui+1))(14)

≤ Gh(Ui, Ui+1) ≤ Gh(Ui) + ∇U ηh(Ui) (F(Ui, Ui+1) − F (Ui)) ,

where ∇U ηh is the derivative of ηh with respect to U = ( n
nu ).

Since the appearance of [7, 8], it has been known that cell-centered evaluations of
the source term in a nonconservative hyperbolic system will generally not be able to
preserve steady state solutions. In our case a particular class of steady state solutions,
namely, the solution to (7), is given by

log(ni) − χ(ci) = constant, ui = 0 ∀ i.(15)
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These steady state solutions play an important role in the modeling of chemosensitive
movement because they also correspond to the steady state solutions of the parabolic
equation (1), which describes the long time behavior of cells under the influence of
the chemo-attractant c when the solutions do not blow up. Thus we would like to
preserve these steady state solutions exactly at the discrete level.

Our approach follows the ideas of [1] for the shallow water equations (see also
[6]). We propose a finite volume scheme according to (10) with flux functions

Fi+1/2 = F(U−
i+1/2, U

+
i+1/2), U±

i+1/2 =

(
n±
i+1/2

n±
i+1/2 u

±
i+1/2

)
,(16)

where the interface values U−
i+1/2 and U+

i+1/2 are locally reconstructed from Ui and

Ui+1. The purpose of the reconstruction is not to increase the order of accuracy as
usual, but to achieve a well-balanced property for the steady state solution (15). The
source term is discretized by

Si =

(
0

1
Δxi

(
n−
i+1/2 − n+

i−1/2

) )
− σ

(
0

ni ui

)
.(17)

This ansatz is motivated by a balancing requirement. Indeed, when the population
flux nu is zero, the cell density n satisfies the balance of the momentum and the
source term, i.e.,

∂n

∂x
= nχ′(c)

∂c

∂x
.

Integrating over (xi−1/2, xi+1/2), we obtain an approximation to the source term,

1

Δxi

∫ xi+1/2

xi−1/2

nχ′(c)
∂c

∂x
dx =

1

Δxi

(
n−
i+1/2 − n+

i−1/2

)
.

Therefore, when the velocity u is small, we are able to locally represent the cell-
averaged source term as the discrete gradient of the momentum flux. This motivates
the source term discretization (17). We will show later that this discretization is
consistent with the source term in (8) also for solutions far away from these steady
state solutions. It will be shown later that the steady state (15) is maintained exactly
if, for such a state, we have

n−
i+1/2 = n+

i+1/2, u−
i+1/2 = u+

i+1/2 = 0.(18)

To achieve this, we choose

n−
i+1/2 = ni e

χi+1/2−χ(ci), u−
i+1/2 = ui(19)

and

n+
i+1/2 = ni+1 e

χi+1/2−χ(ci+1), u+
i+1/2 = ui+1,(20)

which lead to (18) for an arbitrary choice of χi+1/2 when the steady state (15) is
achieved. The evaluation of the interface value χi+1/2 has to be such that the scheme
is consistent and stable. We have chosen

χi+1/2 = max (χ(ci), χ(ci+1))(21)
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in our numerical experiments. Another possible choice could be

χi+1/2 =
1

2
(χ(ci) + χ(ci+1)) .

To summarize, our first-order well-balanced finite volume scheme (10) is defined
with the flux and reconstructions given by (16) and (19)–(20). The source term is
given by (17), or equivalently, by

Si = S−
i+1/2 + S+

i−1/2 − σ

(
0

niui

)
,(22)

with

S−
i+1/2 =

1

Δxi

(
0

n−
i+1/2 − ni

)
, S+

i−1/2 =
1

Δxi

(
0

ni − n+
i−1/2

)
.(23)

We may rewrite the scheme in a nonconservative form as in [2],

Δxi
d

dt
Ui(t) + Fl(Ui, Ui+1, ci, ci+1) −Fr(Ui−1, Ui, ci−1, ci) = −Δxi σ

(
0

niui

)
,

with the left and right numerical fluxes defined by

Fl(Ui, Ui+1, ci, ci+1) = Fi+1/2 − Δxi S
−
i+1/2,

Fr(Ui, Ui+1, ci, ci+1) = Fi+1/2 + Δxi S
+
i+1/2.

(24)

Finally, the chemical concentration c is obtained by approximating (2) with a
finite volume scheme,

dci
dt

=
Dc

Δxi

(
ci+1 − ci
Δxi+1/2

− ci − ci−1

Δxi−1/2

)
+ ni − ci,(25)

where Δxi+1/2 = xi+1 − xi.
We do not consider the influence of boundary conditions and will assume a peri-

odic boundary condition. However, the numerical methods can be applied to general
boundary conditions, as demonstrated in the numerical examples in section 5.

We have the following results for the scheme (10) defined above.
Theorem 1. The semidiscrete scheme (10) with (16), (17), (19), and (20)
(i) preserves the nonnegativity of ni(t);
(ii) preserves exactly the steady state given by (15);
(iii) is consistent with the system (8);
(iv) satisfies a cell entropy inequality associated with the entropy pair (5) when

χ(ci) = ci and when ci is given by the scheme (25),

Δxi
∂ηi
∂t

+ Gi+1/2 −Gi−1/2 ≤ 0,

with

ηi = ni

(
log(ni) − 1 +

u2
i

2
− ci

)
+

1

2

(
c2i +

1

Δxi

(ci+1 − ci)
2

Δxi+1/2

)

and a consistent numerical entropy flux Gi+1/2.
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Proof. The ODE system (10) admits a unique smooth (in time) solution since the
flux function is smooth enough. By this smoothness of the numerical solution in time,
the flux F(Ul, Ur) = (F1,F2)(Ul, Ur) to the homogeneous problem (for example, the
Lax–Friedrichs flux (41) to be used later) preserves the nonnegativity of ni if and only
if the first component of the flux F1 satisfies

F1((ni = 0, ui), (ni+1, ui+1)) −F1((ni−1, ui−1), (ni = 0, ui)) ≤ 0 ∀ (uj , nj)j .(26)

Therefore, for our reconstruction (19)–(20), we need to check that, when ni = 0,

F1(U
−
i+1/2, U

+
i+1/2) −F1(U

−
i−1/2, U

+
i−1/2) ≤ 0 ∀ui−1, ui, ui+1, ni−1, ni+1.

But, when ni = 0, the reconstruction (19)–(20) gives that n+
i−1/2 = n−

i+1/2 = 0; hence,

F1(U
−
i+1/2, U

+
i+1/2) = F1((0, ui), (n

+
i+1/2, ui+1)) ∀ (uj , n

+
j+1/2, n

−
j−1/2)j ,

F1(U
−
i−1/2, U

+
i−1/2) = F1((n

−
i−1/2, ui−1), (0, ui)) ∀ (uj , n

+
j+1/2, n

−
j−1/2)j .

Then from (26), we conclude that the scheme preserves nonnegativity of the density
ni.

To prove (ii), we assume the steady state (15) holds and would like to show

Fi+1/2 − Fi−1/2 = Δxi Si.(27)

By the reconstruction of n+
i+1/2 and n−

i+1/2 given in (19)–(20), when (15) holds, we

have

n−
i+1/2 = n+

i+1/2 = Aeχi+1/2 , u−
i+1/2 = u+

i+1/2 = 0,

where A = ni e
−χ(ci) = ni+1 e

−χ(ci+1). On the one hand, the source term is given by

Δxi Si =

(
0

n−
i+1/2 − n+

i−1/2

)
= A

(
0

eχi+1/2 − eχi−1/2

)
.(28)

On the other hand, by the consistency of the flux F , we have

Fi+1/2 = F((Aeχi+1/2 , 0), (Aeχi+1/2 , 0))

= F ((Aeχi+1/2 , 0))(29)

=

(
0

Aeχi+1/2

)
.

Combining (28) and (29), we have proven (27).
To prove statement (iii), we apply the criterion in [1] and need to check two

properties related to the consistency with the exact flux F and the consistency with
the source term. The consistency with the exact flux is

Fl(U,U, c, c) = Fr(U,U, c, c) = F (U).

It is obviously satisfied since in this case χi+1/2 = χ(c), and therefore n+
i+1/2 =

n−
i+1/2 = n. For the consistency with the source term, the criterion becomes

Fr(Ul, Ur, cl, cr) −Fl(Ul, Ur, cl, cr) =

(
0

nχ′(c) (cr − cl) + o(cr − cl)

)
,(30)
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as Ur, Ul → U = (n, u) and cr, cl → c. In our case,

Fr(Ul, Ur, cl, cr)−Fl(Ul, Ur, cl, cr) =

(
0

nl e
χ0−χ(cl) − nl

)
−
(

0
nr e

χ0−χ(cr) − nr

)
,

where χ0 = max (χ(cl), χ(cr)). Now assume that χ0 = χ(cl); then

Fr(Ul, Ur, cl, cr) −Fl(Ul, Ur, cl, cr) =

(
0

nr e
−χ(cr)

(
eχ(cr) − eχ(cl)

) )

and we have

nr e
−χ(cr)

(
eχ(cr) − eχ(cl)

)
= n e−χ(c)

(
eχ(cr) − eχ(cl)

)
+ o(cr − cl),

which is consistent with the source term (30) since

n e−χ(c) ∇eχ(c) = nχ′(c)∇c.

The same argument applies when χ0 = χ(cr), and we conclude that (30) always holds,
which proves (iii).

In order to prove (iv), we proceed as in the continuous case and split the time
derivative of the entropy into two pieces assuming χ(c) = c,

∂ηi
∂t

=

(
∂ηh,i
∂t

− ci
∂ni

∂t

)
+

(
−ni

∂ci
∂t

+
1

2

(
∂c2i
∂t

+
1

Δxi

∂

∂t

(ci+1 − ci)
2

Δxi+1/2

))

and we show that

Δxi

(
∂ηh,i
∂t

− ci
∂ni

∂t

)
+ G1

i+1/2 −G1
i−1/2 ≤ 0(31)

and

Δxi

(
−ni

∂ci
∂t

+
1

2

(
∂c2i
∂t

+
1

Δxi

∂

∂t

(ci+1 − ci)
2

Δxi+1/2

))
+ G2

i+1/2 −G2
i−1/2 ≤ 0.(32)

To prove (31), we first take notice of the assumption that the original numerical flux
F satisfies a semidiscrete entropy inequality; hence (14) holds. Then, we set

G1
i+1/2 = Gh(U−

i+1/2, U
+
i+1/2) −F1(U

−
i+1/2, U

+
i+1/2) ci+1/2

and compute

G1
i+1/2 −G1

i−1/2 = Gh(U−
i+1/2, U

+
i+1/2) − Gh(U−

i−1/2, U
+
i−1/2)

− F1(U
−
i+1/2, U

+
i+1/2) ci+1/2 + F1(U

−
i−1/2, U

+
i−1/2) ci−1/2.

Using the two inequalities in (14), we get

G1
i+1/2 −G1

i−1/2 ≤ Gh(U−
i+1/2) + ∇U ηh(U−

i+1/2)
(
F(U−

i+1/2, U
+
i+1/2) − F (U−

i+1/2)
)

− Gh(U+
i−1/2) −∇U ηh(U+

i−1/2)
(
F(U−

i−1/2, U
+
i−1/2) − F (U+

i−1/2)
)

− F1(U
−
i+1/2, U

+
i+1/2) ci+1/2 + F1(U

−
i−1/2, U

+
i−1/2) ci−1/2.
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This inequality can be rewritten as

G1
i+1/2 −G1

i−1/2 ≤
(

log(n−
i+1/2) −

1

2
u2
i − ci+1/2

)
F1(U

−
i+1/2, U

+
i+1/2)

−
(

log(n+
i−1/2) −

1

2
u2
i − ci−1/2

)
F1(U

−
i−1/2, U

+
i−1/2)

+ ui

(
F2(U

−
i+1/2, U

+
i+1/2) −F2(U

−
i−1/2, U

+
i−1/2) + n+

i−1/2 − n−
i+1/2

)
.

Now, by the definition of n−
i+1/2, n

+
i−1/2, and Si, we obtain

G1
i+1/2 −G1

i−1/2 ≤
(

log(ni) − ci −
1

2
u2
i

) (
F1(U

−
i+1/2, U

+
i+1/2) −F1(U

−
i−1/2, U

+
i−1/2)

)

+ ui

(
F2(U

−
i+1/2, U

+
i+1/2) −F2(U

−
i−1/2, U

+
i−1/2)

+ n+
i−1/2 − n−

i+1/2 + σΔxiniui

)

≤ −Δxi ∇Uηh(Ui)
dUi

dt
+ Δxi ci

dni

dt
.

We conclude that (31) holds.

To prove (32), we use the approximation (25) to the parabolic equation (2),

−ni
dci
dt

= −
(
dci
dt

− 1

Δxi

(
ci+1 − ci
Δxi+1/2

− ci − ci−1

Δxi−1/2

)
+ ci

)
dci
dt

,

= −
(
dci
dt

)2

− 1

2

dc2i
dt

+
1

Δxi

(
ci+1 − ci
Δxi+1/2

− ci − ci−1

Δxi−1/2

)
dci
dt

.

Using the equality

(ci+1 − ci)
d

dt

(
ci+1 − ci
Δxi+1/2

)
= −

(
ci+1 − ci
Δxi+1/2

− ci − ci−1

Δxi−1/2

)
dci
dt

+

(
ci+1 − ci
Δxi+1/2

dci+1

dt
− ci − ci−1

Δxi−1/2

dci
dt

)
,

we get

1

2

(
d

dt

(ci+1 − ci)
2

Δxi+1/2
+ Δxi

dc2i
dt

)
− Δxi ni

dci
dt

+ G2
i+1/2 −G2

i−1/2 ≤ 0,

with

G2
i+1/2 = −ci+1 − ci

Δxi+1/2

dci+1

dt
.

Finally, gathering (31) and (32), we prove the result with Gi+1/2 = G1
i+1/2 +

G2
i+1/2.
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Remark 1. When using the time-space fully discrete scheme

Uk+1
i −Uk+1

i +
Δt

Δxi

(
Fl(U

k
i , U

k
i+1, c

k
i , c

k
i+1) −Fr(U

k
i−1, U

k
i , c

k
i−1, c

k
i )
)

= −Δt σ

(
0

nk
i u

k
i

)
,

the consistency and the well-balanced property are still valid. The stability is guar-
anteed under a CFL condition,

σ(Ui, Ui+1)Δt ≤ min(Δxi,Δxi+1),

where σ(Ui, Ui+1) ≥ 0 is a numerical speed at the interface (see [1, 2] for a detailed
proof). Moreover, if we use a time explicit scheme to (25), we get a more restrictive
condition on the time step

Δt ≤ Δxi

2
min(Δxi−1/2,Δxi+1/2).

3.2. Extension to a second-order approximation. Now we describe the
extension to second-order accuracy. To this aim we reconstruct values at both sides of
the interface. These new values are obtained in three steps: prediction of the gradients
in each cell, linear extrapolation, and a limiting procedure to preserve nonnegativity.
First, we compute two second-order accurate interface values Ui,r and Ui+1,l at the
point xi+1/2 from linear reconstructions in cells (xi−1/2, xi+1/2) and (xi+1/2, xi+3/2),
respectively, following the three steps mentioned above. We remark that second-order
accuracy is achievable only away from the vacuum ni = 0, since in the cell where ni = 0
the reconstructed linear function is flat to maintain the nonnegativity of n. Using the
same reconstruction procedure, we also compute two interface values for the chemo-
attractant eχ(c) at the point xi+1/2, denoted by (eχ(c))i,r and (eχ(c))i+1,l. Once these
second-order reconstructed values are known, we further apply the reconstruction in
the previous section to achieve well balancedness. This gives the second-order well-
balanced scheme (10) with the flux defined by

Fi+1/2 = F(U−
i+1/2, U

+
i+1/2)

and

U−
i+1/2 =

(
n−
i+1/2

n−
i+1/2 ui,r

)
, U+

i+1/2 =

(
n+
i+1/2

n+
i+1/2 ui+1,l

)
,(33)

where n−
i+1/2 and n+

i+1/2 are given by

n−
i+1/2 = ni,r

(eχ(c))i+1/2

(eχ(c))i,r
, n+

i+1/2 = ni+1,l

(eχ(c))i+1/2

(eχ(c))i+1,l
,(34)

with

(eχ(c))i+1/2 = max
(
(eχ(c))i,r, (e

χ(c))i+1,l

)
.(35)

The source term is computed as before at the interface,

Si = S−
i+1/2 + Sc

i + S+
i−1/2,(36)
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with

S−
i+1/2 =

1

Δxi

(
0

n−
i+1/2 − ni,r

)
, S+

i−1/2 =
1

Δxi

(
0

ni,l − n+
i−1/2

)
(37)

and

Sc
i =

1

Δxi

(
0

1
2

(
ni,r

(eχ(c))i,r
+

ni,l

(eχ(c))i,l

) (
(eχ(c))i,r − (eχ(c))i,l

)
)

− σ

(
0

niui

)
.

(38)

Using the definitions of the left and right numerical fluxes Fl and Fr in (24), a compact
formulation of the scheme is

Δxi
d

dt
Ui(t) + Fl(Ui,r, Ui+1,l, ci,r, ci+1,l) −Fr(Ui−1,r, Ui,l, ci−1,r, ci,l) = Δxi S

c
i

and we prove the following result.

Theorem 2. Consider a numerical flux F (11) satisfying the first two assump-
tions: consistency (12) and maintenance of the nonnegavitity of ni(t) for (13). More-
over, assume the slope limiters used for the reconstruction of n ensure nonnegativity
of n at the interfaces. Then, the scheme (33)–(38)

(i) preserves the nonnegativity of ni(t);
(ii) preserves exactly the steady state given by (15);
(iii) is consistent and second-order accurate with the system (8).

Proof. We first prove (i). Assume that ni = 0, which means that it is a lo-
cal minimum of n. Since the linear reconstruction uses slope limiters to preserve
nonnegativity of n, the reconstructed linear function in this cell is flat and we have
ni,r = ni,l = ni = 0 and n−

i+1/2 = n+
i−1/2 = 0. Therefore, we can apply the strategy

of the proof of Theorem 1 to show the scheme preserves nonnegativity of ni(t).

To show that the steady state (15) is exactly maintained, we have to prove (27)
when ni = Aeχ(ci) and ui = 0 for all i with a constant A. To this aim, we observe
that since the reconstruction procedure for n is the same as that for eχ(c), we have

ni,r

(eχ(c))i,r
=

ni,l

(eχ(c))i,l
= A ∀ i.(39)

Of course we also have ui,r = ui,l = 0. On the one hand, we have

n−
i+1/2 = n+

i+1/2 = A (eχ(c))i+1/2,

which gives, by the consistency of the numerical flux,

Fi+1/2 = F(U−
i+1/2, U

+
i+1/2) = F ((A (eχ(c))i+1/2, 0)) =

(
0

A (eχ(c))i+1/2

)
.(40)

On the other hand, from (36) and (39) we also get

Si =
1

Δxi

(
0

n−
i+1/2 − n+

i−1/2

)
=

A

Δxi

(
0

(eχ(c))i+1/2 − (eχ(c))i−1/2

)
.
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Together with the expression (40), we have proved that the steady state (15) is exactly
maintained at the discrete level.

To prove consistency, we apply the same technique as that in the proof of The-
orem 1, whereas the second-order accuracy is easily obtained by observing that the
well-balanced scheme is only a second-order perturbation of the second-order recon-
struction. Moreover, the source term Sc

i is a second-order approximation of the source
term n e−χ(c) ∇(eχ(c(x))).

It seems to be difficult to extend this method to higher than second-order accurate
finite volume schemes because the well-balanced requirement induces constraints on
the approximation of the source term. Moreover, in dimensions higher than one, finite
volume schemes higher than second-order accurate are much more expensive in terms
of computational cost than finite difference schemes. Therefore, in the next section we
apply the well-balanced reconstruction to a high-order Lax–Friedrichs flux splitting
finite difference WENO scheme, which does not have such an inconvenience.

4. Finite difference approximation. In this section we first briefly review
some of the basics of the high-order finite difference approximation and the WENO
reconstruction; for more details, see [12, 22]. We then adapt the well-balanced recon-
struction to high-order finite difference WENO schemes. In this section we assume
the mesh is uniform with mesh size Δx.

4.1. High-order finite difference WENO approximation for hyperbolic
systems. A conservative finite difference spatial discretization to a hyperbolic system
such as (4) approximates the derivative by a kth-order accurate conservative difference

∂F (U)

∂x

∣∣∣∣
x=xi

=
1

Δx

(
F̂i+1/2 − F̂i−1/2

)
+ O(Δxk),

where F̂i+1/2 is the numerical flux, which typically is a Lipschitz continuous func-
tion of several neighboring values of U = (n, nu). For the details of the numerical
reconstruction of the flux F̂i+1/2 from the point values of F (U), we refer to [12, 22].
Notice that the finite difference methods have the same format for one or more space
dimensions, which is a major advantage in terms of accuracy and computational cost
in dimensions higher than one.

In many applications the numerical flux F̂i+1/2 is obtained by the Lax–Friedrichs
flux splitting

F±(U) =
1

2
(F (U) ± αU), α = max

m,U
|λm(U)|,(41)

where (λm(U))m are the eigenvalues of the Jacobian F ′(U) and the maximum is taken
over the relevant range of U . We will adopt this flux splitting in our scheme. The
WENO procedure is used to reconstruct the numerical flux functions for F+(U) and
F−(U) separately via upwinding.

For schemes higher than second-order accurate, the procedure should be carried
out in local characteristic fields to avoid spurious oscillations. Thus one would first
find an average Ui+1/2 of Ui and Ui+1 (e.g., the Roe average [20], which exists for
many physical systems), and then compute the left and right eigenvectors of the
Jacobian F ′(Ui+1/2) and put them into the rows of R−1

i+1/2 and the columns of Ri+1/2,

respectively, such that

R−1
i+1/2 F

′(Ui+1/2)Ri+1/2 = Λi+1/2,
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where Λi+1/2 is a diagonal matrix containing the real eigenvalues of F ′(Ui+1/2). One

then transforms all the quantities needed for evaluating the numerical flux F̂i+1/2 to

the local characteristic fields by left multiplying them with R−1
i+1/2, and then computes

the numerical fluxes by the scalar procedure in each characteristic field. Finally,
the flux in the original physical space is obtained by left multiplying by Ri+1/2 the
numerical flux obtained in the local characteristic fields.

We refer to [12, 22] for more details on WENO schemes and conservative finite
difference methods.

4.2. A well-balanced reconstruction. In this section, we describe the strat-
egy for obtaining a kth-order well-balanced finite difference WENO scheme for arbi-
trary k. From the previous description, we have constructed a numerical flux using the
characteristic Lax–Friedrichs flux splitting and obtained a kth-order approximation
of the flux F̂i+1/2 via WENO reconstruction. Then, we have

F̂i+1/2 = F̂+
i+1/2 + F̂−

i+1/2,

with

F̂+
i+1/2 = Ri+1/2

(
R−1

i+1/2 (F (U) + αU )
)
i,r

,(42)

F̂−
i+1/2 = Ri+1/2

(
R−1

i+1/2 (F (U) − αU )
)
i+1,l

,(43)

where (·)i,r and (·)i+1,l denote high-order WENO reconstructions at the cell boundary
xi+1/2 from the cells (xi−1/2, xi+1/2) and (xi+1/2, xi+3/2), respectively.

We now modify the numerical flux F̂±
i+1/2 to achieve the well-balanced property.

The well-balanced finite difference scheme approximating (8) has the form

Δx
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = ni e

−χ(ci)

(
0

Si+1/2 − Si−1/2

)
− σ

(
0

ni ui

)
,

(44)

where Si+1/2 − Si−1/2 is a conservative finite difference approximation to Δx ∂xe
χ(c).

Indeed, from the points values Si = eχ(ci), we can reconstruct two kth-order accurate
WENO or ENO [24] fluxes Si+1/2, one from the interval (xi−1/2, xi+1/2) denoted by

Si,r (the same reconstruction procedure used for computing F̂+
i+1/2), and the other

from the interval (xi+1/2, xi+3/2) denoted by Si+1,l (the same reconstruction proce-

dure used for computing F̂−
i+1/2). Finally, we choose, for instance,

Si+1/2 = max (Si,r, Si+1,l) .(45)

Now, the numerical flux Fi+1/2 for the well-balanced scheme (44) is constructed from

the following perturbation from the classical WENO flux F̂i+1/2:

F+
i+1/2 = F̂+

i+1/2

Si+1/2

Si,r
, F−

i+1/2 = F̂−
i+1/2

Si+1/2

Si+1,l
.(46)

For this algorithm, we prove the following result.
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Theorem 3. Consider the Lax–Friedrichs flux splitting scheme coupled with the
kth-order ENO or WENO reconstruction for the homogeneous problem (8). Then, the
scheme (44)–(46)

(i) preserves the steady state given by (15) for the ENO reconstruction, and for
the WENO reconstruction it preserves this steady state up to the parameter ε,
which is used in the smooth indicator to avoid having the denominator become
zero and which typically takes the value ε = 10−6 [12];

(ii) is kth-order accurate with the system (8).
Proof. We first prove (i). Assume that the steady state (15) is achieved,

ni = Aeχ(ci), ui = 0 ∀ i.

Then, for such a discrete solution Ui = (ni, ui) the Lax–Friedrichs flux splitting is
computed as

R−1
i+1/2 =

(
1 1

−1 1

)
, Ri+1/2 =

(
1/2 −1/2
1/2 1/2

)
,

which do not vary with i. This leads to(
R−1

i+1/2 (F (U) + αU )
)
i,r

=

(
n

(
1 + α
1 − α

))
i,r

,

(
R−1

i+1/2 (F (U) − αU )
)
i+1,l

=

(
n

(
1 − α
1 + α

))
i+1,l

.

Now we use the property of the ENO reconstruction [24] that for any constant λ,

(λn)i,r = λ (n)i,r, (λn)i+1,l = λ (n)i+1,l,(47)

whereas for the WENO reconstruction,

(λn)i,r = λ (n)i,r + O(ε), (λn)i+1,l = λ (n)i+1,l + O(ε),

where ε is the small parameter used in the smooth indicator to avoid having the
denominator become zero and typically takes the value ε = 10−6 [12]. From now on
we will use (47) in the analysis. Then, we get(

R−1
i+1/2 (F (U) + αU )

)
i,r

=

(
1 + α
1 − α

)
ni,r,

(
R−1

i+1/2 (F (U) − αU )
)
i+1,l

=

(
1 − α
1 + α

)
ni+1,l.

When the steady state (15) is achieved, the classical finite difference flux is given by

F̂+
i+1/2 = ni,r

(
α
1

)
, F̂−

i+1/2 = ni+1,l

(
−α
1

)
.

On the one hand, when the steady state (15) is reached, we know that

ni = Aeχ(ci) ∀ i,

and since the reconstruction procedures for n and eχ(c) are identical (using WENO
or ENO reconstruction), we have

F̂+
i+1/2 = A

(
α
1

)
Si,r, F̂−

i+1/2 = A

(
−α
1

)
Si+1,l.
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Then, by the definition of F±
i+1/2 in (46), we get

Fi+1/2 = A

(
0
1

)
Si+1/2.

On the other hand, by the construction of the source term (44),

Si = ni e
−χ(ci)

(
0
1

)(
Si+1/2 − Si−1/2

)
.

When the steady state (15) is reached, we have ni e
−χ(ci) = A for all i; hence,

Si = A

(
0
1

)
(Si+1/2 − Si−1/2),

which exactly satisfies the balance with the flux difference Fi+1/2 − Fi−1/2.
Now let us prove (ii); i.e., the numerical scheme is a kth-order approximation to

(8). The source term can be written in the form

nχ′(c)
∂c

∂x
= n e−χ(c) ∂

∂x
eχ(c)

and clearly the right-hand side of (44) is a kth-order approximation to this source
term when the flux Si+1/2 is defined by (45), since both Si,r and Si+1,l are kth-order

fluxes computed by WENO reconstruction. Also, it is obvious that F±
i+1/2 is only a

kth-order perturbation of the original kth-order accurate WENO flux F̂±
i+1/2, since

the difference between Si,r and Si+1,l is at the level of truncation error for the kth-
order WENO reconstruction. This demonstrates that the scheme (44) is kth-order
accurate.

5. Numerical simulations.

5.1. Accuracy test in one dimension. In this example, we consider the one-
dimensional hyperbolic system (8) with χ′(c) = 1

1+c ,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂n

∂t
+

∂(nu)

∂x
= 0,

∂(nu)

∂t
+

∂

∂x

(
nu2 + n

)
=

n

1 + c

∂c

∂x
− σ nu.

(48)

We take periodic boundary conditions, σ = 1, t ∈ [0, Tend], with Tend = 1 and smooth
initial data

n(0, x) = 1 + 0.2 cos(π x), u(0, x) = 0, x ∈ [−1, 1],

whereas the chemo-attractant c is fixed to

c(x) = exp(−16x2), x ∈ [−1, 1].

This system does not admit an explicit solution, but to evaluate the error and the
order of accuracy we first compute an accurate approximation using the fifth-order
accurate classical WENO scheme with 1600 points and compare different numerical
solutions with this reference solution. To show the advantage of the well-balanced
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Table 1

Comparison of L1 errors and numerical orders of accuracy for the classical WENO scheme
and well-balanced WENO scheme with fourth-order Runge–Kutta time discretization.

Number of WENO Well-balanced WENO

points L1 error order L1 error order
50 1.21E-04 7.90E-05
100 5.86E-06 4.37 3.69E-06 4.42
200 4.00E-07 3.87 2.22E-07 4.05
400 2.00E-08 4.32 1.27E-08 4.13

Table 2

Comparison of L1 errors and numerical orders of accuracy for a second-order finite volume
scheme and well-balanced finite volume scheme with second-order Runge–Kutta time discretization.

Number of Finite volume Well-balanced finite volume

points L1 error order L1 error order
50 1.13E-02 8.01E-03
100 2.94E-03 1.94 2.30E-03 1.80
200 7.74E-04 1.92 6.01E-04 1.94
400 2.01E-04 1.94 1.58E-04 1.93

algorithm, we compare a fifth-order WENO finite difference scheme with and without
the well-balanced reconstruction (presented in section 4) coupled with a fourth-order
Runge–Kutta scheme for the time discretization.

In Table 1, we present the L1 errors and numerical orders of accuracy obtained
from both schemes. We observe that both methods achieve orders of accuracy above
four and the well-balanced approach not only preserves the high-order accuracy, but
also in this case allows us to reduce the error even if the solution is far from the equi-
librium. We also give in Table 2 the L1 errors and numerical orders of accuracy for the
second-order finite volume monotone upstream-centered scheme for conservation laws
(MUSCL) [16], namely, a linear reconstruction based on the usual minmod limiters,

minmod(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|),

the Lax–Friedrichs monotone numerical flux, and the second-order TVD time dis-
cretization [23], with and without the well-balanced reconstruction presented in sec-
tion 3. Second order is well achieved but the numerical errors are large compared to
those obtained from the WENO scheme on the same mesh.

To test the steady state conservation, we consider the steady state solution

n0(x) = (1 + c(x))/10, u(0, x) = 0,(49)

where c is given by

c0(x) =

{
1 if |x| ≤ 1/2,
0.125 else.

(50)

We compute the numerical solution using the WENO scheme with and without the
well-balanced reconstruction and observe that the density n and the population flux
nu are exactly conserved up to the round-off error with the well-balanced reconstruc-
tion, whereas spurious oscillations are generated when a centered approximation of
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Fig. 1. Accuracy test for well-balanced steady state resolution: time evolution of the population
flux n(t, x) u(t, x). Left: WENO scheme with the well-balanced reconstruction. Right: WENO
schemes with a centered approximation of the source term.

the source term is used. In Figure 1, we also present the numerical results obtained for
a perturbation of the steady state: n(t = 0, x) and c(t = 0, x) are given by (49)–(50)
and

u(t, x) = 0.01 cos(πx), x ∈ [−1, 1].

Then, some spurious oscillations appear in the population flux close to the discon-
tinuities of the source term c when a centered approximation to the source term is
used.

5.2. Convergence to the equilibrium in one dimension. Now we per-
form numerical simulations using the well-balanced fifth-order WENO finite differ-
ence scheme to observe the long time behavior of the solution to the hyperbolic model
(48) with σ = 0.25 and x ∈ [−6, 6] with periodic boundary conditions, with the
chemo-attractant c being the solution of the parabolic equation

⎧⎪⎨
⎪⎩

∂c

∂t
− 1

10

∂2c

∂x2
= αn− c,

c(t,−6) = c(t, 6) = 0,

and α a given compactly supported function

α(x) =

{
(16 − x2)/16 if |x| ≤ 4,
0 else.

The initial density is chosen as a constant density n = 1, whereas the initial population
flux n u and chemo-attractant c are equal to zero.

To observe the convergence to an equilibrium state we plot in Figure 2 the evo-
lution of the L1 norm of the time derivative of the cell density ∂tn. We also plot the
evolution of the cell density on different time intervals and at the final time (t = 200)
when the steady state is reached. Clearly, the curves at t = 25 and t = 200 are
overlapping, indicating that the numerical solution has already converged to steady
state by visual inspection at t = 25.
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Fig. 2. Convergence to equilibrium. (a) Time evolution of the L1 norm of the time derivative
of the cell density ∂tn(t, x). (b) Time evolution of the cell density n(t, x) for t = 0, 2, 5, 12, 25, and
200.

5.3. Chemosensitive movement in two dimensions. In the previous two
numerical examples, we have shown the efficiency of the finite difference WENO
method for treating the convergence to steady states and the evolution of the cell
density. Now we present numerical simulations obtained with the well-balanced fifth-
order (in space) finite difference method to show that the hyperbolic models can give
a good description of cell motion.

We consider the system in two space dimension,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂n

∂t
+ div(nu) = 0,

∂(nu)

∂t
+ div (nu⊗ u + n) = n∇c− σ nu,

where σ = 0 and the chemo-attractant c is fixed and concentrated at the origin (0,0),

c(x) = 400 exp(−x2)/π, x ∈ [0, 2]2.

We then consider two cell concentrations located far from the high concentration
regions of the chemo-attractant. In Figure 3, we represent the evolution of cells,
which move and stretch to the highest concentration region of the chemo-attractant.
This simple test illustrates the attractive effect of the chemo-attractant gradient on
the population flux nu and on the cell density n.

5.4. Formation of networks. As in [21, 5], we perform numerical simulations
of the hyperbolic model (4) coupled with (2) on a square box of length L = 20 with
periodic boundary conditions. For good accuracy, we use the well-balanced fifth-
order WENO scheme described in the previous section to approximate the solution
of (4) and a fourth-order finite difference scheme to approximate the solution of the
parabolic equation (2),

dci
dt

= Dc
(−ci+2 + 16ci+1 − 30ci + 16ci−1 − ci−2)

12Δx2
+ ni − ci.
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Fig. 3. Chemosensitive movement: Time evolution of the cell density n(t, x) at time t = 0.04,
0.08, 0.12, and 0.16.
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Fifth Order Method: 200x200 points
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Fig. 4. Formation of network: comparison of numerical results between (a) the fifth-order
WENO method and (b) the second-order finite volume scheme with 2002 grid points.

These results can be compared with those obtained in [4, 5] for the formation of
networks: high cell concentrations are generated and linked together by line concen-
trations.

In (2) we take the diffusion rate Dc = 1/10 and also in (4) choose the pressure to
be

P (n) = β n,

where β = 1/4 is the mean cell radius, χ′(c) = 1, and the friction is σ = 1/10.
Now, the initial datum n(0) is chosen by throwing cells randomly inside the box,

with zero population flux nu(0) = 0 and zero concentration c(0) = 0 initially. More
precisely, for (x, y) ∈ (0, L)2, we choose

n(0, x, y) =
1

(2πσ)2

N∑
i=1

exp

(
−
(
(x− xi)

2 + (y − yi)
2
)

2σ2

)
,

where (xi, yi)1≤i≤N are uniformly distributed random variables in the box (0, L)2,
each Gaussian bump of width σ representing a single cell. Thus N denotes the total
number of cells.

We first present a comparison between the fifth-order finite difference scheme
and the second-order finite volume method to show the advantage of the high-order
method. In Figure 4, we give the cell density on the square [0, 2] × [0, 2] at time
t = 0.31 obtained with 2002 points using the two methods. We can observe that
the network is formed for both methods, but the numerical diffusion of the second-
order finite volume scheme is more noticeable. We also present the cell density at
time t = 0.31 and x = −1.24 for different meshes: 2002 and 4002 grid points for the
fifth-order method, and 2002, 4002, and 8002 points for the second-order method, in
Figure 5. Clearly, the fifth-order WENO scheme gives results that converge faster
and are more accurate than the finite volume scheme used in [4]. Even with 8002

points, the numerical solution obtained with the second-order scheme still does not



870 FRANCIS FILBET AND CHI-WANG SHU

0.05

0.1

0.15

0.2

0.25

0.3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fifth Order Method : 200x200
Fifth Order Method : 400x400

0.05

0.1

0.15

0.2

0.25

0.3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Second Order Method : 200x200
Second Order Method : 400x400
Second Order Method : 800x800

(a) (b)

Fig. 5. Formation of network: comparison of numerical results between (a) the fifth-order
WENO method with 2002 and 4002 grid points and (b) the second-order finite volume scheme with
2002, 4002, and 8002 grid points. Density cut at x = −1.24.

Fig. 6. Formation of network: time evolution (t = 0.20, 0.26, and 0.33) of the cell density with
N = 400.

seem to be of the quality of the solution obtained with the fifth-order one using only
2002 points, in terms of capturing the complicated features in the solution.

Finally, we present different numerical simulations when the initial total cell den-
sity N varies. Figures 6 and 7 represent a zoom of the cell density evolution for
different initial concentrations (N = 400, 800, and 1200). On the one hand, in Fig-
ure 6 we observe the formation of high concentration regions but the number of cells is
not large enough to generate a network. Indeed, a local density (representing several
cells) does not interact with the surrounding densities; then local high concentrations
are produced without any link to other cell densities. On the other hand, in Figure 7,
cells are first uniformly located and then move to generate high concentration regions
which are linked together by chords representing cells which are stretching. Finally,
a network is formed as observed in the experiments [4, 21]. We cannot interpret the
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Fig. 7. Formation of network: time evolution (t = 0.17, 0.22, 0.26, and 0.42) of the cell density
with N = 800.

results for longer time because the numerical solution blows up (cell concentrations
become larger and larger), as is expected from theoretical results on other models
(Euler–Poisson [14] or parabolic system PKS [9, 15]). But, the transient regime
seems to be well described by the hyperbolic model. In this last example, we do not
gain any advantage by using the well-balanced algorithm since the solution does not
converge to a steady state, but even in this case the method works well.
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