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Abstract

In this paper, we extend the spectral method developed in [L. Pareschi, B. Perthame, A Fourier spectral method for

homogeneous Boltzmann equations, Trans. Theo. Stat. Phys. 25 (1996) 369–383; L. Pareschi, G. Russo, Numerical

solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator, SIAM J. Numer.

Anal. 37 (2000) 1217–1245] to the case of the inelastic Boltzmann equation describing the collisional motion of a gran-

ular gas with and without a heating source. The schemes are based on a Fourier representation of the equation in the

velocity space and provide a very accurate description of the time evolution of the distribution function. Several numer-

ical results in dimension one to three show the efficiency and accuracy of the proposed algorithms. Some mathematical

and physical conjectures are also addressed with the aid of the numerical simulations.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In kinetic theory, granular fluids far from equilibrium are usually modelled by inelastic hard spheres

describing dissipative short range interactions between molecules. The interest in granular matter has

strongly stimulated new developments in kinetic theory of granular gases.
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.06.023

* Corresponding author.

E-mail addresses: filbet@labomath.univ-orleans.fr (F. Filbet), pareschi@dm.unife.it, prl@dns.unife.it (L. Pareschi), toscani@

dimat.unipv.it (G. Toscani).

mailto:filbet@labomath.univ-orleans.fr 
mailto:prl@dns.unife.it 
mailto:toscani@ 


F. Filbet et al. / Journal of Computational Physics 202 (2005) 216–235 217
A granular gas can be viewed as a set of large macro-particles with short range repulsive core interac-

tions, in which energy is lost in the inelastic collisions. These macro-particles are described by a distribution

function f(t, x, v), which depends on time t P 0, position x 2 Rd and velocity v 2 Rd ; d P 1, and solves a

Boltzmann type equation [15–17]
of
ot

þ v � rxf ¼ Qðf ; f Þ: ð1Þ
The collision operator Q(f, f) describes the binary collisions, which only conserve mass and momentum

since energy is dissipating. The inelastic collisions are characterized by a restitution coefficient e

(0 < e < 1), where (1 � e2) measures the degree of inelasticity.

Granular gases reveal a rich variety of self-organized structures such as large scale clusters, vertex fields,

characteristic shock waves and others, which are still far from being completely understood. Applications

of such systems range from astrophysics (stellar clouds, planetary rings), to industrial processes (handling

of pharmaceuticals) and environment (pollution, erosion processes). Despite their importance in applica-
tions, deterministic numerical studies involving the full three-dimensional Boltzmann or Enskog dissipative

kinetic equations have never been addressed before.

As a first step towards the numerical solution to the full problem, in this paper we will focus on the time

evolution and the steady states of self-similar solutions to (1) in the spatially homogeneous case. There are

several reasons behind this choice. First of all, the numerical study of the homogeneous cooling process is

of major importance to understand the physics of such systems and for the construction of suitable equa-

tions of hydrodynamics. Non-Maxwellian equilibrium states, finite time energy extinction and quasi-elastic

asymptotics [36,28,4] are just some of the non-trivial homogeneous behaviors. Not to mention the fact that
most of the numerical difficulties related to the solution of (1) are due to the presence of Q(f, f) and not to

the transport part or the additional heating source.

Second, from a theoretical point of view, the study of the large-time behavior of the solution to the spa-

tially homogeneous Boltzmann equation received a lot of interest in recent years, and essential progresses

have been made in particular on the Boltzmann equation for inelastic Maxwell particles, both for the free

case without energy input [4,10], and for the driven case [13,14,5].

It is remarkable that, on the contrary to elastic collisions, partially inelastic collisions have a non-trivial

outcome as well in one dimension, and the one-dimensional idealization is a non-trivial adjunct to more
realistic studies. One-dimensional Maxwellian inelastic gases where studied in [1]. This study led to the dis-

covery of an exact similarity solution for a freely cooling Maxwellian inelastic gas [1] (which corresponds to

the well known ‘‘BKW’’ solution [3,18] since they are identical in the Fourier space as explained in [5]). This

solution, which has an algebraic high energy tail like 1/v4, can be used to test the class of initial values that

are attracted in large-time. A different one-dimensional kinetic equation, which can be considered as a diss-

ipative version of Kac�s model, have been recently introduced in [32] to fully understand, at least in simpli-

fied models, the importance of the amount of dissipation in the cooling problem.

Real models, in which particles undergo binary hard-sphere interactions, or the coefficient of restitution
depends on the relative velocity, have been less studied. The behavior of a hard-sphere granular gas in pres-

ence of some additional external source of energy in the system (a heat operator), has been recently inves-

tigated in [24], and the existence of non-trivial stationary states has been found.

Here, we will extend the spectral method recently presented in [30,31] for the classical Boltzmann equa-

tion to the inelastic situation. At variance to Monte Carlo methods the spectral method has shown to be

extremely accurate and thus very suitable to test mathematical and physical conjectures. We refer the reader

to [17,29,22] for a detailed discussion on spectral methods for the Boltzmann equation and their application

to non-homogeneous situations. Finally, we mention here some recent works where the numerical solution
of some kinetic model for granular gases has been considered [28,25].
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The rest of the paper is organized as follows. In Section 2, we give a brief overview of the inelastic Boltz-

mann equation and the properties of its solution. In Section 3, we describe the spectral method for the

heated inelastic Boltzmann model. In Sections 4 and 5, we present different numerical results in one dimen-

sion to check the accuracy of the method and the study of the stationary states. A particular care has been

devoted to the accurate the treatment of the large time behaviors. Finally numerical simulations are per-
formed in the whole 3D velocity space. Our analysis will take essential advantages from the knowledge

of various theoretical results concerned with Maxwellian models. Among others properties, the inelastic

Maxwell models exhibit similarity solutions, and these solutions represent the intermediate asymptotic of

a wide class of initial conditions. In particular, Ernst and Brito [19,20,27,2,9] conjectured that these self-

similar solutions must have a typical tail property. The first proof of Ernst–Brito conjecture for a sub-class

of isotropic initial conditions was obtained in [6]. The restriction to the initial condition was subsequently

removed in [7], where it was proven that the self-similar solution attracts all data which initially have finite

moments of some order greater than two.
2. The governing equation

In absence of external forces the time evolution of a granular gas can be described at the kinetic level by

the inelastic Boltzmann equation (1). Note that, in contrast with the elastic case, the one-dimensional d = 1

inelastic Boltzmann equation can be considered (see [35,28]). For the sake of generality, in the sequel we

will refer to the multidimensional case d P 2. The reduction to the one-dimensional case is straightforward

and will be omitted.

As already mentioned in Section 1, we will restrict here to the (heated) space homogeneous case
of
ot

� �Dvf ¼ Qðf ; f Þ; ð2Þ
where � P 0 is a small diffusion coefficient.

Let v and v* be the velocities of the two particles before a collision, and denote by g = v � v* their relative

velocity. Let the primes denote the same quantities after the collision. Then, the post-collisional velocities

are found by assuming the total conservation of mass and momentum, and a partial loss of the normal rel-
ative velocity
n � g0 ¼ �eðg � nÞ; ð3Þ

where n is the unit vector in the direction of impact, and 0 < e < 1 is the coefficient of normal restitution,

which in general depends on the relative velocity before collision e ” e(jv � v*j). By using this, we can con-
struct the post-collisional velocities as follows
v0 ¼ vþ v�
2

þ 1� e
4

ðv� v�Þ þ
1þ e
4

jv� v�jn; ð4Þ

v0� ¼
vþ v�
2

� 1� e
4

ðv� v�Þ �
1þ e
4

jv� v�jn: ð5Þ
In the literature, essentially for simplicity reasons, it is frequently assumed that the restitution coefficient

is a physical constant. In real systems, the situation is in general rather intricate [33]. In general, the resti-

tution coefficient may depend on the relative velocity in such a way that collisions with small relative veloc-

ity are close to be elastic. The simplest physically correct description of dissipative collisions is based on the

assumption that the spheres are composed by viscoelastic material, which is in good agreement with exper-

imental data. In this case, the velocity-dependent restitution coefficient for viscoelastic spheres of diameter

r > 0 and mass m reads [11]
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e ¼ 1� C1Aa2=5jv� v�j1=5 þ C2A
2a4=5jv� v�j2=5 � � � � ; ð6Þ
with
a ¼ 3
ffiffiffi
3

p

2

ffiffiffi
r

p
Y

mð1� m2Þ ; ð7Þ
where Y is the Young modulus, m is the Poisson ratio, and A depends on dissipative parameters of the mate-

rial. The constant C1 and C2 can be explicitly computed.

Let us note that for a constant restitution coefficient, inverse relations of (4) and (5) can be explicitly

computed, tracing collision history back from the pair v, v* to their predecessors, which we denote by 0v

and 0v*
0v ¼ vþ v�
2

� 1� e
4e

ðv� v�Þ þ
1þ e
4e

jv� v�jn; ð8Þ

0v� ¼
vþ v�
2

þ 1� e
4e

ðv� v�Þ �
1þ e
4e

jv� v�jn: ð9Þ
We stress here the fact that we cannot identify, as it is commonly done in the elastic case, pre-collisional
and post-collisional velocities since the Jacobian of the transformation is different from one.

Now, let us define the collision operator in (2) by its action on test functions. Taking w ” w(t, v) to be a

suitably regular test function, we set
Z
Qðf ; f ÞðvÞw ¼ 1

2

Z
Rd

Z
Rd

Z
Sd�1

Bðg; nÞff �ðw0 þ w0
� � w� w�Þdndvdv�: ð10Þ
Here and below we use the shorthand notations f = f(t, v), f* = f(t, v*), and so on. The function B(g, n) is

taken as the variable hard sphere interaction kernel
Bðg; nÞ ¼ Ckjgjk: ð11Þ
The case k = 0 stands for the Maxwellian molecules, which has been widely studied because it strongly

simplifies the mathematical analysis. However the only physical model that seems reasonable for

granular gases is the hard-sphere model, which corresponds to k = 1. Other models are also obtained for

0 < k < 1.
Using the weak form (10) allows us to study equations for average values of observable given by the

functionals of the form
R
Rd fw dv. Now, in the case � = 0, multiplying Eq. (2) by a test function w we obtain
d

dt

Z
Rd

fw dv ¼
Z
Rd

Qðf ; f Þw dv; ð12Þ
with the weak form (10) of the collision operator, it is easy to check at least formally the basic conservation

relations that follows from (2). Namely, setting w ” 1 and w ” v in (10), we obtain the conservation of mass
and momentum
Z

R3

Qðf ; f Þ
1

v

� �
dv ¼ 0: ð13Þ
Furthermore, taking w = jvj2 and computing
jv0j2 þ jv0�j
2 � jvj2 � jv�j2 ¼ � 1� e2

2

jgj � ðg � nÞ
2

jgj;
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we obtain the following relation for the dissipation of the kinetic energy
d

dt

Z
Rd

f jvj2 dv ¼ �Ck
1� e2

8

Z
Rd�Rd

Z
Sd�1

ðjgj � g � xÞdx
� �

jgjkþ1ff � dv dv� 6 0: ð14Þ
Finally, any function f for which Q(f, f) = 0 has the form of a locally Dirac-distribution
dq;uðvÞ ¼ qdðjv� ujÞ; ð15Þ

where q, u are the density and mean velocity of the gas
q ¼
Z
Rd

f ðvÞdv; u ¼ 1

q

Z
Rd

vf ðvÞdv: ð16Þ
The temperature is given by
T ¼ 1

d
1

q

Z
Rd

ju� vj2f ðvÞdv
� �

; ð17Þ
and goes to zero when time goes to infinity.

Let us consider an initial datum such that
q ¼ 1; u ¼ 0:
In the Maxwellian case the relaxation of the temperature (C0 = 1/2p) is explicitly given by
T ðtÞ ¼ T ð0Þ exp �ð1� e2Þ
2

t
� �

: ð18Þ
In general, if k > 0 (variable hard sphere), the equation for the temperature is not closed, and the kinetic

temperature is shown only to satisfy inequalities [24]
dT
dt

6 � Ckp
ð1� e2Þ

4
T ð2þkÞ=2: ð19Þ
Using the weak form (10), we can also derive the strong form of the collision operator. We notice the

obvious splitting into ‘‘gain’’ and ‘‘loss’’ terms
Qðf ; f Þ ¼ Qþðf ; f Þ � Q�ðf ; f Þ:

Assuming that f is smooth enough, setting w = d(v � v0) in the part of (10) corresponding to Q�(f, f), we

find
Q�ðf ; f Þ ¼ Ck

Z
Rd

Z
Sd�1

ff �jv� v�jk dn dv�:
To find the explicit form of Q+(f, f) we need to invoke the inverse collision transformation, tracing col-

lision history back from the pair v, v* to their predecessors, which we denote by 0v and 0v*. Setting

w(v) = d(v � v0) we obtain
Qþðf ; f Þ ¼ Ck

Z
Rd

Z 0

Sd�1

f 0f�J jv� v�jk dn dv�; ð20Þ
where 0f = f(t, 0v), 0f* = f(t, 0v*), and J is related to the Jacobian of the transformation from post-collisional

to pre-collisional velocities, (v, v*)! ( 0v, 0v*). In the general case, we only know the inverse transformation

given by (4) and (5) and for constant restitution coefficient e, it is given by (8) and (9) and
J ¼ 1

e2
j0v� 0v�jk

jv� v�jk
:
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3. Spectral approximation of the collision operator

From now let us concentrate to the most interesting case: hard sphere molecules
Bðg; nÞ ¼ C1jgj:

However a similar analysis can be performed for Maxwellian molecules and more general model (11).

As extensively discussed in [31] the first step in the derivation of a spectral method is to describe the ac-

tion of the collision operator with respect to compactly supported density function f.

To this aim we consider the space homogeneous Boltzmann equation (2) without diffusion in the weak

form (10), which can be written for any smooth test function w
Z
Qðf ; f ÞðvÞwðvÞdv ¼ C1

2

Z
Rd

Z
Rd

Z
Sd�1

jgjf ðvÞf ðv� gÞ wðv0Þ � wðvÞð Þdn dg dv;
where g = v � v*, and
v0 ¼ v� 1þ e
4

ðg � jgjnÞ:
The extension of the spectral method to the uniformly heated case (� > 0) is straightforward and will be

omitted.

Lemma 3.1. Let suppðf ðvÞÞ � Bð0;RÞ where Bð0;RÞ is the ball of radius R centered in the origin. Then we

have
ðiÞ SuppðQðf ; f ÞðvÞÞ � Bð0;
ffiffiffi
2

p
RÞ;

ðiiÞ
Z

Qðf ; f ÞðvÞwðvÞdv ¼ C1

2

Z
Bð0;

ffiffi
2

p
RÞ

Z
Bð0;2RÞ

Z
Sd�1

jgjf ðvÞf ðv� gÞ wðv0Þ � wðvÞð Þdn dg dv;
with v� g 2 Bð0; ð2þ
ffiffiffi
2

p
ÞRÞ and v0 2 Bð0; ð1þ eþ

ffiffiffi
2

p
ÞRÞ.

Proof. First we prove (i). If 0v; 0v� 2 Bð0;RÞ, then

jvj2 6 jvj2 þ jv�j2 6 ðj0vjÞ2 þ ðj0v�jÞ2 6 2R2
and also
jgj ¼ jv� v�j6 j0v� 0v�j6 2R:
If 0v ðor 0v�Þ 62 Bð0;RÞ, then

f ð0vÞ ¼ 0 ðor f ð0v�Þ ¼ 0Þ;
and the identity is clear.

Next we prove (ii). If v 2 Bð0;
ffiffiffi
2

p
RÞ and g 2 Bð0; 2RÞ we have
jv� gj6 jvj þ jgj6 ð
ffiffiffi
2

p
þ 2ÞR;
and
jv0j6 jvj þ 1þ e
2

jgj6 ð
ffiffiffi
2

p
þ ð1þ eÞÞR: �
Remark 3.1. Note that for the elastic case there is no difference if we use the strong or the weak form of the

operator in deriving the above proposition. This is due to the fact that we can identify pre and post colli-

sional particles in the elastic case. This is no more valid in the inelastic case. However in both cases, elastic
and inelastic, the correct derivation of the bound is in weak form, since the spectral method is based on the

weak form of the equation.
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As a consequence, as in the elastic case [31], in order to write a spectral approximation to (2) for a com-

pactly supported distribution function f(v) we can consider f(v) restricted on [�V, V]d with

V P ð3þ
ffiffiffi
2

p
ÞR=2 ¼ R=k, assuming f(v) = 0 on ½�V ; V �d nBð0;RÞ, and extend it by periodicity to a periodic

function on [�V, V]d. As shown in [28] in the one-dimensional case the resulting inelastic collision operator

has compact support in [�R, R]. Thus the solution remains compactly supported for all later times. In this
simpler case it is enough to take V P 2R to avoid aliasing errors.

In general, if the distribution function is well approximated by a function with compact support in veloc-

ity space, then the above approximation will provide an accurate evaluation of the collision integral.

To simplify the notation let us take V = p. Hereafter, we used just one index to denote the d-dimensional

sums with respect to the vector k ¼ ðk1; . . . ; kdÞ 2 Zd , hence we set
XN
k¼�N

¼
XN

k1;...;kd¼�N

:

The approximate function fN is represented as the truncated Fourier series
fNðvÞ ¼
XN
k¼�N

f̂ k e
ik�v; ð21Þ

f̂ k ¼
1

ð2pÞd
Z
½�p;p�d

f ðvÞe�ik�v dv:
In a Fourier–Galerkin method the fundamental unknowns are the coefficients f̂ k; k ¼ �N ; . . . ;N . We ob-

tain a set of ODEs for the coefficients f̂ k by requiring that the residual of (2) be orthogonal to all trigono-

metric polynomials of degree 6N. Hence for k = �N, . . ., N
Z
½�p;p�d

ofN ðvÞ
ot

� QðfN ; fN ÞðvÞ
� �

e�ik�v dv ¼ 0;
with
 Z
½�p;p�d

QðfN ; fN ÞðvÞe�ik�v dv ¼ C1

2

Z
½�p;p�d

Z
Bð0;2kpÞ

Z
Sd�1

jgjfN ðvÞfNðv� gÞ e�ik�v0 � e�ik�v� �
dn dg dv:
Using expression (21) we get the set of ODEs
of̂ k

ot
¼
XN
l;m

lþm¼k

f̂ lf̂ mðB̂ðl;mÞ � B̂ðm;mÞÞ; ð22Þ
where the kernel modes B̂ðl;mÞ are given by
B̂ðl;mÞ ¼ C1

2

Z
Bð0;2kpÞ

Z
Sd�1

jgje�imgþiðlþmÞð1þeÞðg�jgjnÞ=4 dn dg: ð23Þ
The evaluation of the right hand side of (22) requires exactly OðN 2dÞ operations. We emphasize that the

usual cost for a method based on Nd parameters for f in the velocity space is OðN 2dMÞ where M is the num-

bers of angle discretizations. The loss term on the right hand side is a convolution sum and thus transform

methods allow this term to be evaluated only in OðNd logNÞ operations. Hence the most expensive part of
the computation is represented by the gain term.
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3.1. Analysis of the kernel modes

In this section, we study the main characteristics of the kernel modes and in particular we give an explicit

representation of them in the case of constant coefficient of restitution.

Let us start from Eq. (23). One has
B̂ðl;mÞ ¼ C1

2

Z
Bð0;2kpÞ

jgj exp ig � l 1þ e
4

� ig � m 3� e
4

� �
I0ðjgj; lþ m; eÞdg; ð24Þ
where
I0ðjgj; lþ m; eÞ ¼
Z
Sd�1

exp �ijgjn � ðlþ mÞ 1þ e
4

� �
dn: ð25Þ
Following the same computations as in [31] we have to distinguish between the 3D and 2D collision

model.

3.2. 3D case

Let q = jgj(l + m)(1 + e)/4. Then
I0ðjgj; lþ m; eÞ ¼
Z
S2
e�iq�n dn ¼ 4p SincðjqjÞ ¼ 4p Sinc

jgjjlþ mjð1þ eÞ
4

� �
ð26Þ
where
SincðxÞ � sin x
x

:

Let p = l(1 + e)/4 � m(3 � e)/4. Then, taking into account the previous result, one has
B̂ðl;mÞ ¼ C12p
Z
Bð0;2kpÞ

jgj Sincðjgjjlþ mjð1þ eÞ=4Þ expðip � gÞdg:
Making use of spherical coordinates, with q = jgj, one has
B̂ðl;mÞ ¼ C14p
2

Z 2pk

0

q3 Sincðjlþ mjð1þ eÞq=4Þdq
Z p

0

expðijpjq cos hÞ sin h dh

¼ C18p
2

Z 2pk

0

q3 Sincðjlþ mjð1þ eÞq=4Þ Sincðjlð1þ eÞ � mð3� eÞjq=4Þdq:
With the change of variables q = 2kpr the coefficient B̂ðl;mÞ can be written as
B̂ðl;mÞ ¼ C18p
2ð2kpÞ4

Z 1

0

r3 SincðnrÞ SincðgrÞdr;
where n = jl + mj(1 + e)kp/2, g = jl(1 + e) � m(3 � e)jkp/2. To simplify notations let us assume that
C1 ¼ ð8p2ð2kpÞ4Þ�1
:

In this case the coefficient can be written as
B̂ðl;mÞ ¼ F ðn; gÞ ¼
Z 1

0

r3 SincðnrÞ SincðgrÞdr: ð27Þ
It is easy to prove that for constant coefficient of restitution (27) has an explicit analytical expression
given by
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F ðn; gÞ ¼ ððn� gÞ sinðn� gÞ þ cosðn� gÞÞ
2ngðn� gÞ2

� ððnþ gÞ sinðnþ gÞ þ cosðnþ gÞÞ
2ngðnþ gÞ2

� 2

ðnþ gÞ2ðn� gÞ2
: ð28Þ
For more general coefficient of restitution e = e(jgj) the computation of the kernel modes requires only

the evaluation of a one-dimensional integral that can be pre-computed and stored in a suitable array.

3.3. 2D case

For the computation in 2D we start from Eqs. (24) and (25).

In this case it is
I0 ¼
Z
S
expð�iq � nÞdn ¼ 2

Z p

0

cosðjqj cos hÞdh ¼ 2pJ 0ðjqjÞ ð29Þ
where J0 is the Bessel function of order 0. By inserting the result in the expression (24) for B̂ðl;mÞ, one has
B̂ðl;mÞ ¼ C1p
Z
Bð0;2kpÞ

jgj expðig � pÞJ 0ðjlþ mjjgjð1þ eÞ=4Þdg:
Making use of polar coordinates, the expression for the coefficients becomes
B̂ðl;mÞ ¼ C1p
Z 2pk

0

q2

Z 2p

0

cosðjlð1þ eÞ � mð3� eÞjq=4Þ cos h dh

� �
J 0ðjlþ mjð1þ eÞq=4Þdq

¼ C12p
2

Z 2pk

0

q2J 0ðjlð1þ eÞ � mð3� eÞjq=4ÞJ 0ðjlþ mjð1þ eÞq=4Þdq

¼ C12p
2ð2pkÞ3

Z 1

0

r2J 0ðnrÞJ 0ðgrÞdr: ð30Þ
Taking now C1 = (2p2(2pk)3)�1, the expression of B̂ðl;mÞ becomes
B̂ðl;mÞ ¼ F ðn; gÞ ¼
Z 1

0

r2J 0ðnrÞJ 0ðgrÞdr: ð31Þ
Note that again in this case each kernel mode can be computed as a 1D integral and stored in an array.
4. Numerical applications

In this section, we test the spectral method for several physical problems when applied to different gran-
ular models. In particular we will make use of a suitable rescaling technique as in [23] to deal efficiently with

the approximation of steady states of the inelastic Boltzmann equation. The choice of the computational

domain in all the tests presented is done carefully in order to balance the errors due to aliasing and reso-

lution (we refer to [31] for a detailed discussion on this topic).

4.1. 1D models for Maxwellian molecules

In this section, we investigate the case of Pseudo-Maxwellian molecules, which is interesting to test the
accuracy of the methods since analytical results are available [6,7]. Indeed, introducing the Fourier repre-

sentation for f,
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/ðt; kÞ ¼
Z
R

f ðt; vÞ expð�ikvÞdv;
then, the equation for / reads as follows [5]
o/
ot

¼ /ðzkÞ/ðð1� zÞkÞ � /ð0Þ/ðkÞ; k 2 R:
4.1.1. Inelastic Boltzmann equation

We first consider the inelastic Boltzmann equation, where the solution formally converges to a Dirac

delta equilibrium state. We perform this test to check the spectral accuracy of the method and the rescaling

technique to approximate accurately the asymptotic behavior of the equation.

The accuracy of the method has been verified by direct comparison with the evolution of the temperature

which is analytically given by (18).

In the following test cases we consider several initial data with the same mass, mean velocity and tem-
perature, but with different shapes
ðiÞ f 0ðvÞ ¼
1ffiffiffiffiffiffi
2p

p expð�jvj2=2Þ;

ðiiÞ f 0ðvÞ ¼
1

2r
ffiffiffiffiffiffi
2p

p exp � jv� 3rj2

2r2

 !
þ exp � jvþ 3rj2

2r2

 ! !
; r2 ¼ 1=10;

ðiiiÞ f 0ðvÞ ¼
16

5rpð1þ jvj2=r2Þ4
; r2 ¼ 5:
4.1.1.1. Classical variables. We consider initial data (i) and (ii) and perform computations with different

number of Fourier modes N = 8, 16, 32, 64. The spectral convergence of the method for small times clearly
appears from Fig. 1 where the relative L1-error in logarithmic scale is reported. However for longer times

since the solution converges towards a Dirac delta equilibrium states we observe spurious oscillations due

to the Gibbs phenomenon [12,26] and thus we have a marked deterioration of accuracy (see also Fig. 4(a)).

There are two different strategies that may serve as a remedy to this problem. One possibility is to add a

�fictitious� diffusive source of energy that acts as a numerical viscosity in order to avoid the oscillations [28].
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Fig. 1. 1D inelastic Maxwellian molecules: short and long time error for initial datum (i).
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However the choice of the numerical viscosity is a delicate aspect. A more robust strategy consists in rescal-

ing the equation in a suitable way as explained in the next paragraph.
4.1.1.2. Rescaled variables. As observed in the previous example, the relaxation of the temperature cannot

be observed with very good accuracy when the temperatures becomes too small. To overcome the difficulty
of the convergence to a Dirac measure and to study more accurately the convergence to the equilibrium (as

the behavior of the tail of the distribution function), we perform the following change of variable in velocity

[19,27]
f ðt; vÞ ¼ 1ffiffiffiffiffiffiffiffiffi
T ðtÞ

p ~f ðt; nÞ; n ¼ v=
ffiffiffiffiffiffiffiffiffi
T ðtÞ

p
;

where, without loss of generality, we assumed that the mean velocity of f is zero. Then, ~f is solution to the
following inelastic Boltzmann equation with a drift term
o~f
ot

� 1� e2

4

oðn~f Þ
on

¼ Qð~f ; ~f Þ; ð32Þ
and T is given by Eq. (14).

Now, we have a system of two equations with unknowns ~f and T ðtÞ. Note that, in this simple Maxwel-

lian case, the evolution of T is not directly coupled with the distribution function ~f since T(t) can be com-
puted from (18). Up to a change of variables, we can always consider an initial data f0 with mass equal to

one, zero mean velocity and temperature equal to one. Then, the solution ~f to (32) satisfies
Z
R

~f ðt; nÞ
1

n

n2

0
B@

1
CAdn ¼

1

0

1

0
B@

1
CA
and the equilibrium state is given by the Lorentz function [1]
~f1ðnÞ ¼
2

pð1þ n2Þ2
: ð33Þ
The approximation of the drift term in (32) is realized through fourth order centered differencies. The

fourth order scheme has proved to be enough accurate in all the test cases here presented.

Note however that the equilibrium state is still quite difficult to approximate because of the slow zero

convergence of the tails. Indeed, the third moment of ~f is blowing-up at t = + 1. To illustrate the slow

convergence of the tail we present in Fig. 2 the evolution of the fourth moment with respect to the trunca-
tion of the distribution function V = Vmax and to the number of Fourier modes N. We also present the evo-

lution of the distribution function ~f ðtÞ in these new variables obtained with an uniform grid (256 points).

As expected, the solution converges to (33) and the spectral method give the correct behavior of the tail

even if it converges slowly to zero. Finally, in Fig. 3, we plot the numerical solution corresponding to initial

data (i) and (ii), and observe the very good agreement (in log scale) between the numerical solution and the

stationary Lorentz function (33).

In Fig. 4, we present a comparison between the long time behavior of the rescaled solution (in conven-

tional variables) and the solution obtained with the non-rescaled method. It is evident how the Dirac delta
is well captures by means of the scaling technique.
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Fig. 2. 1D inelastic Maxwellian molecules: blow-up of the third order moment of the rescaled distribution ~f corresponding to (i) and

(ii).
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Fig. 3. 1D inelastic Maxwellian molecules: time evolution of the log-solution corresponding to initial data (i) and (ii) in rescaled

variables.
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4.1.2. The heated case

Now, we consider the heated granular gas case for Maxwell molecules in dimension one, so that we have

a regularizing effect of the diffusive operator [37]
of
ot

� eDvf ¼ Qðf ; f Þ:
In this case, the Fourier transform in the one-dimensional case is known, which means that all moments

are known analytically. For instance, the temperature does not converge to zero, and the relaxation of the

temperature is given by
T ðtÞ ¼ ðT 0 � T1Þ exp �ð1� e2Þ
2

t
� �

þ T1;
where T0 is the initial temperature and T1 is the expected temperature at time t = +1
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Fig. 4. 1D inelastic Maxwellian molecules: comparison of the large time solution corresponding to initial data (i) obtained from

computations in classical variables (a) and from rescaled variables (b).
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T1 ¼ 4e=ð1� e2Þ:

Moreover the exact non-equilibrium steady-state solution was obtained in [10,34]. For this simple model,

the high velocity tail is expected to behave as [5]
f1ðvÞ 	 expð�ajvjÞ; jvj ! 1: ð34Þ

In Fig. 5, we present the evolution of the exact and numerical temperatures, which agree very well. Next

in Fig. 6, we show the excellent agreement of the time evolution of the exact and numerical kurtosis of the

distribution function computed in our case as
KðtÞ ¼ M4ðtÞ
T ðtÞ ;
where M4(t) is the fourth order moment of f.
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Fig. 5. 1D inelastic Maxwellian molecules with diffusion: time evolution of the temperature (e = 0.1).
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Fig. 6. 1D inelastic Maxwellian molecules with diffusion: time evolution of the kurtosis (e = 0.1).
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Due to the smoothness of the asymptotic state the rescaling technique is not necessary and the inelastic

Boltzmann equation has been solved in direct variables.

Then, in Fig. 7, we plot stationary solutions obtained for different values of e, the tail of f(jvj) satisfies
(34) for large velocities.

4.2. 1D model for hard-sphere molecules

This case is the most interesting from the physical viewpoint and the mathematical theory concerning the

behavior of the temperature and the asymptotic states is not clearly established. However, some conjectures

have been performed by physicists in the cooling case [21] and for driven systems [37]. The present method

giving spectral accuracy on the collision operator seems to be particularly well suited to study numerically

these problems.
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Fig. 7. 1D inelastic Maxwellian molecules with diffusion: time evolution of the solution for different values of e.
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4.2.1. Inelastic Boltzmann equation

As in the case of Maxwell molecules we perform computation in rescaled variables for the inelastic Boltz-

mann equation (32) to investigate the asymptotic state of the solution and the evolution of the temperature.

In this case the evolution of T(t) is not known exactly and has been obtained by solving numerically Eq.

(14) for k = 1.
We conjecture that the relaxation of the temperature can be written in the following form
T ðtÞ ¼ 1

ð1þ aðtÞtÞ2
;

where a(t) converges to a constant which only depends on the restitution coefficient e. To numerically inves-

tigate the relaxation of the temperature, we first present the evolution of T(t) for different initial data with

the same initial temperature (see Fig. 8). Next, we plot the evolution of this quantity and its time derivative
1�
ffiffiffiffiffiffiffiffiffi
T ðtÞ

p
t
ffiffiffiffiffiffiffiffiffi
T ðtÞ

p ;
which corresponds to a(t) and a 0(t). As we expect a(t) converges to a constant which only depend on the

restitution coefficient e (assuming that q = 1, u = 0 and T(0) = 1) (see Fig. 9).
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Fig. 8. 1D hard sphere molecules: time evolution of T(t) corresponding to different initial data.
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F. Filbet et al. / Journal of Computational Physics 202 (2005) 216–235 231
4.2.2. The heated case

Now, we consider the heated granular gas, so that we have the regularizing effect of the diffusive oper-

ator, but for hard sphere molecules
Fig. 11

differen
of
ot

� eDvf ¼ Qðf ; f Þ:
For this model, the evolution of the temperature is not known analytically, but the high velocity tail is

expected to behave as [37]
f1ðvÞ 	 expð�ajvj3=2Þ; jvj ! 1: ð35Þ

Again no rescaling technique in this heated case has been used. On the one hand, we present the evolu-

tion of the temperature for a fixed initial datum and different values of e (see Fig. 10). As expected the tem-

perature is vanishing when e goes to zero. On the other hand we plot in Fig. 11 stationary solutions
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Fig. 10. 1D hard sphere molecules with diffusion: time evolution of T(t) corresponding to different value of e.
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obtained for different values of e, the tail of f(jvj) satisfies (35) for large velocities. Moreover, the numerical

results are accurate enough to evaluate the constant a in (35), which corresponds to the slope of the tail of

the distribution function plotted in log scaled with respect to the diffusive coefficient e.
Fig. 12. 3D hard sphere molecules with diffusion: time evolution of isovalues f(v, t) = c with c = maxv f(v, t)/3 for N = 323.
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4.3. 3D heated model for hard-sphere molecules

Asymptotic properties of stationary solutions for the uniformly heated 3D inelastic Boltzmann equation

(1) have been recently discussed in several papers [5,13,24,37].

One of the most interesting question is the asymptotic behavior of the steady state distribution function
f1
Fig
f1 ¼ lim
t!1

f ðt; vÞ;
for large jvj, where f is solution to
of
ot

� eDvf ¼ Qðf ; f Þ; ð36Þ
where
Qðf ; f Þ ¼ 1

4p

Z
R3

Z
S2
jv� v�jð0f 0f�J � ff �Þdn dv�;
with
J ¼ 1

e2
j0v� 0v�j
jv� v�j

:

It has been recently proven in [24] that the tail of the solution has a lower bound when t is large

enough
f ðt; vÞPK expð�ajvj3=2Þ; jvj ! 1:
Later in [8], the authors has proved the corresponding upper bound and the tail of f behaves as in the
one-dimensional case
f ðtÞ 	 expð�ajvj3=2Þ; jvj ! 1; ð37Þ
where a depends on the quotient of the energy dissipation rate and the heat bath temperature. Moreover,

the formal asymptotic has been shown in [37] for radially symmetric steady state.
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In Fig. 13, we consider an initial datum with zero mean velocity
f0ðvÞ ¼
1

2ð2pÞ3=2
expð�jv� v1j2Þ þ expð�jvþ v1j2Þ
� �

; v 2 R3;
with v1 = (1.5, 1.5, 1.5). In Fig. 12, we plot the evolution of the isovalues of the distribution function in 3d

when the diffusive coefficient is e = 1/10. Next in Fig. 13, we report the corresponding slices of the distribu-

tion function in log scale in order to observe the behavior of the tail for large velocities for different values
of � = 1/10 and e = 1/2. Even with 32 modes in each direction, the tail of the distribution function is well

approximated and can be compared in log scale with the expected behavior (37).
5. Conclusion

In this paper, we have presented an accurate deterministic method for the numerical approximation of

the time dependent Boltzmann equation for granular gases. The method extends the Fourier spectral
approximation for the collision operator already proposed for the classical Boltzmann operator [30,31].

Such a discretization is well suited for the accurate description of the distribution function evolution

and gives an accurate approximation of steady states in 1D as well as in 3D in all the test cases in which

exact solutions or exact theoretical results are available. This permits to test some interesting mathematical

and physical conjectures.
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[33] R. Ramı́rez, T. Pöschel, N.V. Brilliantov, T. Schwager, Coefficient of restitution of colliding viscoelastic spheres, Phys. Rev. E 60

(1999) 4465–4472.

[34] A. Santos, M.H. Ernst, Exact steady-state solution of the Boltzmann equation: a driven one-dimensional inelastic Maxwell gas,

Phys. Rev. E 68 (2003).

[35] G. Toscani, Onedimensional kinetic models of granular flows, M2AN Math. Model. Numer. Anal. 34 (2000) 1277–1291.

[36] G. Toscani, Kinetic and hydrodinamic models of nearly elastic granular flows, Monatsch. Math. 142 (2004) 179–192.

[37] T.P.C. Van Noije, M.H. Ernst, Velocity distributions in homogeneous cooling and heated granular fluids, Gran. Matt. 1:57

(1998).


	Accurate numerical methods for the collisional motion of (heated) granular flows
	Introduction
	The governing equation
	Spectral approximation of the collision operator
	Analysis of the kernel modes
	3D case
	2D case

	Numerical applications
	1D models for Maxwellian molecules
	Inelastic Boltzmann equation
	Classical variables
	Rescaled variables

	The heated case

	1D model for hard-sphere molecules
	Inelastic Boltzmann equation
	The heated case

	3D heated model for hard-sphere molecules

	Conclusion
	Acknowledgement
	References


