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Abstract

Vlasov simulations can for some situations be a valuable alternative to PIC simulations for the study of intense beam prop-
agation. However, as they rely on a phase-space grid which is fixed for the whole simulation, important computing effort can
be wasted in zones where no particles are present at some given time. In order to overcome this drawback, we introduce here
a new method which makes use of a phase-space grid which is uniform at any given time, but moves in time according to the
evolution of the envelope of the beam.
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1. Introduction equally well resolved. Their major drawback is that,
for inhomogeneous systems, many of the grid points
Thanks to the rapid increase of computing power (where no particles are present) are wasted. This is es-
in recent years, simulations of plasmas and particle pecially the case for beagimulations where the beam
beams based on direct solution of the Vlasov equa- moves rapidly through the phase space (due to vary-
tion on a multi-dimensional phase-space grid are be- ing alternating-gradient focusing forces, for example).
coming attractive as an alternative to Particle-In-Cell Thjs inefficiency has made such Vlasov simulations
(PIC) simulations. Their strength lies essentially in | nsuitable for those cases.
the fact that they are noiseless and that all parts of  one of the methods which has proven very efficient
phase space, including theltaf the distribution, are ¢4 the direct resolution of the Vlasov equation is the
semi-Lagrangian methdd,3]. It consists in updating
the values of the distribution function at the grid nodes
< . by following the characteristics ending at these nodes
comespanding auhor backwards and interpolating the value at the bottom of
E-mail address: sonnen@math.u-strasbg.fr polating the value at the bottlom o
(E. Sonnendriicker). the characteristics from the known values at the previ-
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ous time step. In general the interpolation grid is fixed, d_X =V, )
but this is not mandatory. ds
This paper introduces the concept of a moving grid av = E(X(5),5) + V(s) x B(X(s), s), 3)

which is mapped at each time step from a logical uni- ds
form grid to the beam, so that it contains the whole with initial conditionsX(¢) =x, V(¢) = V.
beam without needing too many points with vanishing From this propertyf” being known one can induce
values of the distribution function. In order to imple- a numerical method for computing the distribution
ment this new method, we introduce a new time step- function "+ at the grid pointgx;, v;) consisting of
ping algorithm which does not rely on the time split- the following two steps:
ting procedure traditionally used in Vlasov solvers.

The model we consider throughout this paper (1) For alli, j, compute the origin of the character-

is the nonrelativistic Vlasov equation coupled self- istic ending atx;,v;, i.e., an approximation of
consistently with Poisson’s equation. It reads X(tn; Xi, Vi, tag1), V(tn; Xi, Vi, tag1).
af q (2) As "X V) = FPK(tns Xio Vs tag1)s V(s
TV Vif+ Z(E +VvxB)-V,f=0, (1) Xi,Vj, ta11)), f"1 can be computed by interpo-
. PSR . .

the self electric fieldE is computed from Poisson’s Iatl_ng J" which is known at the grid points at the
equations pointsX(t,; X;, Vi, th1), V(s Xi, Vi, In+1)-
—eoV2p = p(X, 1) :q/f(x,v,t) dv, . This m_ethod can.be simplifigd by perfqrming a

time-splitting separating thedvection phases in phys-
E=-Vo¢. ical space and velocity space, as in this case the char-

The magnetic field is external and considered to be acteristics can be solved explicitly. _
Known. The semi-Lagrangian method does not require any

The paper is organized as follows: We first review SP€Cific interpolation scheenHowever, numerical ex-
the traditional semi-Lagrangian method. After that, we Perience dictates use of a high enough order so that
introduce a new time stepping algorithm that does not dlfqumn_, which is the _m(_)st important numerical er-
require splitting and which is required when the co- TOr in this method, |s_I|m|ted to an acceptable Iev_el.
ordinate axes are not aligned with theand v direc- The only natural requirement is that the interpolation
tions. We then describe the moving grid algorithm in a €nables to get a good continuous reconstructioff of
general setting first and finally present its application (8t the lowest possible cost). Hence one could use a

to the simulation of beams in transverse phase spacedifferent interpolation grid for each time step. This
along with some first numerical results. can save a lot of time when the shape of the region of

phase space having significant particle density evolves
considerably over time, as is the case for a beam in a

2. The semi-Lagrangian method for the Vlasov periodic focusing channel. In the remainder of this pa-

equation per, we extend the semi-Lagrangian method to allow
use of an interpolation grid which is moving in time.

The semi-Lagrangian method consists in comput-

ing a numerical approximation of the solution of the

Vlasov equatiorf1) on a phase space grid by using the 3. A second order algorithm for the

property of the equation that the distribution function characteristics

f is conserved along characteristics. More precisely,

for any timess andr we have When the grid transformation mixes space and ve-
' ' locity components the aditional splitting method]
FOGV, D = (X850, 0, V(53 X,V, 1), 5), cannot be performed. Therefore we need to intro-

where (X(s; X, Vv, 1), V(s; X, V, 1)) are the characteris- duce an efficient method for solving the characteristics
tics of the Vlasov equation which are solution of the without splitting. A possible option would be to use
system of ordinary differential equations the two time-steps method that was introducefilin
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However, this has the drawback of decoupling even 4. The semi-Lagrangian method on a moving grid

and odd time steps. Let us instead introduce a sec-

ond order predictor—corrector method to compute the 4.1. The algorithm for the Viasov solve

origin of the characteristics based on an isochronous

leap-frog algorithm.

Algorithm 1. Knowing the final positio x"+1, v+1)

at time step,,; 1, as well asf”, p"~1, E” we can com-

pute the initial position X", V"*) using the following
algorithm:

(1) PredictE"+! using the continuity equation (or di-

rectly Ampere’s law in 1D)

pn+1 — pn—l —2AtV . J",
J" :qff”(x,v)vdv,

()

Vn+1/2 — Vn+l _ %En+1(xn+l)’

X" = Xn+l _ Atvn+l/2,
V" = Vn+l/2 _ ﬂEn(Xn)
5 .
3)
£ xm L vty = interpolation( £7) (X", V),
(4) Correcte™*1 using

(5) If |E™*t1 — ErtL| > threshold go back to (2).

prev

The semi-Lagrangian method consist in two con-
ceptually different steps:

(1) An advection step which consists in solving a
large number of decoupled ordinary differential
equations. This step is completely independent of
the grid and is most naturally performed in the
physical space.

(2) An interpolation step which is necessary to com-
pute the value of the distribution function at the
origin of the characteristics which are not on the
grid. The interpolation grid is only needed to re-
construct the distribution function at every point
in phase space at one given time step and needs
not be the same at two different time steps.

In order to optimize step (2) one needs to position the
interpolation points so as to be able to reconstrfict
with a given accuracy at the lowest possible cost. In
beam dynamics simulations the global movement of
the beam is mostly determined by the external forces
and even if the self forces are important it can be de-
termined by the evolution of the envelope equation.
Hence this information should be used to position the
grid points.

On the other hand, in order to simplify the inter-
polation step, we choose to always perform it on a
uniform logical grid, the position in the actual phase
space of the grid points being given by an invertible
mappingy; from the logical grid to the physical grid.
We choosey; such that it is continuously differen-
tiable as well as its inverse. The subscripeminds
us thaty, can be different for different times.

In order to describe the algorithm, we need to intro-

Our first 1D tests show that the error decreases very duce a few notations regarding the logical and physical

rapidly: the relative error is of the order of 19 af-
ter the predictor step, decreases to around®lditer

one corrector step and reaches 1Dafter two cor-
rector steps. Hence, given the other errors inherent
in any discrete algorithm, a single corrector step is
sufficient. Therefore the &b of the algorithm, which

grids. We shall denote with athe coordinates in the
logical grid. Then for a given poini, v) in the phys-
ical phase space, we have

X Vv =@t V) or (X, V) = @ (XF, V).

Let us also introduce the distribution function on

comes mostly from the interpolation step, is roughly the logical grid defined by/™*(x*, v*, 1) = f (¢, (x*,
the same as for the split algorithm, where one interpo- v*), ). Then, the property that is conserved along

lation at each split step is necessary.

the characteristics translates into the following new
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conservation property fof* that shall be used in the  possible (so as to minimize numerical diffusion) such

algorithm: measures are needed. The trade-off for real applica-
tions has yet to be assessed.
S0 = f e v, 1) In some systems, the requirement that the mapping
= f(x,v,1) from logical to physical mesh remain simple may itself
_ f(X(s;x v, 1), V(s:x. v t)’s) :tilmit the ability of the grid to follow the phase space
ow.

= fos(X*(s:x,v,0), V¥(s; x,0,1)),5)

= fH(X*(s;x,0,0), Vi(six,v,10),5),
) ) . 5. Application to beam simulation in transverse
wheres parameterizes motion along the characteris-

i : phase space

tics. Now, f”* being known as well ag, (= ¢;,) and

Onit, the following algorithm can be used to compute | this kind of simulation the beam envelope can
S evolve greatly, leaving at any given time an large por-

. N _ _ tion of a fixed grid empty and inducing much unnec-
Algorithm 2. (1) Compute positions  in physical  essary computation. For this reason, we use a moving
phase-space of grid points whefé* is to be com-  grid, and adapt that grid at each time step to the RMS

puted: (x4, v/t = @upa(xf, %), where (7, v¥) beam envelope. Hence the transfognis a rotation
are the nodes of the logical grid. coupled to a dilation following the envelope motion.
(2) Compute origin of grid pOlntS’C,"fl, “1) us- More precisely, the ellipse defined by its larger di-
ing Algorithm 1 or similar. We denote byX}' ;, V") mension, its smaller dimensioh and its anglé® with
these origins. respect to th&Ox) axis can be defined by the RMS

(3) Transform(Xx? i V” ) back to the logical grid parameters of the beam from the relations
attimer,: (X;", V*”)—gon_l(X V). 2(xx’)

(4) Interpolate f*” at orlgln of] characteristics ~ tan? = m
on logical grid to getf"**, as f*"+D(xF, v¥) =

kN *n *n
! (Xi,j’ Vi,j)' a:\/z(co§0 +sm29 12 ) 4+ 2sind cosH (xx’ ))

Steps (2) and (4) exist in any nonsplit semi-
Lagrangian code. Hence the extension of such codesb = \/2 Sin? 6 (x2) + co2 6 (x'?) — 2 sind cos@(xx’)),
to moving grids can be performed easily by imple-
menting the transform from logical to physical space
(step (1)) and the back transform from physical to log- (x (x5} = Jox (e, x") f (e, x7) dx d!

where for a functiory (x, x") we denote by

ical space (step (3)). J f(x, x7)dxdx’
) ) ) ) In this calculation, we considerto be a dimensionless
4.2. Coupling with the Poisson equation guantity, scaled to the size of the physical domain and,

as usual in beam physics, = v, /v;, whereuv;, is the
One Of the problemS that can al’ise W|th the mOVing |0ngitudina| Velocity of the beam_
grid is that the grid points fail to be aligned along a The computing box at time, .1 is determined us-

given positiorx in physical space. Hence when veloc- ing 4, b andé obtained from RMS values of the beam
ity moments, in particulap, need to be computed we  computed at time, .

need to interpolatg’ at some specified points for the

numerical integration. In order to minimize these inter-

polations the numerical integration is performed using 6. Numerical results

an adaptive Gauss quadrature. The grid motion could

be constrained to avoid this (forcing points to line up In order to validate our method and pinpoint its
in columns of constant); but if it is desired that the  advantages, we applied it in cases where the RMS en-
mesh motion track the phase space flow as closely asvelope motion is important, namely first in the case of
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a mismatched beam in a uniform focusing channel and ing as the computing box follows very precisely the
then in the case of a matched beam in a periodic focus- global motion of the beam.
ing channel.

We considered the model problem of the transverse

. . ) . . . 6.2. Matched Gaussian beamin a periodic focusing
axisymmetric Vlasov—Poisson equation with vanish-

ing canonical angular momentum. This problem reads channel
of + vr% + ( Fapp+ iE, of =0, We consider here a matched Gaussian beam
at ar m v,
1d folr, v) = noe™ /0 v
T vE)=p= [ e o o
rdr with a linear applied field of the form(z)r, where
) ) ) ) a(z) is a piecewise constant function switching be-
6.1. Mismatched Gaussian beamin a uniform tween 0 and some fixed value, the pattern repeating
focusing channel periodically (the repetition length is called a lattice pe-
) i ] riod).
We consider a mismatched Gaussian beam We represent snapshots of the beam and the mov-

ing computing box inFig. 2 Here as well, although
some filaments are genegdtby the nonlinear forces,
with a linear applied field of the formar. the computing box obtained from the RMS envelope

We represent snapshots of the beam and the movingof the beam does a good job in helping to determine
computing box inFig. 1 The results are very satisfy-  the region of nonvanishing.

loms
jloos

Fig. 1. Snapshots of the motion of a mismatched Gaussian beam in a uniform focusing channel.

folr, vy) = nog™/a* T2/




E. Sonnendricker et al. / Computer Physics Communications 164 (2004) 390-395 395

Fig. 2. Snapshots of the motion of a matcheali€sian beam in a periodic focusing channel.

7. Conclusion plied fields; particles in RF-driven accelerators; kinetic
studies of magnetic reconnection (where the recon-

The transform method appears very promising for nection layer evolves); free or driven expansion of
beam simulations. Use of a very simple transform Plasma into vacuum or lower-density plasma; colli-
given by the RMS motion of the beam allows the grid Sionless shock dynamics; compressing plasmas; and
to follow more closely the global motion of the beam, aser-plasma instabilities which only develop at ad-
and thus reduces considerably the size of the grid vanced time.
necessary for the simulation. This method has been
implemented on a 1D model problem. The next step
will be to assess its usefulness in more realistic cases, REferences
including 2D transverse simulations and/or 1D longi- ) _ _
tudinal simulations. Finally, we note that many other [1] IE Sonne_:ndrucker, J. Roche, P. B‘_ertrand, A._ Ghizzo, The semi-

T ; - agrangian method for the numerical resolution of Vlasov equa-
applications of such a method outside of beam physics  tions, J. Comput. Phys. 149 (1998) 201-220.
can be envisioned. In particular, we might imagine [2] C.z. Cheng, G. Knorr, The integration of the Vlasov equation in
that our method may have value for: sheath problems  configuration space, J. Comput. Phys. 22 (1976) 330-348.

(where the location and structure of the sheath evolves [¥] E: Sonnendricker, J. Bamard, A. Friedman, D. Grote, S. Lund,
Simulation of heavy ion beams with a semi-Lagrangian Vlasov

in time); particles in non-neutral traps (such as Paul  solver, Nuclear Instrum. Methods Phys. Res. Sect. A 464 (1-3)
traps) with oscillating or otherwise time-varying ap- (2001) 470-476.
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