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Abstract

Vlasov simulations can for some situations be a valuable alternative to PIC simulations for the study of intense be
agation. However, as they rely on a phase-space grid which is fixed for the whole simulation, important computing e
be wasted in zones where no particles are present at some given time. In order to overcome this drawback, we intro
a new method which makes use of a phase-space grid which is uniform at any given time, but moves in time accord
evolution of the envelope of the beam.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Thanks to the rapid increase of computing pow
in recent years, simulations of plasmas and part
beams based on direct solution of the Vlasov eq
tion on a multi-dimensional phase-space grid are
coming attractive as an alternative to Particle-In-C
(PIC) simulations. Their strength lies essentially
the fact that they are noiseless and that all part
phase space, including the tail of the distribution, are
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equally well resolved. Their major drawback is th
for inhomogeneous systems, many of the grid po
(where no particles are present) are wasted. This is
pecially the case for beamsimulations where the bea
moves rapidly through the phase space (due to v
ing alternating-gradient focusing forces, for examp
This inefficiency has made such Vlasov simulatio
unsuitable for those cases.

One of the methods which has proven very effici
for the direct resolution of the Vlasov equation is t
semi-Lagrangian method[1,3]. It consists in updating
the values of the distribution function at the grid nod
by following the characteristics ending at these no
backwards and interpolating the value at the bottom
the characteristics from the known values at the pr
.
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ous time step. In general the interpolation grid is fix
but this is not mandatory.

This paper introduces the concept of a moving g
which is mapped at each time step from a logical u
form grid to the beam, so that it contains the wh
beam without needing too many points with vanish
values of the distribution function. In order to impl
ment this new method, we introduce a new time st
ping algorithm which does not rely on the time sp
ting procedure traditionally used in Vlasov solvers.

The model we consider throughout this pap
is the nonrelativistic Vlasov equation coupled se
consistently with Poisson’s equation. It reads

(1)
∂f

∂t
+ v · ∇xf + q

m
(E + v × B) · ∇vf = 0,

the self electric fieldE is computed from Poisson
equations

−ε0∇2φ = ρ(x, t) = q

∫
f (x,v, t)dv,

E = −∇φ.

The magnetic field is external and considered to
known.

The paper is organized as follows: We first revi
the traditional semi-Lagrangian method. After that,
introduce a new time stepping algorithm that does
require splitting and which is required when the c
ordinate axes are not aligned with thex andv direc-
tions. We then describe the moving grid algorithm i
general setting first and finally present its applicat
to the simulation of beams in transverse phase sp
along with some first numerical results.

2. The semi-Lagrangian method for the Vlasov
equation

The semi-Lagrangian method consists in comp
ing a numerical approximation of the solution of t
Vlasov equation(1) on a phase space grid by using t
property of the equation that the distribution functi
f is conserved along characteristics. More precis
for any timess andt we have

f (x,v, t) = f
(
X(s; x,v, t),V(s; x,v, t), s

)
,

where(X(s; x,v, t),V(s; x,v, t)) are the characteris
tics of the Vlasov equation which are solution of t
system of ordinary differential equations
(2)
dX
ds

= V,

(3)
dV
ds

= E
(
X(s), s

) + V(s) × B
(
X(s), s

)
,

with initial conditionsX(t) = x, V(t) = v.
From this property,f n being known one can induc

a numerical method for computing the distributi
functionf n+1 at the grid points(xi ,vj ) consisting of
the following two steps:

(1) For all i, j , compute the origin of the characte
istic ending atxi ,vj , i.e., an approximation o
X(tn; xi,vj , tn+1), V(tn; xi ,vj , tn+1).

(2) As f n+1(xi ,vj ) = f n(X(tn; xi,vj , tn+1), V(tn;
xi ,vj , tn+1)), f n+1 can be computed by interpo
lating f n which is known at the grid points at th
pointsX(tn; xi,vj , tn+1), V(tn; xi,vj , tn+1).

This method can be simplified by performing
time-splitting separating theadvection phases in phy
ical space and velocity space, as in this case the c
acteristics can be solved explicitly.

The semi-Lagrangian method does not require
specific interpolation scheme. However, numerical ex
perience dictates use of a high enough order so
diffusion, which is the most important numerical e
ror in this method, is limited to an acceptable lev
The only natural requirement is that the interpolat
enables to get a good continuous reconstruction of

(at the lowest possible cost). Hence one could us
different interpolation grid for each time step. Th
can save a lot of time when the shape of the regio
phase space having significant particle density evo
considerably over time, as is the case for a beam
periodic focusing channel. In the remainder of this
per, we extend the semi-Lagrangian method to al
use of an interpolation grid which is moving in time

3. A second order algorithm for the
characteristics

When the grid transformation mixes space and
locity components the traditional splitting method[2]
cannot be performed. Therefore we need to in
duce an efficient method for solving the characteris
without splitting. A possible option would be to u
the two time-steps method that was introduced in[1].
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However, this has the drawback of decoupling e
and odd time steps. Let us instead introduce a
ond order predictor–corrector method to compute
origin of the characteristics based on an isochron
leap-frog algorithm.

Algorithm 1. Knowing the final position(Xn+1,V n+1)

at time steptn+1, as well asf n, ρn−1, En we can com-
pute the initial position(Xn,V n) using the following
algorithm:

(1) PredictEn+1 using the continuity equation (or d
rectly Ampere’s law in 1D)

ρn+1 = ρn−1 − 2�t∇ · Jn,

Jn = q

∫
f n(x,v)v dv,

−∇2φn+1 = ρn+1/ε0, En+1 = −∇φn+1.

(2)

Vn+1/2 = Vn+1 − �t

2
En+1(Xn+1),

Xn = Xn+1 − �tVn+1/2,

Vn = Vn+1/2 − �t

2
En(Xn).

(3)

f n+1(Xn+1,Vn+1) = interpolation(f n)(Xn,Vn),

ρn+1 =
∫

f n+1 dv.

(4) CorrectEn+1 using

−∇2φn+1 = ρn+1/ε0, En+1 = −∇φn+1.

(5) If ‖En+1 − En+1
prev‖ > threshold go back to (2).

Our first 1D tests show that the error decreases v
rapidly: the relative error is of the order of 10−2 af-
ter the predictor step, decreases to around 10−9 after
one corrector step and reaches 10−15 after two cor-
rector steps. Hence, given the other errors inhe
in any discrete algorithm, a single corrector step
sufficient. Therefore the cost of the algorithm, which
comes mostly from the interpolation step, is roug
the same as for the split algorithm, where one inter
lation at each split step is necessary.
4. The semi-Lagrangian method on a moving grid

4.1. The algorithm for the Vlasov solve

The semi-Lagrangian method consist in two co
ceptually different steps:

(1) An advection step which consists in solving
large number of decoupled ordinary different
equations. This step is completely independen
the grid and is most naturally performed in t
physical space.

(2) An interpolation step which is necessary to co
pute the value of the distribution function at t
origin of the characteristics which are not on t
grid. The interpolation grid is only needed to r
construct the distribution function at every po
in phase space at one given time step and ne
not be the same at two different time steps.

In order to optimize step (2) one needs to position
interpolation points so as to be able to reconstrucf

with a given accuracy at the lowest possible cost
beam dynamics simulations the global movemen
the beam is mostly determined by the external for
and even if the self forces are important it can be
termined by the evolution of the envelope equati
Hence this information should be used to position
grid points.

On the other hand, in order to simplify the inte
polation step, we choose to always perform it on
uniform logical grid, the position in the actual pha
space of the grid points being given by an inverti
mappingϕt from the logical grid to the physical grid
We chooseϕt such that it is continuously differen
tiable as well as its inverse. The subscriptt reminds
us thatϕt can be different for different times.

In order to describe the algorithm, we need to int
duce a few notations regarding the logical and phys
grids. We shall denote with a∗ the coordinates in th
logical grid. Then for a given point(x,v) in the phys-
ical phase space, we have

(x∗,v∗) = ϕ−1
t (x,v) or (x,v) = ϕt(x∗,v∗).

Let us also introduce the distribution function
the logical grid defined byf ∗(x∗, v∗, t) = f (ϕt (x

∗,
v∗), t). Then, the property thatf is conserved along
the characteristics translates into the following n
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conservation property forf ∗ that shall be used in th
algorithm:

f ∗(x∗, v∗, t) = f
(
ϕt(x

∗, v∗), t
)

= f (x, v, t)

= f
(
X(s;x, v, t),V (s;x, v, t), s

)
= f

(
ϕs

(
X∗(s;x, v, t),V ∗(s;x, v, t)

)
, s

)
= f ∗(X∗(s;x, v, t),V ∗(s;x, v, t), s

)
,

wheres parameterizes motion along the characte
tics. Now,f n being known as well asϕn (= ϕtn) and
ϕn+1, the following algorithm can be used to compu
f n+1.

Algorithm 2. (1) Compute positions in physica
phase-space of grid points wheref n+1 is to be com-
puted: (xn+1

i,j , vn+1
i,j ) = ϕn+1(x

∗
i , v∗

j ), where (x∗
i , v∗

j )

are the nodes of the logical grid.
(2) Compute origin of grid points(xn+1

i,j , vn+1
i,j ) us-

ing Algorithm 1 or similar. We denote by(Xn
i,j ,V

n
i,j )

these origins.
(3) Transform(Xn

i,j ,V
n
i,j ) back to the logical grid

at timetn: (X∗n
i,j ,V

∗n
i,j ) = ϕ−1

n (Xn
i,j ,V

n
i,j ).

(4) Interpolatef ∗n at origin of characteristic
on logical grid to getf n+1, as f ∗(n+1)(x∗

i , v∗
j ) =

f ∗n(X∗n
i,j ,V

∗n
i,j ).

Steps (2) and (4) exist in any nonsplit sem
Lagrangian code. Hence the extension of such co
to moving grids can be performed easily by imp
menting the transform from logical to physical spa
(step (1)) and the back transform from physical to lo
ical space (step (3)).

4.2. Coupling with the Poisson equation

One of the problems that can arise with the mov
grid is that the grid points fail to be aligned along
given positionx in physical space. Hence when velo
ity moments, in particularρ, need to be computed w
need to interpolatef at some specified points for th
numerical integration. In order to minimize these int
polations the numerical integration is performed us
an adaptive Gauss quadrature. The grid motion co
be constrained to avoid this (forcing points to line
in columns of constantx); but if it is desired that the
mesh motion track the phase space flow as close
possible (so as to minimize numerical diffusion) su
measures are needed. The trade-off for real app
tions has yet to be assessed.

In some systems, the requirement that the map
from logical to physical mesh remain simple may its
limit the ability of the grid to follow the phase spac
flow.

5. Application to beam simulation in transverse
phase space

In this kind of simulation the beam envelope c
evolve greatly, leaving at any given time an large p
tion of a fixed grid empty and inducing much unne
essary computation. For this reason, we use a mo
grid, and adapt that grid at each time step to the R
beam envelope. Hence the transformϕ is a rotation
coupled to a dilation following the envelope motion

More precisely, the ellipse defined by its larger
mensiona, its smaller dimensionb and its angleθ with
respect to the(Ox) axis can be defined by the RM
parameters of the beam from the relations

tan2θ = 2〈xx ′〉
〈x2〉 − 〈x ′2〉 ,

a =
√

2
(
cos2 θ〈x2〉 + sin2 θ〈x ′2〉 + 2 sinθ cosθ〈xx ′〉),

b =
√

2
(
sin2 θ〈x2〉 + cos2 θ〈x ′2〉 − 2 sinθ cosθ〈xx ′〉),

where for a functionχ(x, x ′) we denote by

〈
χ(x, x ′)

〉 =
∫

χ(x, x ′)f (x, x ′)dx dx ′∫
f (x, x ′)dx dx ′ .

In this calculation, we considerx to be a dimensionles
quantity, scaled to the size of the physical domain a
as usual in beam physics,x ′ = vx/vz, wherevz is the
longitudinal velocity of the beam.

The computing box at timetn+1 is determined us
ing a, b andθ obtained from RMS values of the bea
computed at timetn.

6. Numerical results

In order to validate our method and pinpoint
advantages, we applied it in cases where the RMS
velope motion is important, namely first in the case



394 E. Sonnendrücker et al. / Computer Physics Communications 164 (2004) 390–395

and
cus-

rse
sh-
ads

ving
-

he

e-
ting
e-

ov-

,
pe
ine
a mismatched beam in a uniform focusing channel
then in the case of a matched beam in a periodic fo
ing channel.

We considered the model problem of the transve
axisymmetric Vlasov–Poisson equation with vani
ing canonical angular momentum. This problem re

∂f

∂t
+ vr

∂f

∂r
+

(
Fapp+ q

m
Er

)
∂f

∂vr

= 0,

1

r

d

dr
(rEr) = ρ =

∫
f dvr .

6.1. Mismatched Gaussian beam in a uniform
focusing channel

We consider a mismatched Gaussian beam

f0(r, vr ) = n0e−(r2/a2+v2/v2
th)

with a linear applied field of the formαr.
We represent snapshots of the beam and the mo

computing box inFig. 1. The results are very satisfy
ing as the computing box follows very precisely t
global motion of the beam.

6.2. Matched Gaussian beam in a periodic focusing
channel

We consider here a matched Gaussian beam

f0(r, vr ) = n0e−(r2/a2+v2/v2
th)

with a linear applied field of the formα(z)r, where
α(z) is a piecewise constant function switching b
tween 0 and some fixed value, the pattern repea
periodically (the repetition length is called a lattice p
riod).

We represent snapshots of the beam and the m
ing computing box inFig. 2. Here as well, although
some filaments are generated by the nonlinear forces
the computing box obtained from the RMS envelo
of the beam does a good job in helping to determ
the region of nonvanishingf .
Fig. 1. Snapshots of the motion of a mismatched Gaussian beam in a uniform focusing channel.
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Fig. 2. Snapshots of the motion of a matched Gaussian beam in a periodic focusing channel.
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7. Conclusion

The transform method appears very promising
beam simulations. Use of a very simple transfo
given by the RMS motion of the beam allows the g
to follow more closely the global motion of the bea
and thus reduces considerably the size of the
necessary for the simulation. This method has b
implemented on a 1D model problem. The next s
will be to assess its usefulness in more realistic ca
including 2D transverse simulations and/or 1D lon
tudinal simulations. Finally, we note that many oth
applications of such a method outside of beam phy
can be envisioned. In particular, we might imag
that our method may have value for: sheath proble
(where the location and structure of the sheath evo
in time); particles in non-neutral traps (such as P
traps) with oscillating or otherwise time-varying a
plied fields; particles in RF-driven accelerators; kine
studies of magnetic reconnection (where the rec
nection layer evolves); free or driven expansion
plasma into vacuum or lower-density plasma; co
sionless shock dynamics; compressing plasmas;
laser-plasma instabilities which only develop at a
vanced time.
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