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© Birkhäuser Verlag, Basel, 2004 Archiv der Mathematik

Mass-conserving solutions and non-conservative
approximation to the Smoluchowski coagulation equation

By

Francis Filbet and Philippe Laurençot

Abstract. The non-conservative truncation of the Smoluchowski coagulation equation is a good
approximation to study the gelation phenomenon, both from a theoretical and numerical point of
view. The purpose of this note is to show that it is also well-suited to approximate the Smoluchowski
equation in the absence of gelation.

1. Introduction. The Smoluchowski coagulation equation is a mean-field model for
the growth of clusters (particles, droplets, . . .) by successive mergers, that is, two particles
encounter and merge into a single one, the mass of the resulting particle being the sum of the
masses of the incoming particles. When each particle in the system under consideration is
fully identified by its mass, the Smoluchowski coagulation equation gives the time evolution
of the mass distribution function f = f (t, y) � 0 of particles of mass y > 0 at time t � 0
and reads [6], [19]

∂tf = Qc(f ) , (t, y) ∈ R
2+,(1)

f (0) = f in , y ∈ R+,(2)

where R+ := (0, +∞) and the coagulation reaction term Qc(f ) is given by

Qc(f )(y) = 1

2

y∫

0

a(y∗, y − y∗)f (y∗)f (y − y∗) dy∗

−
∞∫

0

a(y, y∗)f (y)f (y∗) dy∗

for y ∈ R+. We recall that the first term in Qc(f ) accounts for the formation of particles
of mass y from the coalescence of smaller particles and the last term describes the loss
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of particles of mass y after coalescence with other particles. The coalescence coefficient
a = a(y, y∗) gives the rate at which the coalescence of two particles with respective masses
y and y∗ produces a particle of mass y + y∗ and is a nonnegative symmetric function

0 � a(y, y∗) = a(y∗, y), (y, y∗) ∈ R
2+.

An interesting feature of the Smoluchowski coagulation equation (1), (2) lies in the time
evolution of the total mass M1(t) of the particles defined by

M1(t) :=
∞∫

0

y f (t, y) dy , t � 0 .(3)

Indeed, since mass is conserved during each coalescence event, it could be expected
that M1 remains constant through time evolution. It is however well-known by now that
this property fails to be true for coalescence coefficients a such that a(y, y∗) � (y y∗)α
for some α > 1/2, which grow rapidly as y and y∗ become large, see [10], [16], [17],
[18] and the review articles [1], [14]. The failure of mass conservation is refered to as the
gelation phenomenon in the literature, and though known for some time [10], [16], [17],
[18], rigorous mathematical proofs were obtained only recently [8], [11]. On the other
hand, it is known that, if

a(y, y∗) � A (1 + y + y∗), (y, y∗) ∈ R
2+,(4)

for some A > 0 and

f in ∈ L1
1(R+) := L1(R+; (1 + y) dy) is nonnegative a.e.,(5)

there exists at least a mass-conserving solution f to (1), (2), that is, f satisfies

M1(t) =
∞∫

0

y f (t, y) dy =
∞∫

0

y f in(y) dy(6)

for each t � 0 [3], [7], [12], [13], [21].
The usual way to construct such a solution relies on the so-called conservative approxi-

mation of (1), which is defined as follows: given a positive integer n � 1, we set

f in
n (y) := f in(y) 1(0,n)(y), ac

n(y, y∗) := a(y, y∗) 1(0,n)(y + y∗),(7)

and consider the integro-differential equation

∂t f̄n(t, y) = 1

2

y∫

0

a(y − y∗, y∗)f̄n(t, y∗)f̄n(t, y − y∗) dy∗(8)

−
n−y∫

0

a(y, y∗)f̄n(t, y)f̄n(t, y∗) dy∗ , (t, y) ∈ R+ × (0, n),

f̄n(0) = f in
n , y ∈ (0, n).(9)
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Observe that (8) follows from (1) after replacing a by ac
n. Under the assumptions (4),

(5), the existence and uniqueness of a nonnegative solution f̄n ∈ C([0, +∞); L1(0, n)) to
(8), (9) are easily obtained by a classical fixed point argument. In addition, f̄n satisfies a
truncated version of the mass conservation (6), namely,

n∫

0

y f̄n(t, y) dy =
n∫

0

y f in(y) dy, t � 0 .(10)

Thanks to the growth condition (4), it is then possible to extract a subsequence (f̄nk
)

of (f̄n) such that (f̄nk
) converges towards a solution f to (1), (2) in Cw([0, T ]; L1

1(R+))

for each T > 0 [13]. A straightforward consequence of this convergence and (10) is that
the solution f to (1), (2) thus obtained is mass-conserving, that is, satisfies (6). We recall
here that Cw([0, T ]; L1

1(R+)) denotes the space of weakly continuous functions from [0, T ]
to L1

1(R+) and that a sequence (gn) converges to g in Cw([0, T ]; L1
1(R+)) if

lim
n→+∞ sup

t∈[0,T ]

∣∣∣∣∣∣
∞∫

0

(1 + y)(gn(t, y) − g(t, y))ϕ(y) dy

∣∣∣∣∣∣ = 0

for every ϕ ∈ L∞(R+).
There are however other approximations to the Smoluchowski coagulation equation (1)

which differ from the conservative approximation (8) and we refer to [2], [4] for a detailed
discussion of this issue. Of particular interest to study the onset of gelation is the non-
conservative approximation, which is defined as follows: given a positive integer n � 1,
we set

f in
n (y) := f in(y) 1(0,n)(y), anc

n (y, y∗) := a(y, y∗) 1(0,n)(y) 1(0,n)(y∗),(11)

and consider the integro-differential equation

∂tfn(t, y) = 1

2

y∫

0

a(y − y∗, y∗)fn(t, y∗)fn(t, y − y∗) dy∗(12)

−
n∫

0

a(y, y∗) fn(t, y) fn(t, y∗) dy∗, (t, y) ∈ R+ × (0, n),

fn(0) = f in
n , y ∈ (0, n).(13)

Here again, notice that (13) follows from (1) after replacing a by anc
n . Similarly as for

(8), (9), the existence and uniqueness of a nonnegative solution fn ∈ C([0, +∞); L1(0, n))

to (12), (13) are easily established by a classical fixed point argument. But fn satisfies
n∫

0

y fn(t, y) dy =
n∫

0

y f in(y) dy(14)

− 1

2

t∫

0

n∫

0

n∫

n−y

(y + y∗) a(y, y∗) fn(s, y) fn(s, y∗) dy∗dyds
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for t � 0 instead of (10). Proceeding along the lines of [13], one can also prove that, if

lim
y∗→+∞ sup

y∈(0,R)

a(y, y∗)
y∗

= 0 for each R > 0 ,

there are a subsequence
(
fnk

)
of (fn) and a solution f to (1), (2) such that (fnk

) converges
towards f in Cw([0, T ]; L1(R+)) for each T > 0. The convergence being with respect to
a weaker topology, we can only conclude from (14) that f satisfies

∞∫

0

y f (t, y) dy �
∞∫

0

y f in(y) dy, t � 0.

Thus, if a satisfies additionally the growth condition (4) and in the absence of a general
uniqueness result for (1), it is not known whether the solution to (1), (2) constructed with
the non-conservative approximation (13), (12) is mass-conserving or not.

Nevertheless, numerical simulations which we performed recently in [9] seem to indicate
that the answer to this question is positive and the purpose of this note is to provide a proof
of this fact. More precisely, we have the following result:

Theorem 1. Assume that the coalescence coefficient a and the initial datum f in satisfy
(4) and (5), respectively. For n � 1, we denote by fn the solution to (13), (12). Then there
are a subsequence (fnk

) of (fn) and a mass-conserving solution f to (1), (2) such that

fnk
−→ f in Cw([0, T ]; L1

1(R+))(15)

for each T > 0.

By a mass-conserving solution f to (1), (2), we mean a nonnegative function

f ∈ Cw([0, +∞); L1(R+)) ∩ L∞(0, +∞; L1
1(R+))

satisfying (6) and

∞∫

0

(f (t, y) − f in(y)) ϕ(y) dy

=
t∫

0

∞∫

0

∞∫

0

a(y, y∗)(ϕ(y + y∗) − ϕ(y) − ϕ(y∗)) f (s, y) f (s, y∗) dy∗dyds

for every t � 0 and ϕ ∈ L∞(R+).
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The proof of Theorem 1 requires two steps: we first proceed as in the proof of
[13, Theorem 2.5] to show that there are a subsequence (fnk

) of (fn) and a solution f

to (1), (2) such that the convergence (15) holds true. The second step is to justify that f

is actually a mass-conserving solution to (1), (2) and this does not solely follow from (15)
as for the conservative approximation (8), (9). Indeed, we shall additionally prove that the
second term in the right-hand side of (14) vanishes in the limit n → +∞. This fact will
follow from a suitable moment estimate (see (24) below).

2. Proof of Theorem 1. Since f in ∈ L1
1(R+) by (5), a refined version of the de la

Vallée-Poussin theorem [5], [15] ensures the existence of two nonnegative and convex
functions �1 and �2 in C2([0, +∞)) such that �′

1 and �′
2 are concave,

�i(0) = 0 , lim
r→+∞

�i(r)

r
= +∞, i = 1, 2,(16)

and

∞∫

0

�1(1 + y) f in(y) dy < +∞ and

∞∫

0

�2(f
in(y)) dy < +∞.(17)

Let us recall here some properties of nondecreasing and convex functions with concave
first derivatives (such as �1 and �2) which will be needed in the sequel.

Lemma 2. For (r, r∗) ∈ R
2+, we have

�2(r) � r �′
2(r) � 2 �2(r),(18)

0 � �1(r + r∗) − �1(r) − �1(r∗) � 2
r �1(r∗) + r∗ �1(r)

r + r∗
.(19)

The inequalities (18) and (19) follow from [12, Lemma A.1] and [12, Lemma A.2],
respectively.

We next recall that, for n � 1 and ϕ ∈ L∞(R+), the solution fn to (13), (12) satisfies

n∫

0

ϕ(y)(fn(t, y) − f in
n (y)) dy(20)

= 1

2

t∫

0

n∫

0

n∫

0

Dϕ(y, y∗) a(y, y∗) fn(s, y) fn(s, y∗) dy∗dyds,

where

Dϕ(y, y∗) := ϕ(y + y∗) 1(0,n)(y + y∗) − ϕ(y) − ϕ(y∗), (y, y∗) ∈ (0, n)2.(21)
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The assertion (20) follows from (13) after multiplication by ϕ(y), integration over (0, t)×
(0, n) and application of the Fubini theorem to the first term of the right-hand side. A
straightforward consequence of (5), (11) and (20) with ϕ(y) = y and ϕ(y) = 1 is that, for
each n � 1,

sup
t � 0

n∫

0

(1 + y) fn(t, y) dy �
∞∫

0

(1 + y) f in(y) dy.(22)

In the following, we denote by C any positive constant depending only on A, f in,
�1 and �2. The dependence of C upon additional parameters will be indicated explicitly.
We also extend fn(t) to R+ by setting fn(t, y) = 0 for y � n.

Owing to (17) and (20), we may study the behaviour of fn for large values of y.

Lemma 3. For T > 0, there is a constant C(T ) depending on T such that, for every
n � 1,

sup
t∈[0,T ]

n∫

0

�1(1 + y) fn(t, y) dy � C(T ),(23)

T∫

0

n∫

0

n∫

n−y

�1(1 + y∗) a(y, y∗) fn(s, y) fn(s, y∗) dy∗dyds � C(T ).(24)

P r o o f. We take ϕ(y) = �1(1 + y), y ∈ (0, n), in (20) and use (11) and (17) to obtain

n∫

0

�1(1 + y) fn(t, y) dy � C + 1

2

t∫

0

(In(s) + Jn(s)) ds,(25)

where

In(s) :=
n∫

0

n−y∫

0

D1(y, y∗) a(y, y∗)fn(s, y)fn(s, y∗) dy∗dy

Jn(s) :=
n∫

0

n∫

n−y

D1(y, y∗) a(y, y∗) fn(s, y) fn(s, y∗) dy∗dy

D1(y, y∗) := �1(1 + y + y∗) 1(0,n)(y + y∗) − �1(1 + y) − �1(1 + y∗).

On the one hand, if y + y∗ � n, we infer from (19), the monotonicity of �1 and (4) that

a(y, y∗) D1(y, y∗)
� a(y, y∗) (�1(2 + y + y∗) − �1(1 + y) − �1(1 + y∗))

� 2a(y, y∗)
(1 + y) �1(1 + y∗) + (1 + y∗) �1(1 + y)

2 + y + y∗
� 2A((1 + y) �1(1 + y∗) + (1 + y∗) �1(1 + y)).
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Using (22), we end up with

In(s) � C

n∫

0

�1(1 + y) fn(s, y) dy.

On the other hand, if y + y∗ > n, we have D1(y, y∗) = −�1(1 + y) − �1(1 + y∗) and
thus

Jn(s) = −2

n∫

0

n∫

n−y

a(y, y∗) �1(1 + y∗) fn(s, y) fn(s, y∗) dy∗dy � 0.

Inserting the estimates for In(s) and Jn(s) in (25) and using the Gronwall lemma yield
(23) and (24). �

We next proceed along the lines of [13, Lemma 3.3 & Lemma 3.5] to prove the following
result.

Lemma 4. For any T > 0 and R > 0, there is a constant C(T , R) such that

sup
t∈[0,T ]

R∫

0

�2 (fn(t, y)) dy � C(T , R),

sup
t∈[0,T ]

∣∣∣∣∣∣
d

dt

R∫

0

fn(t, y)ϕ(y)dy

∣∣∣∣∣∣ � C(T , R) ‖ϕ‖L∞(0,R)

for every n � 1 and ϕ ∈ L∞(0, R).

P r o o f. It follows from (13) and the non-negativity of a and fn that

d

dt

R∫

0

�2(fn) dy � 1

2

R∫

0

R−y∗∫

0

a(y, y∗) �′
2(fn(y + y∗)) fn(y) fn(y∗) dydy∗ .

We now use (4) and the inequality

�′
2(r) r∗ � �2(r∗) + r �′

2(r) − �2(r) � �2(r∗) + �2(r), r, r∗ � 0,

which is a consequence of (18) and the convexity of �2 to deduce that

d

dt

R∫

0

�2(fn) dy

� 1

2

R∫

0

R−y∗∫

0

a(y, y∗){�2(fn(y + y∗)) + �2(fn(y∗))} fn(y) dydy∗

� A(1 + R)




R∫

0

fn(y) dy







R∫

0

�2(fn(y)) dy


 ,
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whence

d

dt

R∫

0

�2(fn) dy � C(R)

R∫

0

�2(fn(y)) dy

by (22). The Gronwall lemma then entails the first estimate in Lemma 4. We next readily
infer from (4) and (22) that, for ϕ ∈ L∞(0, R),

∣∣∣∣∣∣
d

dt

R∫

0

fn(t, y) ϕ(y) dy

∣∣∣∣∣∣ � A

2
(1 + R)




R∫

0

fn(t, y) dy




2

‖ϕ‖L∞(0,R)

+ A

min {R,n}∫

0

n∫

0

(1 + y + y∗) fn(t, y) fn(t, y∗) dy∗dy ‖ϕ‖L∞(0,R)

� C(R) ‖ϕ‖L∞(0,R),

and the proof of Lemma 4 is complete. �

Owing to (16), (22), (23) and Lemma 4, we may use the Dunford-Pettis and the Arzelà-
Ascoli theorems to conclude that (fn) is relatively compact in Cw([0, T ]; L1

1(R+)) for each
T > 0. There are thus a subsequence of (fn) (not relabeled) and a nonnegative function
f ∈ Cw([0, +∞); L1

1(R+)) such that

fn −→ f in Cw([0, T ]; L1
1(R+))(26)

for each T > 0. It is now a standard matter to show that (4), (13), (12) and (26) ensure that
f is a solution to (1), (2) [13], [20].

It remains to show that f is mass-conserving. For that purpose, we notice that,
if y+y∗ > n, then either y > n/2 or y∗ > n/2 so that �1(1+y)+�1(1+y∗) � �1(n/2),
thanks to the non-negativity and monotonicity of �1. Therefore, since y + y∗ � 2n,

1

2

t∫

0

n∫

0

n∫

n−y

(y + y∗) a(y, y∗) fn(s, y) fn(s, y∗) dy∗dyds

� n

�1(n/2)

t∫

0

n∫

0

n∫

n−y

�1(n/2) a(y, y∗)fn(s, y) fn(s, y∗) dy∗dyds

� n

�1(n/2)

t∫

0

n∫

0

n∫

n−y

(�1(1 + y) + �1(1 + y∗))

· a(y, y∗)fn(s, y) fn(s, y∗) dy∗dyds
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� 2n

�1(n/2)

t∫

0

n∫

0

n∫

n−y

�1(1 + y∗) a(y, y∗) fn(s, y)fn(s, y∗) dy∗dyds

� 2n

�1(n/2)
C(t)

by (24). Owing to (16), we may let n → +∞ in the above inequality to conclude that

lim
n→+∞

1

2

t∫

0

n∫

0

n∫

n−y

(y + y∗) a(y, y∗) fn(s, y) fn(s, y∗) dy∗dyds = 0 .

Recalling (11), (14) and (26), we may then pass to the limit as n → +∞ in (14) to obtain
that

∞∫

0

y f (t, y) dy =
∞∫

0

y f in(y) dy,

which completes the proof of Theorem 1.
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[9] F. Filbet and Ph. Laurençot, Numerical simulation of the Smoluchowski coagulation equation. SIAM

J. Sci. Comput. 25, 2004–2028 (2004).
[10] E. M. Hendriks, M. H. Ernst and R.M. Ziff, Coagulation equations with gelation. J. Statist. Phys. 31,

519–563 (1983).
[11] I. Jeon, Existence of gelling solutions for coagulation-fragmentation equations. Comm. Math. Phys. 194,

541–567 (1998).
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[16] F. Leyvraz, Existence and properties of post-gel solutions for the kinetic equations of coagulation. J. Phys.

A 16, 2861–2873 (1983).
[17] F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes. J. Phys. A 14,

3389–3405 (1981).
[18] F. Leyvraz and H. R. Tschudi, Critical kinetics near gelation. J. Phys. A 15, 1951–1964 (1982).
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