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Abstract

In this paper, we investigate the approximation of the solution to the Vlasov equation coupled with the Fokker–

Planck–Landau collision operator using a phase space grid. On the one hand, the algorithm is based on the conser-

vation of the flux of particles and the distribution function is reconstructed allowing to control spurious oscillations and

preserving positivity and energy. On the other hand, the method preserves the main properties of the collision operators

in order to reach the correct stationary state. Several numerical results are presented in one dimension in space and

three dimensions in velocity.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The evolution of a collisional plasma constituted of different species of particles is commonly described
by the Landau or Fokker–Planck–Landau (FPL) equation at the kinetic level (see [10,11,13,14,36]). It

describes binary collisions between charged particles with long-range Coulomb interactions. The evolution

of particles a is given by the distribution function faðt; x; vÞ, which depends on time t, position x 2 X � R3

and velocity v 2 R3. This distribution function is solution to the scaled Fokker–Planck–Landau equation
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ofa
ot

þ v � rxfa þ E � rvfa ¼ m
X
b

Qa;bðfa; fbÞ; ð1:1Þ

where fb is the distribution function for particles b, E ¼ Eðt; xÞ is the self-consistent electric field given by

the Poisson equation

rx � Eðt; xÞ ¼
X
b

Z
R3

fbðvÞdv; Eðt; xÞ ¼ �rx/ðt; xÞ; ð1:2Þ

where / ¼ /ðt; xÞ represents the electric potential. Finally, m is a nonnegative constant related to the col-

lision frequency, Qa;bðfa; fbÞ describes a–b collisions and reads

Qa;bðfa; fbÞ ¼ rv �
Z
R3

Uðv
�

� v0Þ rvfaðvÞfbðv0Þ
�

�rv0fbðv0ÞfaðvÞ
�
dv0
�
; ð1:3Þ

where UðvÞ is the 3� 3 matrix

UðvÞ ¼ 1

j v j3 SðvÞ ð1:4Þ

and

SðvÞ ¼ jvj2I3 � v� v: ð1:5Þ

Classically, the collision operator (1.3) is obtained as a remedy to the loss of finiteness of Boltzmann

collision operator for long-range Coulomb interactions. In Coulomb collisions, small angle collisions play a

more important role than collisions resulting in large velocity changes. The original derivation of the

equation based on this idea is due to Landau [24]. Several mathematical derivations of the equation have

been performed; we mention here the works of Arsen’ev and Buryak [1], Degond and Lucquin-Desreux

[12], Desvillettes [17] and Rosenbluth, MacDonald and Judd [34]. For a recent review of the main math-

ematical aspects related to the equation, we refer the reader to Villani [36] and the references therein.
In contrast with the Boltzmann equation where Monte Carlo methods play a major role in numerical

simulations, the application of these methods to long-range forces is challenging and has not yet been

completely successful. Most of the particle methods for Coulomb interaction, although extensively used,

have been derived more on a physical intuition basis and not directly from the Landau equation. A detailed

discussion about this is beyond the aims of the present paper and we refer the reader to [29] for a more

complete treatment.

Many different deterministic numerical schemes have been considered to Fokker–Planck type equations

[2,4–7,9,13,18,25,31–33]. Due to the computational complexity of the equation (essentially caused by the
large number of variables and the three-fold collision integral), many papers have been devoted to treat

simpler space homogeneous situations (the distribution function fa does not depend on x) in the isotropic

case [6] or for cylindrically symmetric problems in [26]. The construction of conservative and entropic

schemes for the space homogeneous case has been proposed by Degond and Lucquin-Desreux in [12] and

by Buet and Cordier [5,6]. These schemes are built in such a way that the main physical properties are

conserved at a discrete level. Positivity of the solution and discrete entropy inequality are also satisfied.

Unfortunately, the direct implementation of such schemes for space nonhomogeneous computations is

very expensive. Indeed, the computational cost increases roughly in proportion to the square of the number
of parameters used to represent the distribution function in the velocity space. Thus several fast approx-

imated algorithms to reduce the computational complexity of these methods, based on multipole expan-

sions [25] or multigrid techniques [7] have been proposed. A different approach, based on spectral methods,
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has been recently proposed for the Landau equation [21,31]. A detailed comparison of the spectral scheme

with the schemes proposed in [7,25] has been performed in [8].

Most of these methods have proven their efficiency in the homogeneous case, but few results are
available in the nonhomogeneous situation (see [8,15,16,21]). The main goal of this paper is to develop a

scheme in the x depending case and in the whole 3D velocity space.

The first step consists to construct a good approximation of the Vlasov equation, which is the left hand

side of (1.1). Its numerical resolution is often performed through particle methods (Particle In Cell), where

the plasma is approached by a finite number of macro-particles. The trajectories of these particles are

computed using the characteristic curves given by the Vlasov equation, whereas the self-consistent electric

field is computed on a fixed grid (see [3] for more details). Even if these methods give satisfying results, it is

well known that particle methods are noisy. Consequently, methods which discretize the Vlasov equation
on a phase space grid have been proposed [19,20,35]. These approaches allow to get an accurate approx-

imation of the distribution function in the phase space, but the nonconservation of the energy due to the

projection on the grid and interpolation can be an inconvenient for the long time behavior of the solution,

or for the approximation of stationary states. In this paper, we propose a new scheme using a phase space

grid which overcomes these inconveniences: space and velocity derivatives are approximated by a centered

finite volume method and an adapted approximation of the electric field E allows us to obtain a numerical

scheme that conserves the total energy. As this kind of discretization does not ensure the positivity of the

unknown, we introduce slope correctors. The distribution function is reconstructed following the second
order PFC method (see [19,21]). When the slope correctors act (to avoid negative values for f ) the total

energy is not conserved any more.

Finally, we deal with the approximation of the collision operators Qa;b given by (1.3). We first perform

some assumptions on the different species of particles to get a simpler collision operator when a differs from

b. Then, we propose a conservative scheme, based on the ideas of [13] to approximate this new operator,

where particles are always interacting by Colombian potentials. For a–a interactions, the full Fokker–

Planck–Landau collision operator is used. The construction of a conservative and entropic scheme for the

general situation has been proposed in [13]. Even if this scheme gives interesting properties (conservations,
decay of the entropy, positivity of the distribution function), its direct implementation is very expensive in

high dimensions. Thus, we adopt the multigrid method used in [7] to reduce the computational cost.

The rest of the paper is organized as follows. In the next section, we draw up the main properties of the

solution to the Vlasov–Poisson system coupled with Fokker–Planck–Landau collision operators and for-

mally derive the operator intended to model collisions between different species. We then present in Section

3, a finite volume scheme for the discretization of the Vlasov–Poisson equation. We next propose an ap-

proximation of the simplified collision operator and describe the discretization of the full Fokker–Planck–

Landau operator. Finally, several numerical results are presented in Section 4 to illustrate the efficiency of
the method.
2. Description of the kinetic model

2.1. Transport equation

We first briefly recall some classical estimates on the Vlasov–Poisson (1.1) and (1.2) system without
collision (i.e. m ¼ 0): mass and momentum are preserved with time,

d

dt

Z
R3�R3

faðt; x; vÞ
1

v

� �
dxdv ¼ 0; t 2 Rþ:
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Next, multiplying the Vlasov equation with m ¼ 0 (1.1) by jvj2 and performing an integration by parts, we

find the conservation of energy for the (1.1) and (1.2) system

d

dt

Z
R3�R3

faðt; x; vÞ
jvj2

2
dxdv

 
þ 1

2

Z
R3

jEðt; xÞj2 dx
!

¼ 0; t 2 Rþ:

Finally, the Vlasov–Poisson equations (1.1) and (1.2) conserves the kinetic entropy

HðtÞ ¼
Z
R3�R3

faðtÞ logðfaðtÞÞdxdv ¼ Hð0Þ:
2.2. Collision operators

The Fokker–Planck–Landau (FPL) operator is used for the description of binary collisions between

charged particles, for which the interaction potential is the long-range Coulomb interaction. In our case, it

describes electron-electron collisions. We recall the expression and some properties of the FPL collision

operator

Qa;aðfa; faÞ ¼ rv �
Z
R3

Uðv
�

� v0ÞðrvfaðvÞfaðv0Þ � rv0faðv0ÞfaðvÞÞdv0
�
;

where UðvÞ is the 3� 3 matrix (1.4) and can be viewed as the orthogonal projector onto the orthogonal

plane to v. The algebraic structure of the FPL operator is similar to the Boltzmann one, this leads to

physical properties such that mass, momentum and energy are conservedZ
R3

Qa;aðfa; faÞðvÞ
1

v
jvj2

0@ 1Adv ¼ 0

and the entropy HðtÞ is decreasing,

dH
dt

ðtÞ ¼ d

dt

Z
R3

faðt; vÞ logðfaðt; vÞÞdv6 0:

Finally, the equilibrium state of the FPL operator, i.e. the distribution function fa which satisfies
Qa;aðfa; faÞ ¼ 0; is given by a Maxwellian

Mqa;ua;TaðvÞ ¼
qa

ð2pTaÞ3=2
exp

 
� jv� uaj2

2Ta

!
; ð2:1Þ

where qa is the total mass, ua the mean velocity and Ta the temperature given by

qa ¼
Z
R3

faðvÞdv; ua ¼
1

qa

Z
R3

faðvÞvdv; Ta ¼
1

3qa

Z
R3

faðvÞjv� uaj2 dv: ð2:2Þ

The operator Qa;b describes collisions between two different species (for instance ions and electrons) and

can be derived from the two species form of the full Landau operator (1.3). If we assume that the tem-

perature Tb is negligible compared to the temperature Ta of species a (2.2), we may consider that the dis-

tribution function of species b is given by a Dirac measure in velocity

fbðt; x; vÞ ¼ qbðt; xÞd0ðv� ubðt; xÞÞ; ð2:3Þ
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where the density qb and the mean velocity ub are given or satisfy hydrodynamic equations. The so-obtained

operator then reads (see [11] for a more physical derivation)

Qa;bðfaÞ ¼ qbrv � Uðv
�

� ubÞrvfa
�
; ð2:4Þ

where UðvÞ is the 3� 3 matrix given by (1.4).

To emphasize the properties of Qa;b, it is convenient to write its weak formulation: let u be a smooth test

function, then we haveZ
R3

Qa;bðfaÞðvÞuðvÞdv ¼ �qb

Z
R3

Uðv
�

� ubÞrvfa
�
� rvudv: ð2:5Þ

We also introduce the weak log formulationZ
R3

Qa;bðfaÞðvÞuðvÞdv ¼ �qb

Z
R3

Uðv
�

� ubÞfarvðlog faÞ
�
� rvudv: ð2:6Þ

The different properties of Qa;b are listed in the following proposition.

Proposition 2.1. The linear collision operator Qa;bðfaÞ given by (2.4) satisfies

(i) the preservation of mass and energy, i.e.Z
R3

Qa;bðfaÞðvÞdv ¼ 0;

Z
R3

Qa;bðfaÞðvÞ j v� ub j2 dv ¼ 0;

(ii) KerðQa;bÞ ¼ ffaðjv� ubj2Þg,
(iii) each convex function W of fa is an entropy for Qa;b

d

dt

Z
R3

WðfaÞdv6 0:
Proof.

(i) Our starting point is the weak formulation (2.5) to Qa;bðfaÞ. The conservation of mass easily follows

taking u ¼ 1: The conservation of energy is obtained by choosing u ¼ jv� ubj2 in (2.5)Z
R3

Qa;bðfaÞðvÞ j v� ub j2 dv ¼ �2qb

Z
R3

rvfa � Uðv
�

� ubÞðv� ubÞ
�
dv ¼ 0;

because the matrix UðvÞ is symmetric and v 2 KerUðvÞ.
(ii) When fa only depends on j v� ub j2, the following equality holds

rvðfaðjv� ubj2ÞÞ ¼ 2 ðv� ubÞf 0
aðjv� ubj2Þ:

As we saw above v 2 KerðUðvÞÞ, consequently the functions faðjv� ubj2Þ vanish the collision operator.

Reciprocally, we consider fa 2 KerðQa;bÞ, which means that Qa;bðfaÞ ¼ 0. Then, we multiply Qa;bðfaÞ by
fa, integrate over v 2 R3; and apply the Green formulaZ

R3

Uðv� ubÞrvfa � rvfa dv ¼ 0:

Thus, from the nonnegativity of UðvÞ we deduce that for almost every v 2 R3



N. Crouseilles, F. Filbet / Journal of Computational Physics 201 (2004) 546–572 551
Uðv� ubÞrvfa � rvfa ¼ 0: ð2:7Þ

Thanks to the fact that UðvÞ is a nonnegative matrix, (2.7) is equivalent to

rvfa 2 KerUðv� ubÞ: ð2:8Þ

We know that the kernel of UðvÞ is generated by v, consequently (2.8) is equivalent to

rvfa ¼ kðvÞðv� ubÞ: ð2:9Þ

We conclude that fa only depends on jv� ubj2 by passing to spherical coordinates in (2.9).

(iii) We introduce the following quantity HðtÞ,

HðtÞ ¼
Z
R3

WðfaÞðvÞdv: ð2:10Þ

Then, by differentiating with respect to the time, we get

dH

dt
ðtÞ ¼

Z
R3

ofa
ot

W0ðfaÞðvÞdv ¼
Z
R3

Qa;bðfaÞðvÞW0ðfaÞðvÞdv: ð2:11Þ

Using (2.5) and the property of nonnegativity of the matrix UðvÞ, we can easily proveZ
R3

Qa;bðfaÞðvÞW0ðfaÞðvÞdv ¼ �qb

Z
R3

Uðv
�

� ubÞrvfa
�
� rvW

0ðfaÞ
� �

ðvÞdv:

Finally, since W is a convex function of faZ
R3

Qa;bðfaÞðvÞW0ðfaÞðvÞdv ¼ �qb

Z
R3

Uðv
�

� ubÞrvfa
�
� rvfaW

00ðfaÞðvÞdv6 0: �
3. The numerical method

From now, we will only consider one species of particles, then the index a will be dropped and the

distribution function will be denoted by f . Let us also mention that the time discretization of inhomoge-
neous Fokker–Planck type equation is often based on a time splitting scheme. However, the method we

present here can be interpreted as a method of line, where the space and velocity variables are decoupled

from time. Then, we describe below the approximation in space and velocity whereas the time discretization

will be performed via a second order Runge–Kutta algorithm.

We first give a finite volume scheme to the Vlasov–Poisson equation and then describe a conservative

and entropy decreasing method to the collision operators.
3.1. Approximation to the Vlasov–Poisson system

The discretization of the Vlasov equation is often performed using semi-Lagrangian methods [19,20,30].

However, this approach does not allow exact energy conservation. In this section, we introduce a new

scheme which provides, thanks to a suitable approximation of the electric field, the exact total energy

conservation. We consider a Cartesian grid in the phase space. For the sake of simplicity, we present the
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scheme in one dimension in space and velocity, but it can be extended to higher dimensions by applying the

same reconstruction in each direction.

We introduce the mesh points ðxiþ1=2Þi2I and ðvjþ1=2Þj2Z of the computational domain ½xmin; xmax� � R. We
will denote by Dx ¼ xiþ1=2 � xi�1=2 and Dv ¼ vjþ1=2 � vj�1=2 the space and velocity steps and by

Ci;j ¼ ½xi�1=2; xiþ1=2� � ½vj�1=2; vjþ1=2� the control volume. Finally, tn ¼ nDt is the time discretization.

We assume that f n
i;j is an average approximation of f on the control volume Ci;j at time tn

f n
i;j ¼

1

DxDv

Z
Ci;j

f ðtn; x; vÞdxdv:

Then, we approximate the average of f at the time tnþ1 by integrating the Vlasov equation on a control

volume and using a backward Euler scheme in time

f nþ1
i;j ¼ f n

i;j �
Dt

DxDv

Z vjþ1=2

vj�1=2

v f ðtn; xiþ1=2; vÞ
�

� f nðtn; xi�1=2; vÞ
�
dv

� Dt
DxDv

Z xiþ1=2

xi�1=2

~EnðxÞ f ðtn; x; vjþ1=2Þ
�

� f nðtn; x; vj�1=2Þ
�
dx: ð3:1Þ

We have to approach the fluxes at the interface of the control volume ½xi�1=2; xiþ1=2Þ and ½vj�1=2; vjþ1=2Þ

1

Dv

Z vjþ1=2

vj�1=2

vf ðtn; xiþ1=2; vÞdv 8i 2 I ;
1

Dx

Z xiþ1=2

xi�1=2

~EnðxÞf ðtn; x; vjþ1=2Þdx 8j 2 Z;

where ~EnðxÞ is an approximation of the electric field deduced from the numerical resolution to the Poisson

equation (1.2).

The main step to get an accurate solution is to reconstruct the distribution function in each direction.
For that purpose, we fix the velocity v 2 ½vj�1=2; vjþ1=2Þ and consider the function fhðx; vÞ as an approxi-

mation of the distribution function f ðtn; x; vÞ. Thus, the high order approximation fhðx; vÞ is obtained via a

reconstruction by primitive Fhðx; vÞ (where Fhðx; vÞ stands for the primitive of fhðx; vÞ with respect to x). We

denote by

f n
i ðvÞ ¼

1

Dx

Z xiþ1=2

xi�1=2

f ðtn; x; vÞdx; for v 2 ½vj�1=2; vjþ1=2Þ;

hence,

Fhðxiþ1=2; vÞ � Fhðxi�1=2; vÞ ¼ Dxf n
i ðvÞ:

We present a method of reconstruction allowing to obtain a second order scheme, which preserves the
positivity using slope limiters. To this aim, we first build an approximation of the primitive using the stencil

fxi�1=2; xiþ1=2; xiþ3=2g when the velocity v is positive and fxi�3=2; xi�1=2; xiþ1=2g when v is negative. Let us as-

sume that v is positive, then we get

Fhðx; vÞ ¼ Fhðxi�1=2; vÞ þ ðx� xi�1=2Þf n
i ðvÞ þ

ðx� xi�1=2Þðx� xiþ1=2Þ
2Dx

ðf n
iþ1ðvÞ � f n

i ðvÞÞ:
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By differentiation, we obtain a second order accurate approximation of the distribution function on the

interval ½xi�1=2; xiþ1=2Þ

fhðx; vÞ ¼
oFh
ox

ðx; vÞ ¼ f n
i ðvÞ þ

ðx� xiÞ
Dx

ðf n
iþ1ðvÞ � f n

i ðvÞÞ:

This appears as a second order approximation, which can generate spurious oscillations. We then in-

troduce a slope corrector, ensuring the positivity of the distribution function on the interval ½xi�1=2; xiþ1=2Þ

fhðx; vÞ ¼ f n
i ðvÞ þ gþi ðvÞ

ðx� xiÞ
Dx

ðf n
iþ1ðvÞ � f n

i ðvÞÞ; ð3:2Þ

with

gþi ðvÞ ¼ min 1; 2f n
i ðvÞ=ðf n

iþ1ðvÞ
�

� f n
i ðvÞÞ

�
; if ðf n

iþ1ðvÞ � f n
i ðvÞÞ > 0: ð3:3Þ

For a negative velocity v, the reconstruction on the interval ðxi�1=2; xiþ1=2Þ is

fhðx; vÞ ¼ f n
i ðvÞ þ g�i ðvÞ

ðx� xiÞ
Dx

ðf n
i ðvÞ � f n

i�1ðvÞÞ; ð3:4Þ

with

g�i ðvÞ ¼ min 1;
�

� 2f n
i ðvÞ=ðf n

i ðvÞ � f n
i�1ðvÞÞ

�
; if ðf n

i ðvÞ � f n
i�1ðvÞÞ < 0: ð3:5Þ

Now, we proceed in the same way to reconstruct fh in the v direction depending on the sign of ~EnðxÞ.
The approximation of the distribution function fhðx; vÞ given by (3.2) and (3.3) or by (3.4) and (3.5)

satisfies the following properties.

Proposition 3.1. The approximation of the distribution function fhðx; vÞ defined by (3.2) or by (3.4) using the

second order reconstruction with the slope correctors (3.3) and (3.5) satisfies

• The conservation of the average

1

DxDv

Z xiþ1=2

xi�1=2

Z vjþ1=2

vj�1=2

fhðx; vÞdxdv ¼ f n
i;j:

• The positivity of fhðx; vÞ:

We finally obtain the following scheme, which represents an approximation of (3.1)

f nþ1
i;j ¼ f n

i;j �
Dt

DxDv
wn

iþ1=2;j

�
� wn

i�1=2;j

�
� Dt
DxDv

/n
i;jþ1=2

�
� /n

i;j�1=2

�
; ð3:6Þ

with

wn
iþ1=2 ¼ Dvvjf n

iþ1=2;j; /n
i;jþ1=2 ¼ Dx ~En

i f
n
i;jþ1=2;

where the distribution function is approximated on the boundary of the control volume as follows

f n
iþ1=2;j ¼

f n
i;j þ gþi;jðf n

iþ1;j � f n
i;jÞ=2; if vj P 0;

f n
iþ1;j � g�iþ1;jðf n

iþ1;j � f n
i;jÞ=2; if vj < 0;

�
and
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f n
i;jþ1=2 ¼

f n
i;j þ eþi;jðf n

i;jþ1 � f n
i;jÞ=2; if ~En

i P 0;

f n
i;jþ1 � e�i;jþ1ðf n

i;jþ1 � f n
i;jÞ=2; if ~En

i < 0;

(

where the slope limiters are given by

gþi;j ¼ min 1; 2f n
i;j=ðf n

iþ1;j � f n
i;jÞ

� �
; if ðf n

iþ1;j � f n
i;jÞ > 0;

g�i;j ¼ min 1;�2f n
i;j=ðf n

i;j � f n
i�1;jÞ

� �
; if ðf n

i;j � f n
i�1;jÞ < 0;

for the space variable, and

eþi;j ¼ min 1; 2f n
i;j=ðf n

i;jþ1 � f n
i;jÞ

� �
; if ðf n

i;jþ1 � f n
i;jÞ > 0;

e�i;j ¼ min 1;�2f n
i;j=ðf n

i;j � f n
i;j�1Þ

� �
; if ðf n

i;j � f n
i;j�1Þ < 0;

for the velocity variable. The following proposition gives some properties of the scheme.

Proposition 3.2. Assume the initial datum ðf 0
i;jÞi;j is nonnegative. If the time step satisfies the following CFL

type condition

Dt6CminðDx;DvÞ; ð3:7Þ

where C > 0 is related to the maximum norm of the electric field and the upper bound of the velocity domain.

Then the scheme defined by (3.6) gives a nonegative approximation.

The proof can be deduced from the Proposition 2.1.

When the slope correctors do not occur in the approximation of the velocity derivative (it is the case

when the distribution function is sufficiently smooth), we obtain a classical centered scheme

1

DxDv
/n

i;j�1=2

�
� /i;jþ1=2

�
¼ ~En

i

f n
i;jþ1 � f n

i;j�1

2Dv
:

Thus, from the following approximation of the electric field

~En
i ¼

Enþ1
i þ En

i

2
; ð3:8Þ

the so-obtained scheme can be written as

f nþ1
i;j ¼ f n

i;j �
Dt

DxDv
wn

iþ1=2;j

�
� wn

i�1=2;j

�
� Dt

Enþ1
i þ En

i

2
Dc;vf n

i;j

� �
; ð3:9Þ

where Dc;v is the usual second order centered discrete operator

Dc;vfj ¼
fjþ1 � fj�1

2Dv
: ð3:10Þ

On the other hand, the electric field at time tn is determined through the following approximation to the

Poisson equation

�DH

x E
n
i ¼ qn

i � qb; En
i ¼ �Dx/

n
i ; ð3:11Þ
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where Dx is a discrete finite difference operator whereas DH

x stands for its formal adjoint, which represents

an approximation of �ox (for example, we can consider Dx as the usual uncentered discrete operator).

Hence, the following equality holds

hDHu; f i ¼ hu;Df i; for all sequences u; f ;

where h ; i denotes an inner product. Finally, Enþ1
i is a prediction of the electric field at time tnþ1 obtained

from the discretization to the Poisson equation (3.11) and the continuity equation

qnþ1 ¼ qn
i þ DtDH

x J
n
i ; ð3:12Þ

where Jn
i is an approximation of the current density jðt; xÞ

Jn
i ¼ Dv

X
j2Z

vjf n
i;j; ð3:13Þ

whereas qn
i is computed iteratively from the initial density. The approximation of the Vlasov–Poisson

equation (3.9)–(3.11) obtained from this algorithm satisfies

Proposition 3.3. The approximation of the distribution function defined by the scheme (3.9)–(3.11) preserves
total mass

DxDv
X
i;j

f n
i;j ¼ DxDv

X
i;j

f 0
i;j

and total energy

DxDv
2

X
i;j

jvjj2f n
i;j þ

Dx
2

X
i

ðEn
i Þ

2 ¼ DxDv
2

X
i;j

jvjj2f 0
i;j þ

Dx
2

X
i

ðE0
i Þ

2
:

Proof. The conservation of total mass can be obtained by multiplying (3.9) by one and summing on

i 2 Z; j 2 Z. Then, after a discrete integration by parts, we find that mass at time tnþ1 is equal to mass at

time tn.
For the conservation of total energy, we first introduce the following notation for the kinetic energy

En
K :¼ DxDv

2

X
i;j2Z

f n
i;jjvjj

2
: ð3:14Þ

Then, if we multiply (3.9) by jvjj2=2 and sum over i; j 2 Z, we obtain

Enþ1
K ¼ En

K � Dt
2

X
i;j2Z

wn
iþ1=2;j

�
� wn

i�1=2;j

�
jvjj2 �

Dt
2

DvDx
2

X
i;j2Z

Enþ1
i

�
þ En

i

�
Dc;vf n

i;j jvjj
2
:

On the one hand, the space flux terms vanish thanks to a discrete integration by parts. On the other

hand, we replace En
i by ð�Dx/

n
i Þ thanks to the Poisson equation (3.11) and perform a discrete integration by

parts in velocity and next in space; we obtain

Enþ1
K ¼ En

K þ Dt
4
DxDv

X
i;j2Z

Dx/
nþ1
i

�
þDx/

n
i

�
f n
i;jD

H

c;vjvjj
2
;

¼ En
K þ Dt

4
DvDx

X
i;j2Z

/nþ1
i

�
þ /n

i

�
DH

x f
n
i;jD

H

c;vjvjj
2
;

ð3:15Þ
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where DH

c;v stands for the adjoint of Dc;v. The centered discrete operator is a second order approximation,

hence it is the exact gradient at least up to polynomial functions of degree two

Dv
2

X
j2Z

DH

x f
n
i;jD

H

c;vjvjj
2 ¼ �Dv

X
j2Z

DH

x f
n
i;j vj ¼ �DH

x Dv
X
j2Z

f n
i;jvj

 !
¼ �DH

x J
n
i ;

where Jn
i is the approximation of the current density (3.13). Thus, from the discrete continuity equation

(3.12), we get

Enþ1
K ¼ En

K � Dx
2

X
i2Z

/nþ1
i

�
þ /n

i

�
qnþ1
i

�
� qn

i

�
: ð3:16Þ

From the approximation of the Poisson equation (3.11), we finally obtain

Enþ1
K ¼ En

K þ Dx
2

X
i2Z

/nþ1
i

�
þ /n

i

�
DH

x E
nþ1
i

�
�DH

x E
n
i

�
¼ En

K � Dx
2

X
i2Z

Enþ1
i

� �2�
� En

i

� �2�
:

We then conclude the total energy conservation

Enþ1
K þ Dx

2

X
i2Z

ðEnþ1
i Þ2 ¼ En

K þ Dx
2

X
i2Z

ðEn
i Þ

2
: � ð3:17Þ

Remark 3.4. In one space dimension, the Amp�ere equation can be used instead of the Poisson equation. In

this case, the previous demonstration is simplified. Indeed, in (3.12), Jn
i can be approximated thanks to the

discretized Amp�ere equation

Enþ1
i � En

i ¼ �Dt J n
i : ð3:18Þ

This approximation is performed in [23].

3.2. Approximation to the linear operator

This section is devoted to the discretization of the a–b collision operator. We may restrict ourselves to

the space homogeneous equation and since qb and ub only play the role of parameters, we set

qb ¼ 1; ub ¼ 0:

Then, we approximate the following equation

of
ot

¼ Qa;bðf Þ; f jt¼0 ¼ f0ðvÞ; ð3:19Þ

where Qa;bðf Þ is given by (2.4) and f0 stands for an initial datum. Let vj ¼ jDv and j ¼ ðj1; j2; j3Þ 2 Z3 be a

uniform mesh in R3 and we denote by fj an approximation of f ðvjÞ. We define ‘D’ as a finite difference

operator that approximates the usual gradient operator rv and by DH its formal adjoint, which represents

an approximation of �rv�. Then, for any test sequence ðujÞj2Z3 , we set ðDujÞj2Z3 as a sequence of vectors of

R3

Duj ¼ ðD1uj;D
2uj;D

3ujÞ 2 R3;

where the components Dsuj; s 2 f1; 2; 3g approximates the partial derivatives ðou=ovsÞðvjÞ.
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To preserve the property of decreasing entropy at the discrete level, we use the log weak formulation

(2.6) as in [13]. Using the notations introduced above, the operator Qa;bðf ÞðvÞ can be approximated at v ¼ vj
by

Qa;bðf ÞðvjÞ ¼ �DH
1

jvjj3
Sð~vjÞfjDðlog fjÞ

 !
; ð3:20Þ

where Sð~vjÞ is an approximation at ~vj to the matrix S given by (1.5) i.e.

Sð~vjÞ ¼ j~vjj2I3 � ~vj � ~vj:

The weak formulation reads

Dv3
X
j2Z3

Qa;bðf ÞðvjÞuj ¼ �Dv3
X
j2Z3

1

jvjj3
Sð~vjÞfjDðlog fjÞ �Duj

¼ �Dv3
X
j2Z3

1

jvjj3
fjDðlog fjÞ � Sð~vjÞDuj

� �
: ð3:21Þ

We perform a discrete integration by parts and use the symmetry of S; we finally get the following
proposition

Proposition 3.5. The discretization (3.20) conserves total mass and decreases discrete entropy

HðtÞ ¼ Dv3
X
j2Z3

fjðtÞ logðfjðtÞÞ:

Moreover, it preserves energy under the condition on ~vj

D1ðjvjj2Þ=~v1j ¼ D2ðjvjj2Þ=~v2j ¼ D3ðjvjj2Þ=~v3j ; ð3:22Þ

where ~vj ¼ ð~v1j , ~v2j , ~v3j Þ.

Proof. We start from the discrete log weak formation (3.21) of Qa;b, for a discrete operator ‘D’ which stands
for an approximation of the gradient operator in velocity. Then taking u ¼ 1, it easily leads to the con-

servation of mass. In the same way, we take u ¼ log f in (3.20),

Dv3
X
j2Z3

Qa;bðf ÞðvjÞ log fj ¼ �Dv3
X
j2Z3

1

jvjj3
Sð~vjÞfjDðlog fjÞ
� �

�Dðlog fjÞ ð3:23Þ

which is nonpositive thanks to the semi-positivity of Sð~vjÞ.
To prove the conservation of energy, we start from (3.21) taking uðvÞ equal to jvj2

Dv3
X
j2Z3

Qa;bðf ÞðvjÞjvjj2 ¼ �Dv3
X
j2Z3

1

jvjj3
fjDðlog fjÞ � Sð~vjÞDjvjj2

� �
:

This quantity vanishes when Sð~vjÞDjvjj2 is zero. This 3� 3 system is satisfied if and only if ~vj is chosen as

follows

D1ðjvjj2Þ=~v1j ¼ D2ðjvjj2Þ=~v2j ¼ D3ðjvjj2Þ=~v3j :
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Then we conclude on the conservation of the energy. �

Example 3.1. If we choose D ¼ Dþ i.e. the forward uncentered discrete operator, (3.22) implies that ~v must

be chosen as follows

~vsj ¼
1

2
vsj
�

þ vsjþes

�
; s 2 f1; 2; 3g:

The choice of D ¼ D� leads to the following ~v

~vsj ¼
1

2
vsj
�

þ vsj�es

�
; s 2 f1; 2; 3g:

Finally, if D ¼ Dc i.e. the centered discrete operator, (3.22) gives for ~v

~vsj ¼
1

2
vsjþes

�
þ vsj�es

�
; s 2 f1; 2; 3g;

where es denotes the unit vector of the canonical basis of R3, s ¼ 1, 2, 3.

As mentioned in [5,13], the use of the centered discrete difference operator D ¼ Dc leads to conserved

quantities which are not physical. On the other hand, the use of the uncentered discrete operator (D ¼ Dþ
or D ¼ D�) introduces some unsymmetry in the distribution function leading to a loss of accuracy. To

overcome these difficulties, following the idea of [5,7], we introduce a symmetrization of the discrete op-

erator based on the averaging of the uncentered discretizations

Qa;bðf ÞðvjÞ ¼ � 1

2
DH

þ
1

j vj j3
Sð~vþj ÞfjDþðlog fjÞ

� ��
þDH

�
1

j vj j3
Sð~v�j ÞfjD�ðlog fjÞ

� �	
; ð3:24Þ

where

~vþ;s
j ¼ 1

2
ðvsj þ vsjþes

Þ; and ~v�;s
j ¼ 1

2
ðvsj þ vsj�es

Þ; s ¼ 1; 2; 3; ð3:25Þ

are chosen as in Example 3.1 to conserve the energy (~vþ with Dþ and ~v� with D�).

Consequently, thanks to Proposition 3.5, such a discretization conserves mass, energy and decreases the

entropy. Moreover, if the mean velocity of f vanishes, then the momentum of Qa;bðf Þ is equal to zero. This

property is preserved at the discrete level for the approximation (3.24) under some symmetry assumptions

on the initial datum.

Proposition 3.6. We consider the discrete collision operator (3.24) and (3.25). If the sequence ðfjÞj2Z3 is

symmetric in all the directions (i.e. fk ¼ fj, with ks ¼ �js; s ¼ 1; 2; 3Þ; then the discrete collision operator (3.24)
and (3.25) conserves the momentum.

Proof. We consider the kth component of the momentum

Dv3
X
j2Z3

Qa;bðf ÞðvjÞvjk ¼ �Dv3

2

X
j2Z3

1

jvjj3
X3
l¼1

Sk;lð~vþj ÞfjDl
þðlog fjÞ �

Dv3

2

X
j2Z3

1

jvjj3
X3
l¼1

Sk;lð~v�j ÞfjDl
�ðlog fjÞ:

ð3:26Þ

Thanks to (3.25), we can express ~vþj and ~v�j with respect to vj
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~vþ;s
j ¼ vsj þ

Dv
2
; ~v�;s

j ¼ vsj �
Dv
2
; s ¼ 1; 2; 3:

The 3� 3 matrices Sð~vþj Þ and Sð~v�j Þ then read

Sð~vþj Þ ¼ SðvjÞ þ
Dv2

4
Aþ Dv

2
BðvjÞ; ð3:27Þ

and

Sð~v�j Þ ¼ SðvjÞ þ
Dv2

4
A� Dv

2
BðvjÞ; ð3:28Þ

where A and B stand for the following 3� 3 matrices

A ¼
2 �1 �1

�1 2 �1

�1 �1 2

0@ 1A; BðvjÞ ¼
2ðvj2 þ vj3Þ �ðvj1 þ vj2Þ �ðvj1 þ vj3Þ
�ðvj1 þ vj2Þ 2ðvj1 þ vj3Þ �ðvj2 þ vj3Þ
�ðvj1 þ vj3Þ �ðvj2 þ vj3Þ 2ðvj1 þ vj2Þ

0@ 1A:

Thus, using (3.27) and (3.28), the equality (3.26) becomes

Dv3
X
j2Z3

Qa;bðf ÞðvjÞvjk ¼ �Dv3

2

X
j2Z3

X3
l¼1

Uk;lðvjÞfj ðDl
þ

�
þDl

�Þðlog fjÞ
�

� Dv5

8

X
j2Z3

X3
l¼1

Ak;l

jvjj3
fj ðDl

þ
�

þDl
�Þðlog fjÞ

�
� Dv4

4

X
j2Z3

X3
l¼1

Bk;lðvjÞ
jvjj3

fj ðDl
þ

�
�Dl

�Þðlog fjÞ
�
:

Each term vanishes thanks to arguments of symmetry of fj. Thus, provided that fj is symmetric with respect

to each coordinate, we proved that the approximation (3.24) of Qa;bðf Þ preserves momentum. h

We consider an explicit time discretization and assume the distribution function is known at time tn.
Then, its value at time tnþ1 ¼ tn þ Dt denoted by �fj; j 2 J (whereJ is a bounded discrete set) is given by the
following explicit scheme

�fj ¼ fj þ DtQa;bðf ÞðvjÞ; 8j 2 J; ð3:30Þ

where Qa;bðf ÞðvjÞ is defined by (3.24) and following [5], fj (which is in factor in Qa;bðf ÞðvjÞ) is approximated

by gj given by

gj ¼
2fjþ1fj=ðfjþ1 þ fjÞ
2fj�1fj=ðfj�1 þ fjÞ

�
respectively, according to the discrete operator Dþ or D�. We shall determine a condition on the time step

Dt under which the scheme gives a positive solution for an arbitrary large time. The following proposition

sums up this result which can also be found for a more general Fokker–Planck–Landau operator in [5].

Proposition 3.7. There exists a time-sequence Dtn such that the scheme (3.30) defines a positive solution at any

time (i.e.
P

n Dtn ¼ þ1).
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Proof. Showing that fj does not vanish in finite time is equivalent to prove that

K ¼ sup
j2J

fj
fj�1





 




remains bounded. To prove this assertion, we use the following estimate

06 gj ¼ 2
fj

1þ fj=fj�1

6 2fj ð3:31Þ

and re-write (3.24) as

Qa;bðf ÞðvjÞ ¼ � 1

2
DH

þpj
�

þDH

�qj
�
;

where pj and qj are given by

pj ¼ 1= j vj j3 Sð~vþj ÞfjDþðlog fjÞ;
qj ¼ 1= j vj j3 Sð~v�j ÞfjD�ðlog fjÞ:

For the sake of simplicity, we restrict ourselves to the discrete operator Dþ and note that a similar

technique leads to the same conclusion for D�. Hence, using the definitions of K and of Qeiðf Þj, we have

jpjj6C gj logðKÞ; ð3:32Þ

where C is a constant depending on the number of grid points, on the initial condition and on the velocity

step Dv. Indeed, the estimate (3.32) can be deduced from the following bounds

sup
j2J

kSð~vjÞk6C; jfjj6C; 8j 2 J; ð3:33Þ

where k:k denotes a matrix norm. Thanks to (3.31), the following inequality holds

jðDHpÞjj6C logðKÞ sup
j2J

gj�1 6C logðKÞfj: ð3:34Þ

We first define Dt1 ¼ 1=C logðKÞ and choose Dt ¼ aDt1; with 0 < a < 1: Then, we obtain

�fj
�fj�1

¼ fj
fj�1 þ DtQa;bðf Þðvj�1Þ

þ Dt
Qa;bðf ÞðvjÞ

fj�1 þ DtQa;bðf Þðvj�1Þ
:

Thanks to the estimates (3.31), (3.33) and (3.34), we have

�fj
�fj�1

6
fj

fj�1 � CDt logðKÞfj�1

þ CDtfj logðKÞ
fj�1 � CDt logðKÞfj�1

:

Our choice of time step leads to

�fj
�fj�1

6
Kð1þ aÞ
ð1� aÞ ¼ bK;

with b > 1: Then, we proceed by induction on n 2 f0; . . . ;Ng and get

Dtn P n logðbÞ þ logðK0Þ;
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with K0 ¼ Kð0Þ ¼ maxj2Jff 0
j =f

0
j�1g < 1: Therefore, for the time step Dtn defined by Dtn ¼ a=C logðKnÞ, the

solution is nonnegative and we get the following estimate

Dtn P
a

Cðn logðbÞ þ logðK0ÞÞ
:

The right hand side of this inequality is a nonconvergent series and thus

tn ¼
X
k6 n

Dtk !
n!þ1

þ1: �

3.3. Approximation to the Landau operator

In this section, we shall consider the discretization of the a–a collision operator, i.e. the nonlinear

Fokker–Planck–Landau operator (1.3) in the whole 3D velocity space. As in the previous section, we re-

strict ourselves to the space homogeneous case. More precisely, we are concerned with the numerical ap-
proximation of the FPL equation

of
ot

¼ Qðf ; f Þ; ð3:35Þ

where Qðf ; f Þ is given by (1.3). As we described before, it is convenient to write the FPL operator in its

weak form. To that purpose, we first define for any test function uðvÞ sufficiently smooth,

Gðv; v0Þ ¼ � 1

2
f ðt; vÞf ðt; v0Þ½rvuðvÞ � rv0uðv0Þ�TUðv� v0Þ½rv logðf ðt; vÞÞ � rv0 logðf ðt; v0ÞÞ�:

Then, we write the FPL operator using the weak formulationZ
R3

Qðf ; f ÞðvÞuðvÞdv ¼
Z
R3�R3

Gðv; v0Þdv0 dv: ð3:36Þ

We now recall the basic entropy conservative discretization introduced in [13], using the weak form

(3.36) we define Qðf ; f Þj as an approximation of Qðf ; f ÞðvjÞ such thatX
j2Z3

Qðf ; f ÞjujDv
3 ¼

X
ðj;mÞ2Z6

Gðvj; vmÞDv6;

the value Gðvj; vmÞ is defined for any test sequence u by

Gðvj; vmÞ ¼ � 1

2
fjðtÞfmðtÞ½Duj �Dum�

TUðvj � vmÞ½Dðlog f ðtÞÞj �Dðlog f ðtÞÞm�; ð3:37Þ

where ‘D’ is again a finite difference operator approximating the usual gradient operator rv (see Section

3.2).

We denoted by fjðtÞ the value of the approximated distribution function at velocity vj and time t. From
the weak formulation, the evolution of this discretized function is then governed by the following system of
differential equations

dfjðtÞ
dt

¼ Qðf ; f ÞjðtÞ ¼ ðD�pðtÞÞj; j 2 Z3; ð3:38Þ
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where D� is the formal adjoint of the finite difference operator ‘D’, and

pjðtÞ ¼ Dv3
X
m2Z3

fjðtÞfmðtÞUðvj � vmÞ Dðlog f ðtÞÞj
�

�Dðlog f ðtÞÞm
�
: ð3:39Þ

The FPL operator is finally approximated by the average of the discrete operators obtained from the

down-wind and up-wind finite difference operators ‘D’. From the duality relation (3.37), it is an easy matter

to verify that the discrete model preserves mass, momentum and energy. Furthermore, taking u ¼ log f in

(3.37) leads to the entropy inequality at the discrete level. Finally, an uncentered approximation of the

gradient ensures that the only equilibrium states are discrete Maxwellians. As observed in the previous
subsection, the use of centered discrete operator leads to nonconserved quantities. In [7], the authors then

re-write this scheme as the sum of a second order approximation and an artificial viscosity term in Dv2

which kills spurious conservations. Nevertheless, a direct implementation of (3.38) remains too expensive.

Several algorithms have been proposed to treat the computational cost issue (see [7,8]). Here, the multigrid

method is employed. For the details of this method applied to the discretization of the FPL operator, we

refer the reader to [7,8].

However, let us remark that these latter approaches introduce a new approximation, which can affect the

accuracy. In [31], the authors proposed a spectral method to approximate the FPL operator and observe
that in the Fourier space, the FPL operator can be written as a discrete convolution. Here, we only observe

that this property also holds true for the finite difference scheme proposed below. Then the numerical cost is

reduced to OðN 3
v logðNvÞÞ, in contrast with the quadratic cost OðN 6

v Þ of the original discretization of [13],

where Nv is the number of discrete velocities in each direction.

The algorithm is based on the fast Fourier transform. The starting point is the discretization (3.39),

which we re-write using discrete convolutions

pj ¼ Dv3
X
m2BNv

fj fmUðvj � vmÞ Dðlog fjÞ
�

�Dðlog fmÞ
�

¼ fjDðlog fjÞðU � f Þj � fjðU � ðf Dðlog fjÞÞÞ; ð3:40Þ

where BNv is the set of discrete velocities

BNv ¼ ½�Nv=2;Nv=2� 1�3

and � denotes the discrete convolution between g and f

ðg � f Þj ¼ Dv3
X
m2BNv

gj�mfj:

To evaluate numerically the FPL operator, we have to approximate two discrete convolutions of the

form

sj ¼ Dv3
X
m2BNv

gj�mfj; 8j 2 BNv :

The fast algorithm is given by

• compute Dðlog fjÞ with a cost OðN 3
v Þ;

• use a FFT to transform gj�m and fj into ĝj�m and bfj with a cost in OðN 3
v logðNvÞÞ;

• compute the sum in the Fourier space with a linear cost OðN 3
v Þ to obtain ŝj;

• use the inverse FFT to obtain sj with a cost in OðN 3
v logðNvÞÞ;

• compute DH � pj with a cost in OðN 3
v Þ.
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For the time discretization of (3.38), an Euler explicit scheme is used. From [5], the positivity of the

distribution function and the decrease of the entropy are ensured under a condition on the time step Dt.
This condition is similar to the condition derived in Proposition 3.7, but it is possible to avoid it by using a
semi-implicit method [27].
4. Numerical simulations

4.1. Numerical results of the linear collision operator

We present some numerical results to test the ability of the discretization (3.24) and (3.25) and then
consider the space homogeneous equation (3.19). The initial datum is chosen to be bi-Maxwellian, i.e. a

sum of two Maxwellian functions

f0ðx; vÞ ¼
1

2
M1;v1;1ðvÞð þM1;v2;1ðvÞÞ;

where Mq;u;T is given by (2.1), and

v1 ¼ ð�1; 0; 0Þ; v2 ¼ ð1; 0; 0Þ:

This test is performed with vmax ¼ 7 and with different numbers of points in velocity Nv ¼ 20, 40 and 60.

We compute an approximation of each component of the temperature Ta, for a 2 fx; y; zg

TaðtÞ ¼
X
j

ðvaj � uaðtÞÞ2fjðtÞDv3;

where vaj and uaðtÞ respectively denote the ath component of vj and of the mean velocity uðtÞ. We are also

interested in the approximation of the kinetic entropy HðtÞ

HðtÞ ¼
X
j

fjðtÞ log fjðtÞDv3:

In Fig. 1, we represent the time relaxation of the components of the temperatures to their final value T ,
which corresponds in this case to the initial temperature since momentum is initially zero. We observe that

the steady state is reached at about time t ¼ 25 for the different approximations. Since our algorithm

preserves exactly mass, momentum and energy, the steady state is well approximated.

Now, in Fig. 2, we represent the evolution of the kinetic entropy for different numbers of points in

velocity. The entropy is well decreasing in time and has first a fast decay behavior and next slowly converges

to the equilibrium. The three different approximations give the same steady state which corresponds to the

kinetic entropy of the Maxwellian associated to the initial mass, momentum and energy M1;0;4=3ðvÞ.
4.2. Linear Landau damping

We now consider the full Fokker–Planck–Landau equation (1.1) and (1.2) where the collision operators

are given by (1.3) with b¼ a and (2.4) with qb ¼ 1 and ub ¼ 0. The initial condition is chosen as a per-

turbation of the global equilibrium

f0ðx; vÞ ¼
1

ð2pÞ3=2
exp

�
� jvj2=2

�
ð1þ A cosðkxÞÞ; ðx; vÞ 2 ½0; 2p=k� � R3; ð4:1Þ
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Fig. 1. Components of the temperature as a function of time. The temperature of the Maxwellian associated to the initial condition is

also plotted for comparison.
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where A is the amplitude of the perturbation and k denotes the wave number. In this subsection, A is taken

small enough (A ¼ 10�5) such that we can consider linear regimes.

To capture the Landau damping, the size of the velocity domain must be chosen greater than the phase

velocity v/, which corresponds to the singularity point in the dispersion relation. The phase velocity is given

by v/ ¼ x=k, where x is the frequency related to k and approximated by

x2 ¼ 1þ 3k2: ð4:2Þ

Then, we set vmax ¼ 5:75 where the velocity grid extends from �vmax to vmax. We use a number of cells

Nv ¼ 32 points in each direction of the velocity and Nx ¼ 50 in the one dimensional spatial direction. The

boundary conditions for the distribution function are periodic in the physical space whereas the distribution

function is truncated to zero for large velocities.
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Fig. 2. Kinetic entropy as a function of time. The entropy of the Maxwellian associated to the initial condition is also plotted for

comparison (dashed line).
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In this test, we are interested in the evolution of the square root of the electric energy approximated by

EhðtÞ ¼
X
i

DxE2
i ðtÞ

 !1=2

:

Indeed, according to the Landau theory, the amplitude of EhðtÞ is expected to be exponentially de-
creasing with a frequency x.

In Fig. 3, we first represent the evolution of EhðtÞ in logarithm scale, where the wave number is fixed to

k ¼ 0:3 and different collision frequencies are taken i.e. m ¼ 0, 0.01 and 0.05. We observe that the amplitude

of EhðtÞ is damped exponentially in time as predicted by the Landau theory. Moreover, the influence of

collisions on the electric energy is well reproduced since the increasing of the collision frequency m induces a
stronger damping rate. In conclusion, collisions play an additional role in the damping of the electric energy

and its amplitude seems to be always exponentially decreasing in time.

Then, we study in Figs. 4 and 5 the influence of the wave number k on the evolution of the electric energy
and consider k ¼ 0:2, 0.3, 0.4 and 0.5. On the one hand, the collision frequency is set to zero. We observe

that EhðtÞ is always exponentially decreasing, where the damping rate is increasing when k becomes larger

(see Fig. 4). On the other hand, we choose m ¼ 0:01 and plot the evolution of EhðtÞ in Fig. 5. The behavior of

the electric energy amplitude is still exponential and depends on the value of k as in the previous case.

Besides, we notice that the damping is more important than in the collisionless case.

These numerical results can be compared to theoretical estimates on the damping rate and frequency.

Indeed, when the amplitude of the perturbation A is small enough, we can linearize the initial model and

solve the dispersion relation to evaluate the damping plasma wave and the frequency x. In the collisionless
case, the theoretical damping coefficient is often estimated by (see [10,14])

cL ¼ �
ffiffiffi
p
8

r
1

k3
expð�1=ð2k2Þ � 3=2Þ: ð4:3Þ

In the collisional case, the theoretical damping reads (see [10,14])

c ¼ cL þ cC; with cC ¼ � 1

3
m
ffiffiffiffiffiffiffiffi
2=p

p
; ð4:4Þ

where cL is given by (4.3). In Tables 1 and 2, we compare the damping rates (4.3) and (4.4) for different

electrical waves in both collisional and collisionless cases, with the damping computed from our numerical
-10.4

-10.2

-10

-9.8

-9.6

-9.4

0 5 10 15 20 25 30

t

k=0.3, nu=0.00
y=-0.0133

-10.4

-10.2

-10

-9.8

-9.6

-9.4

0 5 10 15 20 25 30

t

k=0.3, nu=0.01
y=-0.0163

-10.6

-10.4

-10.2

-10

-9.8

-9.6

-9.4

0 5 10 15 20 25 30

t

k=0.3, nu=0.05
y=-0.0250

(a) (b) (c)

Fig. 3. Study of the influence of the collisional parameter m. k ¼ 0:3 and m ¼ 0, 0.01, 0.05.
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method. We also compare in Table 3 the oscillation frequencies obtained numerically and computed the-
oretically through (4.2).

Our numerical results correctly agree with (4.2)–(4.4) in a qualitative sense. Indeed, exponential damping

behavior is well obtained and the influence of collisions on the damping rate is also recovered (see Figs. 4

and 5). More precisely, when k ¼ 0:5 our results are in very good agreement with the theoretical estimates,

but for smaller wave numbers the comparison is not satisfying. However it is known that for small k,
estimates (4.2) and (4.3) are not really accurate because the expansion of the dispersion relation is not

accurate enough. Then, we use more accurate formulas given in [22], which are more correct for small wave

numbers

cL ¼ �
ffiffiffi
p
8

r
1

k3

�
� 6k

�
exp

�
� 1=ð2k2Þ � 3=2� 3k2 � 12k4

�
ð4:5Þ

and the frequency x is

x2 ¼ 1þ 3k2 þ 6k4 þ 24k6: ð4:6Þ

In this case, the numerical results for k smaller than 0.3 perfectly agree with the relation (4.5). In the

collisional case, it is expected that the damping rate does not depend on k, but only on the collision fre-
quency m. The damping rates are reported in Table 2 for different wave numbers k and m ¼ 0:01; the
damping rates obtained from the numerical method are weakly dependent on the wave number k (when it is

small enough), but do not correspond exactly to the estimated value (4.4).



Table 1

Comparison of theoretical and numerical damping coefficients c with m ¼ 0

Estimates [10,14] Estimates [22] Numerical

k ¼ 0:2 �7� 10�5 �6� 10�5 0

k ¼ 0:3 )0.020 )0.0132 )0.0133
k ¼ 0:4 )0.096 X )0.071
k ¼ 0:5 )0.151 X )0.155

Table 2

Comparison of theoretical and numerical damping coefficients c with m ¼ 0:01

Estimates [10,14] Estimates [22] Numerical

k ¼ 0:2 )0.003 )0.003 )0.004
k ¼ 0:3 )0.023 )0.0167 )0.0163
k ¼ 0:4 )0.0987 X )0.0825
k ¼ 0:5 )0.154 X )0.168

Fig. 5. Study of the influence of k in the collisional case (m ¼ 0:01Þ. k ¼ 0:2, 0.3, 0.4, 0.5.
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Table 3

Comparison of theoretical and numerical frequency x

Estimates [10,14] Estimates [22] Numerical

k ¼ 0:2 1.0583 1.0635 1.0694

k ¼ 0:3 1.1269 1.1559 1.1615

k ¼ 0:4 1.2165 X 1.2822

k ¼ 0:5 1.3228 X 1.3962
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Finally, the numerical values of the frequency x correctly agree with formula (4.2) and when k is small

with (4.6). The behavior of x with respect to k is also consistent with the theoretical values.

We also have investigated the influence of the number of charge Z on the Landau damping. The so

obtained damping coefficient is almost the same as in the case Z ¼ 1. This shows that the influence of e–i
collisions are preponderant compared to e–e ones on the Landau damping as predicted by the theoretical

computation (4.4).
Fig. 6. Study of the influence of the collisional parameter m in the nonlinear case A ¼ 0:1, k ¼ 0:3 with (a) m ¼ 0 and (b) m ¼ 0:01.

Fig. 7. Study of the influence of the collisional parameter m in the nonlinear case A ¼ 0:2, k ¼ 0:3 with (a) m ¼ 0, (b) m ¼ 0:01 and (c)

m ¼ 0:05.
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4.3. Nonlinear Landau damping

In this subsection, we also consider the Fokker–Planck–Landau equation (1.1) and (1.2) where the
collision operators are given by (1.3) and (2.4) (with qb ¼ 1 and ub ¼ 0). The initial condition is chosen as in

the previous subsection, but the perturbation A is now larger. Hence, we do not consider linear regimes and
 0
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Fig. 8. Isovalues (from 0.015 to 0.050) of the projection of the distribution function on the x–vx plane with A ¼ 0:2, k ¼ 0:3 and (a)

m ¼ 0, (b) m ¼ 0:01.
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the Landau theory cannot be applied. Then, we cannot compare our results to theoretical estimates but

some authors already studied this test in both collisional [21] and collisionless cases [28,37].

To describe nonlinear effects, we have to consider a velocity set of size vmax ¼ 7 in each direction. We use
a number of cells Nv ¼ 32 in velocity space whereas we consider Nx ¼ 50 points in physical space. In Figs. 6

and 7, we represent the evolution of the discrete electric energy in logarithm scale, with two different values

of A.
In Fig. 6, A is taken equal to 0.1 whereas the excited mode k is equal to 0.3. We consider the collisionless

case (m ¼ 0) and a collisional regime with m ¼ 0:01. As in the previous subsection, the electric energy is

damped exponentially and when the collision frequency increases, the damping of the electric energy is

stronger. Moreover, we notice that the damping is much stronger than in the linear context in both cases. It

seems that the Landau theory is robust with respect to the initial perturbation since in this case the initial
datum is strongly perturbed and the decay of the amplitude of the electric energy remains exponential in

time.

In Fig. 7, the perturbation is more important (A ¼ 0:2) whereas k is still equal to 0.3. Then, we compare

the evolution of the electric energy for three different values m ¼ 0, 0.01 and 0.05. In the collisionless regime,

the results are in good agreement with the simulations presented in the literature: the electric energy is first

exponentially decreasing and is next oscillating around a constant. At variance, in presence of collisions

(m 6¼ 0), these oscillations are soften. Moreover, when the parameter m is growing up (m ¼ 0:05), the am-

plitude of the electric field decreases in time, as observed in [21]. Let us pointed out that at the beginning of
the simulation a damped exponential behavior is observed as in the linear case, but the damping coefficient

is more important. We also plot the isovalues of the distribution function

F ðt; x; vxÞ ¼
Z
R2

f ðt; x; vx; vy ; vzÞdvy dvz

at time t ¼ 0, 2.5, 5 and 7.5. Without collisions, some particles are trapped around the phase velocity

v/ ¼ x=k ’ 3:84 generating a bump, which propagates in the phase space [21]. However, when the collision

frequency is increasing the electric energy is damped and few particles are trapped (see Fig. 8).
Besides, when the global equilibrium is strongly perturbed, slope correctors act to ensure the positivity of

f and then the total energy is not exactly preserved, as discussed in Section 3.1. Then, we study the

variations of the total energy in Fig. 9 for A ¼ 0:2. As expected, we observe that the total energy is not
0
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Fig. 9. Evolution of the total energy in both collisional and collisionless case, in the nonlinear case A ¼ 0:2. k ¼ 0:3 with m ¼ 0; 0:01

and 0.05.
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conserved. Nevertheless, we notice that the variations are relatively small (less than 3%). Moreover, these

variations are small compared to the variations of the total energy given by others numerical methods

(semi-Lagrangian schemes).
5. Conclusion

We have developed a new numerical scheme for realistic and collisional plasmas in one dimension in the

physical space and in three dimensions in velocity space. The method takes into account two different

species of particles (e.g. electrons and ions). On the one hand, a new discretization of the Vlasov–Poisson

equation has been proposed. For this approximation, we proved conservation of mass and total energy. On
the other hand, a discretization of the electron–ion collision operator is derived respecting the main

properties of the continuous operator (conservation of mass, momentum, energy and decrease of the en-

tropy). In the context of the Landau damping, our results are in a very good agreement with the theoretical

results available in the literature. Furthermore, for strong perturbations we observe the effect of collisions

on the damping of the electric energy and on the long time behavior of the solution.

Several extensions and applications of this work can be considered. For instance, the ions density and

mean velocity can be governed by kinetic or hydrodynamic equations coupled with the description of the

electrons. Moreover, the effect of a self-consistent and applied magnetic field can be also investigated.
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