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Abstract. In this paper, we develop a numerical scheme for the Smoluchowski coagulation
equation, which relies on a conservative formulation and a finite volume approach. Several numerical
simulations are performed to test the validity of the scheme and the expected behavior of the model.
In particular the gelation phenomenon and the long time behavior of the solution are numerically
studied.
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1. Introduction. The Smoluchowski coagulation equation is a mean-field model
for the growth of clusters (particles, droplets, etc.) by binary coalescence; that is, the
driving growth mechanism is the merger of two particles into a single one. In the
simple situation where each particle is fully identified by its volume, it describes the
dynamics of the volume distribution function, f = f(t, x) ≥ 0, of particles of volume
x > 0 at time t ≥ 0 and reads [12, 38]

∂tf = Qc(f) , (t, x) ∈ R
2
+ ,(1)

f(0) = f0 , x ∈ R+ ,(2)

where R+ := (0,+∞) and the coagulation reaction term Qc(f) is given by

Qc(f)(x) =
1

2

∫ x

0

a(x′, x− x′) f(x′) f(x− x′) dx′ −
∫ ∞

0

a(x, x′) f(x) f(x′) dx′

(3)

for x ∈ R+. The first integral in Qc(f) accounts for the formation of particles with
volume, x resulting from the merger of two particles with respective volumes x′ and
x − x′, x′ ∈ (0, x). The second integral in Qc(f) describes the loss of particles with
volume x by coagulation with other particles. The coagulation coefficient, a = a(x, x′),
characterizes the rate at which the coalescence of two particles with respective volumes
x and x′ produces a particle of volume x+x′ and is a nonnegative symmetric function,

0 ≤ a(x, x′) = a(x′, x) , (x, x′) ∈ R
2
+ .

At this point, observe that, during each coagulation event, the total volume of particles
is conserved while the number of particles decreases. In terms of f , the total number
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of particles M0(t) and the total volume of particles M1(t) at time t ≥ 0 are given by

M0(t) :=

∫ ∞

0

f(t, x) dx , M1(t) :=

∫ ∞

0

x f(t, x) dx .(4)

While it is straightforward to check that M0 is a nonincreasing function of time, it is
well known that M1 might not remain constant throughout time evolution for some
coagulation coefficient a [17, 33]. More precisely, if a increases sufficiently rapidly for
large x, x′, the larger the particles are, the faster they merge. A runaway growth
then takes place, producing particles with “infinite” volume in finite time which are
removed from the system. Consequently, M1 starts to decrease, a phenomenon usually
called the occurrence of gelation.

The purpose of this work is to present and study a numerical scheme for the
coagulation equation (1) and to investigate numerically the occurrence of gelation,
when it takes place, and the large time behavior otherwise. Numerical methods have
already been developed to solve (1) or its discrete counterpart; see, e.g., [16, 26, 30] for
deterministic methods, [2, 8, 14, 15, 22, 37] for stochastic methods, and the references
therein. However, it seems that none of the above-mentioned deterministic numerical
approaches make use of an alternative formulation of the coagulation equation (1) in
a “conservative” form which has been used in [35, 40] for different purposes. More
precisely, it has been pointed out in [35, 40] that the coagulation equation (1) may
also be written as follows:

x ∂tf = −∂xJ(f) , (t, x) ∈ R
2
+ ,(5)

where

J(f)(x) :=

∫ x

0

∫ ∞

x−u

u a(u, v) f(u) f(v) dvdu , x ∈ R+ .(6)

We then take advantage of the formulation (5) and propose a numerical scheme to
solve the coagulation equation in the spirit of finite volume methods. Before describing
the scheme more precisely, let us emphasize here that the formulation (5) does not
imply that M1 stays constant throughout time evolution in contrast to what a direct
integration of (5) over R+ would indicate. The key observation is that the integrability
properties of f vary with time and do not guarantee that J(f)(t, x) → 0 as x → +∞
for every time t ≥ 0. The occurrence of the gelation phenomenon actually coincides
with a nonvanishing limit of J(f)(t, x) → 0 as x → +∞ for some time t. Indeed,
observe that it follows from (5) that

lim
X→+∞

∫ t

0

J(f)(s,X) ds = M1(0) −M1(t) for t > 0 .

In the next section, we describe the discretization of (5), a preliminary step being
to suitably truncate the second integral in (6). We next compare the numerical
solutions with exact ones available in the literature. After this validation step, we
perform several numerical computations to study the gelation phenomenon and the
large time behavior. In section 3, we focus on the gelation phenomenon and observe
the expected loss of matter in finite time in the simulations and the simultaneous
blow-up of higher moments of f as well. The last section is devoted to the study of
the long time behavior of f , when the total volume remains constant through time
evolution. Since the support of f becomes larger and larger, the numerical simulations
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for large times are very sensitive to the value of the truncation parameter. To remedy
this drawback, we use a natural rescaling with respect to volume and time and a
well-suited nonuniform mesh. The latter is needed because the distribution function
develops a polynomial singularity for small volumes in large times.

2. The numerical method. Since the volume variable x ranges in the un-
bounded interval R+, the first step is to reduce the computation to a finite interval.
One possibility is to perform a change of variables which maps R+ onto (0, 1) (such
as x �→ 1/(1 + x)), and this approach has been used in [16]. However, it seems more
difficult to control the distribution of mesh points. The most widely used approach
is to truncate the volume variable to some maximal value R. In that case, one has
to choose a suitable truncation JR(f) of the coagulation term J(f) among several
possibilities. This issue is discussed in [3, 6], and we will only consider two of these
possibilities below. The conservative one is

JR
c (f)(x) :=

∫ x

0

∫ R−u

x−u

u a(u, v) f(u) f(v) dvdu , x ∈ (0, R) .(7)

In that case, we have JR
c (f)(R) = JR

c (f)(0) = 0 so that the solution fR to

x ∂tfR = −∂xJ
R
c (fR) , (t, x) ∈ R+ × (0, R) ,(8)

satisfies the total volume conservation∫ R

0

x fR(t, x) dx =

∫ R

0

x fR(0, x) dx , t ∈ R+ .

The second truncation is the nonconservative one,

JR
nc(f)(x) :=

∫ x

0

∫ R

x−u

u a(u, v) f(u) f(v) dvdu , x ∈ (0, R) ,(9)

which was first considered in [3]. In that case, JR
nc(f)(R) ≥ 0 so that the total volume

of the solution fR to

x ∂tfR = −∂xJ
R
nc(fR) , (t, x) ∈ R+ × (0, R) ,(10)

is nonincreasing with respect to time. This last approximation is particularly well
suited for reproducing the gelation phenomenon [3, 6]. Such a truncation is used in
[26] to perform numerical simulations on the original formulation (1) of the coagulation
equation.

When a(x, x′)/(x x′) → 0 as x + x′ → +∞, convergence as R → +∞ of the
solutions to (8) toward a solution of (5) has been shown in [13, 39]. Under the same
assumption, a similar result can be proved for solutions to (10) by using the approach
developed in [28]. In both cases, the main purpose of the above-mentioned papers
is to establish existence results for (5). Two additional facts are worth pointing out
here: first, the previous growth assumption on a(x, x′) does not exclude coagulation
coefficients for which the occurrence of gelation takes place (such as a(x, x′) = (x x′)α

for 1/2 < α ≤ 1). Second, when gelation does not take place, it can be shown
that the solutions to (8) and (10) both converge toward a solution to (5) satisfying
M1(t) = M1(0) for t ≥ 0 (see [13, 18] for the conservative case and [20] for the noncon-
servative case). Next, only the convergence for the nonconservative approximation (9),
(10) is valid when a(x, x′) ∼ x x′ for large x, x′ [27]. Since the conservative approx-
imation (7) is not suitable to study the gelation phenomenon, we will only consider
the nonconservative one in what follows.
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2.1. The numerical scheme. Having reduced the computation to a bounded
interval, the second step is to introduce the time and volume discretizations. To this
end, let h ∈ (0, 1), let Ih be a large integer, and denote by (xi−1/2)i∈{0,...,Ih} a mesh
of (0, R), where

x−1/2 = 0 , xi = (xi−1/2 + xi+1/2)/2 , ∆xi = xi+1/2 − xi−1/2 ≤ h ,(11)

and Λh
i = [xi−1/2, xi+1/2) for i ≥ 0. Owing to the formulation (5), it seems natural

to compute g(t, x) = x f(t, x) rather than f(t, x). We then define the approximation
g0,h of the initial datum g0(x) = x f0(x) by

g0,h
i =

1

∆xi

∫
Λh

i

g0(x) dx .(12)

Denoting by gni an approximation of the mean value of g(tn, x) = x f(tn, x) on Λh
i for

i ∈ {0, . . . , Ih} and tn = n ∆t, the numerical scheme to be studied in this paper reads

gn+1
i = gni − ∆t

∆xi

(
Jh,n
i+1/2 − Jh,n

i−1/2

)
, 0 ≤ i ≤ Ih ,(13)

for n ∈ {0, . . . , N − 1}, with the initial datum (g0,h
i )0≤i≤Ih defined in (12), where

Jh,n
i+1/2 is given by

(14)

Jh,n
i+1/2 =

i∑
k=0

∆xkg
n
k

⎧⎨
⎩

Ih∑
j=αi,k

∫
Λh

j

a(x′, xk)

x′ dx′ gnj +

∫ xαi,k−1/2

xi+1/2−xk

a(x′, xk)

x′ dx′ gnαi,k−1

⎫⎬
⎭

and the integer αi,k corresponds to the index of the cell such that xi+1/2−xk ∈ Λh
αi,k−1.

Notice that the approximate flux Jh,n
i+1/2 is an approximation for −1 ≤ i ≤ Ih of

JR
nc(f)(xi+1/2) =

∫ xi+1/2

0

∫ R

xi+1/2−x∗
a(x′, x∗)x∗ f(x∗) f(x′) dx′ dx∗

=

i∑
k=0

∫
Λh

k

x∗ f(x∗)

∫ R

xi+1/2−x∗
a(x′, x∗) f(x′) dx′ dx∗ .

From the scheme (13), we can define an approximation of g(t, x) = x f(t, x) by

gh(t, x) = gni , (t, x) ∈ [tn, tn+1) × Λh
i .(15)

Before presenting some numerical experiments, let us first investigate some basic
properties of the scheme (13).

Proposition 2.1. Under the stability condition on the time step,

∆t sup
i,n

(∫ R

δh

a(xi, x
′)

x′ gh(tn, x′) dx′

)
< 1 ,(16)

where δh = min{∆xi/2; i = 0, . . . , Ih}, the function gh is nonnegative and its total
volume is a nonincreasing function of time; that is,

Ih∑
i=0

∆xi g
n+1
i ≤

Ih∑
i=0

∆xi g
n
i , 0 ≤ n ≤ N − 1 .(17)
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Moreover, if ϕ : [0,+∞) → [0,+∞) is a nonincreasing function, we have

Ih∑
i=0

∆xi ϕ(xi) gn+1
i ≤

Ih∑
i=0

∆xi ϕ(xi) gni .(18)

Proof. For (i, j) ∈ {0, . . . , Ih}2, we introduce the notation

Ai,j =

∫
Λh

i

a(x′, xj)

x′ dx′, Bi,j =

∫ xαi,j−1/2

xi+1/2−xj

a(x′, xj)

x′ dx′.(19)

We proceed by induction and first notice that gh(0) is nonnegative. Assume next that
the function gh(tn) is nonnegative. We have

Jh,n
i+1/2 =

i∑
k=0

∆xkg
n
k

⎧⎨
⎩

Ih∑
j=αi,k

Aj,k g
n
j + Bi,k g

n
αi,k−1

⎫⎬
⎭

= ∆xig
n
i

⎧⎨
⎩

Ih∑
j=αi,i

Aj,i g
n
j + Bi,i g

n
αi,i−1

⎫⎬
⎭

+
i−1∑
k=0

∆xkg
n
k

Ih∑
j=αi−1,k

Aj,k g
n
j −

i−1∑
k=0

∆xkg
n
k

αi,k−1∑
j=αi−1,k

Aj,k g
n
j

+

i−1∑
k=0

∆xkg
n
kBi,k g

n
αi,k−1 .

If αi,k = αi−1,k, we have Bi,k ≤ Bi−1,k and

Jh,n
i+1/2 ≤ ∆xig

n
i

⎧⎨
⎩

Ih∑
j=αi,i

Aj,i g
n
j + Bi,i g

n
αi,i−1

⎫⎬
⎭

+
i−1∑
k=0

∆xkg
n
k

Ih∑
j=αi−1,k

Aj,k g
n
j +

i−1∑
k=0

∆xkg
n
kBi−1,k g

n
αi,k−1

≤ ∆xig
n
i

⎧⎨
⎩

Ih∑
j=αi,i

Aj,i g
n
j + Bi,i g

n
αi,i−1

⎫⎬
⎭ + Jh,n

i−1/2 .

If αi,k �= αi−1,k, then αi,k > αi−1,k and

Jh,n
i+1/2 ≤ ∆xig

n
i

⎧⎨
⎩

Ih∑
j=αi,i

Aj,i g
n
j + Bi,i g

n
αi,i−1

⎫⎬
⎭

+ Jh,n
i−1/2 −

i−1∑
k=0

∆xkg
n
kAαi,k−1,k g

n
αi,k−1

+

i−1∑
k=0

∆xkg
n
kBi,k g

n
αi,k−1

≤ ∆xig
n
i

⎧⎨
⎩

Ih∑
j=αi,i

Aj,i g
n
j + Bi,i g

n
αi,i−1

⎫⎬
⎭ + Jh,n

i−1/2 ,
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since Bi,k ≤ Aαi,k−1,k. Then, in both cases, it follows from the stability condition
(16) that

Jh,n
i+1/2 − Jh,n

i−1/2 ≤ ∆xi

∆t
gni ,

whence gn+1
i ≥ 0 by (13).

Next, the time monotonicity (17) of the total volume of gh follows at once from
the nonnegativity of gh by summing (13) with respect to i.

Finally, let ϕ : [0,+∞) → [0,+∞) be a nonincreasing function. It follows from
(13) that

ϕ(xi)g
n+1
i = ϕ(xi)g

n
i − ϕ(xi)

∆t

∆xi

(
Jh,n
i+1/2 − Jh,n

i−1/2

)
.

Multiplying the above equality by ∆xi and summing the resulting identities over i,
we infer from the positivity of Jh,n

Ih−1/2
that

Ih∑
i=0

∆xi ϕ(xi)g
n+1
i ≤

Ih∑
i=0

∆xi ϕ(xi)g
n
i + ∆t

Ih∑
i=1

Jh,n
i−1/2 (ϕ(xi) − ϕ(xi−1))

≤
Ih∑
i=0

∆xi ϕ(xi)g
n
i ,

whence (18).
Remark 2.2. If ϕ ∈ C1([0,+∞)) is a nonincreasing and nonnegative function,

it readily follows from (5) that any solution f to (5) is such that

t �−→
∫ ∞

0

xϕ(x) f(t, x)dx is nonincreasing.

Inequalities (17) and (18) are discrete analogues of this property.
In general, the coefficients Ai,j and Bi,j given by (19) cannot be explicitly com-

puted, and we use here a simple second order quadrature formula (midpoint formula).
In addition, a Runge–Kutta scheme is implemented for the time discretization to guar-
antee a second order accuracy.

2.2. Comparison with explicit solutions. As a first step toward the valida-
tion of our scheme, we compare the numerical solutions with the few explicit available
solutions to (1).

We first consider the constant kernel a(x, x′) ≡ 1: in that case, given M0
0 > 0, an

explicit solution to (1) is given by

f(t, x) = M2
0 (t) exp(−M0(t)x) with M0(t) =

2 M0
0

2 + M0
0 t

(20)

for (t, x) ∈ R
2
+, where M0(t) is the total number of particles defined by (4). The

numerical solution obtained with the scheme (13) is then in good agreement with the
exact solution, as shown in Figures 1 and 2. In Figure 1, we report the L1-discrete
error norm

εh(tn) =

Ih∑
i=0

∆xi|gh(tn) − xi f(tn, xi)|,(21)
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Fig. 1. Exact solution a ≡ 1: Time evolution of the L1-discrete error norm in linear and log
scale for nx = 125, 250, 500.

where f is given by (20). We have computed different approximations using a number
of points nx = 125, 250, and 500, whereas the truncation parameter R is fixed to
R = 50. The scheme is second order accurate as expected, since the numerical error
εh is proportional to h2.

The second test we perform is for the multiplicative coagulation kernel a(x, x′) =
xx′. In that case, the gelation phenomenon is known to occur, and it is also possible
to compute an explicit solution [17],

f(t, x) = exp(−T x)
I1

(
2x t1/2

)
x2 t1/2

,(22)

corresponding to the initial datum f(0, x) = exp(−x)/x, where

T =

{
1 + t if t ≤ 1 ,
2 t1/2 otherwise,

(23)

and I1 is the modified Bessel function of the first kind

I1(x) =
1

π

∫ π

0

exp(x cos θ) cos θ dθ.

For this solution, the total volume M1(t) defined by (4) satisfies M1(t) = 1 if t ∈ [0, 1]
and M1(t) = t−1/2 if t ≥ 1 (and the gelation phenomenon takes place at t = 1).
We are, however, mainly interested in this section in the accuracy of the scheme
and postpone a more detailed discussion on the gelation phenomenon to the next
section. To keep the second order accuracy, a second order Runge–Kutta scheme is
used for the time discretization, whereas the flux Jh,n

i+1/2 is still given by (14). Here

again, we observe that the numerical solution agrees with the exact one; see Figures 3
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Fig. 2. Exact solution a ≡ 1: Time evolution of the approximated distribution x f(t, x) at times
t = 0.25, 0.63, 1.02, and 1.51 in linear and log scale.

and 4. In addition, it is clear from Figure 3 that the scheme is second order accurate.
Nevertheless, this numerical test is much more difficult than the previous one because
of the unboundedness of a. Indeed, the support of the distribution function is strongly
increasing with respect to time when a(x, x′) = xx′ (see Figures 2 and 4 in log scale).
Therefore, a large truncation parameter (R = 2500) is needed in order to avoid a loss
of matter due to the truncation.

The above two examples already illustrate the importance of the choice of the
truncation parameter R. Indeed, the effect of coalescence is to “shift” the distribution
function f to the right as time goes by. Rapidly increasing coagulation coefficients
then induce a faster transfer of matter toward larger and larger volumes, and a larger
truncation parameter R has to be chosen accordingly (compare the choice of R in the
above two examples). In addition, as we shall see below, a solution with a rapidly
decaying initial datum is expected to keep the same decay through time evolution as
long as no gelation occurs. Upon the occurrence of gelation, the solution develops an
algebraic tail which again requires a large truncation parameter R to obtain accurate
results.

3. Occurrence of gelation. This section is devoted to a numerical study of the
gelation phenomenon, that is, the possible loss of matter during the time evolution.
After recalling some basic facts on this phenomenon in section 3.1, we present our
numerical results in section 3.2.

3.1. The gelation phenomenon. As already mentioned in the introduction,
when the coagulation coefficient a increases sufficiently rapidly for large x, x′, a run-
away growth takes place and leads to the formation of a particle of “infinite volume” in
finite time. Since no such particle is taken into account in the Smoluchowski coagula-
tion equation (1), some matter escapes from the system of particles. As a consequence,
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 0

 0.005

 0.01

 0.015

 0.02

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

t

Nx=100
Nx=200
Nx=400

 0.0001

 0.001

 0.01

 0.1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

t

Nx=100
Nx=200
Nx=400

Fig. 3. Exact solution a ≡ xx′: Time evolution of the discrete error L1-norm in linear and
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the total volume M1 defined in (4) decreases with time, and the gelation time Tgel is
defined by

Tgel := inf

{
t ≥ 0 ,

∫ ∞

0

x f(t, x) dx <

∫ ∞

0

x f(0, x) dx

}
∈ [0,+∞] .(24)

We then say that gelation occurs if Tgel < +∞.
An elementary proof that Tgel < +∞ was given in [33] when a(x, x′) = xx′, and

a central issue in the physical literature in the eighties was to figure out for which
coagulation coefficients a the gelation time Tgel is finite. We restrict our discussion
here to the model case

a(x, x′) = xµ (x′)ν + xν (x′)µ , 0 ≤ µ ≤ ν ≤ 1 .(25)

It was shown that Tgel < +∞ for µ = ν = 1 [33] and that gelation cannot take place
(i.e., Tgel = +∞) if λ := µ+ν ≤ 1 [4, 41]. In the remaining case, λ ∈ (1, 2), particular
solutions with a finite gelation time were constructed in [6, 10, 32], which supported
the conjecture that Tgel < +∞ for every initial data with finite total volume whenever
λ ∈ (1, 2) [17, 23, 34]. This conjecture was only recently successfully proven in [24]
with a probabilistic approach and in [19] with deterministic arguments. Once gelation
is known to occur, a natural question is to determine Tgel and to investigate the
behavior of f(t) at the gelation time. Formal arguments from the physical literature
(see, e.g., [23, 34] and the references therein) indicate that

f(Tgel, x) ∼
x→+∞

A x−(λ+3)/2 ,(26)

while the gelation time coincides with the blow-up time of the moment of order (1 +
λ)/2 of f , where the moment M� of order 
 ≥ 0 of f is defined by

M�(t) :=

∫ ∞

0

x� f(t, x) dx , t ≥ 0 , 
 ∈ [0,+∞) .(27)

A mathematical proof of both facts is still lacking, although several results in that
direction have been obtained in [19]. Also, estimates for Tgel are given in [23]. A more
precise result is actually valid when µ = ν = 1: in that case, Tgel = 1/M2(0) is the
blow-up time of the second moment M2.

The main purpose of the numerical simulations presented in the next section
is thus twofold: on the one hand, we aim at observing numerically the occurrence
of gelation. On the other hand, we shall study the behavior of f and its moments
near the numerical gelation time and check whether it is consistent with the above
conjectures.

3.2. Test 3.1: a(x, x′) = (x x′)λ/2, λ ∈ (1, 2]. We restrict ourselves here to
the model case (25) with µ = ν = λ/2; that is,

a(x, x′) = (x x′)λ/2 , (x, x′) ∈ R
2
+ ,

with λ ∈ (1, 2], and we take the following initial datum f0:

g0(x) = x f0(x) = exp(−x) , x ∈ R+ .(28)

Since λ > 1, the gelation phenomenon does take place and Tgel < +∞. Furthermore,
for λ = 2, the Smoluchowski coagulation equation (1) has the explicit solution (22),
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(23) for the initial datum (28), and the gelation time is Tgel = 1. We see in Figure 5
that the choice of the truncation (9) and the scheme (13) provides a good estimate of
the exact gelation time.

Next, as recalled in the previous section, the moments M�(t) are expected to blow
up as t → Tgel for 
 ≥ (1 + λ)/2 and to stay bounded if 
 < (1 + λ)/2. For different
values of λ, we compute numerical approximations of the solution to (1) with initial
datum (28) for increasing values of the truncation parameter R. Recalling that gh is
a numerical approximation of g(t, x) = x f(t, x), we define the moment of order 
 ≥ 0
of the numerical approximation by

Mh
� (tn) =

Ih∑
i=0

∆xi x
�−1
i gni ,

and we plot the time evolution of the moments of order 1, (1 + λ)/2, and 2 (see
Figures 5, 6, and 7). It is clear that the gelation transition takes place in finite time
and that there is a sudden growth of the moments of order (1 + λ)/2 and 2 near the
numerical gelation time. Since this growth increases with R, it seems to confirm the
expected blow-up behavior. The fact that these moments decrease after the numerical
gelation time is due to the finite length of the interval of computation. Let us also
observe that the smaller λ is, the larger the truncation parameter R has to be taken
for the numerical gelation time to “stabilize” near some value. This is, however,
expected, since the gelation phenomenon becomes weaker as the parameter λ comes
closer to 1, and is thus more difficult to bring to the fore.

The last pictures in Figures 5, 6, and 7 are attempts to check numerically the
validity of (26). Since the gelation time is not exactly known (except when λ = 2),
it is not obvious how to obtain a reliable approximation of f(Tgel). In addition,
the truncation greatly influences the large x-behavior after the numerical gelation
time. The criterion we use here is to plot on the same picture the numerical solution
shortly before and shortly after the gelation time and compute the slope of their
common part. We then obtain rather good agreement with the expected behavior
(26) for λ sufficiently large (λ ∈ {3/2, 7/4, 2}), which seems to confirm the theory.
Notice, however, that our results are slightly worse for λ = 3/2, and we believe
that this is because we have not yet reached the convergence with respect to the
truncation parameter R. Also, our results are in fair agreement with the numerical
simulations performed in [31] and disagree with those reported in [26]. For smaller
values of λ ∈ (1, 2], we still observe the occurrence of gelation, but it is more difficult
to stabilize the numerical gelation time and to reproduce the correct behavior of
f at the gelation time. Possible reasons for this discrepancy are that the gelation
time goes to infinity as λ becomes closer to 1 and also that a much larger value of
the truncation parameter R is needed for the numerical gelation time to stabilize.
Consequently, the computational cost and the numerical error are both increased,
and a good approximation is thus harder to obtain.

4. The nongelling case. We next study the large time behavior of nongelling
solutions to (1), that is, solutions for which gelation does not take place in finite time.
We focus here on the multiplicative coagulation coefficient

a(x, x′) = (xx′)λ/2 , (x, x′) ∈ R
2
+ , λ ∈ [0, 1] ,(29)

and the additive coagulation coefficient

a(x, x′) = xλ + (x′)λ , (x, x′) ∈ R
2
+ , λ ∈ [0, 1] .(30)
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and Mh,2(t), and the approximation of x f(t, x) for t � Tgel.

In both cases, according to the discussion in section 3.1, we have Tgel = +∞ since
λ ∈ [0, 1] and thus

M1(t) = M1(0) , t ≥ 0 .(31)

In this situation, a rather detailed description of the large time behavior of f is
conjectured by physicists and is known as the dynamical scaling hypothesis (see, e.g.,
[11] and the references therein). More precisely, the volume distribution function f is
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 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

M
1
(
t)

t

R=2745
R=6860

R=13875
R=19684

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

M
^
1
1
/8

(
t)

t

R=2745
R=6860

R=13875
R=19684

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

M
^
2
(
t)

t

R=2745
R=6860

R=13875
R=19684

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

-6 -4 -2  0  2  4  6  8  10

lo
g
(
x
 f
(
x
)
)

log(x)

t < Tgel
t > Tgel

y = -11 x/8 + C

Fig. 6. Test 3.1 with λ = 7/4: Time evolution of discrete moments of f(t), Mh,1(t),
Mh,11/8(t), and Mh,2(t), and the approximation of x f(t, x) for t � Tgel.

expected to behave in a self-similar way in the long time,

f(t, x) ∼
t→+∞

fS(t, x) :=
1

s(t)2
ϕ

(
x

s(t)

)
,(32)

where the mean volume s(t) and the profile ϕ are to be determined and depend on a
but not on the “details” of the initial data. Furthermore, fS is actually expected to
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be a self-similar solution to (1), from which we deduce that, if λ < 1,

ds

dt
(t) = w s(t)λ(33)

and

w x2 ϕ(x) − J(ϕ)(x) = 0 , x ∈ (0,+∞) ,(34)
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the parameter w > 0 being a separation constant for the x and t dependence [11]
(recall that J is given by (6)). We exclude here the case λ = 1, which is more
complicated, and refer to [11] for a complete discussion.

Unfortunately, nothing much is known from the rigorous point of view about the
validity of (32). Even the existence of a solution to (34) is still an open problem
except when a(x, x′) = 1 or a(x, x′) = x+x′. In these two cases, explicit formulae for
ϕ are known [11] and convergence results have been established in [1, 5, 9, 25, 29]. In
the other cases, numerical simulations have been performed to check the validity of
(32) [21, 26, 30, 31]. Also, numerical studies of the behavior of ϕ for large and small
values of x have been done in [7, 36] for comparison with the formal predictions from
[11]. Numerical simulations reported in the above-mentioned papers are performed
directly on (1) on a sufficiently large time, and there needs to be a compromise
between computational cost and numerical precision. Also, the convergence toward
self-similarity could possibly be very slow, and the accumulation of numerical errors
on a large time interval could spoil the result.

We thus propose to proceed in an alternative way based on the following classical
observation. An equivalent formulation of (32) is

s(t)2 f(t, x s(t)) ∼
t→+∞

ϕ(x) ,

from which we realize that the convergence (32) of f toward fS translates to the
convergence of (t, x) �−→ s(t)2 f(t, x s(t)) to a stationary state. Since we believe that
such a convergence is more stable from a numerical viewpoint, we shall thus first
perform a change of variables in (1).

Remark 4.1. Assuming further that the initial total volume M1(0) is the only
parameter which rules over the large time behavior, scaling arguments allow us to set
w = 1, using again the fact that λ < 1. The situation is indeed different when λ = 1:
for instance, for the additive coefficient (30) with λ = 1, it follows from [9, 11] that
the large time behavior is determined by M1(0) and M2(0) (if the latter is finite; the
situation is more complicated otherwise [5]).

4.1. Self-similar variables. From now on, we assume that a is given by either
(29) or (30) with λ ∈ [0, 1). Let f be a solution to the coagulation equation (1).
Owing to Remark 4.1, we set

s(t) = (1 + (1 − λ) t)
1/(1−λ)

, t ≥ 0 ,(35)

and

f(t, x) =
1

s(t)2
ψ

(
ln s(t),

x

s(t)

)
, (t, x) ∈ R

2
+ .(36)

Then, ψ solves (in a weak sense)

x ∂tψ = ∂x
(
x2 ψ − J(ψ)

)
, (t, x) ∈ R

2
+ ,(37)

with ψ(0) = f(0) = f0. Observe that the profile ϕ in (32) is a stationary solution to
(37) by (34) so that the conjecture (32) becomes

ψ(t) −→ ϕ as t → +∞ ,(38)

where ϕ is a stationary solution to (37) depending only on the initial volume M1(0).
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The discretization of the Smoluchowski equation in self-similar variables (37)
requires more attention since there is an additional term ∂x

(
x2 ψ

)
, which can be

very costly to compute by a time explicit scheme. Indeed, recalling that we compute
an approximation of xψ(t, x), it leads to a CFL condition of the form

C xIh+1/2

∆t

h
≤ 1 ,

which becomes more restrictive as R increases. To avoid such a condition, we use a
semi-implicit scheme (that is, explicit for the nonlinear part and implicit for the linear
one), which reads

gn+1
i = gni +

∆t

∆xi

(
xi+1/2 gn+1

i+1 − xi−1/2 gn+1
i

)
− ∆t

∆xi

(
Jh,n
i+1/2 − Jh,n

i−1/2

)
(39)

for 0 ≤ i ≤ Ih with the boundary condition

gn+1
Ih+1

= 0 .(40)

In (39), gni denotes the approximation of xψ(t, x) for (t, x) ∈ [tn, tn+1) × Λh
i , and

Jh,n
i+1/2 is still given by (14). Let us point out that the solution of this algebraic

system can be found without solving any linear system thanks to (40).
On the other hand, since we are working in self-similar variables, the transfer

of mass to the right due to J(ψ) in (37) is balanced by the term x2ψ so that there
is no longer a drift of the distribution function toward larger and larger volumes.
Thus, solutions to (37) with rapidly decaying initial data are expected to keep the
same decay through time evolution, and the numerical results are less sensitive to the
choice of R (as soon as it is sufficiently large).

4.2. Test 4.1: a(x, x′) = (xλ + (x′)λ), λ ∈ (0, 1). We first check the
validity of (38) and perform numerical simulations for different initial data having
the same initial total volume M1(0). We then observe that the numerical solutions
converge to a stationary state, which remains approximatively the same. We next
consider the following initial data:

f0(x) = exp(−x), x ≥ 0 .

We then study the time evolution of different moments of f (of order λ, 1, 2) and
the behavior of the asymptotic profile x f(+∞, x) of x f(t, x) for x ∼ 0 as well.
Concerning the latter, it is worth mentioning that it is conjectured in [11] that the
profile ϕ in (38) has the following behavior for small x:

ϕ(x) ∼
x→0

B x−τ ,(41)

where the exponent τ is determined implicitly by τ = 2 − Mλ(ϕ), Mλ(ϕ) being
the moment of order λ of ϕ. Numerical computations of the exponent τ have been
performed in [7, 26, 30, 31] for the more general coagulation coefficient a(x, x′) =
(x1/D + x′1/D)d for some values of d > 0 and D > 0. The most complete study was
performed in [7], where a method to compute τ without solving (1) was developed.

From a numerical point of view, some care is needed to compute the small x-
behavior of the stationary state, taking into account that it also depends on its values
for large x through the second integral in J(ψ). Therefore, it is important to consider



2020 FRANCIS FILBET AND PHILIPPE LAURENÇOT

a suitable mesh in order to obtain an accurate numerical solution when x is small
(i.e., of order 10−6) but also for large x. We construct the following mesh: we fix
∆y > 0 and put yi = m + i∆y and

xi =

{
exp(yi) for yi ≤ 0 ,
y2
i for 1 ≤ yi ≤ R1/2 ,

for i ∈ {0, . . . , nx − 1}, where m < 0 < R are chosen with respect to the initial data
and λ. With this choice, (log(xi))i is a uniform mesh of [m, 0]. Moreover, the choice
of a mesh of order O(y2

i ) for larger x allows us to use a sufficiently large truncation
when the support of f is increasing.

In Figures 8, 9, and 10, we report the evolution of the λth and second moments of
f and the behavior of the asymptotic profile x f(+∞, x) for x ∼ 0 for different values
of λ. As expected, the total volume M1(t) remains constant throughout time evolution
and the second moment stabilizes to some value. As for the small x-behavior of the
asymptotic profile, our numerical results are in fair agreement with those previously
obtained by different authors with other methods [7, 31]. In Table 1, we report the
values of τ obtained numerically in [7, 31] in the first line and the values of τ resulting
from our numerical simulations in the second line. In the last line we report the value
of 2 − Mλ(ϕ) obtained from our numerical simulations to check the validity of the
conjecture τ = 2 − Mλ(ϕ). Our numerical results thus support the validity of the
conjecture (41).

4.3. Test 4.2: a(x, x′) = (x x′)λ/2, λ ∈ (0, 1). Again, we first check the
validity of (38) and perform numerical simulations for different initial data having the
same initial total volume M1(0). We choose initial data of the form

f0(x) =
xn

(n + 1)!
exp(−x), n ∈ {0, 1, 2, . . . }.

We then observe that the numerical solutions converge to a stationary state, which
remains approximatively the same. We next consider the initial data

f0(x) = exp(−x), x ≥ 0 ,

and focus on the time evolution of the first and second moment of f and on the
behavior of the asymptotic profile x f(+∞, x) for x ∼ 0. We first recall that it is
conjectured in [11] that the profile ϕ in (38) has the following behavior for small x:

ϕ(x) ∼
x→0

B x−(1+λ) .(42)

Numerical simulations have already been performed in that case in [26, 31]. On the
one hand, the outcome of [26] disagrees with the conjectured behavior (42) for ϕ,
but, as already pointed out in [31], it seems that the computations in [26] have not
been done on a sufficiently long time interval. On the other hand, there is a fair
agreement between the theoretical predictions (42) and the numerical simulations
of [31], although an oscillatory behavior is reported in that paper. Our numerical
simulations are in good agreement with the theoretical predictions (42).

A damped oscillatory behavior around the prediction (42) is also observed in our
simulations (although with smaller amplitudes), but in a region which is close to but
separated from x = 0, of the form [10−p, 1], where p ∼ 15 if λ = 2/3, p ∼ 25 if
λ = 1/2 and p ∼ 40 if λ = 1/3. In the region (0, 10−p), our simulations are in good
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Fig. 8. Test 4.1 with λ = 5/6: Evolution of the 5/6th and second moments of f and the
stationary distribution x f(x) in log scale.

agreement with the conjecture (42) as seen in the right-bottom pictures of Figures 11,
12, and 13. We thus believe that the simulations reported in [31] were not done on
a sufficiently long time interval since the lowest volume reached is of order t−1/1−λ.
Attaining volumes lower that 10−p would require that t > 10p(1−λ) ∼ 105 if λ = 2/3,
t > 1012 if λ = 1/2, and t > 1027 if λ = 1/3. By the way, this is a nice feature of
working in self-similar variables to perform computations on a time interval including
very small volumes in a reasonable amount of time.
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Fig. 9. Test 4.1 with λ = 2/3: Evolution of the 2/3rd and second moments of f and the
stationary distribution x f(x) in log scale.

Also, performing the numerical simulations on (37) written in self-similar variables
allows us to use a smaller truncation parameter R and a smaller final time and thus
reduces the numerical error.

5. Conclusion. We have proposed and implemented a numerical scheme for the
Smoluchowski coagulation equation (1) which relies on the conservative formulation
(5) of (1). Comparison with explicit solutions shows the convergence of the scheme
which turns out to be second order accurate. We have next performed several numer-
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Fig. 10. Test 4.1 with λ = 1/3: Evolution of the 1/3rd and second moments of f and the
stationary distribution x f(x) in log scale.

Table 1

Values of the exponent τ giving the behavior of x f(+∞, x) for x close to zero when a(x, x′) =
xλ + (x′)λ.

λ 1.0 5/6 2/3 1/2 1/3
τ [7, 31] 1.50 1.347 1.216 1.109 1.033

τ 1.50 1.347 1.216 1.090 1.025
2-Mλ(f) 1.50 1.347 1.220 1.100 1.031
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Fig. 11. Test 4.2 with λ = 2/3: Evolution of (λ + 1)/2nd (5/6) and second moments of f and
the distribution function x f(x) in log scale for large time.

ical simulations to check the known or conjectured behavior of the solution near the
gelation time or as time increases to infinity. In the latter case, we also have checked
the validity of the dynamical scaling hypothesis. In both cases, our numerical simula-
tions are in good agreement with physical conjectures. To summarize, the numerical
method developed in this paper presents the following advantages:

• The equation in conservative form is well suited for the discretization using
the finite volume approach.



NUMERICAL SIMULATION OF THE SMOLUCHOWSKI EQUATION 2025

 0.95

 1

 1.05

 1.1

 1.15

 0  5  10  15  20  25  30  35

M
^
3
/4

(
t)

t

Nx=600

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  5  10  15  20  25  30  35

M
^
2
(
t)

t

Nx=600

-15

-10

-5

 0

 5

 10

 15

 20

 25

-50 -40 -30 -20 -10  0

lo
g
(
x
 f
(
x
)
)

log(x)

t = 37
t = 27
t = 25

 0

 5

 10

 15

 20

 25

-50 -45 -40 -35 -30 -25 -20 -15 -10

lo
g
(
x
 f
(
x
)
)

log(x)

t = 37
t = 27
t = 25

y = - x/2 + C

Fig. 12. Test 4.2 with λ = 1/2: Evolution of (λ + 1)/2nd and second moments of f and the
distribution function x f(x) in log scale for large time.

• The rescaling of the equation allows us to work on a smaller domain in volume,
and the time scale is highly reduced.

• The finite volume method gives accurate results and is very robust for nonuni-
form meshes. Furthermore, the mesh can be adapted to the shape of the
solution in order to accurately describe its singular behavior for small values
of the volume.
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 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  5  10  15  20  25  30  35

M
^
2
/6

(
t)

t

Nx=600

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  5  10  15  20  25  30  35

M
^
2
(
t)

t

Nx=600

-5

 0

 5

 10

 15

-60 -50 -40 -30 -20 -10  0

lo
g
(
x
 f
(
x
)
)

log(x)

t = 37
t = 24
t = 18

 0

 2

 4

 6

 8

 10

 12

 14

 16

-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10

lo
g
(
x
 f
(
x
)
)

log(x)

t = 37
t = 24
t = 18

y = - x/3 + C

Fig. 13. Test 4.2 with λ = 1/3: Evolution of (λ + 1)/2nd (2/3) and second moments of f and
the distribution function x f(x) in log scale for large time.
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[18] M. Escobedo, Ph. Laurençot, S. Mischler, and B. Perthame, Gelation and mass con-
servation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), pp.
143–174.

[19] M. Escobedo, S. Mischler, and B. Perthame, Gelation in coagulation and fragmentation
models, Comm. Math. Phys., 231 (2002), pp. 157–188.
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