Global existence for the Vlasov-Darwin system in R3
for small initial data.

Said Benachour, Francis Filbet
Institut Elie Cartan - Nancy, Université de Nancy I
BP 239, F-54506 Vandoeuvre les Nancy cedex, France

Philippe Laurencot
Mathématiques pour ’Industrie et la Physique, CNRS UMR 5640
Université Paul Sabatier - Toulouse 3
118 route de Narbonne, F-31062 Toulouse cedex 4, France

Eric Sonnendriicker
IRMA, Université Louis Pasteur
7 rue René Descartes, F-67084 Strasbourg cedex, France

Abstract

We prove the global existence of weak solutions to the Vlasov-Darwin system in R?
for small initial data. The Vlasov-Darwin system is an approximation of the Vlasov-
Maxwell model which is valid when the characteristic speed of the particles is smaller
than the light velocity, but not too small. In contrast to the Vlasov-Maxwell system,
the total energy conservation does not provide a L?-bound on the transverse part of
the electric field. This difficulty may be overcome by exploiting the underlying elliptic
structure of the Darwin equations under a smallness assumption on the initial data. We
finally investigate the convergence of the Vlasov-Darwin system towards the Vlasov-
Poisson system.

1 Introduction.

In many problems encountered in plasma physics or beam propagation, the numerical res-
olution of the full Vlasov-Maxwell system can be extremely expensive in computer time.
However, it is sometimes possible to use simplified models which approximate the Maxwell
equations in some sense [25] and are not subjected to the CFL constraint on the time step.
Such situations are encountered, for instance, when no high frequency phenomenon occurs.
A first approximation in this case would be the Poisson equation, which neglects altogether
magnetic effects. The next approximation would be the quasi-static model which adds the
magnetostatic equation to the Poisson equation. This model has the drawback, when cou-
pled to the Vlasov equation, not to be consistent with the charge conservation. Actually, the



first model including magnetic effects and charge conservation is the Darwin model. This
model was first introduced by Darwin [8], and developed from a more mathematical point
of view in [11, 25].

The Darwin model differs from the Maxwell equations by neglecting the “transverse part”
of the displacement current, which is the time derivative of the electric field. The underlying
elliptic structure of the Darwin model induces some nice features for numerical computation:
it avoids error propagations inherent to hyperbolic equations as well as the restriction on the
time step. The numerical approximation of the Vlasov-Darwin model has been investigated
in [28, 17] (see also the references therein), while the well-posedness of the Darwin model is
studied in [11]. But, to the best of our knowledge, no existence result seems to be available
for the coupled Vlasov-Darwin system and the purpose of this work is to show the existence
of a solution to the relativistic Vlasov-Darwin system in R? under a smallness assumption
on the initial distribution function.

The relativistic Vlasov equation reads

of
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where ¢ is the charge, f(t, z, ) represents the distribution function of one species of particles
(ions, electrons), depending on time ¢, position x and impulsion £. The relativistic velocity
of particles v(&) is given by
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where m is the mass of one particle. From the distribution function f, we compute the
charge and current densities

v(§) =
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and the electromagnetic fields Er (transverse component of E), F;, (longitudinal component
of F) and B (magnetic field) are given by the Darwin equations
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Recall that the difference between the above Darwin model and the Maxwell equations is
that the transverse part of the displacement current is neglected in the former.

Before describing our results, let us briefly mention that the Vlasov-Poisson and Vlasov-
Maxwell equations have been studied by several authors: the existence of classical solutions
has been obtained in [3, 24, 27] (Vlasov-Poisson) and [2, 10, 13, 14, 15] (Vlasov-Maxwell).
The existence of weak solutions is described in [1, 21, 19, 23] (Vlasov-Poisson) and [22]
(Vlasov-Maxwell).

Let us point out here the main difficulty encountered in the study of (1)-(3). Similarly
to the Vlasov-Poisson and Vlasov-Maxwell systems, a prior: estimates such as conservation
of positivity, L” norms and total energy are available, but here, the total energy is given by
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where

V(€)= V14 [¢]?/cPm?.
Unfortunately it does not give any bound on the transverse component of the electric field
Er. Then, the procedure introduced by DiPerna and Lions [22]| cannot be directly applied.
Nevertheless, the underlying elliptic structure of the Darwin model allows to establish an
estimate on Ep when the initial data is sufficiently small.

For a better understanding of this restriction and in order to study the behavior of the
solution of the Vlasov-Darwin model when the ratio between the characteristic velocity of
particles and the light velocity becomes small, we start by writing the Vlasov-Darwin system
in a dimensionless form using the following characteristic scales:

= characteristic length,

= characteristic time,

= characteristic impulsion,
= characteristic velocity,

charge and current densities scaling factors,
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= electric and magnetic fields scaling factors,

distribution function scaling factor.
Then, the unknowns are written with respect to the characteristic values, for example
f=ff, E=FEFE, B=DBB.

To simplify the notations, we drop the primes and replace f’ by f, £’ by E, and so on. The
dimensionless Vlasov-Darwin equations have the following form

v(€) V. f +qBt (EE_E—F%U(f)XB) Ve f =0,
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and the continuity equation can be written as

v(€) =

Let us denote by ¢ the ratio between the characteristic velocity and the light velocity. Phys-
ical considerations lead to the following scaling
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The quantity w, is the cyclotron frequency which is assumed to be of order of £/t. The
Vlasov equation now becomes

W Q) VS 4 (Bt c0l€) < B)-Vef =0, (4)

where the relativistic velocity is given by

_ §

and the electromagnetic fields satisfy the scaled Darwin model
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The charge and current densities p, j are computed from the distribution function f

plt) = [ fta )i sea) = [ ol6) b6,

while the total energy becomes
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where
Y(§) = V14 ¢ (8)

Finally, at time ¢ = 0, the distribution function is given by

fit=0,2,6) = fo(x,6), (2,6) € R® xR 9)

2 Main results.

We assume that the initial datum f; is a non negative function such that
he D NLEE <), s [ w0 de € AR, (10)
X R3

and has finite kinetic energy

1
/ 7(@2 foda dé < co. (11)
R3%xR3 19
Moreover, we set
Ag = Ay +e AP A, (12)
where A; and A, are given by
Av=lfollr and Ay = [ foll 72 (Ilfollr +2€(0) (13)

and £(0) is the total initial energy (7) where E(0) and B(0) are given by
V- Ep(0) = p(0), AB(0) =V x j(0).
Theorem 1 There erists a positive constant o such that, if the initial datum f, satisfies

(10)-(11) and
Y20 Ag < 1, (14)



there is a weak solution (f, E, B) to the Vlasov-Darwin system (4)-(6), where f € L>(R*, L'N
L>(R%)) satisfies the Vlasov equation (4) in the distribution sense, the charge and current
densities p, j are such that
p, J € L®(RFLY(RY))
and Er, Er, B are solutions in the distribution sense of the Darwin equations (6) with
(Er, Er, B) € L¥(Rf;L? + L°(R3)) x L®(R; L*(Ry)) x L¥(R5L*(Ry)).

2
loc

Observe that since f and the electromagnetic fields belong to L; ., the product

f(E+v(&) x B) € Ly,

and the Vlasov equation makes sense in D’. Also, it is clear that Fp, E, B and f are time
continuous with values in D’ and thus take the correct initial data.

To prove this result, we first give a prior: estimates on the distribution function f and
on the electric fields Er, E;, and magnetic field B. While the bounds on f, £, and B are
obtained in a classical way, that on Er requires a different approach and is performed by
a duality technique exploiting the elliptic structure of the Darwin system. We next give a
regularization of the Vlasov-Darwin system for which these estimates hold uniformly. Then,
passing to the limit in the regularized problem, we prove the existence of a weak solution to
the Vlasov-Darwin system.

The second result concerns the convergence of the sequence (f¢, E5., E5, B) when the
parameter € goes to zero, which means that the characteristic velocity of particles is much
smaller than the light velocity. In that case the Darwin system reduces to the Poisson
equation [11, 25]. Then, the following theorem holds.

Theorem 2 Let us assume the initial datum fy satisfies (10) and
/ €)? fo dw dé < +o0. (15)
R3xR3

Then, for ¢ sufficiently small, there exists a weak solution (f¢, E5., E5, B®) of the relativistic
Vlasov-Darwin system (4)-(6). Moreover, there are a subsequence (f, EZ* E7* B )ien
and a couple (f, E) such that

o —  f weakly in L®(RT x R®), when ¢}, — 0,
(EfF B, B*) — (E,0,0) strongly in L* <R+; L5/4(]R3)> , when g, — 0,

loc

where (f, E) is a weak solution of the Vlasov-Poisson system, that is

z_{ +v-Vof +E-Vof=0 V-E=p, VxE=0.

Let us point out here that the convergence of the Vlasov-Maxwell system to the Vlasov-
Poisson system has been performed in [10] within the framework of classical solutions.
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3 A priori estimates.

Throughout this section, we consider a non negative function f; satisfying (10), (11) and
assume that (f, £/, B) is a smooth solution of the Vlasov-Darwin system. We denote by C
any positive constant which may vary from line to line but does not depend on ¢ € (0,1)
and fo.

The first a prior: estimate is the non negativity of the distribution function f and the
boundedness of its L norms, p € [1,00]. Indeed, for all functions ® € W,.°(R), we have

loc

/Rg U §)drdl < / B( fo(x, €))da de,

R3 xRR3

whence

IF @Ol <A follers NF @z < ([ follzoe- (16)

In the following result, we establish a bound on the total energy.

Proposition 1 Fort > 0, there holds

et - [ M p@vder; [ (B0 +IBOP) <0, (D

9

Moreover, we have

[ ] s [ [ fogdca<arvhen.  as)
R3 J|¢|<1/e € JRr3 Jig|>1/e

Proof. The first estimate (17) is classical, see e.g. |6, Proposition 1.6].
We next observe that

P T
1+ 2 max(L,e[¢]) = 1+ /1+¢2¢]2 g2’
which proves the inequality (18). O

The estimate on the total energy gives a uniform bound on (Ep,B) in L°(L2) and on
the first moment in ¢ of the distribution function in L{°(L!). The latter provides estimates
on the densities p and j. We first recall a classical interpolation lemma |6, Lemma 1.1].



Lemma 1 Let f be a non negative function such that
ferinr=®), [ sigrice D@,
R3

for some m > 0.
Then, there exists a positive constant C' > 0, depending only on m, such that

J(m+3) 3/(3+m)
1ol imss < CLF [ ( / el dxdg) |
R

ot 3/(3+m)
Nillprenss < CLFTL" ( [ e dxdg) |
R

We now proceed to show that the total energy estimate (17) provides a bound for the
first moment in £ of f which, in turn, yields the boundedness of p and j in Lf’/f.

Proposition 2 Fort > 0 the charge and current densities satisfy

Ol < [ 1€l it € dods < C (Ifalls + ). (19)

ol + elli@lls < Clfoll= (lollr + ). (20)

Proof. Let us prove that the first moment in £ of f is bounded in L'(R2): indeed

/ S (a6 de = / E1f (2. €) de + / €1/ (. ) de
R3 |€|<1/e |€[>1/e

1
L Ier R dg ).
< [ asepsengdee (2 o)

After integrating with respect to =, we obtain

2
Lser o < [ peagdcas [ | s g

1
— d€d )
T (g/m/bl/Jaf(ux,s) ¢ x)

Finally, Proposition 1 and (16) yield
[ 1€l € dede < sl + € £00) 1)
R
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To conclude the proof of (19), we notice that

(t, )| = ft,x, ) dg

o Vit P < [ s de

Now, applying the interpolation lemma (Lemma 1) with m = 1 and using (16) and (21),
we obtain

3/4
Ol + Ol < ClONL ([ 6o gastr)

< Cllfoll2 (1 follz + E(0))**.

A

Estimates on the transverse electric field E7.

In contrast to the Vlasov-Maxwell system, the total energy estimate (17) gives no piece of
information on the transverse component of the electric field Er. Nevertheless Er satisfies
the following elliptic equation

O*Ey, J7
—AEr + ¢ =—c? . 22
TS e T T (22)
Furthermore, the Vlasov equation (4) allows us to compute 0j/0t which is given by
9j
~o = [ v @ v Varde
R3

- /Rg<1 +e21¢?) 72 (Id — *v(€) ® v(€))(EL + Er +ev(€) x B) f dé.

and explicitly depends on Er. Indeed, the derivative of the relativistic velocity is

1

(1 + e2[¢]?)1/? (05 — €* vil€) v(€))

ajvz'(f) =

and we have set
v(€) ®@v(§) = (vi(§) v;(§))1<ij<s-

Owing to the poor regularity of f, the source term 95/0t does not enjoy the smoothness
properties required to use a variational method and exploit the non-negativity of the matrix
(Id —€* v(§) @ v(€)) to obtain an L2-estimate on VEr. We instead use a duality argument
which provides an estimate on Ep at the expense of a smallness condition on f;.
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Proposition 3 There exists a positive constant o > 0 such that, if the initial datum fy
satisfies
81/2 oAy <1,

where Ay is given by (12), there exists a positive constant C(fo) depending on fo such that
1Br(t)|le s < C(fo) €,
where the functional space > + 15 is endowed with the norm ||.|| 216 defined by
|Er|lizsrs = inf { ||allez + ||blls, Er=a+0b, a€L*R*, beLSR%}.

Before proving this proposition, we recall some results concerning the Poisson equation
and refer, for instance, to [16, 18] for a proof.

Lemma 2 Consider p € (1,3) and g € LP(R3).

o Let k € {1,2,3}. The Poisson equation

dg
—Ay = 2
has a unique solution u € LY(R?), ¢ =3p/(3—p), Vu € LP(R3), 1 < p < 8, and there
holds 5
u 4
HG_ <Clgller, 1<75<3.
Ljll v

o The solution u = G x g, where G(x) = W’ of the Poisson equation
-Au=g

satisfies the Calderon-Zygmund inequality

i

Lemma 3 Let g € L?(R%) NILS/5(R?). Then there are two functions gr and g in L2(R?) N
LL%/°(R3) such that

0%u
6%0&@-

<Clgller, 1<i,5<3.

Lp

g=gr+g9r., Vxgr=0, V-gr=0.

Moreover, there exists a positive constant C, independent of g, such that

lgrllLsrs < Cllgllers,  Ngrlle < Cllglles.
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Proof. Since the function g belongs to L?(R3), the Helmoltz decomposition [5] ensures
that there are two functions gy and gy, in L?(R3) such that

g=9gr+9,, Vxg,=0 V.gr=0.
In addition, gr = V x 1, where 1, € Y is the unique solution to
_A,[?Dg = v X g,

and Y is defined as the completion of the set
{u € (D(R?’))S; V-u:O}, (24)

for the gradient norm u — ||Vu| 2 (we refer, for instance, to |9, Chapitre IX] or [5]).
Moreover, since g € L5/°(R?), Lemma 2 ensures the existence of a positive constant C' such
that

IViglliers < C llgllsss.

Consequently,
lgrlliers = IV X dgllisrs < CIVgllners < C [lglipsss-

Finally, as g and gr are in L%°(R?), the longitudinal component g;, = g — gr is such that
gr € LY5(R3). O

Lemma 4 Let g7 € L2(R3) N1LS>(R?) be such that V - gr=0. Then, the following problem
—AY = gr (25)

has a unique solution b € Y. Moreover, there exists a positive constant C, which does not
depend on gr, such that

[l + IV llLs < C max{{lgrlle, [[grllues} -

Proof. Existence and uniqueness of a solution to (25) follows from a variational method
in the Hilbert space Y with the gradient norm u + ||Vul|L2. On the one hand, from the
Gagliardo-Nirenberg-Sobolev inequality [5], we establish

IWlles < C [[Vellee < C |1D*]|os. (26)

On the other hand, since gy € L%°(R?) NL%(R?), the Calderén-Zygmund inequality applied
to the Poisson equation gives

ID*¢llgsrs < C llgrlluess (27)
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and
ID*¢llw2 < C [lgrlie. (28)
Since WH2(IR3) is continuously embedded in L°(R?), we obtain
[Velee < C (VY] + 1D ]2) (29)

Thus, gathering inequalities (26), (27), (28) and (29), we get the first bound on Vi: there
exists a positive constant C', which does not depend on ¢, such that

Vel < C (Ve + 1D*]l2) < C max {llgrllez, llgrllees} - (30)

Then, inequalities (26) and (30) imply that the function ¢ belongs to W!5(R3) which is
continuously embedded in L>°(R?). Therefore, we have

[Pl < C (|1llee + 1V llLs) < € max {[lgrilez, lgrllies} (31)

which completes the proof. O

Lemma 5 Set
My (t, ) =/ (1 + e2|¢)*) 12 f(t, 2, €) de.
R3

Then, we have

1/2

E M@z < 2 CN Rl (Ifollr + <2 E£(0)) (32)

Proof. Let us consider an arbitrary R > 0 and split M _;(¢) in the following way
o R SO
R3
=@ Qe et [ ) (L) g
¢ISR

l€>R

< SISOl [ O g [ ) () e

|§I>R
Since

R 2r2dr e |S?|
2 1 2|¢(2)-1/2 g¢ — 2/ er < 2
et ra= 15 [ e < S R
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we have

£? / Ft,z, &) (L+ e3¢ 12 de
R3
€|52|

< 10l / F(t 2, €) (1+ 2[€[2)2 de.

Optimizing with respect to R we obtain

1/2
2 M_y(t,z) <eV2C|If(1)|}2 (/ftx£(1+52\£\ )1/%15) .

Now, we need to give a bound on the right hand side. On the one hand, we have
F(t,2,€) (1+%[¢*)"/? de
R3

=/ Sl €) (14 2[€2)12 d + / F(t2,€) (1+ 22|€ )2 de
|€]<1/e |€|>1/e

e (pa,x) b (1 /Ig e df)) |

On the other hand, by (16),
1f )|z < Nl follzos-

Taking the L2 norm of M_; and using (17) we finally obtain

MOl < SPCIOIE (1FO + 2 E0)
1/2C' ||f ||1/2 (HfOHLl + 625(0))1/2 _ 61/2,,42,

IA

We can now give the proof of Proposition 3.

Proof of Proposition 3. Let g € L2(R?)NL%%(R?). On the one hand, thanks to Lemma 3,
the function g may be written as

g=gr + 9., Vxg, =0 V-gr=0.

On the other hand, from Lemma 4, there exists a unique solution ¢ € Y to the following
problem

13



Since Er(t) and B(t) belong to L?(R?) and j(t) belongs to L*/3(R3) it follows from (22) and
(33) that

OPE; dj
~AEr+e&* —~ 4+ =, >=0.
< T+ ¢ o0 +¢ ETE P
We now compute the three terms of the above equality. It first follows from (33) that
<—AET,1p>:—/ ETA¢d$:/ ETgTdJI:/ EngI' (34)
R3 R3 R3
Since V x £, =0 and V - ¢ = 0, we obtain
0’FE
e« =Ly >=0. (35)

o2’

Finally, we need to evaluate the following duality product

i
< &2 8—‘1, Y > (36)
From the Vlasov equation, 07 /0t can be easily computed
9
o RGICGI ML @7
- [ A S = PO 9 uO) B+ 20l x BIfdE(38)
R3
- [ ()= 0l @ () Er £ (39)
R3

An estimate on Jj /0t will be obtained in three steps.
First step. Let us begin with the following term
< [ WO Vardev>.
R

Thanks to the regularity of the charge density p(t) € L'(R*)NILY3(R?) and of 1) € W15(R?)
given by Lemma 4, we obtain

&2 < A3v(€) (v(&) - Vaof)dé, v >= _gz/R Flt,2,8) () (Vo) v(&) duds.  (40)

3xR3

Introducing
Klta) = [ [0, @R de,

14



it follows from the Holder inequality that

2

€ < C KMo IV s

< [ O e - Vordgw>

It remains to estimate K(¢,.) in L%°(R3). On the one hand, we have

€17

2 _ 2
e K(t,z) =¢ . f(t,z, &) D)

de< [ flow€)de
whence,

e IO s < o) ass.

On the other hand,

SK(tr) = € / F(t,2,€) [0(€) P dE + €2 / F(t2.€) [o(€)? de
|€]<1/e |&|>1/e

1
2 g+ | < 2,6 €| de ).
< ¢ /SSI/Ef(t,x,S)\f\ E+e <€/£>1/6f(tx§)\§‘ 5)

Thanks to (18), we get
52/ K(t,z)de < (14+V2) E(t).
R3

Finally, we conclude from (42), (43) and the Holder inequality

(B2 o1 Ay

< 2 (v ew)” oI,

KOs < lEE@)

Gathering (40), (41) and (44), we obtain

£ < [ O Q) Vuf) e, v > <200 ED) IO 17 Yl
Finally, thanks to (45), (17) and (20), we end up with

52

< / o(€) (0() - Vaf ) v >
R?:
< OB EON N foll 2 (lfollz + E0) IV us.

15
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Second step. We now study the term (38) which does not contain the transverse compo-
nent Erp.

< &2 /Rd(l +52|§|2)_1/2 <]d — 52@(5) & 0(5)) f(EL —}—gv(§) X B)d£’¢ > . (47)

On the one hand, applying the Hélder inequality, we have

52

/RG f ((1 -+ 52|§|2)—1/2 <]d — 5%(5) ® U(g)) EL) ) de dg'

IA

620/ M_1|EL||'(MdJI
R3
e® C [IMoillpe 1Bl 19l (48)

N

On the other hand, observing that € |v(&£)| < 1, we proceed in the same way to establish

52

[0+ SIER (1 = 0() © 0(6)) ene) x B) - v da
<& CIMaly Bl Wl (49)

Gathering (48), (49), we use the bound on M _; given by (32) and (17) to obtain the following
estimate

2 /R6(1 + 2EP) V2 (Id = e20(&) ®@v(€)) f(EL +ev(€) x B)dé dx

< CNhlliZ (Hfolle +€0) EO [dfux. (50)

Third step. Finally, we handle the term involving the transverse component Er given by
(39): we have

\< [0+ e (10— (6 @ 0(6)) £ Brdev >'
RB
<c / M1 | Er| [¢]da. (51)
R3

Thanks to (34), (35) and (36), we get

9j

Er gdr = —&* < — ¢ >
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and the previous three steps (46), (50), (51) ensure that there exists a positive constant C'( fy)
and a positive constant C' > 0 independent of fy, such that for any function g € L%5NIL2(R?)

/ Ergdx
R3

< Cfo) ([Pl €2 + (| Vepls €¥/*)

+ 052/ M_l‘ET|dZEHQ/J||]Loo
R3

Thus, thanks to Lemma 3 and Lemma 4, we have

/ Ergdx
R3

< C(fo) e (L 4+ l|glluossmwe (52)

+ 052/3M_1\ET|dxy|g||L6/5ng.
R

Recalling that the dual space of (L2 N1L5/%) is L2 + L8 (see for instance [4, Theorem 2.7.1]),
we actually deduce from (52) an estimate on Er in L2 4+ LS. Indeed, for all a € L*(R?) and
b € L°(R?) such that Er = a + b,

52/ M1 |Erl dz < [E2M 4|l lalle + 1€2M 1 yos b (53)
R3
By (32), we have

Ml <2 C N folli2 (1ol +2E(0))* = 2 C A, (54)

where A, is defined by (13). Let us also observe that
e Mol =& /6(1 + €))7 fdude < E|p(t) | < | follr = € Ar,
R

where A; is given by (13). Thus, using an interpolation inequality

Ml < (@ IMall)® (@ M),
< (24)7 (2o a)”?,
< CSPAP A (55)

Gathering (52), (53), (54) and (55), there exists a positive constant o > 0, such that

/ Ergdx
R3

< C(fo) e (1 + %) llgllLorsy

+ 20 Ao (lallez + l1bllus) llgllsssenz,

17



for any a € L*(R?) and b € L°(R?) such that Er = a + b. Recall that Ay is defined by (12).
Therefore, we conclude

/ Ergdx
R3

for any ¢ € L9°> N1L2. By duality, we have

< C(fo) (1 + ") glluorns + €' 0 Ao | Brllieres lgllossnez,

1Brllizes < C(fo) (1+0) e 4+ 0 A || Erlluzyus.

Consequently, as soon as the initial datum f; fulfils

oe'PAy < 1,
we have
|Er(t)|liz11s < C(fo) €2
The proof of Proposition 3 is then complete. 0

Remark 1 Let us stress here that the constant C( fy) occurring in Proposition 3 only depends

on || follze<, [l follzr and £(0).

4 Regularization of the Vlasov-Darwin system.

The goal of this section is to construct a sequence of solutions of suitable approximations of
the Vlasov-Darwin system such that the a prior: estimates derived in the previous section
hold uniformly.

Consider an initial datum fj satisfying (10), (11) and the smallness condition (14). There
exist a sequence f' € C}(R3 x R?®) and a positive constant C such that

1fg e + 1 f3llz= + €7(0) < Co, V20 Af <1, ¥n>1, (56)

where A7 and £"(0) denote the constant defined by (12) and the initial total energy cor-
responding to f;' respectively. Next, we consider a non negative and radially symmetric
function 6,, € C*(R3) such that,

supp 6, C B(0,1/n), Odr = 1.
R3
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As the parameter € does not matter in this section, we will omit it and assume that ¢ = 1.
As in [6], we consider the following regularized system

€ Vaf 4 (By + Br +v(€) x B) 6, Vef =0, (57)

with the initial datum

f0,2,6) = fi(x,6), (2,6) e R® x R?,
and the electromagnetic fields (Er, Ep, B) are given by

%—VXB:—]'*HH,

OB

oz Er =0

g VX Er =0, (58)

V.-E,=p*6,, V-B=0,

\E:ET—i—ELand V'ETZO, VXEL:O,
with

i) = [ fta©)ds i) = [ o e a

Here, the symbol * denotes the convolution with respect to the x variable

Proposition 4 There ezists a smooth solution, denoted by (f", EZ:, ET, B"), to the system
(57)-(58) such that
f"e CHRT x R® x R?),
Ep,B" € CY(RT; H'(R?)) and E} € L*(R*;Y),
where Y is given by (24). In addition, f"(t,.,.) is compactly supported for each t > 0.

The proof of this result is performed by classical arguments (see |12] for details and the
references in [6]). Of course, the regularity properties enjoyed by f™ heavily depend on n.
Nevertheless, since the smallness condition (56) is satisfied uniformly with respect to n, we
may argue as in the previous section and using the Young inequality, we easily check that
the following estimates hold uniformly.

Lemma 6 There exists a positive constant C, depending only on fy such that, for t > 0,
1@ + ([ @)l < C,
10" ()| ars 4 7" (O)llLas < C,
1B™(t) Iz + | EL @) [z + | E7 ()24 < C.
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5 Proof of Theorem 1.

Here, we keep the assumptions and notations introduced in the previous section.
Since IL? + LY is continuously embedded in L} , it follows from Lemma 6 that

VR >0, 3Cgr>0, / | dz < Cp. (59)
B(0,R)

The bounds of Lemma 6 and (59) give a good functional framework to analyze the product
(E? + B +v(€) x B") f*in L} _ since every term belongs to L? . Indeed, these estimates

loc loc*
allow to extract a subsequence of (f", EZ ET, B") (not relabelled) which converges weakly

in L? towards (f, Er, Er, B). In order to pass to the limit in the nonlinear term
(EL + Ep +v(§) x B") f*

strong compactness is needed and is provided by the classical velocity averaging lemma,
which we recall now [6, 22|.

Lemma 7 Consider Q= (0,T) x R? and a(.) € L2, (R3; R?), satisfying

loc
VweS? VYueR; |[{€€R* a(f)w=u}|=0.

Let (f")newv be a bounded sequence in Lj, (2 x RY) which satisfies: for any ¢ € D(R), the
sequence

LL (5 o+ 9e et 1) wiorae} (60)

is relatively compact in H;,}(Q). Then the sequence

{ [ (a9 ue) d&}

is relatively compact in L} ().

By (57), f" satisfies

a n

[ (5 + o) vt~ [ o vuieae
R3 R3

with g" = (Ef + Ef +v(§) x B") 0, ", for any ¢» € D(R{). Since E}, E}t and B" are

bounded in L2 ((0,7) xR3) and f™ is bounded in L>((0,T) xR3xR3), g"- V() is bounded

in L? ((0,T) x R* x B(0, R)), for all T, R. We are then in a position to apply Lemma 7 to

deduce that

Vo eDE), [ Pnouei— [ Jte v in R <R
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It is now straightforward to pass to the limit in (57) as n — oo: indeed, for ¢ € D(Rg’) and
0 € D((0,T) x R3), we have

[ L Eea ([ #reagyuieas) dod—

/OT /RS(EL + Er) p(t, 7) ( Rgf(t,x,f)w(g)dg) dx dt,

and

/oT / ( ! n(t’$’5)¢(§)v(§)d€) x B" p(t, x) dr dt —
/OT / ( (62,99 v(E) d&) x Bip(t,x) d dt.

The fact that (f, Er, Er, B) is a weak solution to the Vlasov-Darwin model then readily
follows.

6 Proof of Theorem 2.

In this section, we fix a non negative initial datum f; (which does not depend on ¢) and
satisfies (10), (11) and

/ f0\§\2dfdx < +00.
R3xR3

Clearly, the smallness condition (14) is fulfilled by f, for ¢ small enough. For such &, we
denote by (f¢, E5, E5, B®) the solution of the Vlasov-Darwin system (4)-(6) constructed in
Theorem 1. Observe that

1
/IR3><R3 7(522 fodg:dfg/ 6P fodr de

R3 xRR3

and we infer from Proposition 2 and (16) that

=@l + " ller + {7l ars < C(fo), (61)
@Oz + 1Ll e < C(fo)- (62)
We next prove some estimates on the electromagnetic fields.
Proposition 5 The sequence (E5).~q is relatively compact in C([O,T],L5/4(R3)) and

loc

V2| ES |2 4s + || B¥||e < Ce.
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Before giving the proof of Proposition 5, we establish a uniform bound on the current
density j°.

Lemma 8 There exists a positive constant C(fy) > 0, depending only on the initial data fy,
such that, fort > 0,

175@)l[sra < C(fo).
Proof. We define f; and f5 by

P { Fooiflel < 1/,

0 otherwise

and f5 = f° — f;{. We also put

) e . ¢
Ji :/ 11 2fepyp/i®e and 2 :/ 11 2ep)nl®

On the one hand, Proposition 1 and (16) imply
[ 6P Fr0dede < (14 VD) £0) and O < ol
R
Using an interpolation inequality in the spirit of Lemma 1, we get
4/5
e € 1/5 €
@l < OIS ([ I ftongas) < Ca

On the other hand, Proposition 1 and (16) indicate that j5 and f5 are bounded in L'(R?)
and L>*(R°) by

172 (B) |l < /6 fs)Eldede < e (1+v2) £(0) and  [|f5(t)l|= < [ follz=-  (63)
R
Then, applying the Holder inequality, we have

= e\ 11/5 || ey 14/5
135 (Dllars < 135 (I 155 @)1 - (64)

An estimate of ||5|/p4/s is now needed. Let us set

p;(t,l’) = s f2€(t7‘7;7§> dg.

By an interpolation inequality and (63), we obtain

3/4
O < I5Ooon < CUEOIL ([ HOllaan) < cth) .
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Then, substituting this estimate in (64), we have

- - - 1A/
I35 Ollsn < CliEOIL 15BN < EO)Y° (C(fo) e

< C(fo) (£(0))'".
Gathering the previous estimates on j; and j5, we conclude that j° is uniformly bounded in

L>®(R*, L4(R3)). O

Proof of Proposition 5. The longitudinal component of the electric field may be written
as
E; = —-V¢°, where — A¢® =)y

Consequently from Lemma 2 and (61), there exists a positive constant C(fy) > 0 such that

|5 (0)ls < C(f), for3/2<p < 12/5, (65)

IVEL(#)|lLe < C(fo), for1<q<4/3. (66)
From (6), E5 also satisfies the following equation

i)o
ot

Since the magnetic field B belongs to L?(R3) and satisfies

~V x Bf = —¢j°.

—AB* =¢eV x j°,
it follows from Lemma 2 and Lemma 8 that
|V x B[ 5a < Ce [|7°(t)|lLsa < C(fo)e.

whence,

< O @) llesrs < C(fo)- (67)

L5/4

OFS
ot

Owing to (65), (66) and (67), the sequence (E% ).~q is relatively compact in C(R™, Li{f(Ri”)).
Finally, Lemma 2 and Proposition 2 yield

V2| ES |2 4s + || B2 < Ce,

which completes the proof of Proposition 5. O
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Now it follows from (62) and Proposition 5 that there exist a subsequence of (f¢, E5, E5., B).~
(not relabelled) and a couple (f, E') such that

f¢ — f weakly in L>(R*, L*(R® x R?*)), when ¢ — 0,
and

E: — E strongly in L>®(R", L>4(B(0, R))),
E5 — 0 strongly in L®(R",L*(B(0, R))),
B® — 0 strongly in L>®(R",L*(B(0, R))),

for any R. It is then straightforward to pass to the limit as € goes to zero in the Vlasov-
Darwin system and check that (f, E) is a weak solution to the Vlasov-Poisson system.
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