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Abstract

Vlasov methods, which instead of following the particle trajectories, solve directly the Vlasov equation on a grid of phase
space have proven to be an efficient alternative to the Particle-In-Cell method for some specific problems. Such methods are
useful, in particular, to obtain high precision in regions where the distribution function is small.

Gridded Vlasov methods have the advantage of being completely free of numerical noise, however the discrete formulations
contain some other numerical artifacts, like diffusion or dissipation. We shall compare in this paper different types of methods
for solving the Vlasov equation on a grid in phase space: the semi-Lagrangian method, the finite volume method, the spectral
method, and a method based on a finite difference scheme, conserving exactly several invariants of the system. Moreover, for
each of those classes of methods, we shall first compare different interpolation or reconstruction procedures. Then we shall
investigate the cost in memory as well as in CPU time which is a very important issue because of the size of the problem
defined on the phase space.
 2002 Published by Elsevier Science B.V.
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A model which can be used in many cases for the study of plasma as well as beam propagation is the Vlasov
equation coupled with the Maxwell or Poisson equations to compute the self-consistent fields. It describes the
evolution of a system of particles under the effects of external and self-consistent fields. The unknownf (t, x, v),
depending on the timet , the positionx, and the velocityv, represents the distribution of particles in phase space
for each species. The numerical resolution of the Vlasov equation is usually performed by Particle-In-Cell (PIC)
methods which approximate the plasma by a finite number of particles. Trajectories of these particles are computed
from characteristic curves given by the Vlasov equation, whereas self-consistent fields are computed on a mesh of
the physical space. This method yields satisfying results with a relatively small number of particles. However, it is
well known that the numerical noise inherent to the particle method becomes, in some cases, too important to get
an accurate description of the distribution function. Moreover, the numerical noise only decreases in 1/

√
N , when

the number of particlesN is increased.
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To remedy this problem, methods for discretizing the Vlasov equation on a mesh in phase space have been
proposed. Among them, the semi-Lagrangian method consists of computing the distribution function at each grid
point by following the characteristic curve ending there. Then to compute the value of the distribution function at
the origin of the characteristic, a high order interpolation method is needed. A special case of this method, based
on a time splitting which enables an exact computation of the characteristics, was first introduced by Cheng and
Knorr [3]. A cubic spline interpolation is used. This algorithm was subsequently applied in many plasma physics
papers, see for example [6,9] and references therein. This method was cast into the more general framework of
semi-Lagrangian methods by E. Sonnendrücker et al. [12], and successfully adapted to beam physics problems,
namely the simulation of space charge waves on an initially semi-Gaussian beam and halo development in a
uniform focusing channel [13]. Another flavor of the semi-Lagrangian method was introduced by Nakamura and
Yabe and called the Cubic Interpolated Propagation (CIP) method. It is based on a Hermite interpolation for which
the gradients of the distribution function are also advanced along the characteristics [14]. It needs the storage of
f , ∇xf , and∇vf , therefore in order to reduce memory consumption, the mesh on which it is applied should be
coarser.

Another type of scheme for the Vlasov equation is the finite volume type method (or flux balance method),
where the discrete unknowns are averages of the distribution function on volumes paving the phase space. These
unknowns are updated by considering incoming and outgoing fluxes leading to mass conservation. The first scheme
of this type was introduced by Boris and Book [2]. It was further developed by Fijalkow [7]. We recently proposed
an improved version of this scheme that we called the Positive and Flux Conservative method (PFC) [8], which is
not only conservative, but also preserves the positivity and the maximum value of the distribution function. The
scheme was implemented up to third order accuracy.

We shall also consider the Fourier–Fourier spectral method introduced by Klimas and Farell [4,5], based on a
time splitting, using at each step a backward and forward Fourier transform for the shift. A filtration algorithm to
limit small scale filamentation was also proposed.

One of the flaws common to all Vlasov solvers is their smearing of small structures and the associated non
physical increase of entropy. However, this feature is necessary for the stability of Eulerian Vlasov solvers. Indeed,
a finite difference scheme based on a method introduced by Arakawa [1], which exactly conserves

∫
f 2 dx dv,

becomes unstable when filamentation phenomena occur. The method can still be useful when we stabilize it by a
collision term which is chosen so as to still conserve desired moments of the distribution function.

In this paper, we review the methods introduced above, and propose, in particular for the semi-Lagrangian
scheme, new interpolation techniques which are local ones and which should be more efficient for parallel
computation as they need less communication between processors. Moreover, in order to get some insight on
the behavior of these methods we compare them for some classical problems of plasma physics, with respect to
numerical dissipation, phase errors and accuracy at lower resolution as well computational cost for one specific
problem.

1. The Vlasov equation

The evolution of the density of particlesf (t, x, v)dx dv in the phase space(x, v) ∈ R
d × R

d , d = 1, . . . ,3, is
given by the Vlasov equation,

∂f

∂t
+ v · ∇xf + F(t, x, v) · ∇vf = 0, (1)

which can also be written in the following conservative form

∂f

∂t
+ divx(vf )+ divv

(
F(t, x, v)f

)= 0. (2)
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The force fieldF(t, x, v) can consist of an applied external field and a self-consistent field which is coupled with
the distribution functionf giving a nonlinear system. TypicallyF = q

m
(Eself+Eappl+ v× (Bself+Bappl)), where

the self fields are solutions of Maxwell’s equations with sources induced by the particles, or in simplified cases
which we shall consider in this article, the magnetic field is neglected and the self electric field is computed using
the Poisson equation, i.e.

Eself(t, x)= −∇xφ(t, x), −ε0�xφ = ρ, (3)

wherem represents the mass of one particle,q its charge andρ is defined by

ρ(t, x)= q

∫
Rd

f (t, x, v)dv. (4)

2. The Flux Conservative method

The starting point of our algorithm is the Flux Balance method [7]. Discretizing the Vlasov equation in
conservative form, we first observe that using a time splitting scheme the algorithm boils down to one-dimensional
problems which have the following form,

∂tf + ∂x
(
u(t, x)f

)= 0. (5)

The characteristic curves are the solutions of the differential system corresponding to the transport equation:


dX

ds
(s)= u

(
s,X(s)

)
,

X(t)= x.

(6)

We denote byX(s, t, x) the solution of (6). Then the conservation of particles along the characteristic curves leads
to ∫

K

f (t, x)dx =
∫

X(s,t,K)

f (s, x)dx, (7)

for any intervalK, where

X(s, t,K)= {
y ∈ R: y =X(s, t, z); z ∈K

}
.

Note that this property remains true for dimensionsd � 1. Now, let us introduce a finite set of mesh points
(xi+1/2)i∈I of the computational domain(xmin, xmax). We will denote by�x = xi+1/2 − xi−1/2 the space step,
and byCi = [xi−1/2, xi+1/2] the control volume. Assume the values of the distribution function are known at time
tn = n�t . We find the new values at timetn+1 using the conservation of particles (7) on each intervalCi from time
tn to time tn+1, we have

xi+1/2∫
xi−1/2

f (tn+1, x)dx =
X(tn,tn+1,xi+1/2)∫

X(tn,tn+1,xi−1/2)

f (tn, x)dx. (8)

Denoting by

Φi+1/2(t
n)=

xi+1/2∫
X(tn,tn+1,xi+1/2)

f (tn, x)dx,
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the flux conservation becomes
xi+1/2∫

xi−1/2

f (tn+1, x)dx =Φi−1/2(t
n)+

xi+1/2∫
xi−1/2

f (tn, x)dx −Φi+1/2(t
n). (9)

On the one hand, the evaluation of the average of the solution over[xi−1/2, xi+1/2] smears out fine details of the
exact solution. Indeed, in the filamentation process, these details will become finer than the size of a cell for any
given grid for long time computations.

On the other hand, in order to get a high order scheme, an essential step is now to choose an efficient method to
reconstruct the distribution function from the values on each cellCi .

2.1. The Flux Balance method (FBM)

In [7], Fijalkow only used a linear interpolation

fh(x)= fi + (x − xi)
fi+1 − fi−1

2�x
, ∀x ∈ (xi−1/2, xi+1/2).

This method is very straightforward to implement. However, its drawbacks are that it does not give a positive
approximation and does not control spurious oscillations.

2.2. The Positive and Flux Conservative method (PFC)

This method was introduced recently in [8]. It is based on a reconstruction via primitive function. LetF(tn, x)

be a primitive of the distribution functionf (tn, x). We will denote by

f n
i = 1

�x

xi+1/2∫
xi−1/2

f (tn, x)dx,

then we haveF(tn, xi+1/2)− F(tn, xi−1/2)=�xf n
i , and

F
(
tn, xi+1/2

)=�x

i∑
k=0

f n
k =wn

i .

On the interval[xi−1/2, xi+1/2], we use the stencil{xi−3/2, xi−1/2, xi+1/2, xi+3/2} to approximate the primitive by
a polynomial of degree three. By differentiation, we define a first approximationf̃h(t

n, x), which is a third-order
approximation of the distribution functionf (tn, x). However, it does not retain the property of the exact solution of
the Vlasov equation that 0� f (t, x)� f∞ for all x andt , wheref∞ is the maximum value of the initial distribution
functionf0. In order to enforce this property, we introduce slope correctors to obtain for allx ∈ Ci ,

fh(t
n, x) = f n

i + ε+
i

6�x2

[
2(x − xi)(x − xi−3/2)+ (x − xi−1/2)(x − xi+1/2)

](
f n
i+1 − f n

i

)
− ε−

i

6�x2

[
2(x − xi)(x − xi+3/2)+ (x − xi−1/2)(x − xi+1/2)

](
f n
i − f n

i−1

)
,

with

ε+
i =

{
min(1;2f n

i /(f
n
i+1 − f n

i )) if f n
i+1 − f n

i > 0,

min(1;−2(f∞ − f n
i )/(f

n
i+1 − f n

i )) if f n
i+1 − f n

i < 0,
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and

ε−
i =

{
min(1;2(f∞ − f n

i )/(f
n
i − f n

i−1)) if f n
i − f n

i−1 > 0,

min(1;−2f n
i /(f

n
i − f n

i−1)) if f n
i − f n

i−1 < 0.

It is easy to check that the approximation of the distribution functionfh(t
n, x) previously constructed satisfies

• Conservation of the average: for alli ∈ I ,
∫ xi+1/2
xi−1/2

fh(t
n, x)dx =�xf n

i .

• Maximum principle: for allx ∈ (xmin, xmax), 0� fh(t
n, x)� f∞.

From this reconstruction, we approximate the quantityΦi+1/2(t
n), by looking for the cellCj such that

X(tn, tn+1, xi+1/2) ∈ Cj and settingαi = xj+1/2 −X(tn, tn+1, xi+1/2). Then for a positiveu(t, x), we obtain

Φi+1/2(t
n) =

xi+1/2∫
xj+1/2−αi

f (tn, x)dx

= �x

i∑
k=j+1

f n
k + αi

[
f n
j + ε+

j

6

(
1− αi

�x

)(
2− αi

�x

)(
f n
j+1 − f n

j

)

+ ε−
j

6

(
1− αi

�x

)(
1+ αi

�x

)(
f n
j − f n

j−1

)]
,

and whenu(t, x) is negative, we setαi = xj−1/2 −X(tn, tn+1, xi+1/2), then−�x � αi � 0 and

Φi+1/2(t
n) =

xi+1/2∫
xj−1/2−αi

f (tn, x)dx

= �x

j−1∑
k=i+1

f n
k + αi

[
f n
j − ε+

j

6

(
1− αi

�x

)(
1+ αi

�x

)(
f n
j+1 − f n

j

)

− ε−
j

6

(
2+ αi

�x

)(
1+ αi

�x

)(
f n
j − f n

j−1

)]
.

3. The semi-Lagrangian method (SL)

This method is based on the usual advective form of the Vlasov equation, which reads

∂f

∂t
+ v.∇xf + F(t, x).∇vf = 0, (10)

whereF is the force field. The distribution function solution of the Vlasov equation is constant along the particle
trajectories. So, assuming it is known at timetn = n�t , the solution at timetn+1 is given by

f (tn+1, x, v)= f
(
tn,X(tn, tn+1, x, v),V (tn, tn+1, x, v)

)
, (11)

where (X(tn, tn+1, x, v),V (tn, tn+1, x, v)) stands for the solution of the differential system defining the
characteristic curves which reads
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dX

dt
= V (t),

dV

dt
= F(X(t), t).

In the semi-Lagrangian method the distribution function is approximated at each grid point of the compu-
tational domain(xi ,vi )i∈I . It is updated at each time step from its value at the origin of the characteristic
(X(tn, tn+1,xi ,vi ),V (tn, tn+1,xi,vi )), which is computed from values on the grid using a high order interpo-
lation method. In previous works [3,12], a cubic spline interpolation was used. This gives very good results, but
has the drawback of being non local which causes a higher communication overhead on parallel computers. We
want here to compare its properties with those of local interpolation procedures.

Actually, the semi-Lagrangian method for the Vlasov equation can be simplified a lot when a splitting procedure
is used, because in this case the feet of the characteristics can be computed explicitly at each split step. This leads
to the following algorithm steptn to tn+1 are the following:

f ∗(x, v)= f (tn, x − v�t/2, v),

f ∗∗(x, v)= f ∗(x, v −E∗(x)�t
)
, (12)

f (tn+1, x, v)= f ∗∗(x − v�t/2, v),

whereE∗(x) is computed fromf ∗.
For simplicity, we will only consider one dimensional reconstruction, but it can be easily generalized to higher

dimensions. In the following discussion, we will assume the distribution function is known at timetn on the grid:

f
(
tn,xi

)= f n
i , ∀i ∈ I,

and will present two methods of reconstruction based on the Lagrange and Hermite interpolation.

3.1. The Lagrange interpolation method

We look for a continuous approximationf of f (tn, .) such that

∀i ∈ I, f (xi )= f n
i , and ∀x ∈ [xi,xi+1], f (x)= qm(x),

whereqm(x) belongs toP2m+1[xi ,xi+1], i.e. the set of polynomial of degree 2m+ 1 on the interval[xi,xi+1]. We
only choose polynomials of odd degree to have a centered approximation, indeed the set of points used to construct
the polynomialqm(x) on the interval[xi,xi+1] is

{xi−m, . . . ,xi ,xi+1, . . . ,xi+1+m},
andqm(x) is in the following form

qm(x)= f n
i−m +

2m+1∑
k=1

f [xi−m, . . . ,xi−m+k]
k∏
l=0

(x − xi−m+l ),

wheref [xi−m, . . . ,xi−m+k] is given by the divided difference formula

f [xi , . . . ,xi+p] = 1

p!
f [xi+1, . . . ,xi+p] − f [xi , . . . ,xi+p−1]

xi+p − xi
,

(13)
f [xi] = f (xi ).

This interpolation method only gives a continuous function, then we have to consider a high degree polynomial
(m greater than 2) to obtain an accurate approximation of the distribution function. It has been implemented until
m= 4.
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From this reconstruction, we define the approximation of the distribution functionf (tn+1,xi ) at timetn+1 at
each grid point as follows:

for simplicity takem= 2, assumeX(tn, tn+1,xi ) is known and belongs to the interval[xj ,xj+1], then let us denote
by αi = [X(tn, tn+1,xi )− xj ]/�x, with �x = xj+1 − xj ,

f (tn+1,xi ) = q2
(
X(tn, tn+1,xi )

)
= f n

j + αi
[
f n
j+1 − f n

j

]− 1

2
αi(1− αi)

[
f n
j+1 − 2f n

j + f n
j−1

]
− 1

6
αi(1− αi)(1+ αi)

[
f n
j+2 − 3f n

j+1 + 3f n
j − f n

j−1

]
+ 1

24
αi(1− αi)(1+ αi)(2− αi)

[
f n
j+2 − 4f n

j+1 + 6f n
j − 4f n

j−1 + f n
j−2

]
+ 1

120
αi(1− αi)(1+ αi)(2− αi)(2+ αi)

× [
f n
j+3 − 5f n

j+2 + 10f n
j+1 − 20f n

j + 5f n
j−1 − f n

j−2

]
.

In the general situation, the semi-Lagrangian method does not conserve global mass, but for linear advection with
constant coefficients, the use of a centered approximation ensures the conservation of global mass: for simplicity,
assume the propagation velocityu is positive,

f
(
tn+1,xi

)= f
(
tn,xi − u�t

)
,

we setj = [u�t
�x

], where[.] represents the integer part, and 0� α = u�t − xi−j � �x, then for the previous
scheme, we have∑

i

f n+1
i =

∑
i

f n
i−j + α

∑
i

[
f n
i−j+1 − f n

i−j
]+ 1

2
α(1− α)

∑
i

[
f n
i−j+1 − 2f n

i−j + f n
i−j−1

]+ · · · ,

using the divided difference formula, we obtain the result∑
i

f n+1
i =

∑
i

f n
i−j =

∑
i

f n
i .

3.2. The Hermite interpolation method

In this section, we will only consider cubic polynomials to construct aC1 approximationf (tn, .) using a
Hermite interpolation, which needs to estimate the derivative∂xf (x). In [14], the authors treated the case when
the propagating velocity is constant and proposed to approximate the profile of the derivative by differentiating
the equation. They finally obtained a transport equation forf , and∂xf , but the memory cost is increased to treat
the Vlasov equation in the(x, v) space. Here, we propose to approximate the derivative by a fourth-order accurate
finite difference formula:

∂xf
n
i = 1

12�x

[
8
[
f n
i+1 − f n

i−1

]− [
f n
i+2 − f n

i−2

]]
.

Then, for allx ∈ [xi ,xi+1], f (x) is given by the cubic polynomialp3(x) such that

p3(xi)= f n
i , ∂xp3(xi )= ∂xf

n
i ,

p3(xi+1)= f n
i+1, ∂xp3(xi+1)= ∂xf

n
i+1.

Settingαi = [X(tn, tn+1,xi ) − xj ]/�x, whereX(tn, tn+1,xi) belongs to[xj ,xj+1], the value at timetn+1 is
determined by
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f
(
tn+1,xi

) = p3
(
X(tn, tn+1,xi )

)
= f n

i + αi
[
f n
i+1 − f n

i

]+ α2
i

[
3
[
f n
i+1 − f n

i

]−�x
[
2∂xf n

i − ∂xf
n
i+1

]]
+ α3

i

[
�x
[
∂xf

n
i+1 + ∂xf

n
i

]− 2
[
f n
i+1 − f n

i

]]
.

Let us note that using the centered approximation of the derivative, we also prove the conservation of global mass
for the linear advection with constant coefficients.

3.3. The CIP method

This method, which is a variant of the semi-Lagrangian method, was developed by Nakamura and Yabe [14].
It is based on a splitting procedure into one-dimensional advection equations. The interpolation step in the semi-
Lagrangian algorithm is performed using a cubic Hermite interpolation, i.e. an interpolation using on each interval
the values of the functions and its derivatives at the endpoints of the interval. Its specificity is that the derivatives
needed for such an interpolation procedure are not computed numerically but advanced themselves along the
one-dimensional characteristics. For example, the first split step of the Vlasov–Poisson approximation consists
in solving the following system,

∂f

∂t
+ v

∂f

∂x
= 0, (14)

∂(∂xf )

∂t
+ v

∂(∂xf )

∂x
= 0, (15)

∂(∂vf )

∂t
+ ∂(v∂vf )

∂x
= 0, (16)

where the unknowns are(f, ∂xf, ∂vf ).
Steps (14) and (15) are linear advections off and∂xf which can be solved exactly. However step (16) requires

a numerical procedure which needs to be performed with great care so as not to ruin the accuracy and conservation
properties of the algorithm [14]. Oncef and its derivatives are advanced, the reconstruction step of the semi-
Lagrangian algorithm can be performed using a Hermite interpolation.

This scheme has the advantage of being local, which is a nice feature for parallel computations, as it involves
less inter-processor communications, however it has a higher memory cost as it needs storing all the derivatives as
well as the values of distribution function at each grid point.

4. A spectral method

This method was proposed by Klimas and Farell to approximate the one-dimensional Vlasov–Poisson and
Vlasov–Maxwell system [4,5].

The distribution function is approximated by a partial sum of a Fourier series

fN(t, x, v)=
N∑

k=−N
f̂k(t, v)exp(−i2πk · x/L), ∀x ∈ (0,L);

and the Fourier coefficients are given by

f̂k(t, v)=
N∑

k=−N
f (t, xj , v)exp(i2πk · xj/L); ∀k ∈ {−N, . . . ,N}.

Then, the first shift of (12) is equivalent to the application of a phase shift to the expansion coefficients

f̂ ∗
k (v)= f̂k(t

n, v)exp(−i2πk · v�t/2L).
In short, each split step consists in performing a forward FFT, a phase shift, and a backward FFT.
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The development of filamentation in the velocity distribution, with its related propagation to large Fourier modes
in v in the Fourier–Fourier transformed distribution, can lead to serious computational difficulty. Indeed high
frequencies induce strong numerical oscillations. To remedy this problem, a filtered solution can be computed by
eliminating high frequencies of the velocity distribution, which gives a smoother approximation [4,5].

5. A Finite Difference Method (FDM)

In 1966 Arakawa [1] introduced a finite difference method for the integration of the Euler equation for two-
dimensional fluid flow which can, in particular, achieve conservation of mean kinetic energy and mean square
vorticity. This scheme can be easily adapted to the Vlasov–Poisson equations. In 1D, it reads in a dimensionless
form

∂f

∂t
+ v

∂f

∂x
+ ∂ϕ

∂x

∂f

∂v
= 0, �ϕ =

∫
R

f dv − 1. (17)

Setting

ψ = ϕ − v2

2
and J (ψ,f )= ∂ψ

∂x

∂f

∂v
− ∂ψ

∂v

∂f

∂x
,

the Vlasov equation reads

∂f

∂t
+ J (ψ,f )= 0,

which is the form used by Arakawa who gives a second and fourth order discretization ofJ (ψ,f ), with the
following conservation properties:

• Particle conservation:∫
R2

Jh(ψ,f )dx dv = 0 �⇒
∫
R2

f (t)dx dv =
∫
R2

f0 dx dv.

• Energy conservation:∫
R2

Jh(ψ,f )ψ dx dv = 0 �⇒
∫
R2

f (t)ψ(t)dx dv =
∫
R2

f0ψ(0)dx dv.

• Conservation of the mean square off :∫
R2

Jh(ψ,f )f dx dv = 0 �⇒
∫
R2

f 2(t)dx dv =
∫
R2

f 2
0 dx dv.

Then, we first compute three approximations ofJ (ψ,f ) on the grid(xi, yj )i,j . Denoting byh = xi+1 − xi =
yj+1 − yj , we obtain

J 1
i,j (ψ,f ) = 1

4h2

[
(ψi+1,j −ψi−1,j )(fi,j+1 − fi,j−1)− (ψi,j+1 −ψi,j−1)(fi+1,j − fi−1,j )

]
,

J 2
i,j (ψ,f ) = 1

4h2

[
ψi+1,j (fi+1,j+1 − fi+1,j−1)−ψi−1,j (fi−1,j+1 − fi−1,j−1)

−ψi,j+1(fi+1,j+1 − fi−1,j+1)+ψi,j−1(fi+1,j−1 − fi−1,j−1)
]
,



256 F. Filbet, E. Sonnendrücker / Computer Physics Communications 150 (2003) 247–266

J 3
i,j (ψ,f ) = 1

4h2

[
ψi+1,j+1(fi,j+1 − fi+1,j )−ψi−1,j−1(fi−1,j − fi,j−1)

−ψi−1,j+1(fi,j+1 − fi−1,j )+ψi+1,j−1(fi+1,j − fi,j−1)
]
.

Finally, the approximationJh(ψ,f ) is given by computing the average of the above three approximations, allowing
to conserve the total mass, the total energy and theL2 norm off . However, it does not preserve positivity. Moreover
the scheme becomes oscillatory when filaments develop on the order of the cell size. The previously introduced
Vlasov solvers, rely on the interpolation procedures to numerically smear out the thin filament and thus damp the
oscillations. We can here achieve the same effect by adding to the Vlasov equation a collision term, the collision
frequency being of the same order as the cell size. Following Robert and Someria [11], we can compute this term
so that it maximizes local entropy and conserves moments up to any desired order. In the actual code, we have
implemented the conservation of moments up to the second order, i.e. mass, impulsion and kinetic energy. More
precisely, we look for a collision model of the form

∂f

∂t
= ∂J

∂v
,

whereJ should be chosen such that at each point inx: collisions maximize entropy

S(t, x)=
∫
R

f logf dv,

conserve total number of particles, impulsion, kinetic energy:

∫
R

∂J
∂v




1
v

v2

...

vK


dv = 0.

Moreover, for a given norm

‖J ‖ =
∫
R

J 2

f
dv,

we require‖J ‖ = α, where the parameterα is linked to the collision frequency which is here of order to the grid
size. Using a Lagrange multiplier technique, these constraints yield

J = α

(
∂f

∂v
+

K∑
k=1

Akkf v
k−1

)
, with Ak = (m− 1)

∫
R
f vm−2 dv∫

R
f vm+k−2 dv

.

In particular forK = 2, our model reads

∂f

∂t
+ J (ψ,f )= α

∂

∂v

(
∂f

∂v
+A1f −A2f v

)
,

with A1 = u0
ε−u2

0/n
, andA2 = n

ε−u2
0/n

, where

n=
∫
R

f dv, u0 = 1

n

∫
R

f v dv, ε =
∫
R

f v2 dv.
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6. Numerical tests

6.1. The linear advection

Let us first consider the problem of linear advection:

∂f

∂t
+ v

∂f

∂x
= 0, ∀x ∈ [−π,π], andf (t,−π)= f (t,π). (18)

One can analyse the schemes using a discrete Fourier transform

f n
j =

N−1∑
k=0

f̂ n
k eikxj , wheref̂ n

k =
N−1∑
j=0

f n
j e−ikxj .

Then, the solution in the Fourier space is given by

f̂ n
k = f̂ 0

k eikvtn. (19)

In the general situation, Eq. (19) is not satisfied by the algorithm, then it is valuable to give the types of numerical
errors which can occur,

• the amplitude error|f̂ n
k /f̂

0
k |: the harmonic must decay to stabilize the algorithm, which introduces numerical

diffusion. These errors are usually most important for short wave length harmonics.
• the phase error|vtn − Arg(f̂ n

k /f̂
0
k )|: it is generally called dispersion and describes the error of harmonics

which propagate at the wrong speed. The errors are usually increasing with the wave numberk.

Let us first consider the amplification factor for the different methods (see Fig. 1). We observe that methods using a
smooth reconstruction (Hermite or spline) are less dissipative than those using only a continuous interpolation. To
obtain a similar amplification factor with the Lagrange interpolation as with the spline interpolation, a polynomial
of degree nine is required. The dissipation of the conservative method with a quadratic polynomial is identical to
the one using cubic Lagrange interpolation. The linear reconstruction used in the (FBM) is the most dissipative.
Consider now the phase errors (see Fig. 2). It is the most important for the semi-Lagrangian method using a Hermite
reconstruction with a second or fourth order approximation of the derivative. The spline reconstruction is also less
accurate than the Lagrange interpolation of degree nine.

Fig. 1. The amplification factor with respect toα for a fixed modek. (1) The FBM (cross) and third order reconstruction without slope corrector
(line); (2) the semi-Lagrangian method with a Lagrange interpolation of degree 3 (box), 5 (diamond), and 9 (cross); and (3) with cubic Hermite
polynomial with a fourth-order approximation of the derivative (box), and cubic spline interpolation (line).
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Fig. 2. The phase error with respect toα for a fixed modek. (1) The conservative method for the FBM (cross) and third order reconstruction
without slope corrector (line); (2) the semi-Lagrangian method with a Lagrange interpolation of degree 3 (box), 5 (diamond), and 9 (cross); and
(3) with cubic Hermite polynomial with a fourth-order approximation of the derivative (box), and cubic spline interpolation (line).

6.2. The one-dimensional Vlasov–Poisson system

6.2.1. The plasma echo
Following the work by Manfredi et al. [10], we consider an initial data representing an homogeneous

Maxwellian distribution

f (0, x, v)= 1√
2π

exp(−v2/2), ∀(x, v) ∈ (0,L)× R,

with L= 2π/k andk = 0.483. At timet = 0, we excite an external electric field in the plasma, of the form

E0(x)= α cos(kx),

whereα = 0.1. This field induces a velocity modulation, and right after a density modulation, which eventually
decays by Landau damping. After the first has damped away, we launch a second wave at timet = 30ω−1

p of the
form

E1(x)= α cos(2kx).

The density modulation induced by this second pulse also fades away. However, after a time much longer than the
inverse Landau damping rate of the first two pulses, a third wave appears (the echo) as a modulation of the density
at the wave numberkecho= 2k − k = k. The echo is due to the nonlinear interaction between the two pulses and
is essentially a phenomenon of beating between two waves. Fig. 3 shows the electrostatic energy as a function of
time. The damping of the two pulses and the subsequent echo are accurately reproduced with the different schemes.
The echo wave number is indeedkecho= k as predicted by the theory. The Landau damping rate for the first pulse
is in good agreement with the theoretical valueγL = 0.4ω−1

p and even larger for the second pulse. The echo time
is

techo= 2k

2k − k
30ω−1

p = 60ω−1
p ,

which corresponds very well with the numerical value. From timet = 30ω−1
p to t � 60ω−1

p , the second wave has

no effect on the first mode of the electric field, but at timet = 60ω−1
p , it is strongly perturbed by the echo effect.

We report the results of a simulation using a number of cellsNx = 32 in thex-direction, andNv = 64, 128 in
thev-direction withvmax = 6.5, and�t = 1/8 for conservative, spectral and semi-Lagrangian methods which are
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Fig. 3. Plasma echo: time development of (a) the electric energy, (b) the first mode of the electric field (in log scale), (c) the second mode of the
electric field (in log scale).

Table 1
Plasma echo: relative error norm for different methods for 32× 64 and 32× 128 points. The
approximation is compared to a reference solution computed on a fine grid (512× 1024 points)

FBM PFC FDM Spectral CIP SL Spline SL Hermite

32× 32 0.05 0.045 0.09 0.056 0.071 0.078 0.070
32× 128 0.0065 0.0036 0.035 0.0035 0.0035 0.0014 0.0034

not restricted by a CFL condition, whereas�t = 1/40 for the Finite Difference Method. The numerical solution
remains positive for all schemes and the relative error norms of variations of kinetic entropy,L2-norm, and total
energy always stay less than 10−3 for semi-Lagrangian and conservative schemes. The evolution of the electric
field (until t = 30ω−1

p ) obtained by different schemes is compared to a reference solution computed on a fine grid
(512× 1024 points) in Table 1. The conservative methods seem to be more accurate on a coarse grid, whereas the
semi-Lagrangian method with a cubic spline interpolation gives the best result with 32× 128 points. The order of
convergence for the different methods agrees very well with the order of the reconstruction. Finally, let us mention
that the approximation obtained by the Finite Difference Method strongly depends on the numerical collision
frequency and the spectral algorithm on the truncation of high frequencies. It is inconvenient for the robustness of
the methods, since they are very sensitive to these parameters, which are not determined by physical considerations.

6.2.2. The nonlinear Landau damping
In this case, the initial data is given by

f (0, x, v)= 1√
2π

(
1+ α cos(kx)

)
exp(−v2/2),

with α = 0.5, andL = 2π/k. We are using a number of cellsNx = 32 in thex-direction, andNv = 64 in the
v-direction withvmax= 6.5, and�t = 1/8 for conservative and semi-Lagrangian methods which are not restricted
by a CFL condition, whereas�t = 1/40 for the Finite Difference Method.

The linear Landau damping theory is valid as long ast < α−1/2; for longer times the problem is inherently
nonlinear. Here, the Landau theory cannot be applied because nonlinear effects are too important, but this test has
been studied numerically by many authors [4,10,14]. The electric energy first decays exponentially and is next
periodically oscillating. In Fig. 4, the electrical energy, obtained by the different methods using 32× 64 points,
is plotted in logarithmic scales. It can be compared with a reference solution (512× 1024) for whichLp norms
and kinetic entropy are well conserved. The evolution obtained by the PFC scheme clearly appears like the best
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Fig. 4. Nonlinear Landau damping: time development of the electric energy using 32×64 points obtained by (a) the PFC scheme, (b) the FDM,
(c) the spectral algorithm, (d) the CIP method, (e) the semi-Lagrangian method with a Cubic spline interpolation, (f) the reference solution
(512× 1024).

approximation. Nonlinear effects are so important that it is necessary to control spurious oscillations. The evolution
of Lp norms offh(t),

∑ |fi(t)|p for p = 1,2, are reported in Fig. 5. The PFC scheme conserves the total mass
and also positivity, theL1 norm offh(t) is then conserved along time, whereas strong spurious oscillations occur
for the different semi-Lagrangian methods and for the spectral method, which do not have as efficient mechanism
to eliminate numerical instabilities and rely on sampling effects for that. The use of slope correctors in the PFC
scheme enhances the decay of the discreteL2 norm, but when oscillations, due to the nonlinearity, are damped or
averaged by the projection on the grid, theL2 norm is well stabilized.
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Fig. 5. Nonlinear Landau damping: time development ofL1 andL2 norms off (t).

Fig. 6. Nonlinear Landau damping: the space integrated distribution functionf (v) at time t = 30ω−1
p obtained with (a) the PFC scheme,

(b) the FDM, (c) the spectral algorithm, (d) the CIP method.

For the distribution function in the(x, v) space, small bumps appear around the phase velocityvφ = ω/k.
These bumps represent particles which are trapped by electrostatic waves (see Fig. 6). As a consequence of the
entropy decay, the distribution function is smoothed when filaments become smaller than the phase space grid
size. Nevertheless, this smooth approximation seems to give a good description of macroscopic values (physics
quantities obtained by the integration of moments of the distribution function with respect tov). Indeed, the
evolution of the electric energy is more accurate than the one obtained from the semi-Lagrangian method using the
cubic spline interpolation.
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Table 2
Nonlinear Landau damping: total time of computation for different methods with
respect to the number of points points

Numerical method 32× 32 points 32× 64 points 32× 128 points

FBM 03.33 s 05.39 s 10.80 s
PFC 03.56 s 06.28 s 11.20 s
FDM 17.22 s 35.27 s 71.20 s

SPECTRAL 04.10 s 08.25 s 16.90 s
CIP 13.83 s 21.40 s 43.24 s

SL SPLINE 06.12 s 10.55 s 20.90 s
SL HERMITE 03.60 s 06.90 s 11.00 s

Fig. 7. Two stream instability: time development of numericalL2 norm and entropy off (t).

Computational cost of the different methods implemented. For the test case of the nonlinear Landau Damping,
we give for each method the total time of computation with respect to the number of points in Table 2. We notice
that the numerical schemes using a local reconstruction are faster than ones using a global interpolation. The FDM
is penalized by a CFL condition on the time step, which increases the computation time on finer grids. For the
other methods, the largest time step giving the same accuracy was chosen. The use of the Fast Fourier Transforms
for the spectral algorithm induces an amount of work ofN log(N), whereN is the number of unknowns, whereas
the computational cost of Flux Conservative and semi-Lagrangian methods is linear with respect to the number of
unknowns.

6.2.3. The two stream instability
We consider the symmetric two stream instability with initial condition

f (0, x, v)= 2

7
√

2π
(1+ 5v2)

(
1+ α

(
(cos(2kx)+ cos(3kx))/1.2+ cos(kx)

))
exp(−v2/2),

with α = 0.01, k = 0.5, andL = 2π/k. We are using a number of cellsNx = 64 in the x-direction, and
Nv = 64,128 in thev-direction with vmax = 5, and�t = 1/8 for conservative, spectral and semi-Lagrangian
methods which are not restricted by a CFL condition, whereas�t = 1/40 for the Finite Difference Method. From
time t � 20ω−1

p to t � 40ω−1
p , the instability grows rapidly and a hole structure appears. Aftert = 45ω−1

p until
the end of the simulation, trapped particles oscillate in the electric field and the vortex rotates. Fig. 7 shows the
time development of the discreteL2 norm and of the kinetic entropy for the different methods. For this test,
nonlinearities are less important than for the previous ones and the decay of the kinetic entropy is smaller. The
variations ofH(t)= −∑fi(t) ln(fi(t)) for FDM and semi-Lagrangian methods with a Hermite interpolation are
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Fig. 8. Two stream instability: thex–vx projection of the distribution function (32× 64 points) at timet = 75ω−1
p obtained with (a) the

FBM, (b) the PFC scheme, (c) the spectral algorithm, (d) the FDM, (e) the CIP method, (f) the semi-Lagrangian method with a cubic spline
reconstruction, (g) the semi-Lagrangian method with a Hermite interpolation, (h) an almost “exact” solution (512× 1024 points).
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less important than for the other methods, but thex–vx projection, plotted in Fig. 8, shows that strong instabilities
take place for such methods. The approximation obtained by the different schemes using 64×64 points is compared
with a reference solution computed using 512× 1024 points. Of course, the grid size is too coarse to detail thin
filaments developed by the solution until the end of the simulation. The Flux Conservative methods seem to give
a good approximation of the average of the solution on the mesh, whereas the semi-Lagrangian method with a
cubic spline interpolation follows thin details of the solution for longer times. Let us mention that in their paper
[14], Nakamura and Yabe have compared the CIP method with the well known PIC method. In this case, Eulerian
schemes give a better approximation than particle methods.

6.3. The two-dimensional Vlasov–Poisson system

6.3.1. The nonlinear Landau damping in 2D
The initial condition is set to

f0(x, y, vx, vy)= 1

2π
exp

(−(v2
x + v2

y)/2
)(

1+ α
(
cos(kxx)+ cos(kyy)

))
,

with α = 0.5, the velocity space is truncated atvmax = 6, the wave numbers arekx = ky = 0.5, and the length
of the periodic box in the physical space isLx = Ly = 4π . Finally, the four-dimensional grid contains 32 points
per direction and the time step is set to�t = 1/8. From the symmetry of the initial data, the evolution of two
components of the electric field are identical.

The numerical simulation of nonlinear Landau damping in the four-dimensional phase space is a difficult
problem since the number of grid points is strongly limited by computer memory, and examples of simulations are

Fig. 9. Nonlinear Landau damping 2D: time development of the electric energy in logarithm scale obtained with (a) the PFC scheme (32× 32),
(b) the SL Spline (32× 32), (c) PFC scheme (32× 128), (d) the SL Spline (32× 128).
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Table 3
Nonlinear Landau damping 2D: total computation time for PFC
and SL Spline methods with respect to the number of processors
for a grid size 32× 32× 128× 128 points

Number of processors PFC scheme SL Spline method

2 processors 9 h 03 min 12 h 42 min
4 processors 4 h 24 min 6 h 16 min
8 processors 1 h 51 min 3 h 07 min

16 processors 0 h 59 min 1 h 41 min

not frequent in the literature. Indeed, it is necessary to use a high order scheme, which kills spurious oscillations
in order to obtain accurate results. Fig. 9 shows the evolution of the electrical energy obtained by the PFC scheme
and the semi-Lagrangian method using cubic spline interpolation. On the one hand, the local reconstruction highly
reduces the computational cost and on the other hand slope correctors avoid to introduce numerical instabilities.
In Table 3, the total CPU time is presented with respect to the number of processors. The amount of work of the
PFC algorithm is less important than for the cubic spline interpolation. Therefore, it will be more efficient in high
dimensions.

7. Conclusions

At the beginning of numerical simulation of plasmas where computer power was such that only 1D models could
be simulated, Particle In Cell methods coexisted with direct Vlasov solvers, and many such solvers can be found in
the literature of the 70 s. Then in the 80 s and 90 s as people could perform 2-dimensional and sometimes even 3-
dimensional simulation with PIC codes, and get useful information out of it, direct Vlasov solvers lost their interest
for most people. Even though it is a fact that Monte Carlo methods and in particular PIC simulations become
numerically the more interesting as the dimension increases, there is room again for Eulerian Vlasov solvers as very
powerful, as well in CPU speed as in memory size, parallel computers are now available. It is easy nowadays to
perform a realistic 2D kinetic plasma simulation with a direct Vlasov solver and some toy 3D simulations have also
been performed. The numerics on which such methods are based are very different from those of PIC simulations.
This fact alone, makes it interesting to have such a solver in one’s simulation tool-box in order to benchmark
once and again a PIC code against it. And for some specific problems needing high accuracy and low noise, they
should be the preferred method. As we mentioned, statistical noise is absent from direct Vlasov computations, but
they have other flaws which we presented and analyzed here. Among the methods we presented there is no clear
winner, each method having its pros and cons. And depending on the problem being solved, one might want to use
one or another method. We hope that the information given in this paper will help making this choice. It seems
in particular for beam halo problems, for which we need a good precision of the distribution function in regions
where its values are small, the PFC algorithm appears to be more efficient since it does not introduce any numerical
oscillation and preserves positivity. However, when the distribution function remains smooth, for example for the
linear Landau damping, a very high order method, like the cubic spline interpolation, can be used.
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