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A new approach for the accurate numerical solution of the Fokker–Planck–Landau
(FPL) equation in the nonhomogeneous case is presented. The method couples,
through a time-splitting algorithm, a finite-volume scheme for the transport with a fast
spectral solver for the efficient solution of the collision operator recently introduced.
The scheme allows the use of different grids in the velocity space for the transport
and the collision phases. The use of a suitable explicit Runge–Kutta solver for the
time integration of the collision phase permits avoid once of excessive small time
steps induced by the stiffness of the diffusive collision operator. Numerical results for
both space homogeneous and space nonhomogeneous situations show the efficiency
and the accuracy of the present method. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The Landau or Fokker–Planck–Landau (FPL) equation is a common kinetic model used
to describe long-range interactions between charged particles in plasma physics, accelerator
physics, and astrophysics. Coulomb collisions are essentially important in a great variety
of applications, ranging from laser and particle beam interactions with plasma [11, 42],
to shock waves and plasma expansion, to superthermal radiation [24] and ion transport in
fusion reactors [31].
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2 FILBET AND PARESCHI

The model is described by a nonlinear partial integrodifferential equation of the form

∂ f

∂t
+ v · ∇x f + E(t, x) · ∇v f = 1

ε
Q( f, f ), v ∈ R

3, x ∈ � ⊂ R
3, (1)

where the unknown distribution function f (t, x, v) depends on time t , position x , and
velocity v of particles. In (1) ε is the Knudsen number, F(t, x) the force field given by the
solution of a normalized Poisson equation

E(t, x) = −∇xφ(t, x), −
xφ(t, x) =
∫

R
3

f (t, x, v) dv, (2)

and Q( f, f ) a collision operator acting on v only:

Q( f, f )(v) = ∇v ·
∫

R
3
�(v − v∗)[∇v f (v) f (v∗) − ∇v∗ f (v∗) f (v)] dv∗. (3)

In the collision operator the dependence of f from (x, t) has been omitted for simplicity
and � is a 3 × 3 nonnegative and symmetric matrix that depends on the interaction between
particles of the form

�(v) = |v|γ+2S(v), γ ∈ R and S(v) = I d − v ⊗ v

|v|2 . (4)

Different values of γ lead to the usual classification in hard potentials γ > 0, Maxwellian
molecules γ = 0, or soft potentials γ < 0. This latter case involves the Coulombian case
γ = −3, which is of primary importance for applications.

In order to define completely the mathematical problem for Eq. (1) suitable boundary
conditions on ∂� should be considered. Apart from ingoing/outgoing particle flows the
most widely used boundary conditions to describe the interactions of particles with a solid
surface are the specular reflecting and the diffusive ones, or a linear combination of them
usually referred to as Maxwell’s boundary conditions [13].

The algebraic structure of the FPL operator is similar to the Boltzmann one; this leads to
physical properties such as the conservation of mass, momentum, and energy,

∫
R

3
Q( f, f )(v)


 1

v

|v|2


 dv = 0,

and the decay of the kinetic entropy H(t),

d H

dt
(t) = d

dt

∫
R

3
f (t, v) ln( f (t, v)) dv ≤ 0.

This implies that the equilibrium states of the FPL operator, i.e., the functions satisfying
Q( f, f ) = 0, are given by Maxwellians

Mρ,u0,T (v) = ρ

(2πkB T )3/2
exp

(
− |v − u|2

2kB T

)
,
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where kB is Boltzmann’s constant, ρ the total mass, u the mean velocity, and T the temper-
ature of the plasma given by

ρ =
∫

R
3

f (v) dv, u = 1

ρ

∫
R

3
f (v)v dv, T = 1

3ρ

∫
R

3
f (v)(u − v)2 dv.

Classically the collision operator (3) is obtained as a remedy to the loss of finiteness of the
Boltzmann collision operator for Coulomb interactions. In Coulomb collisions small-angle
collisions play a more important role than collision resulting in large velocity changes. The
original derivation of the equation based on this idea is due to Landau [25]. Depending on
one’s taste and notion of rigor, several mathematical derivations of the equations have been
performed; we mention here the works of Arsen’ev and Buryak [1], Degond and Lucquin-
Desreux [16], Desvillettes [18], and Rosenbluth et al. [43]. For a recent review of the main
mathematical aspects related to the equation we refer the reader to Villani [47] (and the
references therein).

In contrast with the Boltzmann equation, where Monte Carlo methods play a major role
in numerical simulations and their connection with the Boltzmann equation has been widely
studied (see [14] for a review about rigorous mathematical results on simulation methods),
the extension of these methods to long-range forces, in particular Coulomb interactions,
is challenging and has not yet been completely successful. Most of the particle methods
for Coulomb interaction, although extensively used, have been derived more on a physical
intuition basis and not directly from the Landau equation. A detailed discussion about this is
beyond the aims of the present paper and we refer the reader to [4, 32] for a more complete
treatment and a recent review.

Several deterministic numerical approaches have been considered to Fokker–Planck-
type equations [2, 5, 7–9, 15, 17, 20, 21, 26, 27, 29, 41, 46]. Most of them are based
on finite differences and are devoted to the simpler diffusive Fokker–Planck model. Only
in the recent years has a considerable amount of attention been directed toward the full
Landau equation. Due to the computational complexity of the equation (essentially caused
by the large number of variables and the threefold collision integral) many papers have been
devoted to treating simpler space homogeneous situations (the distribution function f does
not depend on x) in the isotropic case [5] or to cylindrically symmetric problems [40]. The
construction of conservative and entropic schemes for the space homogeneous case has been
proposed by Degond and Lucquin-Desreux [17] and Buet and Cordier [7, 8]. These schemes
are built in such a way that the main physical properties are conserved at a discrete level.
Positivity of the solution and discrete entropy inequality are also satisfied. Unfortunately,
the direct implementation of such schemes for space nonhomogeneous computations is
very expensive since the computational cost increases roughly in proportion to the square
of the number of parameters used to represent the distribution function in the velocity
space.

Thus several fast approximated algorithms to reduce the computational complexity of
these methods, based on multipole expansions [26] or multigrid techniques [8], have been
proposed. Although these fast schemes are able to preserve the most relevant physical prop-
erties, the range of applications seems limited and the degree of accuracy of such approaches
has not been studied. A different approach, based on spectral methods, has been recently
proposed for the Boltzmann [34, 35] and FPL [37, 38] collision operators. In the case of (3)
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the spectral scheme permits obtainment of spectrally accurate solutions with a reduction in
the quadratic cost N 2 to N log2 N , where N is the total number of unknowns in the velocity
space. The lack of discrete conservations in the spectral scheme (mass is preserved, whereas
momentum and energy are approximated with spectral accuracy) is compensated for by its
higher accuracy and efficiency. In particular the scheme allows easily the implementation
of grid-refinement techniques in the velocity space. A detailed comparison of the spectral
scheme with the schemes proposed in [9, 26] has been done [10]. We mention here also a
similar approach by Bobylev and Rijasanow for the Boltzmann equation in the Maxwellian
case [6].

Most of these methods have proved their efficiency in the homogeneous case, but to the
best of our knowledge, they have not been extended to the nonhomogeneous situation. The
main goal of this paper is to develop a scheme for the full Fokker–Planck–Landau equation
by coupling the fast spectral technique for (3) with a flux conservative method based on
the characteristic curves for the transport step [22, 44] through a splitting algorithm. In the
coupling procedure a suitably explicit Runge–Kutta solver for the time integration of the
collision phases [30] permits avoidance of the small time steps induced by the stiffness of
the diffusive collision operator.

The main properties of our method are here summarized:

• Spectrally accurate evaluation of Q( f, f ) with O(N log2 N ) operations.
• Second-order accuracy in time, avoiding excessive small time-step restrictions caused

by the diffusive stiffness of the collision operator.
• Third-order accuracy in both velocity and physical space during transport.
• The possibility of using different grids in the velocity space for the transport and the

collision phases.

In addition, thanks to the splitting strategy, the resulting scheme is highly parallelizable.
The aforementioned properties, as we see, are essential to performing efficiently space
nonhomogeneous computations with great accuracy.

The rest of the article is organized as follows. In the next section we describe the main
features of our numerical methods. First we derive the fast spectral method for the ap-
proximation of the collision operator. Next the flux conservative scheme for the transport
part and the discretization of boundary conditions are discussed. Finally, several numeri-
cal tests for three-dimensional space homogeneous problems and two-dimensional space
nonhomogeneous problems are presented.

2. THE NUMERICAL METHOD

As is usually done for a kinetic equation like (1) a simple first-order time splitting is
obtained considering in a small time interval 
t = [tn, tn+1], the numerical solution of the
space homogeneous collision phase Sn

2 ( f, 
t),




∂ f ∗

∂t
= 1

ε
Q( f ∗, f ∗),

f ∗(0, x, v) = f n(x, v),

(5)
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and the transport step Sn
1 ( f, 
t),




∂ f ∗∗

∂t
+ v · ∇x f ∗∗ + F(t, x) · ∇v f ∗∗ = 0,

f ∗∗(0, x, v) = f ∗(
t, x, v).

(6)

The approximated value at time tn+1 is then given by

f n+1(x, v) = f ∗∗(
t, x, v) = Sn
1 (
t) ◦ Sn

2 (
t). (7)

A second-order scheme for moderately stiff problems can be easily derived simply by
symmetrizing the first-order scheme [45],

f n+1 = Sn
1 ( f, 
t/2) ◦ Sn

2 ( f, 
t) ◦ Sn
1 ( f, 
t/2), (8)

provided every step is solved with a method at least second-order accurate in time. Recently
second-order splitting algorithms for Boltzmann-like equations were presented in [33].

Clearly the crucial point is the numerical solution to (5) because of the presence of
the collision operator. In the following, we first present the numerical approximation of
the collision operator using a spectral method and show how the resulting discretization
can be computed with fast algorithms. Then we discuss some issues related to the time
discretization of the collision phase. Finally we describe the scheme for the transport step
and the discretization of boundary conditions.

2.1. A Fast Spectral Method for the Collision Step

This method has been recently proposed to approximate Boltzmann [35] and Fokker–
Planck–Landau [37] equations. Here we recall briefly the main derivation of the method
and refer to the previous references for the mathematical properties of this approximation
(consistency and spectral accuracy).

Let us write the operator on the usual form,

Q( f, f ) = ∇v ·
∫

R
d
�(v − v∗)[(∇v f (t, v)) f (t, v∗) − (∇v∗ f (t, v∗)) f (t, v)] dv∗,

where d is the dimension of the velocity space.
For simplicity, we will assume that the support of the distribution function is included in

the ball B(0, R/2), with R > 0, and also that the collision integral is compactly supported
in the ball B(0, R). This assumption is clearly false in general, but it is essential from a
numerical point of view for any method that uses a finite-velocity space for the representation
of the distribution function. This is equivalent to assuming that the distribution function is
truncated to zero for large velocities |v| > R.

We approximate the distribution using a partial sum of a Fourier series,

fN (t, v) =
∑

k∈{−N ,...,N }
f̂ k(t)e

i π
R k·v, (9)
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where k ∈ Z
d , N = (n, . . . , n) is a multiinteger, n is the number of half modes in each

direction, and the kth mode is given by

f̂ k(t) = 1

(2R)d

∫
B(0,R)

f (t, v)e−i k·v dv.

Then, substituting the approximation fN (t, v) in operator (1), we obtain the expression

Q( fN , fN ) =
[

π

R

]γ+d ∑
l,m∈{−N ,...,N }

f̂ l(t) f̂ m(t)β̂L(l, m)ei π
R (l+m)·v, (10)

where β̂L(l, m) reads (using a simple change of variable)

β̂L(l, m) =
∫

B(0,π)

|w|γ+2

[
(l + m)(l − m) − (l + m) · w

|w| (l − m) · w

|w|
]

eiw·m dw

= (B̂(l, m) − B̂(m, m))

with

B̂(l, m) =
∫

B(0,π)

|w|γ+2

[
l2 −

(
l · w

|w|
)2
]

eiw·m dw.

Now projecting Q( fN , fN ) back to the space of trigonometric polynomials of degree ≤n
[12, 23], we get the following system of differential equations:

d f̂ k

dt
= 1

ε

[
π

R

]γ+d ∑
l, m∈{−N , . . . , N }
l+m=k

f̂ l f̂ m[B̂(l, m) − B̂(m, m)], k ∈ {−N , . . . , N }. (11)

To define a numerical algorithm we must compute the quantities B̂(l, m). The computation
can be split into two parts:

B̂(l, m) =
∫

B(0,π)

|w|γ+2

[
l2 −

(
l · w

|w|
)2
]

eiw·m dw,

= l2
∫

B(0,π)

|w|γ+2eiw·m dw −
3∑

i, j=1

li l j

∫
B(0,π)

|w|γ+2 wiw j

|w|2 eiw·m dw.

Now setting

F1(m) =
∫

B(0,π)

|w|γ+2

(
1 − (m · g)2

|m|2|g|2
)

eiw·m dw,

F2(m) =
∫

B(0,π)

|w|γ+2eiw·m dw,

Ii, j (m) =
∫

B(0,π)

|w|γ+2 wiw j

|w|2 eiw·m dw,
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we obtain the ODE system

d f̂ k

dt
= 1

ε

[
π

R

]γ+d ∑
m∈{−N ,...,N }

f̂ k−m f̂ m[(k − m)2 F2(m) − m2 F1(m)]

− 1

ε

[
π

R

]γ+d d∑
i, j=1

∑
m∈{−N ,...,N }

f̂ k−m f̂ m(ki − mi )(k j − m j )Ii, j (m). (12)

The coefficients F1(m), F2(m), and Ii, j depend only on γ and require the compu-
tation of simple one-dimensional integrals. Thus they can be approximated very accu-
rately and stored in suitable matrices once and for all. Further details can be found in
[37, 38].

Finally, to approximate the right hand side of the system, we only have to compute several
discrete convolution sums of the form

∀k ∈ {−N , . . . , N }, Sk =
∑

m∈{−N ,...,N }
gmhk−m .

This can be efficiently done using transform methods [12]. The following is an O((2n)d log2

((2n)d)) algorithm based on the fast Fourier transform (FFT):

• Apply the FFT method to transform gm and hk−m into ĝm and ĥk−m with a cost
O((2n)d log2(2n)d).

• Compute the sum in the Fourier space with a cost O((2n)d).
• Apply the inverse FFT to obtain the final result with a cost O((2n)d log2(2n)d).

Let now PN : L2([−π, π ]d) → P
N be the orthogonal projection upon the space of

trigonometric polynomials of degree N in v, P
N in the inner product of L2([−π, π ]d).

Then the spectral method can be written in equivalent form as

∂ fN

∂t
= QN ( fN , fN ),

with initial data fN (v, t = 0) = f0,N (v) and

QN ( fN , fN ) := PN Q( fN , fN ), (13)

where Q( fN , fN ) is given by (10).
It is easy to verify that the spectral method preserves mass whereas variations of momen-

tum and energy are controlled by the spectral accuracy [35, 37].

THEOREM 2.1. The spectral approximation of the collision operator defined by (13)–
(10) is such that the following properties hold.

(i) (Consistency) Let f ∈ H 2
p([−π, π ]d), then ∀r ≥ 0,

‖Q( f, f ) − QN ( fN , fN )‖2 ≤ C

(
‖ f − fN ‖H 2

p
+ ‖Q( fN , fN )‖Hr

p

Nr

)
,

where C depends on ‖ f ‖2.
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(ii) (Spectral accuracy) Let f ∈ Hr
p([−π, π ]d), r ≥ 2, then

‖Q( f, f ) − QN ( fN , fN )‖2 ≤ C

Nr−2

(‖ f ‖Hr
p
+ ‖Q( fN , fN )‖Hr

p

)
.

In the previous theorem Hr
p denotes the Sobolev space of periodic functions up to the

r th-order derivative over [−π, π ]d . No information is available on the discrete equilibrium
states, the decay of the numerical entropy, and the preservation of positivity. We mention that
conservative schemes based on similar spectral techniques have been developed in [6, 34].
Positive schemes have been constructed in [36]. However the numerical results obtained
with these schemes denoted a strong loss of accuracy in the results when compared to the
original spectral method.

2.2. The Fully Discrete Scheme

In order to obtain a fully discrete scheme we have to deal with the time discretization of
(12). The strong nonlinearity of the system of equations and the large number of unknowns
makes prohibitively expensive the use of an implicit (and hence iterative) scheme to dis-
cretize the resulting ODE system. We refer to [31] for some results in this direction. On
the other hand the use of explicit methods, due to the diffusive structure of the collision
operator, which leads to the solving of a stiff problem, gives a stability condition which
forces the time step to be on the order of the square of the velocity step.

Here we refer to the definition of stability used by Lebedev [28]. Consider the following
Cauchy problem for ordinary differential equations.

dU

dt
= f (t, U (t)), U (0) = U0,

with U ∈ R
m .

Let

Ji j =
(

∂ fi

∂U j

)

be the Jacobian matrix. First let the spectrum of J be real and let λ be an upper bound of
the modulo of the negative eigenvalues of the Jacobian matrix; then for an explicit Euler
scheme the stability condition on the time step is given by

λ
t < 1.

This is stated by the following.

PROPOSITION 2.1. Let f̂ n+1
k be the approximation of the kth mode at time tn+1 =

(n + 1)
t, using the spectral method coupled with the explicit Euler scheme. Then, the
times step 
t has to satisfy the following stability condition,

∃C(γ, d, f ) > 0, 
t ≤ C(γ, d, f )
ε

N 2
,

where N 2 = dn2 and n is the number of modes in each direction.
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Proof. Let us set F Pk( f̂ ) such that

F Pk( f̂ ) = 1

ε

[
π

R

]γ+d ∑
m∈{−N ,...,N }

f̂ k−m f̂ m[(k − m)2 F2(m) − m2 F1(m)]

− 1

ε

[
π

R

]γ+d d∑
i, j=1

∑
m∈{−N ,...,N }

f̂ k−m f̂ m(ki − mi )(k j − m j )Ii, j (m).

Then, using an explicit first-order Euler scheme, we get

∀k ∈ {−N , . . . , N }, f̂ n+1
k = f̂ n

k + 
t F Pk( f̂ n),

and the stability condition on the time step is given by

∀k ∈ {−N , . . . , N }, 
t ≤ 1/Lip(F Pk(.)),

where Lip(F Pk(·)) is the Lipschitz constant of F Pk(·), which can be evaluated by computing
the Jacobian Jk,l . Then, there exists a positive constant C(γ, d, f ) > 0, such that

|Jk,l | =
∣∣∣∣ d

dgl
F Pk( f̂ n)

∣∣∣∣
≤ C(γ, d, f )

ε
max

(
f̂ n

k−l , f̂ n
l

)[|k − l|2(|F2(l)| + F1(k − l)|)

+ l2(|F1(l)| + F2(k − l)|) +
d∑

i, j=1

|k − l|2|Ii, j (l)| + |l|2|Ii, j (k − l)|
]
.

But, the coefficients F1(m), F2(m), and Ii, j are uniformly bounded:

|F1(m)|, |F2(m)|, |Ii, j (m)| ≤ 2
πγ+2+d

γ + 2 + d
.

Thus we have

|Jk,l | =
∣∣∣∣d F Pk

dgl
( f̂ n)

∣∣∣∣ ≤ C(γ, d, f )

ε
f̂ n

0 N 2.

Finally, the time step is bounded by


t ≤ 1/Lip(F Pk( f̂ n)) ≤ ε
/(

C(γ, d, f ) f̂ n
0 N 2

) ∀k ∈ {−N , . . . , N }. �

As expected, from Proposition 2.1, the time step is decreasing when the number of
modes increases or when the Knudsen number goes to zero. This drawback can be partially
avoided using a high-order explicit scheme with a large stability interval. In our numerical
code we have adopted the third-order DUMKA scheme proposed recently by Medovikov
[30]. The method is a composite Runge–Kutta method derived from its stability polynomials
computed in such a way that the stability domain is optimal. This is achieved in two steps.
The first is to compute the stability polynomial of a given order with optimal stability
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domains, i.e., to possess a Chebyshev alternation. Roots of these polynomials are computed
numerically. Then the corresponding explicit Runge–Kutta method is realized with the
help of the theory of composition methods. This method, thanks to the large stability
domain, allows reasonable stiffness and, thanks to the explicitness, does not increase the
computational complexity of the final algorithm. The efficiency of the method can be
strongly improved using an adaptive time-stepping procedure.

2.3. Discretization of the Transport Step

In this section, we discuss the numerical resolution of the Vlasov equation, which char-
acterizes the transport step. To this aim we use an Eulerian method which consists of
discretizing the distribution function f on a phase space grid.

Let us consider the Vlasov equation written in the form

∂ f

∂t
+ divx (v f ) + divv(F(t, x) f ) = 0 (14)

coupled with the normalized Poisson equation,

F(t, x) = −∇xφ(t, x), −
xφ(t, x) =
∫

R
d

f (t, x, v) dv. (15)

The time discretization is based on the following splitting algorithm on 
t = [tn, tn+1].

1. Solve a free transport equation on 
t/2,


∂ f (1)

∂t
+ divx

(
v f (1)

) = 0,

f (1)(0, x, v) = f n(x, v).

(16)

2. Compute the electric field F at time tn+1/2 by substituting f (1)(
t/2, x, v) in the
Poisson equation and solve on 
t the equation


∂ f (2)

∂t
+ divv

(
F
(
tn+1/2, x

)
f (2)
) = 0,

f (2)(0, x, v) = f (1)(
t/2, x, v).

(17)

3. Solve a free transport equation on 
t/2,


∂ f (3)

∂t
+ divx

(
v f (3)

) = 0,

f (3)(0, x, v) = f (2)(
t/2, x, v),

(18)

and set f (tn+1, x, v) = f (3)(
t, x, v).

As for Strang splitting [45] a second-order-accurate solution of every step guarantees
second-order accuracy of the procedure. Using this time splitting, we can restrict ourselves,
without loss of generality, to the discretization of the one-dimensional transport equation

∂t f + ∂x (u f ) = 0, ∀(t, x) ∈ R
+ × [xmin, xmax], (19)
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where u is a constant velocity. Then, the solution of the transport equation at time tn+1 reads

f (tn+1, x) = f (tn, x − u
t), ∀x ∈ [xmin, xmax].

Now, let us introduce a finite set of mesh points {xi+1/2}i∈I on the computational do-
main [xmin, xmax]. We will use the notations 
x = xi+1/2 − xi−1/2 and Ci = [xi−1/2, xi+1/2].
Assuming the values of the distribution function are known at time tn = n
t , we compute
the new values at time tn+1 by integration of the distribution function on each subinterval.
Thus, using the explicit expression of the solution, we have

∫ xi+1/2

xi−1/2

f (tn+1, x) dx =
∫ xi+1/2−u
t

xi−1/2−u
t
f (tn, x) dx;

then, setting

�i+1/2(t
n) =

∫ xi+1/2

xi+1/2−u
t
f (tn, x) dx,

we obtain the conservative form∫ xi+1/2

xi−1/2

f (tn+1, x) dx =
∫ xi+1/2

xi−1/2

f (tn, x) dx + �i−1/2(t
n) − �i+1/2(t

n). (20)

The evaluation of the average of the solution over [xi−1/2, xi+1/2] allows us to ignore fine
details of the exact solution, which may be costly to compute. The main step is now to
choose an efficient method to reconstruct the distribution function from the values of each
cell Ci . In [22], the author used simple linear interpolation. Unfortunately this approach does
not give a positive scheme and does not control spurious oscillations. Here, we consider
a reconstruction via a primitive function. Let F(tn, x) be a primitive of the distribution
function f (tn, x). If we denote by

f n
i = 1


x

∫ xi+1/2

xi−1/2

f (tn, x) dx,

then F(tn, xi+1/2) − F(tn, xi−1/2) = 
x f n
i and

F
(
tn, xi+1/2

) = 
x
i∑

k=0

f n
k = wn

i .

In the sequel, the time variable tn only acts as a parameter and will be omitted. A recon-
struction method allowing us to preserve positivity and maximum principle can be obtained
using slope correctors. We build a first approximation of the primitive on the interval
[xi−1/2, xi+1/2] using the stencil {xi−3/2, xi−1/2, xi+1/2, xi+3/2}i∈I ,

F̃h(x) = wi−1 + (x − xi−1/2
)

fi + 1

2
x

(
x − xi−1/2

)(
x − xi+1/2

)
[ fi+1 − fi ]

+ 1

6
x2

(
x − xi−1/2

)(
x − xi+1/2

)(
x − xi+3/2

)
[ fi+1 − 2 fi + fi−1],
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where we used the relation wi − wi−1 = 
x fi . Thus, by differentiation, we obtain a third-
order-accurate approximation of the distribution function on the interval [xi−1/2, xi+1/2]:

f̃ h(x) = d F̃h

dx
(x)

= fi + 1

6
x2

[
2(x − xi )

(
x − xi−3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]

( fi+1 − fi )

+ 1

6
x2

[
2(x − xi )

(
x − xi+3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]

( fi − fi−1).

In order to satisfy a maximum principle and to avoid spurious oscillations we introduce the
slope correctors

fh(x) = fi + ε+
i

6
x2

[
2(x − xi )

(
x − xi−3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]

( fi+1 − fi )

+ ε−
i

6
x2

[
2(x − xi )

(
x − xi+3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]

( fi − fi−1), (21)

with

ε±
i =

{
min(1; 2 fi/( fi±1 − fi )) if fi±1 − fi > 0,

min(1; −2( f∞ − fi )/( fi±1 − fi )) if fi±1 − fi < 0,
(22)

where f∞ = max j∈I { f j }. We have the following.

PROPOSITION 2.2. The approximation of the distribution function fh(x) defined by (21)–
(22) satisfies the following.

(i) (Conservation of the average) For all i ∈ I,
∫ xi+1/2

xi−1/2
fh(x) dx = 
x fi .

(ii) (Maximum principle) For all x ∈ (xmin, xmax), 0 ≤ fh(x) ≤ f∞.

Proof. Let us consider x ∈ Ci = [xi−1/2, xi+1/2] and denote by

α(x) = 1


x2

[
2(x − xi )

(
x − xi−3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]

,

β(x) = 1


x2

[
2(x − xi )

(
x − xi+3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]

.

It is easy to check that

∫ xi+1/2

xi−1/2

α(x) dx =
∫ xi+1/2

xi−1/2

β(x) dx = 0;

then the conservation of the average immediately follows. To obtain the preservation of
positivity, assuming the values { f j } j∈I are positive, we observe that in the cell Ci , the
function α(x) increases whereas β(x) decreases, and α(x), β(x) ∈ [−1, 2]. We split fh(x)

as the sum of h(x) and g(x) with

h(x) = 1

3

[
fi + α(x)

2
ε+

i ( fi+1 − fi )

]
, g(x) = 1

3

[
2 fi + β(x)

2
ε−

i ( fi − fi−1)

]
.
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The function h(x) (resp. g(x)) is a combination of fi and fi+1 (resp. fi−1 and fi ); then
from the value of ε+

i (resp. ε−
i ), it is easy to prove that h(x) (resp. g(x)) is positive. Using a

similar decomposition, we also prove that fh(x) is bounded by f∞. �

From this reconstruction, we approximate the quantity �i+1/2(tn) by looking for the
cell C j such that xi+1/2 − u
t ∈ C j and setting αi = x j+1/2 − (xi+1/2 − u
t). Then for a
positive propagating velocity u, we get the following scheme:

�i+1/2(t
n) =

∫ xi+1/2

x j+1/2−αi

f (tn, x) dx

= 
x
i∑

k= j+1

fk + αi

[
fi + ε+

j

6

(
1 − αi


x

)(
2 − αi


x

)
( f j+1 − f j )

+ ε−
j

6

(
1 − αi


x

)(
1 + αi


x

)
( f j − f j−1)

]
.

Similarly when u is negative, we set αi = x j−1/2 − (xi+1/2 − u
t); then −
x ≤ αi ≤ 0
and

�i+1/2(t
n) =

∫ xi+1/2

x j−1/2−αi

f (tn, x) dx

= 
x
j−1∑

k=i+1

fk + αi

[
f j − ε+

j

6

(
1 − αi


x

)(
1 + αi


x

)
( f j+1 − f j )

+ ε−
j

6

(
2 + αi


x

)(
1 + αi


x

)
( f j − f j−1)

]
.

2.4. Discretization of Boundary Conditions

In order to complete our numerical method we must discuss the numerical treatment of
the boundary conditions. We consider Eq. (1) supplemented with the boundary conditions

|v · n| f (x, v, t)=
∫

v∗·n<0
|v∗ · n(x)|K (v∗ →v, x, t) f (x, v∗, t) dv∗ for v·n ≥ 0, x ∈ ∂�.

(23)

The smooth boundary ∂� is assumed to have a unit inner normal n(x) at every x ∈ ∂�.
The boundary condition (23) is the so-called reflective condition on ∂�. The ingoing flux
is defined in terms of the outgoing flux modified by a given boundary kernel K according
to the integral in (23). This boundary kernel is such that positivity and mass conservation
at the boundaries are guaranteed:

K (v∗ → v, x, t) ≥ 0,

∫
v·n(x)≥0

K (v∗ → v, x, t) dv = 1. (24)

From a physical point of view, we assume that at the solid boundary a fraction α of particles
is absorbed by the wall and then reemitted with the velocities corresponding to those in
a still plasma at the temperature of the solid wall, while the remaining portion (1 − α) is
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perfectly reflected. This is equivalent to imposing for the ingoing velocities

f (x, v, t) = (1 − α)R f (x, v, t) + αM f (x, v, t), x ∈ ∂�, v · n(x) ≥ 0, (25)

with 0 ≤ α ≤ 1, and

R f (x, v, t) = f (x, v − 2n(n · v), t), (26)

M f (x, v, t) = µ(x, t) fs(v). (27)

In (27), if we denote Boltzmann’s constant by kB and the temperature of the solid boundary
by Ts , fs is given by

fs(v) = 2πTs M1,0,Ts (v) = exp

(
− v2

2kB Ts

)
,

and the value of µ is determined by mass conservation at the surface of the wall:

2πTsµ(x, t)
∫

v·n≥0
M1,0,Ts (v)|v · n| dv =

∫
v·n<0

f (x, v, t)|v · n| dv. (28)

We point out that the discretization of specular reflection is obvious for simple geometries
whereas it is more difficult for more complex geometries (for which the boundaries are not
symmetry axes of the grid used for the discrete velocity distribution).

On the other hand the discretization of diffusive boundary conditions even for simple
geometries is not obvious. For simplicity, we only present the scheme for a simple one-
dimensional problem on the interval (xmin, xmax). Extension to multidimensional geometries
with straight boundaries follows straightforwardly.

Assume the values of the distribution function at time tn are known: { f n
i }i∈I . When

the origin of the characteristic curve is inside the domain, the values at time tn+1 can be
computed directly using the scheme for the internal points. In contrast, when the origin of
the characteristic is outside the domain, for example at x = xmin, we compute µn+1/2(xmin)

as an approximation of µ(t, xmin) on the interval [tn, tn+1] by

2πTs

∫ tn+1

tn

µ(t, xmin)

∫
v≥0

M1,us ,Ts (v) v dv dt

= −
∫ tn+1

tn

∫
v≤0

f (t, xmin,v) v dv dt.

For negative velocities the distribution function on [tn, tn+1] is given from the characteristic
curves

d X

ds
(s) = v, X (t) = xmin,
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and the solution at time tn can be easily computed: X (tn, t, xmin) = xmin + v(tn − t). Then

2πTs

∫ tn+1

tn

µ(t, xmin)

∫
v≥0

M1,0,Ts (v) v dv dt

= −
∫

v≤0

∫ tn+1

tn

f (tn, X (tn, t, xmin), v) v dt dv

= −
∫

v≤0

∫ xmin−v
t

xmin

f (tn, x, v) dx dv.

Finally, the value µn+1/2(xmin) is computed as

µn+1/2(xmin) =
∫

v≤0

∫ xmin−v
t
xmin

f (tn, x, v) dx dv

2πTs
t
∫

v≥0 M1,0,Ts (v) v dv
.

From the value µn+1/2, we can approximate the flux of particles when the origin of the
characteristic is outside the domain. For a positive velocity v j , if we denote by t̄ ∈ [tn, tn+1],
such that xmin = X (t̄, tn+1, xi+1/2), we have

�i+1/2, j (t
n) =

∫ xi+1/2

X (t̄,tn+1,xi+1/2)

f (tn, x, v j ) dx +
∫ t̄

t n

f (t, xmin, v j )v j dt

= 
x
i∑

k=0

f n
i, j + (t̄ − tn)µn+1/2(xmin)M1,0,Ts (v j ).

3. NUMERICAL TESTS

3.1. Space Homogeneous Problems

Test 1: The Maxwellian case in 2D (γ = 0). The initial data is chosen on the class
of known exact isotropic solutions which is an extension of Bobylev solutions for the
Boltzmann equation in the case of Maxwell molecules [3]. Precisely we compare in two
dimensions our numerical results with the exact solution

f (v, t) = 1

2π S

(
1 − 1 − S

S

(
1 − |v|2

2S

))
exp

(
− |v|2

2S

)
,

where S = 1 − 0.5 exp(−2t).
This test is carried out to compare the efficiency of the third-order DUMKA solver with the

standard explicit Euler scheme. For more-complete accuracy tests we refer readers to [37].
The simulation is stopped at t = 0.8 when a stationary state is achieved which, for example,
corresponds to the stabilization of the kinetic entropy (see Fig. 1). We use n = 16, 32, and
64 modes in each direction, whereas the time step 
t and the support of the distribution
function depend on the size of the grid. The support of f is increased with the number of
modes, and vmax = 3π/4, 9π/10, and π for n = 162, 322, and 642 modes, respectively.

The total computation time and the different time steps used are reported in Table I with
respect to the number of modes. It is evident that the DUMKA scheme allows larger time
steps (5–10 times larger then Euler scheme) and permits a high reduction of the computation
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FIG. 1. (Test 1) Decay in time of the numerical entropy with n = 32 modes (left) and adaptive time stepping
for the DUMKA scheme (right).

time when the number of unknowns is increased. Indeed, with 642 modes the third-order
DUMKA scheme with adaptive time stepping is about four times faster than the simple
Euler method.

The relative quadratic error norm is plotted in Fig. 2. For example at time t = 0.1 we
observe that when passing from 16 to 32 modes the error decreases approximately by a
factor of 10 for the Euler method, by a factor of 500 for the fixed DUMKA method, and
by 250 for the variable DUMKA. The respective convergence rates are then 3.3, 9, and 8.
Similarly when we pass from 32 to 64 we obtain the convergence rates of 3.1 for Euler and
6.7 and 8 for the DUMKA method. This shows that the DUMKA scheme permits as to keep
the spectral accuracy without increasing the computational cost. Therefore, it is suitable for
coupling in an efficient way the spectral method with the transport step.

Test 2: Sum of two Maxwellian distributions in 3D (γ = −3). Next we considered the
three-dimensional Coulombian case. The initial data is now chosen as the sum of two
Maxwellian functions,

f0(v) = 1

2

5(
2πv2

th

)2/3

[
exp

(
− |v − v1|2

2v2
th

)
+ exp

(
− |v − v2|2

2v2
th

)]
,

with v1 = (1.25, 1.25, 0) and v2 = (−1.25, −1.25, 0), and where the thermal velocity is
vth = 0.4. The final time of the simulation is Tend = 80. In Fig. 3 we report the evolution of

TABLE I

Total Computation Time for the Fixed-Time-Step Euler Scheme and for the DUMKA Scheme

with Fixed and Variable Time Stepping (Test 1)

Euler (fixed) DUMKA (fixed)
DUMKA (variable)

Number of modes CPU time 
t CPU time 
t CPU time

16 × 16 001.2 5.0e-3 001.6 2.50e-2 000.6
32 × 32 012.0 1.0e-3 013.0 1.25e-2 005.0
64 × 64 512.0 1.0e-4 515.0 1.00e-3 143.0
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FIG. 2. (Test 1) Evolution of the relative quadratic error for the Euler scheme (left), and for the DUMKA
scheme with fixed (middle) and variable (right) time steps using 16, 32, and 64 modes per direction.

the level set of the distribution function f (t, vx , vy, vx ) = 0.02 obtained with n = 32 modes
at different times. Initially the level set of the initial data corresponds to two “spheres” in
the velocity space. Then, the two distributions start to mix together until the stationary state
is reached, represented by a single centered sphere. It is clear that the spherical shapes of
the level sets are described with great accuracy by the spectral method.

3.2. Space Nonhomogeneous Problems

Test 3: Landau damping. We now consider the one-dimensional Vlasov–Poisson equa-
tion coupled with the two-dimensional FPL collision operator

∂ f

∂t
+ vx

∂ f

∂x
+ E(t, x)∇v f = 1

ε
Q( f, f ), x ∈ R, v ∈ R

2, (29)

where

E(t, x) = −∂φ(t, x)

∂x
, −∂2φ(t, x)

∂x2
=
∫

R
2

f (t, x, v) dv − 1. (30)

The initial data is

f (0, x, vx , vy) = 1

2πσ 2
e−(v2

x +v2
y)/2σ 2

(1 + α cos(k x)), ∀(x, vx , vy) ∈ (0, L) × R
2,

where σ = 0.24, α = 0.5, k = 2π/L , and L = 4. The boundary conditions are assumed
to be periodic in space. Without collision, the Vlasov equation develops thin filaments in
phase space and steep gradients in v are generated. Therefore, a large number of points in
the velocity space are necessary to discretize the Vlasov equation in the transport step. We
use a number of cells Nx = 32 in the x-direction and Nvx = Nvy = 64 in the v-direction.
On the other hand, the FPL equation acts on large scales and the computational cost of
the collision operator is strongly increased when the number of unknowns is increased;
therefore a coarser grid with Nvx = Nvy = 32 is used in the collision phase. This can be
justified from the fact that the scheme is spectrally accurate in velocity for the collision
step, but less accurate for the transport step, and therefore a smaller grid is required by the
latter in order to match the accuracy of the collision step.
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FIG. 3. (Test 2) Evolution of the level set f (t, vx , vy, vx ) = 0.02 with n = 32 modes in the Coulombian case
at times t = 0, 7.5, 12.5, 27.5, 37.5, 77.5.



NUMERICAL METHOD FOR FPL EQUATION 19

FIG. 4. (Test 3) Time evolution of the electric energy in logarithmic scale with respect to the Knudsen number;
ε = +∞ (left), ε = 200 (middle), and ε = 50 (right).

The two velocity grids are linked using the natural trigonometric interpolation derived
from the Fourier representation. This allows the use of the same time step for transport and
collisions.

The evolution of the discrete electric energy,

∑
i


x E2
i (t), Ei (t) = E(t, xi ),

in logarithmic scale is plotted in Fig. 4 with respect to the Knudsen number ε. In prac-
tice the time evolution consists of rapid oscillations around a slowly varying average,
where the average is taken over an oscillation period. The value ε = +∞ corresponds
to the Vlasov–Poisson system without Coulombian interactions between particles. In this
case the electric energy is first exponentially decreased and next starts to oscillate around
a constant value. At variance, in the presence of collisions, the electric energy is still de-
creasing in time. Moreover, when the collision frequency is strong enough, it continues to
decrease exponentially. Concerning the evolution of the distribution function in the (x, vx )

space, without collision, the variations of the electric energy create small bumps (that need
to be resolved in the velocity space) around the phase velocity vφ = ω/k, where ω is the
oscillation frequency and k is the wave number. But when collisions are taken into account,
the Landau operator acts as a diffusion equation and the oscillations generated by the cou-
pling with the Poisson equation are dumped and the stationary state holds early. We report
in Figs. 5 and 6 (respectively) the results for

F(t, vx ) =
∫

R×R

f (t, x, vx , vy) dx dvy, Fy(t, x, vx ) =
∫

R

f (t, x, vx , vy) dvy .

Test 4: Wave reflection. In the last test problem, we consider the Landau equation in the
absence of external forces (E ≡ 0) in the four-dimensional phase space, � × R

2, where
� = (0, 1) × (0, 1). The equation reads

∂ f

∂t
+ vx

∂ f

∂x
+ vy

∂ f

∂y
= 1

ε
Q( f, f ), (x, y) ∈ �, (vx , vy) ∈ R

2, (31)
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FIG. 5. (Test 3) Time evolution of the tail of the (x, vy)-integrated distribution function with respect to the
Knudsen number; ε = +∞ (left), ε = 200 (middle), and ε = 50 (right).
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FIG. 6. (Test 3) Time evolution in phase space of the vy-integrated distribution function with respect to the
Knudsen number; ε = +∞ (left), ε = 200 (middle), and ε = 50 (right).

with the boundary condition

f (t, x, y, v) = µ(t) exp(−v2/σw(x, y)), (x, y) ∈ ∂�, v · n ≤ 0, (32)

where n is the outer normal at the boundary. The value µ(t) is computed such that the
number of particles is conserved, and σw(x, y) represents the temperature of the wall and
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FIG. 7. (Test 4) Time evolution of the density (left), the x-component of the mean velocity (middle), and
temperature (right) for ε = 1.

is given by

σw(x, y) =
{

3σ if x = 0, y ∈ (0, 1),

σ elsewhere,

with σ = 0.25.
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FIG. 8. (Test 4) Time evolution of the (x, vx )-integrated (left), (y, vy)-integrated (middle), and (x, y)-
integrated (right) distribution function for ε = 1.

The initial data is chosen as

f0(x, y, v) = 1

2πσ
exp

(
−
(

(vx + 1)2 + v2
y

2σ

))
,

so that the total mean velocity is u(x, y) = (−1, 0) and the initial temperature is constant,
T (x, y) = 1/2.
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We consider the evolution of the density ρ, mean velocity u, and temperature T of the
plasma and of the quantities

Fy(t, x, vx ) =
∫

[0,1]×R

f (t, x, y, v) dvy dy,

Fx (t, y, vy) =
∫

[0,1]×R

f (t, x, y, v) dvx dx,

F(t, v) =
∫

�

f (t, x, y, v) dx dy.

We present results for ε = 1. The number of cells on � is Nx = 64 and Ny = 32 and a
32 × 32 velocity grid for both transport and collision has been used. Thanks to the absence
of forces the ratio between the collisional and the transport time steps can be kept to one.
Figure 7 shows the contour plots of density, mean velocity, and temperature. The front of
the mean velocity and temperature moves along the x-axis and is reflected by the boundary
x = 1. The values of the integrated distribution functions Fx , Fy , and F are reported in
Fig. 8. The distribution function is initially a Maxwellian centered at u = (−1, 0) which
evolves until the stationary state is centered in ue = (0, 0) with a different temperature.
The (y, vy)-integrated distribution function shows that for transient times when transport
dominates collisions, steep gradients on the velocity space are generated and a large number
of points are necessary to accurately describe the distribution function.

4. CONCLUSION

We have presented an efficient and accurate numerical method to solve the FPL equation
in space nonhomogeneous situations. The collision operator is solved in only O(N log2 N )

operations using a spectral method based on approximating the distribution function by a
partial sum of Fourier series. The scheme conserves mass and approximates momentum
and energy with spectral accuracy provided a sufficiently large support in the velocity
space is used. For the time discretization a scheme with a large stability region is needed
to overcome the diffusive stiffness of the collision operator. To this aim two different
techniques have been developed: a high-order explicit Runge–Kutta method with a large
stability region and different grids in velocity space during transport and collisions. This
approach highly improves the efficiency of the method and seems to be a good compromise
between accuracy and computational cost. Finally the transport has been solved with an
accurate flux conservative method and different kinds of boundary conditions have been
discussed and implemented.
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