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A new scheme for solving the Vlasov equation using a phase space grid is pro-
posed. The algorithm is based on the conservation of the flux of particles, and the
distribution function is reconstructed using various techniques that allow control of
spurious oscillations or preservation of the positivity. Several numerical results are
presented in two- and four-dimensional phase space and the scheme is compared
with the semiLagrangian method. This method is almost as accurate as the semi-
Lagrangian one, and the local reconstruction technique is well suited for parallel
computation. c© 2001 Academic Press

The Vlasov equation describes the evolution of a system of particles under the effects of
self-consistent electromagnetic fields. The unknownf (t, x, v), depending on the timet , the
positionx, and the velocityv, represents the distribution function of particles (electrons,
ions,. . .) in phase space. This model can be used for the study of beam propagation or
collisionless plasma.

The numerical resolution of the Vlasov equation is usually performed by particle methods
(PIC) which consist of approximating the plasma by a finite number of macro-particles.
The trajectories of these particles are computed from the characteristic curves given by the
Vlasov equation, whereas self-consistent fields are computed on a mesh of the physical
space. This method allows us to obtain satisfying results with a small number of particles
(see Birdsall and Langdon for more details [1]). However, it is well known that the numerical
noise inherent to the particle method becomes too significant to allow a precise description
of the distribution function in phase space. Moreover, the numerical noise only decreases
in 1/
√

N when the number of particlesN is increased. To remedy this problem, methods
discretizing the Vlasov equation on a mesh of phase space have been proposed. Among
them, the Fourier–Fourier transform is based on a fast Fourier transform of the distribution
function in phase space, but this method is only valid for periodic boundary conditions
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[8, 9]. Consequently, for nonperiodic boundary conditions, Gibbs oscillations form at the
boundary of the grid and become a source of spurious oscillations which propagate into
the distribution function. A finite element method has also been proposed [16, 17]. This
method is well suited to handling complicated boundaries which may arise in many practical
applications, but it requires the numerical resolution of a system which is inconvenient to
use to deal with the Vlasov equation in high dimension. The semiLagrangian method,
which consists of computing the distribution function at each grid point by following the
characteristic curves backward, is also used. To compute the origin of the characteristic, a
high-order interpolation method is needed. E. Sonnendr¨uckeret al. proposed the cubic spline
reconstruction which gives very good results [13, 14], but the use of spline interpolation
destroys the local character of the reconstruction. Nakamura and Yabe also presented the
cubic interpolated propagation (CIP) method based on the approximation of the gradients
of the distribution function in order to use a Hermite interpolation [15]. This method is very
expensive in memory computation since it needs the storage off,∇x f , and∇v f . Another
scheme for the Vlasov equation is the flux corrected transport (FCT) [3, 4] or more recently
the flux balance method (FBM) [6]: the basic idea of this method is to compute the average
of the Vlasov equation solution in each cell of the phase space grid by a conservative method.

One of the common flaws of these algorithms is the nonpreservation of the positivity
which is inconvenient for lengthy simulations since numerical oscillations develop. The
goal of this paper is to propose a new scheme, the positive and flux conservative (PFC)
method, which gives a good approximation of the distribution function, the conservation
of mass, and the preservation of positivity. Moreover, the use of local interpolation allows
straightforward and scalable parallel computation.

This paper is organized as follows. In the first part, we briefly describe the Vlasov
equation, recalling some properties of the solution, like the conservation of the entropy,
L p norms, and the energy. Then, we present the conservative method for the discretization
of a transport equation, using the characteristic curves, and we give various reconstruction
techniques which enable us to control spurious oscillations. In the last section, we present
numerical results in the two- and four-dimensional phase space to compare the different
schemes with the semiLagrangian method.

1. THE VLASOV EQUATION

The evolution of the density of particlesf (t, x, v)dx dv in the phase space(x, v) ∈ Rd ×
Rd, d = 1, . . .3, is given by the Vlasov equation

∂ f

∂t
+ v · ∇x f + F(t, x, v) · ∇v f = 0, (1)

where the force fieldF(t, x, v) is coupled with the distribution functionf giving a non-
linear system. We mention the well known Vlasov–Poisson (VP) and Vlasov–Maxwell
(VM) models describing the evolution of particles under the effects of self-consistent elec-
tromagnetic fields: we first define the charge densityρ(t, x) and current densityj (t, x)
by

ρ(t, x) = q
∫
Rd

f (t, x, v)dv, j (t, x) = q
∫
Rd
v f (t, x, v)dv, (2)
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whereq is the single charge. The force field is given for the Vlasov–Poisson model by

F(t, x, v) = q

m
E(t, x), E(t, x) = −∇xφ(t, x), −1xφ = ρ

ε0
, (3)

wherem represents the mass of one particle. For the Vlasov–Maxwell system, we have

F(t, x, v) = q

m
(E(t, x)+ v ∧ B(t, x)), (4)

andE, B are solutions of the Maxwell equations
∂E
∂t − c2 curl B = − j

ε0
,

∂B
∂t + curl E = 0,

div E = ρ

ε0
, div B = 0,

(5)

with the compatibility condition

∂ρ

∂t
+ div j = 0, (6)

which is verified by the Vlasov equation solution.
We now recall some classical a priori estimates on the VP and VM systems. First of

all, assuming the initial dataf0(x, v) is positive, the solutionf (t, x, v) remains positive
for all t . Next, observing that divx,v(v, F(t, x, v)) = 0, we immediately deduce that for all
functionsβ ∈ C1(R+,R+),

d

dt

∫
Rd×Rd

β( f (t, x, v))dx dv = 0, ∀t ∈ R+.

In particular all L p norms, for 1≤ p ≤ +∞, are preserved. Moreover, takingβ(r ) =
r ln(r ), we obtain the conservation of the kinetic entropy

d

dt
H(t) = d

dt

∫
Rd×Rd

f (t, x, v) ln( f (t, x, v))dx dv = 0, ∀t ∈ R+.

Next, multiplying the Vlasov equation by|v|2 and integrating by parts, we find the conser-
vation of energy for the VP system,

d

dt

∫
Rd×Rd

f (t, x, v)|v|2 dx dv +
∫
Rd
|E(t, x)|2 dx = 0, ∀t ∈ R+,

and for the VM system,

d

dt

∫
Rd×Rd

f (t, x, v)|v|2 dx dv +
∫
Rd
|E(t, x)|2+ |B(t, x)|2 dx = 0, ∀t ∈ R+.

Finally, note that the Vlasov equation also preserves mass and impulsion:

d

dt

∫
Rd×Rd

f (t, x, v)

(
1
v

)
dx dv = 0, ∀t ∈ R+.
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2. THE CONSERVATIVE METHOD

In this section, we introduce conservative discretizations of the Vlasov equation and
propose several reconstruction techniques. Unlike classical Eulerian algorithms such as
finite difference or finite volume schemes, this method is not restricted by a CFL (Courant–
Friedrichs–Levy) condition on the time step. The Vlasov equation coupled with the Poisson
equation or the Maxwell system often contains filamentation, which is one of the major
issues one has to deal with when constructing a numerical scheme. Indeed, the distribution
function f (t, x, v) is constant along the characteristic curves, which become close, so that
phase space regions wheref (t, x, v) has different values come close together and steep
gradients are generated. At some time in the simulation, the phase space grid becomes too
coarse to follow these thin filaments. The various gridded methods briefly presented in the
introduction have no mechanism to distinguish numerical oscillations and filamentation.
The algorithm should effectively be high order in regions of the problem where the concept
of order is related usefully to accuracy, and should control oscillations where gradients are
large or where the distribution function goes to zero. The conservative method presented
below is derived from these requirements.

The starting point of our method is the Flux Balance method [6], discretizing the Vlasov
equation in the conservative form: we first observe that by a standard time-splitting scheme,
we can restrict ourselves, without loss of generality, to a one-dimensional problem which
leads to solving the following problem:

∂t f + ∂x(u(t, x) f ) = 0, ∀(t, x) ∈ R+ × [xmin, xmax]. (7)

We will assume that u(t, x) is smooth enough; for example u is Lipschitz continuous. Then
we can define the characteristic curves solution of the differential system corresponding to
the transport equation: { d X

ds (s) = u(s, X(s)),

X(t) = x.
(8)

Let us denote byX(s, t, x) the solution of (8) and define the JacobianJ(s, t, x) = ∂x X(s, t, x).
In [2], it is proved thatJ(s, t, x) is positive for all(s, t, x) ∈ R+ × R+ × R, and the solution
of the transport equation (7) can be expressed as

f (t, x) = f (s, X(s, t, x))J(s, t, x), (9)

which describes the conservation of particles along the characteristic curves

∀K ⊂ R,
∫

K
f (t, x) dx =

∫
X(s,t,K )

f (s, x) dx, (10)

where

X(s, t, K ) = {y ∈ R : y = X(s, t, z); z ∈ K }.

This property remains true ifd ≥ 1. Now let us introduce a finite set of mesh points
(xi+1/2)i∈I of the computational domain (xmin, xmax), which we will denote by1x=
xi+1/2− xi−1/2, andCi = [xi−1/2, xi+1/2]. Assuming the values of the distribution function
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are known at timetn = n1t , we find the new values at timetn+1 by integration of the
distribution function on each subinterval. Thus, using the conservation of particles (10) and
recalling that the Jacobian functionx 7→ J(tn, tn+1, x) is positive, we have

∫ xi+1/2

xi−1/2

f (tn+1, x) dx =
∫ X(tn,tn+1,xi+1/2)

X(tn,tn+1,xi−1/2)

f (tn, x) dx.

Then, we set

8i+1/2(t
n) =

∫ xi+1/2

X(tn,tn+1,xi+1/2)

f (tn, x) dx

to finally obtain the conservative scheme∫ xi+1/2

xi−1/2

f (tn+1, x) dx = 8i−1/2(t
n)+

∫ xi+1/2

xi−1/2

f (tn, x) dx−8i+1/2(t
n). (11)

The evaluation of the average of the solution over [xi−1/2, xi+1/2] allows us to ignore small
details of the exact solution which may be very costly to compute.

In general, we cannot explicitly compute the characteristic curves; we need to introduce
a time discretization of (8). Using a second-order leap-frog scheme, we obtain a fixed point
problem, where we look forxn = X(tn, tn+1, xi+1/2) such that

{
xi+1/2− xn = 1tu

(
tn+1/2, xn+1/2

)
,

tn+1/2 = tn + 1t
2 , xn+1/2 = xi+1/2+ xn

2 ,

which can be iteratively solved. Note that most of the time in kinetic transport equations,
the time-splitting scheme allows us to avoid this situation since the characteristic curves
become straight lines.

The main step is now to choose an efficient method to reconstruct the distribution function
from the values in each cellCi . In [6], E. Fijalkow only used a linear interpolation, but
this method does not give a positive scheme and does not control spurious oscillations.
The method proposed by Boris and Book [3] or the use of classical slope limiters is too
dissipative to give an accurate description of the distribution function. Here, we shall use a
reconstruction via a primitive function: letF(tn, .) be a primitive of the distribution function
f (tn, .), which we denote by

f n
i =

1

1x

∫ xi+1/2

xi−1/2

f (tn, x) dx.

Then we haveF(tn, xi+1/2)− F(tn, xi−1/2) = 1x f n
i , and

F
(
tn, xi+1/2

) = 1x
i∑

k=0

f n
k = wn

i .

In the sequel, the time variabletn only acts as a parameter and will be dropped. We present
two different methods of reconstruction.
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2.1. The ENO Reconstruction

The ENO (essentially nonoscillatory) method has been introduced by Harten and Osher
in [7]. It is often used for the discretization of hyperbolic equations and allows the control
of spurious oscillations. Unlike classical conservation laws, the Vlasov equation solution
does not develop any shock, but stiff gradients appear in the phase space. Thus, the ENO
reconstruction seems to be useful for treating this problem. We first recall the divided
difference formula which plays an important role in this method:

F
[
xi+1/2, xi+3/2, . . , xi+p+1/2

] = F
[
xi+3/2, . . , xi+p+1/2

]− F
[
xi+1/2, . . , xi+p−1/2

]
xi+p+1/2− xi+1/2

,

(12)
F
[
xi+1/2

] = F
(
xi+1/2

) = wi .

It also satisfies the properties

• If F(x) ∈ Cp([xi+1/2, xi+p+1/2]), then

∃ζ ∈ (xi+1/2, xi+p+1/2
)
, F

[
xi+1/2, xi+3/2, . . , xi+p+1/2

] = 1

p!

dpF

dxp
(ζ ).

• If the k-th derivative of F(x) is discontinuous with 0≤ k ≤ p on the interval
[xi+1/2, xi+p+1/2], then

F
[
xi+1/2, xi+3/2, . . , xi+p+1/2

] = O(1xk−p)
[
ω(k)

]
,

where [ω(k)] represents the jump of thek-th derivative. The ENO reconstruction consists
of choosing the stencil for which the approximation is the smoothest, i.e., for which the
divided difference is the smallest in module: on the interval [xi−1/2, xi+1/2], we first define
q1(x), the polynomial of degree one, interpolating the functionF(x) at xi−1/2 andxi+1/2,

q1(x) = wi−1+
(
x − xi−1/2

)wi − wi−1

1x
;

and we setd1(i ) = i . Let us assume that we have constructed the polynomial of degreek
interpolating the functionF(x) at the points

xdk(i )−1/2, . . . , xdk(i )+k−1/2.

To find the polynomialqk+1(x), we considerk+ 2 points obtained by adding to the previous
ones the first point on the left or on the right, and choose the point for which the divided
difference is the smallest:

dk+1(i )=
{

dk(i )− 1 if
∣∣F[xdk(i )−3/2, . . . , xdk(i )+k−1/2

]∣∣≤ ∣∣F[xdk(i )−1/2, . . , xdk(i )+k+1/2
]∣∣,

dk(i ) else.

We continue the algorithm until we reach the order we want.
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PROPOSITION2.1. Let us assume the function F(x) is r + 1 continuously differentiable
and define its piecewise polynomial approximation denoted by Fh(x) such that

∀x ∈ [xi−1/2, xi+1/2
]
, Fh(x) = qr (x),

where qr (x) is the polynomial of degree r constructed by following the previous method.
Then

• dkqr

dxk (x) = dk F
dxk (x)+ O(1xr+1−k), 0≤ k ≤ r,

• qr (xj+1/2) = F(xj+1/2), ∀ j ∈ {dr (i )−1/2, . . . ,dr (i )+r−1/2},
• qr (x) is an essentially nonoscillatory reconstruction in the sense that

TV[qr (.)] ≤ TV[F(.)] + O(1xr+1),

where the total variation(TV) of a function F(.) is the number given by the following limit:

TV[F(.)] = lim sup
ε→0

1

ε

∫
|F(x + ε)− F(x)| dx.

The last inequality implies that spurious oscillations are controlled at the orderr + 1
(see [7]). From this high-order-accurate reconstruction,we can define the quantity8i+1/2(tn)

by

8i+1/2(t
n) =

∫ xi+1/2

X(tn,tn+1,xi+1/2)

f (tn, x) dx = Fh
(
xi+1/2

)− Fh
(
X
(
tn, tn+1, xi+1/2

))
.

This method has been implemented up to the fourth order. It is not positive but allows us to
control spurious oscillations.

2.2. The Positive and Flux Conservative Method

As before, we use the reconstruction via primitive function, but the stencil is now fixed.
To ensure the preservation of positivity and the maximum principle, we introduce a slope
corrector. Indeed, it is only by sacrificing the high order requirement when the gradients
are very steep that we can hope to obtain a positive algorithm. In the following, we denote
f∞ = maxj∈I { f j }.

The Second-Order Approximation

Let us assume for simplicity the propagating velocityu(t, x) is positive. Then we build a
first approximation on the interval [xi−1/2, xi+1/2] using the points{xi−1/2, xi+1/2, xi+3/2};

F̃h(x) = wi−1+
(
x − xi−1/2

)
fi + 1

2

(
x − xi−1/2

)(
x − xi+1/2

) fi+1− fi
1x

,

wherewi − wi−1 = 1x fi . Thus by differentiation we obtain a second-order-accurate ap-
proximation of the distribution function on the interval [xi−1/2, xi+1/2]:

f̃ h(x) = dF̃h

dx
(x) = fi + (x − xi )

fi+1− fi
1x

.
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But this approximation does not satisfy the maximum principle, and spurious oscilla-
tions may occur. So we introduce a slope corrector,

εi =
{

min(1; 2 fi /( fi+1− fi )) if fi+1− fi > 0,
min(1;−2( f∞ − fi )/( fi+1− fi )) if fi+1− fi < 0,

(13)

and finally obtain the following approximation:

fh(x) = fi + εi (x − xi )
fi+1− fi
1x

, ∀x ∈ [xi−1/2, xi+1/2
]
. (14)

From this construction, the following proposition is obvious.

PROPOSITION2.2. The approximation defined by(14)satisfies

• The conservation of the average: for all i ∈ I ,
∫ xi+1/2

xi−1/2
fh(x) dx = 1x fi ,

• The maximum principle: for all x ∈ (xmin, xmax), 0≤ fh(x) ≤ f∞.

Moreover, if we assume the total variation of the distribution function f(x) is bounded, then
we obtain the global estimate:∫ xmax

xmin

| fh(x)− f̃ h(x)| dx ≤ 1x
∑

i

(1− εi )| fi+1− fi | ≤ T V( f )1x.

Now we can define an approximation of the flux8i+1/2(tn). We first find the cellCj

such thatX(tn, tn+1, xi+1/2) ∈ Cj and setαi = xj+1/2− X(tn, tn+1, xi+1/2), which satisfies
0≤ αi ≤ 1x. Then

8i+1/2(t
n) =

∫ xi+1/2

xj+1/2
−αi

f (tn, x) dx = αi

[
f j + ε j

2

(
1− αi

1x

)
( f j+1− f j )

]
+1x

i∑
k= j+1

fk.

By symmetry, we find an approximation of8i+1/2(tn)when the propagating velocity u(t, x)
is negative. We setαi = xj−1/2− X(tn, tn+1, xi+1/2), and then−1x ≤ αi ≤ 0 and

8i+1/2(t
n) =

∫ xi+1/2

xj−1/2
−αi

f (tn, x) dx = αi

[
f j − ε j

2

(
1+ αi

1x

)
( f j − f j−1)

]
+1x

j−1∑
k=i+1

fk,

whereε j is given by

ε j =
{

min(1; 2( f∞ − f j )/( f j − f j−1)) if f j − f j−1 > 0,

min(1;−2 f j /( f j − f j−1)) if f j − f j−1 < 0.
(15)

Third-Order Approximation

We now extend the previous method for the third-order reconstruction. On the interval
[xi−1/2, xi+1/2], we use the stencil{xi−3/2, xi−1/2, xi+1/2, xi+3/2} to approximate the primi-
tive, and as before, we introduce a slope corrector to finally obtain for allx ∈ Ci ,

fh(x) = fi + ε+i
61x2

[
2(x − xi )

(
x − xi−3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]
( fi+1− fi )

+ ε−i
61x2

[
2(x − xi )

(
x − xi+3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]
( fi − fi−1), (16)
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with

ε+i =
{

min(1; 2 fi /( fi+1− fi )) if fi+1− fi > 0,

min(1;−2( f∞ − fi )/( fi+1− fi )) if fi+1− fi < 0,
(17)

and

ε−i =
{

min(1; 2( f∞ − fi )/( fi − fi−1)) if fi − fi−1 > 0,

min(1;−2 fi /( fi − fi−1)) if fi − fi−1 < 0.
(18)

PROPOSITION 2.3. The approximation of the distribution function fh(x) defined by
(16)–(18)constructed using the third-order method satisfies

• The conservation of the average: for all i ∈ I ,
∫ xi+1/2

xi−1/2
fh(x) dx = 1x fi ,

• The maximum principle: for all x ∈ (xmin, xmax), 0≤ fh(x) ≤ f∞.

Moreover, if we assume the total variation of the distribution function f(x) is bounded,
then we obtain the global estimate

∫ xmax

xmin

| fh(x)− f̃ h(x)| dx ≤ 4TV( f )1x,

where f̃ h denotes the third-order approximation of f without the slope corrector.

Proof. Let us considerx ∈ Ci = [xi−1/2, xi+1/2] and denote

α(x) = 1

1x2

[
2(x − xi )

(
x − xi−3/2

)+ (x − xi−1/2
)(

x − xi+1/2
)]
,

β(x) = 1

1x2

[
2(x − xi )

(
x − xi+3/2

)+ (x − xi−1/2)
(
x − xi+1/2

)]
.

It is easy to check that ∫ xi+1/2

xi−1/2

α(x) dx =
∫ xi+1/2

xi−1/2

β(x) dx = 0,

and the conservation of the average immediately follows. To obtain the preservation of
positivity, assuming the values( f j ) j are positive, we observe that in the cellCi , the function
α(x) is increasing whereasβ(x) decreases andα(x), β(x) ∈ [−1, 2]. Then, we splitfh(x)
as the sum ofh(x) andg(x) with

h(x) = 1

3

[
fi + α(x)

2
ε+i ( fi+1− fi )

]
and g(x) = 1

3

[
2 fi + β(x)

2
ε−i ( fi − fi−1)

]
.

The functionh(x) (respectively g(x)) is only a combination offi and fi+1 (respectively
fi−1 and fi ). Then from the value ofε+i (respectivelyεi ), it is easy to prove thath(x)
(respectively g(x)) is positive. Using a similar decomposition, we also prove thatfh(x) is
bounded byf∞.
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Now, we prove the global estimate on the positive reconstruction:∫ xmax

xmin

| fh(x)− f̄ h(x)| dx =
∑

i

∫ xi+1/2

xi−1/2

|α(x)(1− ε+i )[ fi+1− fi ]

+β(x)(1− ε−i )[ fi − fi−1]| dx

≤ 21x
∑

i

(1− ε+i )| fi+1− fi | + 21x
∑

i

(1− ε−i )| fi − fi−1|

≤ 41x
∑

i

| fi+1− fi | ≤ 41x T V( f ).

j

From this reconstruction, we approximate the quantity8i+1/2(tn) by looking for the cell
Cj such thatX(tn, tn+1, xi+1/2) ∈ Cj and settingαi = xj+1/2− X(tn, tn+1, xi+1/2). Then
for a positive propagating velocity, we obtain

8i+1/2(t
n) =

∫ xi+1/2

xj+1/2−αi

f (tn, x) dx = 1x
i∑

k= j+1

fk+αi

[
f j +

ε+j
6

(
1− αi

1x

)(
2− αi

1x

)

× ( f j+1− f j )+
ε−j
6

(
1− αi

1x

)(
1+ αi

1x

)
( f j − f j−1)

]
,

and when u(t, x) is negative, we setαi = xj−1/2− X(tn, tn+1, xi+1/2); then−1x ≤ αi ≤ 0
and

8i+1/2(t
n) =

∫ xi+1/2

xj−1/2−αi

f (tn, x) dx = 1x
j−1∑

k=i+1

fk+αi

[
f j −

ε+j
6

(
1− αi

1x

)(
1+ αi

1x

)

× ( f j+1− f j )−
ε−j
6

(
2+ αi

1x

)(
1+ αi

1x

)
( f j − f j−1)

]
.

3. NUMERICAL TESTS

3.1. The Linear Advection

Let us first consider the problem of linear advection:

∂ f

∂t
+ v ∂ f

∂x
= 0, ∀x ∈ [−π, π ], and f (t,−π) = f (t, π). (19)

Under these assumptions and simplifications. One can Fourier analyze the schemes using
a discrete Fourier transform

f n
j =

N−1∑
k=0

f̂ n
keikx j , where f̂ n

k =
N−1∑
j=0

f n
j e−ikx j .

Then, the solution of (19) in the Fourier space is given by

f̂ n
k = f̂ 0

keikvtn
. (20)
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In general, Eq. (20) is not satisfied by the algorithm, so it is valuable to give the types of
numerical error which can occur:

• amplitude errorf̂ n
k/ f̂ 0

k: the harmonic must decay to stabilize the algorithm, which in-
troduces numerical diffusion. These errors are usually most important for short-wavelength
harmonics.
• phase error|v tn − Arg( f̂ n

k/ f̂ 0
k)|: it is generally called dispersion and describes the

error of harmonics which propagate at the wrong speed. The error usually increases with
the wave numberk.

On the one hand, the amplification factor is plotted (see Fig. 1) for the FBM and third-order
reconstruction without the slope corrector (Part a), and for the semiLagrangian method

FIG. 1. The amplification factor with respect toα for a fixed modek. (a) the classical FBM (crosses) and
third-order reconstruction without slope corrector (solid line); (b) The semiLagrangian method with a Lagrange
interpolation of degree 3 (boxes), 5 (diamonds), and 9 (crosses); (c) and with cubic Hermite polynomial with a
fourth-order approximation of the derivative (boxes); and cubic spline interpolation (solid line).
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FIG. 2. The phase error with respect toα for a fixed modek. (a) the conservative method for the classical
FBM (crosses) and third-order reconstruction without slope corrector (solid line); (b) the semiLagrangian method
with a Lagrange interpolation of degree 3 (boxes), 5 (diamonds), and 9 (crosses); (c) and with cubic Hermite
polynomial with a fourth-order approximation of the derivative (boxes), and cubic spline interpolation (solid line).

with Lagrange (Part b), Hermite and cubic spline (Part c) interpolations. Methods using
a smooth reconstruction (Hermite or cubic spline) are less dissipative than ones using only
a continuous approximation. To obtain a similar amplification factor with the Lagrange
interpolation, a polynom of degree nine is required. The dissipation of the conserva-
tive method with a quadratic polynom is identical to the cubic Lagrange interpolation
one. The linear reconstruction used in the (FBM) is the most dissipative. On the other
hand, the phase error (see Fig. 2) for the semiLagrangian method using a Hermite re-
construction with fourth-order approximation of the derivative is the most important. The
cubic spline reconstruction is also less accurate than the Lagrange interpolation of degree
nine.

3.2. The Vlasov–Poisson System

In this section, we want to compare different methods and reconstructions for the numer-
ical resolution of the Vlasov–Poisson system with periodic boundary conditions,

∂ f

∂t
+ divx(v f )+ divv(E(t, x) f ) = 0, (21)
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coupled with the normalized Poisson equation

E(t, x) = −∇xφ(t, x), −1φ(t, x) =
∫
Rd

f (t, x, v)dv − 1. (22)

The time discretization procedure, originally proposed by Cheng and Knorr [5], is based
on a splitting algorithm and can be used to go from time steptn to tn+1 as follows.

1. Perform a half time step shift along thex-axis: f ∗(x, v) = f (tn, x − v1t/2, v).
2. Compute the electric field at timetn+1/2 by substitutingf ∗ in the Poisson equation.
3. Perform a shift along thev-axis: f ∗∗ = f ∗(x, v − E(tn+1/2, x)1t).
4. Perform a second half time step shift along thex-axis: f (tn+1, x, v) = f ∗∗(x −

v1t/2, v).

We now propose classical numerical tests to compare different reconstructions.

A. The Linear Landau Damping in 1D

The initial data are

f (0, x, v) = 1√
2π

e−v
2/2(1+ α cos(kx)), ∀(x, v) ∈ (0, L)× R,

whereα = 0.01, the periodic length isL = 4π , andk = 0.5. We are using a number of cells
Nx = 32 in thex-direction, andNv = 16, 32, and 64 in thev-direction, withvmax= 4.5,
and1t = 1/8.

Figure 3 represents the evolution of the electric energy
∑ |Ei (t)|2 obtained by the PFC

scheme, the fourth order ENO reconstruction, and the semiLagrangian method using a cubic
spline interpolation withNv = 32. The recurrence effect appears atTR = 44.68, which is
the theoretical time predicted from the free streaming case sinceTR = 2π/(k1v). The
PFC method first gives a good approximation of the damping rate but when approaching
the recurrence time the evolution of the electric field is less accurate, whereas the behavior
obtained by the fourth-order ENO scheme and the semiLagrangian method is more stable for
a long time. In this case, the distribution function obtained with different schemes remains
positive, and the relative error norm of variations of the kinetic entropy,L2-norm, and total
energy always stays less than 10−5.

In Fig. 4, the basic mode of the electric fieldk = 0.5, obtained by the PFC method,
is plotted against time forNv = 16, 32, and 64 cells. It shows the exponential decay of
the amplitude of the electric field according to Landau’s theory. The damping rate and the
frequency of oscillations obtained by this method with only 32 cells in thev direction are
respectivelyγ = 0.153 andω = 1.415,which agree very well with valuesγ = 0.1533 and
ω = 1.4156 predicted by the theory. The use of a sufficiently large number of cells allows
us to improve the time evolution of the electric field and gives good results.

B. The Strong Landau Damping in 1D

In this example, the amplitude of the initial perturbation of the density is increased; we
take for the initial dataα = 0.5 andvmax= 6. The number of cells isNx = 32 andNv = 64,
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FIG. 3. Time evolution of the electric energy on logarithm scale obtained by the PFC method (a), the fourth-
order ENO (b), and the cubic spline (c) interpolation with 32× 32 unknowns for linear Landau damping.

128. The previous theory cannot be applied because nonlinear effects are too important, but
this test has been studied by many authors [8, 10, 15]. Results are in good agreement with
numerical simulations presented in the literature: the electric energy first decays exponen-
tially and is next periodically oscillating. In Fig. 5, the evolution of the electric energy is
plotted for the PFC scheme with 32× 64 cells, and for the semiLagrangian method using
a cubic spline interpolation with 32× 64 and 32× 128 points. The result obtained by the
PFC method is much more accurate than the one obtained by the semiLagrangian method
using the same grid.

Next, we are interested by the evolution of the kinetic entropy andL p-norms which are
theoretically conserved. The evolution of the discrete entropyH(t) = −∑ fi (t) ln ( fi (t)),
and the discreteL p(t)-norm

∑ | fi (t)|p for p = 1, 2 are presented in Fig. 6 for the var-
ious schemes. The variation of theL1-norm represents the rate of negative values since
the global mass

∑
fi (t) is preserved even for semiLagrangian methods. On the one hand,

the semiLagrangian method does not preserve positivity, and the amplitude of spurious
oscillations increases when nonlinear effects occur. On the other hand, as is predicted by
the Fourier analysis, the conservative method is more dissipative than the semiLagrangian
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FIG. 4. Time evolution of the first mode of the electric fieldE(t, k = 0.5) obtained by the PFC method with
Nv = 16, Nv = 32, andNv = 64 cells for linear Landau damping.

one since the kinetic entropy strongly decreases. The variation of the stencil of the ENO
reconstruction acts as a smoothing effect, so the dissipation is much more important, and
indeed the kinetic entropy is not well stabilized. The entropy obtained by the PFC scheme
is at first increasing and then well stabilized, whereas with the semiLagrangian method
it oscillates. The strong dissipation of the conservative method can be explained by the
averaging step; indeed small details of the distribution function are eliminated to stabilize the
scheme. As for the distribution function in the(x, v) space, small bumps appear around
the phase velocityvφ = ω/k. These bumps represent particles which are trapped by
electrostatic waves (see Fig. 7). As a consequence of the entropy decay, the distribution
function is smoothed when filaments become smaller than the phase space grid size. Never-
theless, this smooth approximation seems to give a good description of macroscopic values
(physics quantities obtained by the integration of moments of the distribution function with
respect tov) since the evolution of the electric energy is more accurate than the one obtained
from the semiLagrangian method using the cubic spline interpolation. Moreover, the varia-
tion of the total energy is less than 2% for all schemes except for the ENO method, for which
the variation of the total energy is increasing and the amplitude of the electric energy is
damped. Thus, the ENO reconstruction does not seem to be well adapted to treating nonlinear
effects.
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FIG. 5. Time evolution of the discrete electric energy in logarithm scale for the PFC scheme 32× 64 (a); the
cubic spline interpolation with 32× 64 (b) 32× 128 (c) unknowns for strong Landau damping.

FIG. 6. Time evolution of the discrete kinetic entropy;L1 andL2 norms with 32× 64 unknowns for strong
Landau damping.
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FIG. 7. Time development of the spatially integrated distribution function for the PFC scheme (left); the
fourth order ENO reconstruction (center), and the cubic spline (right) interpolation for strong Landau damping.

C. The Linear Landau Damping in 2D

The initial condition is set to

f0(x, y, vx, vy) = 1

2π
e−(v

2
x+v2

y)/2(1+ α cos(kx x) cos(ky y)),

withα = 0.05. The velocity space is truncated atvmax= 6, the wave numbers arekx = ky =
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FIG. 8. Time development distribution functionf (t, x, v) ≤ 0.1 obtained by the PFC scheme for strong
Landau damping.

0.5, and the length of the periodic box in the physical space isLx = L y = 4π . Finally, the
four-dimensional grid contains 64 points per direction and the time step is set to1t = 1/8.
Because of the symmetry of the initial data, the evolution of two components of the electric
field is identical. In Fig. 9, we report the evolution of the electric energy obtained by
the PFC scheme and the semiLagrangian method using a cubic spline interpolation. The
two methods give an accurate damping of the amplitude of the electric field. The Fourier
modes of the electric field obtained by the PFC scheme are plotted in Fig. 10. It shows
the exponential decay of the modesEx(t, kx = 0, ky = 0.5) andEx(t, kx = 0.5, ky = 0.5)
with damping rates, respectively,γ = −0.1533 andγ = −0.394, and the frequency of
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FIG. 9. Time evolution of the electric energy(1x
∑

i E2
i )

1/2 on logarithm scale obtained by the PFC and
SPLINE methods with 64× 64 unknowns for the 2D linear Landau damping.

oscillationsω = 1.4156 andω = 1.6973, which are the theoretical values predicted by the
linear Landau theory.

D. The Evolution of a Beam in 2D

We now consider the evolution of a root mean square (RMS) matched semiGaussian
beam in a uniform focusing channel in the four-dimensional phase space. In this case the
Vlasov equation has the form, for allx = (x, y) andv = (vx, vy),

∂ f

∂t
+ v · ∇x f + (Eself(t, x)+ Eappl(t, x)) · ∇v f = 0, (23)

whereEself is the self-consistent electric field given by the Poisson equation andEappl is a
linear external electric field which allows us to focalize the beam. The initial value of the
distribution function is

f0(x, y, vx, vy) = n0(
2πv2

th

)
(πa2)

e
− v2

x+v2
y

2v2
th , if x2+ y2 ≤ a2,

and f0(x, y, vx, vy) = 0, if x2+ y2 > a2. The RMS thermal velocityvth is computed such
that the beam is matched (see [11]): we consider the KV-distribution function which is a

FIG. 10. Time evolution of the basic modesEx(0.5, 0) andEx(0.5, 0.5) on logarithm scale obtained by the
PFC method with 64× 64 unknowns for the 2D linear Landau damping.
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FIG. 11. Time development of (a)x–vx projection, (b)vx–vy projection, (c) slice of charge density, and
(d) slice of the total electric field obtained by the PFC method.

stationary solution of the Vlasov equation (23) and the self-consistent electric field is linear
with respect to thex variable. Then

Eself(t, x)+ Eappl(t, x) = −ω2x.

And the initial data are

f0(x, v) = δC, with C =
{

x2

A2
+ y2

A2
+ v2

x

(ωA)2
+ v2

y

(ωA)2
= 1

}
.
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TABLE I

Total Computation Time for PFC3 and SPLINE Methods with Respect

to the Number of Processors for a Grid Size 64× 64× 64× 64 Points

Number of processors PFC scheme SPLINE method

2 4 h 30 min 6 h 20 min
4 2 h 11 min 3 h 07 min
8 56 min 84 min

Then, the RMS values are given by

√
x2 =

√∫
x2 f dx dv∫

f dx dv
= A,

√
v2

x =
√∫

v2
x f dx dv∫
f dx dv

= ωA,

√
y2 =

√∫
y2 f dx dv∫

f dx dv
= A,

√
v2

y =
√∫

v2
y f dx dv∫
f dx dv

= ωA.

Now, for the semiGaussian beam, the initial self-consistent electric field can be easily
computed since it is also linear inx. Then, we take

x2 = y2 = a2/4, v2
th = v2

x = v2
y = ω2a2/4,

andω2 represents the difference between the initial self-consistent electric field and the linear
applied fieldEappl(t, x) = −ω2

0x. In this example, we have chosenω andω0 such that the
tune depressionω/ω0 = 1/2. The beam densityn0 can be written with respect to the current
I and the beam velocityvb, byn0 = I /qvb. The beam is assumed to be composed of ionized
particles of potassium, the currentI = 0.2A, the beam velocityvb = 0.63× 106 m/s, and
the radius of the beam isa = 0.02 m. We compare the evolution of the beam obtained by
the PFC algorithm using the third-order positive reconstruction with the semiLagrangian
method using the cubic spline interpolation (see [14]).

In Table I, we present the total time computation for the semiLagrangian method and the
PFC scheme. It is evident that the PFC scheme is faster than the semiLagrangian method
since the reconstruction is local. Contour plots of the phase space projections as well as
slices of the charge density and the electric field obtained by the PFC method are given
in the following figures. We notice that the beam at first becomes hollow, then regions of
high density propagate to the core of the beam and out again, creating space charge waves.
These waves are damped by phase mixing after a few lattice periods. Results obtained by
the PFC method seem to be very close to those obtained by the semiLagrangian method.

4. CONCLUSION

In this paper, we introduced a new method to solve the Vlasov equation using a phase
space grid. This method enforces the conservation of the global mass (or the number of
particles) and controls numerical oscillations using the stencil variation technique (ENO
reconstruction) or the preservation of positivity (PFC). Moreover, it allows us to treat strong
nonlinear problems without numerical instabilities. On the one hand, numerical results
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show that the ENO approximation is too dissipative to accurately describe the distribution
function, because the entropy and theL2 norm are strongly decreasing. On the other hand,
the PFC scheme is almost as accurate as the semiLagrangian method using a cubic spline
interpolation, and the preservation of positivity allows us to have a better description of
macroscopic values like the charge density or the electric field over time. Moreover, the
local reconstruction is well suited to doing parallel computation in high dimension.

Using today’s supercomputers, this method appears to be a good alternative to the PIC
methods for dealing with strongly nonlinear problems in two- or four-dimensional phase
space when little noise and high precision is needed. Moreover, we have been able to perform
toy simulations in the six-dimensional phase space and it is likely that the next generation of
supercomputers or the use of many computers distributed over a network will soon enable
us to perform physically relevant simulations on a five- or six-dimensional phase space.
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