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A new scheme for solving the Vlasov equation using a phase space grid is pro-
posed. The algorithm is based on the conservation of the flux of particles, and the
distribution function is reconstructed using various techniques that allow control of
spurious oscillations or preservation of the positivity. Several numerical results are
presented in two- and four-dimensional phase space and the scheme is compared
with the semiLagrangian method. This method is almost as accurate as the semi-
Lagrangian one, and the local reconstruction technique is well suited for parallel
computation. © 2001 Academic Press

The Vlasov equation describes the evolution of a system of particles under the effect
self-consistent electromagnetic fields. The unkndwt) x, v), depending on the tinte the
positionx, and the velocity, represents the distribution function of particles (electrons
ions,...) in phase space. This model can be used for the study of beam propagatior
collisionless plasma.

The numerical resolution of the Vlasov equation is usually performed by particle methc
(PIC) which consist of approximating the plasma by a finite number of macro-particle
The trajectories of these particles are computed from the characteristic curves given by
Vlasov equation, whereas self-consistent fields are computed on a mesh of the phy:
space. This method allows us to obtain satisfying results with a small number of partic
(see Birdsall and Langdon for more details [1]). However, itis well known that the numeric
noise inherent to the particle method becomes too significant to allow a precise descrip
of the distribution function in phase space. Moreover, the numerical noise only decrez
in 1/+/N when the number of particle¥ is increased. To remedy this problem, method:s
discretizing the Vlasov equation on a mesh of phase space have been proposed. Ar
them, the Fourier—Fourier transform is based on a fast Fourier transform of the distribut
function in phase space, but this method is only valid for periodic boundary conditio
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[8, 9]. Consequently, for nonperiodic boundary conditions, Gibbs oscillations form at t
boundary of the grid and become a source of spurious oscillations which propagate
the distribution function. A finite element method has also been proposed [16, 17]. T
method is well suited to handling complicated boundaries which may arise in many pract
applications, but it requires the numerical resolution of a system which is inconvenien
use to deal with the Vlasov equation in high dimension. The semiLagrangian meth
which consists of computing the distribution function at each grid point by following th
characteristic curves backward, is also used. To compute the origin of the characterist
high-order interpolation method is needed. E. Sonngridiet al. proposed the cubic spline
reconstruction which gives very good results [13, 14], but the use of spline interpolat
destroys the local character of the reconstruction. Nakamura and Yabe also presente
cubic interpolated propagation (CIP) method based on the approximation of the gradi
of the distribution function in order to use a Hermite interpolation [15]. This method is ve
expensive in memory computation since it needs the storageVoff, andVv, f. Another
scheme for the Vlasov equation is the flux corrected transport (FCT) [3, 4] or more recel
the flux balance method (FBM) [6]: the basic idea of this method is to compute the aver:
ofthe Vlasov equation solution in each cell of the phase space grid by a conservative met

One of the common flaws of these algorithms is the nonpreservation of the positiv
which is inconvenient for lengthy simulations since numerical oscillations develop. T
goal of this paper is to propose a new scheme, the positive and flux conservative (P
method, which gives a good approximation of the distribution function, the conservati
of mass, and the preservation of positivity. Moreover, the use of local interpolation allo
straightforward and scalable parallel computation.

This paper is organized as follows. In the first part, we briefly describe the Vlas
equation, recalling some properties of the solution, like the conservation of the entrc
LP norms, and the energy. Then, we present the conservative method for the discretiz
of a transport equation, using the characteristic curves, and we give various reconstru
techniques which enable us to control spurious oscillations. In the last section, we pre
numerical results in the two- and four-dimensional phase space to compare the diffe
schemes with the semiLagrangian method.

1. THE VLASQOV EQUATION

The evolution of the density of particldst, x, v)dx dvinthe phase spacg, v) € RY x
RY, d =1,...3,is given by the Vlasov equation

of

§+v~vxf+F(t,X,v)-Vuf=0, Q)
where the force field-(t, x, v) is coupled with the distribution functiofi giving a non-
linear system. We mention the well known Vlasov—Poisson (VP) and Vlasov—Maxwi
(VM) models describing the evolution of particles under the effects of self-consistent el
tromagnetic fields: we first define the charge denpity, x) and current density (t, X)

by

,o(t,X):q/ f(t, x, v)dv, j(t,X):q/ vf(t, X, v)dv, (2)
RY RY



168 FILBET, SONNENDRJCKER, AND BERTRAND

whereq is the single charge. The force field is given for the Vlasov—Poisson model by

F(t,x, v) = %E(t, X), E(t,X) = —Vyp(t,X), —Axp="L
0

: ®3)
&
wherem represents the mass of one particle. For the Vlasov—Maxwell system, we have
F(tx,v) = (B +v A B, ), (4)
andE, B are solutions of the Maxwell equations
aE 2 — ]
ot —ceurlB=—2,
38 +curlE =0, (5)

dvE=2, divB=0,

€0

with the compatibility condition
ap -
— +4+divj=0 6
or TAvi=0 (6)

which is verified by the Vlasov equation solution.

We now recall some classical a priori estimates on the VP and VM systems. First
all, assuming the initial datdy(x, v) is positive, the solutiorf (t, X, v) remains positive
for all t. Next, observing that djv, (v, F(t, X, v)) = 0, we immediately deduce that for all
functionsg € C1(R*™,R™),

d

_/ B(f(t,x,v))dxdv =0, VteR*.
dt Jrexpe

In particular allLP norms, for 1< p < 400, are preserved. Moreover, takimgyr) =
r In(r), we obtain the conservation of the kinetic entropy

gH(t)zg/ ft,x,v)In(f(t,x,v)dxdv =0, VteR".
dt dt RYxRY

Next, multiplying the Vlasov equation by|? and integrating by parts, we find the conser-
vation of energy for the VP system,

d
—/ f(t,x,v)|v|2dxdv+/ |E(t,x)|?dx =0, VteR",
dt Jraxgs R

and for the VM system,

d

7/ f(t,x,v)|v|2dxdv+/ [E(t, X)|? + |B(t,x)[?dx =0, VteR".
dt Jrdxge R

Finally, note that the Vlasov equation also preserves mass and impulsion:

E/ f(t,X,v)(l)ddezo, vt e RT.
dt Jrdy g v
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2. THE CONSERVATIVE METHOD

In this section, we introduce conservative discretizations of the Vlasov equation &
propose several reconstruction techniques. Unlike classical Eulerian algorithms suc
finite difference or finite volume schemes, this method is not restricted by a CFL (Coura
Friedrichs—Levy) condition on the time step. The Vlasov equation coupled with the Pois:
equation or the Maxwell system often contains filamentation, which is one of the ma
issues one has to deal with when constructing a numerical scheme. Indeed, the distribi
function f (t, x, v) is constant along the characteristic curves, which become close, so t
phase space regions whefét, x, v) has different values come close together and stee
gradients are generated. At some time in the simulation, the phase space grid become
coarse to follow these thin filaments. The various gridded methods briefly presented in
introduction have no mechanism to distinguish numerical oscillations and filamentati
The algorithm should effectively be high order in regions of the problem where the conc
of order is related usefully to accuracy, and should control oscillations where gradients
large or where the distribution function goes to zero. The conservative method presel
below is derived from these requirements.

The starting point of our method is the Flux Balance method [6], discretizing the Vlas
equation in the conservative form: we first observe that by a standard time-splitting sche
we can restrict ourselves, without loss of generality, to a one-dimensional problem wh
leads to solving the following problem:

Wt 4+ ut,x)f)=0, V(t,X)e€R" x [Xmin, Xmax- @)

We will assume that@, x) is smooth enough; for example u is Lipschitz continuous. The
we can define the characteristic curves solution of the differential system correspondin
the transport equation:

S (s) = u(s, X(9)),
{ (8)

X() =x.

Letusdenote b (s, t, X) the solution of (8) and define the Jacobils, t, X) = dx X (s, t, X).
In[2], itis proved thatl (s, t, X) is positive for all(s, t, x) € Rt x RT x R, and the solution
of the transport equation (7) can be expressed as

f(t,x) = f(s, X(s,t,x)J(s t, X), 9)

which describes the conservation of particles along the characteristic curves
VK C R, / f(t,x)dx:/ f (s, x) dx, (10)
K X(s,t,K)
where

X t,K)y={yeR: y=X(st,2; zeK}

This property remains true il > 1. Now let us introduce a finite set of mesh points
(Xi+1/2)iel Of the computational domaimXgin, Xmax), Which we will denote byAx =
Xit1/2 — Xi—1/2, andC; = [Xi_1/2, X +1/2]. Assuming the values of the distribution function



170 FILBET, SONNENDRJCKER, AND BERTRAND

are known at timeé" = nAt, we find the new values at tim&*! by integration of the
distribution function on each subinterval. Thus, using the conservation of particles (10) ¢
recalling that the Jacobian function— J(t", t"**, x) is positive, we have

Xiy1/2 XAt X 41/2)
/ f ("L, x)dx:/ f(t", x) dx.

Xi—1/2 X"t X _1/2)

Then, we set

Xit1/2
@i 1/2(t") =/ f (", x)dx

XAt X 1/2)

to finally obtain the conservative scheme

Xi+1/2

Xiy1/2
[ rerdx = o + [ R0 G, @)

Xi—1/2 Xi—1/2

The evaluation of the average of the solution over {2, Xi+1/2] allows us to ignore small
details of the exact solution which may be very costly to compute.

In general, we cannot explicitly compute the characteristic curves; we need to introdi
a time discretization of (8). Using a second-order leap-frog scheme, we obtain a fixed p
problem, where we look fox" = X (t", t"+1, Xit1/2) such that

Xii1/2 — XN — Atu(t”+1/2, Xn+l/2)’
{tn+1/2 =th 4+ %’ x+1/2 — Xi+1/22+x”’
which can be iteratively solved. Note that most of the time in kinetic transport equatior
the time-splitting scheme allows us to avoid this situation since the characteristic cur
become straight lines.

The main step is now to choose an efficient method to reconstruct the distribution funct
from the values in each ce@;. In [6], E. Fijalkow only used a linear interpolation, but
this method does not give a positive scheme and does not control spurious oscillati
The method proposed by Boris and Book [3] or the use of classical slope limiters is 1
dissipative to give an accurate description of the distribution function. Here, we shall us
reconstruction via a primitive function: I&(t", .) be a primitive of the distribution function
f(t", .), which we denote by

1 Xiy1/2
fh = X f(t", x)dx.

Xi—1/2

Then we have= (t", x;11/2) — F(", Xi_12) = AXf", and

i
F(tn, Xi+1/2) = AXZ fkn = wi”.
k=0

In the sequel, the time variabi® only acts as a parameter and will be dropped. We prese
two different methods of reconstruction.
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2.1. The ENO Reconstruction

The ENO (essentially nonoscillatory) method has been introduced by Harten and O«
in [7]. It is often used for the discretization of hyperbolic equations and allows the cont
of spurious oscillations. Unlike classical conservation laws, the Vlasov equation solut
does not develop any shock, but stiff gradients appear in the phase space. Thus, the
reconstruction seems to be useful for treating this problem. We first recall the divic
difference formula which plays an important role in this method:

E _F [Xit3/2, - - Xivprr2] — F[Xity2s -0 Xitp-1/2]
[Xi+1/2, Xi4+3/2, -+ Xi+p+1/2} = Xitpi1/2 — Xir12 )
i+p i

(12)
F[Xi412] = F(Xiz12) = wi.
It also satisfies the properties
o If F(X) € CP([Xi11/2, Xi+pr1/2]), then
1 dPF
I e (Xi+1/2’ Xi+p+1/2)’ F [Xi+1/27 Xi+3/25 - Xi+p+1/2] = Eﬁ(f)-

o If the k-th derivative of F(x) is discontinuous with G k < p on the interval
[Xi11/2, Xi+pr1/2], then

F [Xi+1/2, X372, - - Xitpr12) = O(AXKP) [w®],

where p®] represents the jump of tHeth derivative. The ENO reconstruction consists
of choosing the stencil for which the approximation is the smoothest, i.e., for which t
divided difference is the smallest in module: on the interxaly,, X +1/2], we first define
01(x), the polynomial of degree one, interpolating the functioix) at xi_1/2> andx;t1/2,

Wi — Wi—1
X) = wj_1 + (X — Xi— —_—
01 (X) i—1+ ( i—1/2) Ax
and we setl; (i) = i. Let us assume that we have constructed the polynomial of d&grec
interpolating the functior (x) at the points
Xd(i)=1/25 «  + » Xay(i)+k—1/2-

To find the polynomiaty.1(X), we considek + 2 points obtained by adding to the previous
ones the first point on the left or on the right, and choose the point for which the divid
difference is the smallest:

’

Aherr(i) = o) — 1 if |F [Xaei)=3/2: - - - » Xty +k—1/2) | < |F [Xeti)—1/2: - - » Xekeir +kr1/2]
k1 d () else

We continue the algorithm until we reach the order we want.
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PROPOSITION2.1. Let us assume the function(® is r 4+ 1 continuously differentiable
and define its piecewise polynomial approximation denotedloy)Such that

VX € [Xi—1/2, Xiz1/2),  Fn(X) = g (x),

where q(x) is the polynomial of degree r constructed by following the previous metho
Then

k
o $F00 = GE00+0(Ax k), 0<k<r,
o O (Xj412) = F(Xj41/2), V] €{br)-1/2, -, Oriiysr—1/2},
e 0 (x) is an essentially nonoscillatory reconstruction in the sense that

T™a ()] < TMF()] + O(AX" ),

where the total variatiorfTV) of a function K.) is the number given by the following limit
. 1
TVF()] =limsup- [ |[F(X+¢&) — F(X)|dx.
e—>0 €&

The last inequality implies that spurious oscillations are controlled at the ordet
(see[7]). Fromthis high-order-accurate reconstruction, we can define the gdaniigy(t")

by

Xit+1/2

i 12(t") = / f (" x)dx = Fn(Xi+1/2) — Fa(X(t" " Xi41/2)).
X

(Nt X4 10)

This method has been implemented up to the fourth order. It is not positive but allows u:
control spurious oscillations.

2.2. The Positive and Flux Conservative Method

As before, we use the reconstruction via primitive function, but the stencil is now fixe
To ensure the preservation of positivity and the maximum principle, we introduce a slc
corrector. Indeed, it is only by sacrificing the high order requirement when the gradie
are very steep that we can hope to obtain a positive algorithm. In the following, we den
foo = Maxje { fj}.

The Second-Order Approximation

Let us assume for simplicity the propagating velocity, x) is positive. Then we build a
first approximation on the intervaki_1,2, Xi11/2] using the pointgx _1/2, Xi+1/2, Xi+3/2};

firr— fi
AX

~ 1

Fr(¥) = wi—1 + (X — Xi—12) fi + > (X = Xi—1/2) (X — Xi41/2) ,
wherew; — wij_; = Axf;. Thus by differentiation we obtain a second-order-accurate a|
proximation of the distribution function on the interval [1/2, X +1/2]:

fiyr — fi

. dF
fa(x) = d—)(“(x) = fid (= x) =
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But this approximation does not satisfy the maximum principle, and spurious oscil
tions may occur. So we introduce a slope corrector,

- fmin(L; 2fi /(fiyr = ) if fia—fi >0, (13)
PTmin: —2(fe — f)/(fia— fi)) if fi— fi <0,

and finally obtain the following approximation:
fo(X) = fi + & (X —X)————, Vxe [Xi—1/2, Xi41/2] - (14)

From this construction, the following proposition is obvious.
PrOPOSITION2.2. The approximation defined i§§4) satisfies

e The conservation of the averader alli € I, jx‘“/z fh(X)dx = Axf;,

Xi—1/2

e The maximum principldor all X € (Xmin, Xmax), 0 < fa(X) < fwo

Moreover if we assume the total variation of the distribution functi¢x) fs boundedthen
we obtain the global estimate

*Xmax ~
/ |00 — Fa00ldx < Ax Y (1 —e)lfiys — fil < TV(F)Ax,
Xmin i

Now we can define an approximation of the fldx,q,(t"). We first find the cellC;
suchthaX (t", "1, X 11,2) € Cj and sety = Xj1/2 — X(t", t"*1, xi;11/2), which satisfies
0 <o < AX.Then

Xit+1/2
@i 12(t") =/X f(t", x) dXx = ¢ {f + —= 5 (1— )(fJH— fi )} + AX Z fi.

j+127 k=j+1

By symmetry, we find an approximation®f_,1,»(t") when the propagating velocityu x)
is negative. We set; = Xj_1» — X(t", tn+1 Xit+1/2), and then-Ax < «; < 0O and

Xit1/2 -1
q>i+1/2(tn):/ . f(tn X)dX—Ol| |:f —E<1+—>(f - fj 1):| +AX Z fk,

Xj-12 k=i+1

wheree; is given by

(- {min(l; 2(fp — £))/(fj — f;_1)) if f; — fj_1 >0, (15)

min(l; —ij/(fj — fj_l)) if fj — fj_l < 0.

Third-Order Approximation

We now extend the previous method for the third-order reconstruction. On the inter
[Xi—1/2, Xi+1/2], we use the stencilx _s/2, Xi—1/2, Xi+1/2, Xi+3/2} t0 approximate the primi-
tive, and as before, we introduce a slope corrector to finally obtain faralC;,

+

EI
B6AX2

fh(x) = fi + [2(x — X)) (X = Xi—3/2) + (X — Xi—1/2) (X = Xiz1/2) ] (fisa — fi)

[20x — %) (X = Xit3/2) + (X — Xi—1/2) (X — Xiz1/2) ] (fi = fi_1), (16)

4G
B6AX?
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with
o= {mfn(l; 2fi/(fis1 = ) = fi >0 an
min(l; —2(fee — fi)/(fiya — f)) if fiyi—fi <O,
and
- {mfn(l; 2toe = B)/(fi = i) 16— iy >0 18)
min(1; —2f/(fi — fi_1)) if fi—fi_1<O.

ProPOSITION 2.3. The approximation of the distribution function, (X) defined by
(16)—(18)constructed using the third-order method satisfies

e The conservation of the averader alli € I, fxx'*l“; fh(x) dx = Axf;,

e The maximum principldor all X € (Xmin, Xmax), 0 < fh(X) < fo

Moreover if we assume the total variation of the distribution functiotxf is bounded
then we obtain the global estimate

Xmax ~
/ [ fh(X) — fh(X)|dx < ATV(f)AX,
Xmln

where f, denotes the third-order approximation of f without the slope corrector.

Proof. Letus considek € C;j = [Xi_1/2, Xi+1/2] and denote

1

a(X) = N [20¢ — Xi) (X = Xi—3/2) + (X — Xi—12) (X — Xi41/2) ]
1

B(x) = [Z(X %) (X — Xisg2) + (X — Xi—1/2) (X — Xip1/2)].

It is easy to check that

/ i+1/za(x) dx — / i+1/2 ﬁ(x)dx _o.

Xi—1/2 Xi-1/2

and the conservation of the average immediately follows. To obtain the preservatior
positivity, assuming the valugd; ) ; are positive, we observe that in the «gl| the function
a(X) is increasing whereg$(x) decreases and(x), 8(x) € [—1, 2]. Then, we splitf,, (x)

as the sum ofi(x) andg(x) with

h(x) = fi + a(zx)E (fiya— fi)| and gx) = = [2f + ﬁ(zx)el_( i — fio)|.

The functionh(x) (respectively ¢x)) is only a combination off; and fi ;1 (respectively
fi_1 and f;). Then from the value o¢" (respectivelye;), it is easy to prove tha(x)
(respectively ¢x)) is positive. Using a similar decomposition, we also prove théx) is
bounded byf.
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Now, we prove the global estimate on the positive reconstruction:

/_max|fh(x>— fh(x>|dx—§:/'+ 200 = ¢ fisz— f]

Xi-1/2
+B)A — ¢ )[fi — fi_a]ldx
< 28X Y (1= eD)figa— fil +2Ax Y (L — )i — fiy

< 4AX Y [fiya — fil < 4AX TV(F).
i

From this reconstruction, we approximate the quartditys/>(t") by looking for the cell
C; such thatX(t", t"1, x;11/2) € C; and settingy = Xj11/2 — X(t", "1, Xi11/2). Then
for a positive propagating velocity, we obtain

o] t") = e fa", x)dx=A i fi + fi + 6j+ 1 ad 2 ad
i = X) dX = AX E il fi+—=—(1—— -
|+1/2( ) /x (t", %) k T |Tj 6 X X

j+1/2=¢ k=j+1

X(fj+1 f)+(1_AX>(1+ )(f _fl 1):|

and when uf, x) is negative, we set; = Xj_1/2 — X(t",t""1, X 112); then—AX <& <0
and

Xit+1/2 +
i 12(t") = f(", =A f f_fl 1A (14 %
i+1/2(t) /X (t", x)dx X Z k+(¥|[ 5 ( Ax)( + Ax)

j—1/2—¢j k=i+1

€ i i
x (f41— f,~)——é<2+ %) <1+ %)(fj - fj—lﬁ'

3. NUMERICAL TESTS

3.1. The Linear Advection

Let us first consider the problem of linear advection:

of of
-0 Wxel[- —7) = .
5 +v X 0, Vxe[-m n], and f(t,—xm)= f(t,7) (29)

Under these assumptions and simplifications. One can Fourier analyze the schemes |
a discrete Fourier transform

P4
=
P4
|
=

fr=>"fre, wherefy =" fle®
0 ]

z-
Il
I
o

Then, the solution of (19) in the Fourier space is given by

fn= foek, (20)
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In general, Eq. (20) is not satisfied by the algorithm, so it is valuable to give the types

numerical error which can occur:

e amplitude errorfﬂ/ fE: the harmonic must decay to stabilize the algorithm, which in
troduces numerical diffusion. These errors are usually most important for short-waveler

harmonics.

e phase errofvt" — Arg( fﬂ/ fE)|: it is generally called dispersion and describes the
error of harmonics which propagate at the wrong speed. The error usually increases:

the wave numbek.

On the one hand, the amplification factor is plotted (see Fig. 1) for the FBM and third-orc
reconstruction without the slope corrector (Part a), and for the semiLagrangian metl

Amplification factor for conservative method

Amplification factor for Lagrange interpolation
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Amplification factor for Hermite and spline interpolations
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FIG. 1. The amplification factor with respect tofor a fixed modek. (a) the classical FBM (crosses) and
third-order reconstruction without slope corrector (solid line); (b) The semiLagrangian method with a Lagrar
interpolation of degree 3 (boxes), 5 (diamonds), and 9 (crosses); (c) and with cubic Hermite polynomial wit
fourth-order approximation of the derivative (boxes); and cubic spline interpolation (solid line).
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Phase error for conservative method  Phase error for L agrange interpolation
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FIG. 2. The phase error with respectdofor a fixed modek. (a) the conservative method for the classical
FBM (crosses) and third-order reconstruction without slope corrector (solid line); (b) the semiLagrangian met
with a Lagrange interpolation of degree 3 (boxes), 5 (diamonds), and 9 (crosses); (c) and with cubic Her
polynomial with a fourth-order approximation of the derivative (boxes), and cubic spline interpolation (solid lin

with Lagrange (Part b), Hermite and cubic spline (Part c) interpolations. Methods us
a smooth reconstruction (Hermite or cubic spline) are less dissipative than ones using
a continuous approximation. To obtain a similar amplification factor with the Lagran
interpolation, a polynom of degree nine is required. The dissipation of the conser
tive method with a quadratic polynom is identical to the cubic Lagrange interpolatic
one. The linear reconstruction used in the (FBM) is the most dissipative. On the ot
hand, the phase error (see Fig. 2) for the semiLagrangian method using a Hermite
construction with fourth-order approximation of the derivative is the most important. T|
cubic spline reconstruction is also less accurate than the Lagrange interpolation of de
nine.

3.2. The Vlasov—Poisson System

In this section, we want to compare different methods and reconstructions for the nun
ical resolution of the Vlasov—Poisson system with periodic boundary conditions,

%+divx(uf)+divu(E(t,x)f) =0, (21)
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coupled with the normalized Poisson equation
E(,x) = —Vyp1,X), —A¢(t,X)= /d f(t,x,v)dv — 1 (22)
R

The time discretization procedure, originally proposed by Cheng and Knorr [5], is bas
on a splitting algorithm and can be used to go from time step t"** as follows.

1. Perform a half time step shift along theaxis: f*(x, v) = (", x — vAt/2, v).

2. Compute the electric field at timi&"1/2 by substitutingf * in the Poisson equation.

3. Perform a shift along the-axis: f** = f*(x, v — E(t"%2, x)At).

4. Perform a second half time step shift along thaxis: f(t"™, x, v) = f**(x —
vAL/2, v).

We now propose classical numerical tests to compare different reconstructions.

A. The Linear Landau Damping in 1D

The initial data are
f(0,x,v) = ie—”2/2(1+acos(kx)) V(x,v) € (O,L) x R
b b - \/Z 9 9 9 b

wherex = 0.01, the periodic length is = 47, andk = 0.5. We are using a number of cells
Ny = 32 in thex-direction, andN, = 16, 32, and 64 in the-direction, withvpax = 4.5,
andAt = 1/8.

Figure 3 represents the evolution of the electric enSryE; (t)|? obtained by the PFC
scheme, the fourth order ENO reconstruction, and the semiLagrangian method using ac
spline interpolation witiN, = 32. The recurrence effect appearsat= 44.68, which is
the theoretical time predicted from the free streaming case Jipce 27/(kAv). The
PFC method first gives a good approximation of the damping rate but when approact
the recurrence time the evolution of the electric field is less accurate, whereas the behe
obtained by the fourth-order ENO scheme and the semiLagrangian method is more stabl
a long time. In this case, the distribution function obtained with different schemes rema
positive, and the relative error norm of variations of the kinetic entrbpyporm, and total
energy always stays less tharr20

In Fig. 4, the basic mode of the electric figkd= 0.5, obtained by the PFC method,
is plotted against time foN, =16, 32, and 64 cells. It shows the exponential decay o
the amplitude of the electric field according to Landau’s theory. The damping rate and
frequency of oscillations obtained by this method with only 32 cells irvtd@ection are
respectivelyy = 0.153 andw = 1.415 which agree very well with valugs = 0.1533 and
w = 1.4156 predicted by the theory. The use of a sufficiently large number of cells alloy
us to improve the time evolution of the electric field and gives good results.

B. The Strong Landau Damping in 1D

In this example, the amplitude of the initial perturbation of the density is increased; \
take for the initial datar = 0.5 andvmax = 6. The number of cells idly = 32 andN, = 64,



NUMERICAL SCHEMES FOR THE VLASOV EQUATION 179

01 0.1

y=40.1533 —

y=0.1533 —
PFC3 -

0.01

0.001

0.001

0.0001 0.0001

1e-05 1e-05

0 5 10 15 20 25 30 35 4 4 0 5 10 15 20 25 30 35 40 45
(a) (b)

0.1

§=0.1533 —
SPLINE -—

0.001

0.0001

te-05

0 5 10 15 20 25 30 35 40 45
(c)

FIG. 3. Time evolution of the electric energy on logarithm scale obtained by the PFC method (a), the four
order ENO (b), and the cubic spline (c) interpolation with>332 unknowns for linear Landau damping.

128. The previous theory cannot be applied because nonlinear effects are too importan
this test has been studied by many authors [8, 10, 15]. Results are in good agreement
numerical simulations presented in the literature: the electric energy first decays expol
tially and is next periodically oscillating. In Fig. 5, the evolution of the electric energy |
plotted for the PFC scheme with 3264 cells, and for the semiLagrangian method using
a cubic spline interpolation with 32 64 and 32x 128 points. The result obtained by the
PFC method is much more accurate than the one obtained by the semiLagrangian me
using the same grid.

Next, we are interested by the evolution of the kinetic entropylahehorms which are
theoretically conserved. The evolution of the discrete enttégy = —>_ fi (t) In (i (t)),
and the discrete.P(t)-norm > | fi (t)|P for p = 1, 2 are presented in Fig. 6 for the var-
ious schemes. The variation of thé-norm represents the rate of negative values sinc
the global mas$, fi(t) is preserved even for semiLagrangian methods. On the one hat
the semiLagrangian method does not preserve positivity, and the amplitude of spuri
oscillations increases when nonlinear effects occur. On the other hand, as is predicte
the Fourier analysis, the conservative method is more dissipative than the semiLagran
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FIG. 4. Time evolution of the first mode of the electric fidklt, k = 0.5) obtained by the PFC method with
N, = 16, N, = 32, andN, = 64 cells for linear Landau damping.

one since the kinetic entropy strongly decreases. The variation of the stencil of the E
reconstruction acts as a smoothing effect, so the dissipation is much more important,
indeed the kinetic entropy is not well stabilized. The entropy obtained by the PFC sche
is at first increasing and then well stabilized, whereas with the semiLagrangian metl
it oscillates. The strong dissipation of the conservative method can be explained by
averaging step; indeed small details of the distribution function are eliminated to stabilize
scheme. As for the distribution function in tlie, v) space, small bumps appear around
the phase velocitw, = w/k. These bumps represent particles which are trapped t
electrostatic waves (see Fig. 7). As a consequence of the entropy decay, the distribt
function is smoothed when filaments become smaller than the phase space grid size. N
theless, this smooth approximation seems to give a good description of macroscopic va
(physics quantities obtained by the integration of moments of the distribution function w
respect ta) since the evolution of the electric energy is more accurate than the one obtail
from the semiLagrangian method using the cubic spline interpolation. Moreover, the val
tion of the total energy is less than 2% for all schemes except for the ENO method, for wh
the variation of the total energy is increasing and the amplitude of the electric energ)
damped. Thus, the ENO reconstruction does not seem to be well adapted to treating nonli
effects.
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FIG.5. Time evolution of the discrete electric energy in logarithm scale for the PFC schem&482a); the
cubic spline interpolation with 32 64 (b) 32x 128 (c) unknowns for strong Landau damping.
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FIG. 6. Time evolution of the discrete kinetic entrody* andL? norms with 32x 64 unknowns for strong
Landau damping.
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FIG. 7. Time development of the spatially integrated distribution function for the PFC scheme (left); tt
fourth order ENO reconstruction (center), and the cubic spline (right) interpolation for strong Landau dampin

C. The Linear Landau Damping in 2D

The initial condition is set to
1 —(v24v2)/2
fo(X, Yy, vx, vy) = o€ (14 o cogky x) cogky y)),

with @ = 0.05. The velocity space is truncatedatx = 6, the wave numbers akg = ky =
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15 2 25 3 35 4 15 2 25 3 35 4 1.5 2 25 3 35 4
v v v

FIG. 8. Time development distribution functiofi(t, x, v) < 0.1 obtained by the PFC scheme for strong
Landau damping.

0.5, and the length of the periodic box in the physical spads;is= Ly = 4. Finally, the
four-dimensional grid contains 64 points per direction and the time step is A¢tt01/8.
Because of the symmetry of the initial data, the evolution of two components of the elec
field is identical. In Fig. 9, we report the evolution of the electric energy obtained |
the PFC scheme and the semiLagrangian method using a cubic spline interpolation.
two methods give an accurate damping of the amplitude of the electric field. The Foul
modes of the electric field obtained by the PFC scheme are plotted in Fig. 10. It shc
the exponential decay of the modeg(t, ky = 0, ky = 0.5) andEx(t, ky = 0.5, ky = 0.5)
with damping rates, respectively,= —0.1533 andy = —0.394, and the frequency of
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Electric energy for PFC Electric energy for SPLINE

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
FIG. 9. Time evolution of the electric energyAx>_; E?)¥2 on logarithm scale obtained by the PFC and
SPLINE methods with 64 64 unknowns for the 2D linear Landau damping.

oscillationsw = 1.4156 andv = 1.6973, which are the theoretical values predicted by th
linear Landau theory.

D. The Evolution of a Beam in 2D

We now consider the evolution of a root mean square (RMS) matched semiGaus:
beam in a uniform focusing channel in the four-dimensional phase space. In this case
Vlasov equation has the form, for all= (x, y) andv = (vy, vy),

of

9t + V- Vi f 4+ (Eserr(t, X) + Eappi(t, X)) - Vy f =0, (23)

whereEsgis the self-consistent electric field given by the Poisson equatiorEagflis a
linear external electric field which allows us to focalize the beam. The initial value of tt
distribution function is

no _v%+v§
2 .
foX, Y, o5, vy) = —————e Zn , ifx>+y?<a?
y (2mvd) (ra?)

and fo(X, Y, vx, vy) = 0, if X2 + y? > a2. The RMS thermal velocity;, is computed such
that the beam is matched (see [11]): we consider the KV-distribution function which is

Time development of £(0.5,0) Time development of E(0.5,0.5)

-7 . T T v -4 r

y=-0.1533 y=-0.394
-8 \ee, .. E(0,0,S) 6 E(05,0.5)
9t Y
-10 | 10k
-1

12 I
-12 |
-13 Bl L A B VA v
.14 BN R TAY.
-15 -18
16 . A R . A 20 . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30

FIG. 10. Time evolution of the basic modds, (0.5, 0) and E, (0.5, 0.5) on logarithm scale obtained by the
PFC method with 64 64 unknowns for the 2D linear Landau damping.
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FIG. 11. Time development of (a¥—v, projection, (b)v,—v, projection, (c) slice of charge density, and
(d) slice of the total electric field obtained by the PFC method.

stationary solution of the Vlasov equation (23) and the self-consistent electric field is lin
with respect to the variable. Then

ESe”(ta X) + Eapp|(t, X) = —a)ZX.

And the initial data are

X2 y2 V2 V2
fo(X, V) =8¢, withC =<{ == + = X A
0%, V) = ¢ R Py NN
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TABLE |
Total Computation Time for PFC3 and SPLINE Methods with Respect
to the Number of Processors for a Grid Size 64 64 x 64 x 64 Points

Number of processors PFC scheme SPLINE method
2 4 h 30 min 6 h 20 min
4 2h 11 min 3h07 min
8 56 min 84 min

Then, the RMS values are given by

= 2fdxdv — J vz fdxdv

TN T fdxav & \ [ fdxav 7

— 2 fdxdv — Jv2fdxdv

2 = 7f y =A 2, LY T 7 HA

Y=\ T fdxav Vi \ T faxav O
Now, for the semiGaussian beam, the initial self-consistent electric field can be ea:
computed since it is also linear in Then, we take

x2=y2=a%/4, vi=12= v_§ = w?a?/4,

andw? represents the difference between the initial self-consistent electric field and the lin
applied fieldE;pp(t, X) = —w?x. In this example, we have choserandw, such that the
tune depression/we = 1/2. The beam density, can be written with respect to the current
| and the beam velocity,, byny = 1 /quy. The beam is assumed to be composed of ionize
particles of potassium, the curreint= 0.2A, the beam velocity, = 0.63 x 10° m/s, and
the radius of the beam &= 0.02 m. We compare the evolution of the beam obtained b
the PFC algorithm using the third-order positive reconstruction with the semiLagrangi
method using the cubic spline interpolation (see [14]).

In Table I, we present the total time computation for the semiLagrangian method and
PFC scheme. It is evident that the PFC scheme is faster than the semiLagrangian me
since the reconstruction is local. Contour plots of the phase space projections as we
slices of the charge density and the electric field obtained by the PFC method are gi
in the following figures. We notice that the beam at first becomes hollow, then regions
high density propagate to the core of the beam and out again, creating space charge w
These waves are damped by phase mixing after a few lattice periods. Results obtaine
the PFC method seem to be very close to those obtained by the semiLagrangian meth

4. CONCLUSION

In this paper, we introduced a new method to solve the Vlasov equation using a ph
space grid. This method enforces the conservation of the global mass (or the numbe
particles) and controls numerical oscillations using the stencil variation technique (EI
reconstruction) or the preservation of positivity (PFC). Moreover, it allows us to treat stro
nonlinear problems without numerical instabilities. On the one hand, numerical rest
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show that the ENO approximation is too dissipative to accurately describe the distribut
function, because the entropy and tifenorm are strongly decreasing. On the other hanc
the PFC scheme is almost as accurate as the semiLagrangian method using a cubic
interpolation, and the preservation of positivity allows us to have a better description
macroscopic values like the charge density or the electric field over time. Moreover,
local reconstruction is well suited to doing parallel computation in high dimension.
Using today’s supercomputers, this method appears to be a good alternative to the
methods for dealing with strongly nonlinear problems in two- or four-dimensional pha
space when little noise and high precision is needed. Moreover, we have been able to per
toy simulations in the six-dimensional phase space and itis likely that the next generatio
supercomputers or the use of many computers distributed over a network will soon en
us to perform physically relevant simulations on a five- or six-dimensional phase space
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