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CONVERGENCE OF A FINITE VOLUME SCHEME FOR THE
VLASOV-POISSON SYSTEM*

FRANCIS FILBET?

Abstract. We propose a finite volume scheme to discretize the one-dimensional Vlasov—Poisson
system. We prove that, if the initial data are positive, bounded, continuous, and have their first
moment bounded, then the numerical approximation converges to the weak solution of the system
for the weak topology of L°°. Moreover, if the initial data belong to BV, the convergence is strong

in C’O(O7 T, Llloc)‘ To prove the convergence of the discrete electric field, we obtain an estimation in

W12 (Qr). Then we have

fn(t,z,v) = f(t,z,v) in L (Qr) weak-x as h — 0,
Ep(t,z) — E(t,z) in C°(Qr) as h— 0,

where (E, f) is the unique weak solution of the Vlasov—Poisson system.
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1. Introduction. The Vlasov—Poisson system is a model for the motion of a
collisionless plasma of electrons in a uniform background of ions and describes the
evolution of the distribution function of electrons (solution of the Vlasov equation)
under the effects of the transport and self-consistent electric field (solution of the
Poisson equation). The coupling between both equations gives a nonlinear problem.

The numerical resolution of the Vlasov equation is most often performed using
particle methods (PIC), which consist of approximating the plasma by a finite number
of particles. The trajectories of these particles are computed from the characteristic
curves given by the Vlasov equation. The interactions with self-consistent and external
fields are computed by a numerical method using a mesh of the physical space (see,
e.g., Birdsall and Langdon [2] or Cottet and Raviart [5]). This method enables us to
get satisfying results with few particles.

Methods relying on a discretization of the phase space have also been proposed
(see, e.g., Shoucri and Knorr [15] and Klimas and Farrell [11]) and seem to be more
efficient in some cases, for example, when particles in the tail of the distribution play
an important physical role, or when the numerical noise due to the finite number
of particles becomes too important. Among them, the semi-Lagrangian method [16]
consists of directly computing the distribution function on a grid of the phase space.
This computation is done by following the characteristic curves at each time step and
interpolating the value at the origin of the characteristics by a cubic spline method.

This interpolation method works well for simple geometries of the physical space
but does not seem to be well suited to more complex geometries.

To remedy this problem a possible approach is to use the finite volume method
which is known to be a robust and computationally cheap method for the discretization
of conservation laws (see, e.g., Eymard, Gallouet, and Herbin [9] and the references
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therein, and see Vignal [17]). Finite volume schemes have already been implemented
to approximate the solution of the Vlasov equation coupled with the Poisson equation
(we refer to Boris and Book [3], Cheng and Knorr [4] and, more recently, Mineau [13])
and with the Maxwell system (see the paper of Fijalkow [8]). The purpose of this
work is to prove the convergence of a finite volume scheme for the simplest model
problem in plasma physics, namely, the one-dimensional Vlasov—Poisson system with
periodic boundary conditions (with respect to the space variable).

Before precisely describing the problem considered here, let us mention related
papers where the convergence of a numerical scheme for the Vlasov—Poisson system
is investigated. Cottet and Raviart [5] present a precise mathematical analysis of
the particle method for solving the one-dimensional Vlasov—Poisson system. We also
mention the papers of Wollman and Ozizmir [19] and Wollman [20] on the topic.
Ganguly and Victory give a convergence result for the Vlasov—Maxwell system [10].
Schaeffer [14] proves the convergence of a finite difference scheme for the Vlasov—
Poisson—Fokker—Planck system, but he discretizes the transport part by a character-
istic method and assumes the initial data are three times continuously differentiable.
In fact, to the best of our knowledge, no convergence results seem to be available
in the literature concerning the numerical resolution of the Vlasov equation by an
Eulerian method.

We now recall the Vlasov—Poisson system. Setting 2 = (0, L) and Qr = (0,T) x
(0, L), denoting by f(t,z,v) the distribution function of electrons in the phase space
(with mass normalized to 1 and the charge to +1), and denoting by E(t,x) the self-
consistent electric field, the Vlasov—Poisson system reads

(1) %+v%+E(t,x)% =0, (t,z,v) €(0,T)x(0,L) xR,
OF

2 Getta) = [ Fltade =1, (0a) € 0.7) % (0.D),

with positive initial data

(3) £(0,2,v) = fo(z,v), (z,v)€(0,L)xR.

We impose periodic boundary conditions in z,
(4) f(t,0,0) = f(t,L,v), (t,v) €[0,T] xR,

together with the global neutrality of the plasma,

L
(5) %/0 /Rf(t,m,v)dvda: =1, tel0,T].

In order to completely determine the electric field E(t,z), we add a zero-average
electrostatic condition

(6) /OL E(t,2)dz =0, tel0,T),

which amounts to assuming that the electric potential is L-periodic.

We first present an upwind finite volume scheme computing the fluxes on the
boundary of each cell of the mesh. We obtain the scheme (15) and approximate the
electric field using the Green kernel.



1148 FRANCIS FILBET

From an L estimate on the first moment of f;,, we obtain a bound on the discrete
electric field in W1, We next give a weak BV inequality which will be useful for
the convergence of the approximation to the weak solution of the Vlasov—Poisson
system. We also prove that if the initial data belong to BV, the approximation
remains bounded in BV. From these estimates, we prove

frt,z,v) = f(t,x,v) in L®(Qr) weak-x as h — 0,
En(t,z) — E(t,z) in C°(Qr) ash — 0,

where @ = (0,L) xR, Q7 = (0,T) x (0, L) x R, and (f, F) is the unique solution to
the Vlasov-Poisson system.

Moreover, if fo belongs to BV (Q), then we prove that the convergence of fj, is
strong in C°([0,T); L, .(Q))-

loc

2. Regularity and discretization of the Vlasov—Poisson equation. There
is quite a number of articles addressing the existence problem in high dimension;
see the survey papers of Batt [1] up to 1984 and of DiPerna and Lions [7] for more
recent results. Zheng and Majda [21] prove the existence of a solution with a measure
as initial data for the one-dimensional case with periodic boundary conditions in z.
We mention in particular that Cooper and Klimas [6] proved the global existence and
uniqueness of a continuous solution f (¢, z,v), with E(t, z) having a bounded derivative
%—f, if the initial data fo(z,v) are continuous and their first moment is finite; in other
words, there exists a positive function R(v) which is decreasing in |v| such that

L
3C >0, fo(z,v) <CR(v), and / / [v| R(v)dvdz < +o0.
o Jr

On the other hand, the result of DiPerna and Lions [7] utilizing “velocity averaging”
implies the existence of a renormalized solution if fo(z,v) is assumed to satisfy the
weak condition fylog™ fo € L'((0,L) x R).

In this paper, we assume the initial condition is continuous and belongs to L (Q)N
LY(Q). For simplicity we will consider

1 .

Then, applying the result of Klimas and Cooper, the system (1)—(6) has a unique
weak solution: the coupling of functions (f, E) satisfies f(¢,z,v) € C%(Qr), E(t,z) €
Whee(Qq) and, for all ¢ € C2°(Qr),

dp Oy dp _
/Tf (E + Vo + E(t,x) %> dxdvdt + /Qfogo((),m,v)da:dv =0,

and the electric field E(t, z) is given by the Poisson equation

OE
%(t,x) :/Rf(t,xm)dv — 1.

In order to compute a numerical approximation of the solution of the Vlasov—
Poisson system, let us define a Cartesian mesh of the phase space My, consisting of
cells, denoted by C; ;, 1 € I ={0,...,n,; — 1}, where n, is the number of subcells of
(0,L) and j € Z.
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My, is given by an increasing sequence (7;_1/2)ie{o,...,n,} Of the interval (0, L)
and by a second increasing sequence (v;_1/2)jez of R.

Let Aw; = x;41/2 — x;—1/2 be the physical space step and Av; = v;y1/2 —vj_1/2
be the velocity space step. The parameter h indicates

h = maX{AZ‘“ A’Uj}.
1’3]

We assume the mesh is admissible. There exists a € (0,1) such that

(7) Vh>0V(i,j) eI xZ, ah<Az;<h, andah<Av;<h.

Finally, we obtain a Cartesian mesh of the phase space constituted of control volumes
Cij = (Ti—1/2,Tiv1/2) X (Vj_1/2,Vj41/2) fori€ [l and j€ Z.

Let At be the time step and t™ = n At. We set the discrete initial data fi(fj =
ﬁ Jo. . folz,v)dzdv or fioj = fo(xi,v;), where x; (resp., v;) represents the middle
2,7 1, I

of [%71/2733”1/2] (resp., [Uj71/27Uj+1/2])-
The finite volume method consists of integrating the Vlasov equation on each
control volume of the mesh, approximating fluxes on the boundary,

1 1
O o, 1ot =g [ S0
v i, 7 i,

1 n n n n
(8) - m( M2 — Giijeg H Ve — iii1ye)
where ¢7,, 5 ; and ¢, ., 5 denote the fluxes on the boundary of the cell Cs j,

" e,
¢17’L+1/2,j = [n / vf(t,le/g,v)dvdt,

Vj—1/2
g+l

Tit1/2
Wonp= [ [ Bt St e

i—1/2

We approximate the fluxes qbfﬂ /2] and ¢?j 41/2 by the discrete fluxes (;Ezﬁrl /2,] and

wfj +1/2 with a simple upwind scheme

oy ={ a0
5 V3 Jiv1,5 j )
and
o { AtAz; B f;  if B} >0,
L2 T At Ax EP fP L, i BP <0,

where E}' is an approximation of the electric field on [x;_1 /2, Z;11/2] given below by

computing an approximate solution of the Poisson equation. The value f}"; is assumed

to approximate the average of the Vlasov equation solution on the control volume C; ;.
Thus, we obtain the discrete version of (8),

n n 1 an an n n
(9) f@fl = fi,j - |C | (¢i+1/2,j - ¢i—1/2,j + wi,j+1/2 - 1r/)i,j—l/Z)'
3
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To complete the scheme, we impose periodic boundary conditions on x (the values
fIy; and f! . represent an approximation on a “virtual cell”):

neg = foy v =0,
[l = fa,oy iy <0
In order to work with a bounded domain, we will truncate at |v| = vy, (vp, sufficiently

large which will go to +-00 as h — 0). Then we set J = {j € Z; |v;41/2| < v} and
impose

Vijpre =0 V(i,j) € IXZ\J

Thus, we are able to define the numerical solution approximating the solution of the
Vlasov equation on Q1 = Q7 x R by

n : n 4n+1 Poa
_ ro it (G e,v) € [t ) x Gy oand (i,5) € T <,
Int, ;) { 0 if |v| > vp,.

Computing zeroth and first order moments in v, we define the discrete charge and
current densities for (t,z) € [t", t"T1) x [Ti1/2, Tiy1)2):

,Oh(t,l') = /fh(tvxvv)dv = ZAUj fir,bj = p?a
R

JEZ
Jgn(t,x) = /vfh(t,xm)dv = ZAUj v fi'; = Ji
R JEZ
To define a continuous approximation of the electric field, we set

B _ _ t_tn " n n+1
pr(t, ) = <1 A >ph(b‘ @) + e et @),

Now, we are able to explicitly solve the Poisson equation by the corresponding kernel

-1 ifz<y< L,
K(r,y) =

Sl e

fo<y<cz

and give the discrete electric field Ej, which is continuous in (¢,z) and piecewise
linear,

L
(10) Byt z) = / K(z.y) (ou(t.y) — 1)dy.

For example, we may consider the approximation on (z;_1/2, Zi41/2), taking the value
of the discrete electric field in the middle of the cell,

1 Tiy1/2
El' = Ep(t", x;) = M}/ Ep(t", z)dz,

i—1/2

L
(11) - / K(ziy) (on(t"y) — L)dy.
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We shall now prove the following theorem of convergence for the numerical approxi-
mation.
THEOREM 2.1. Let fo(x,v) be positive, continuous, and such that

(12) I3C >0; folz,v) <CR@W) for (z,v)€qQ,

where

1 .

Let My, be a Cartesian mesh of the phase space and At be the time step satisfying the
CFL condition. Then there exists £ € (0,1) such that

At n o
(13) M(Avj lvjl + Az |[E) <1-¢ V(i,j)€IxJ Vn.

If we consider the numerical solution given by the scheme (9), denoted by fp(t,z,v),
and the discrete self-consistent field Ey(t,z) given by (10), then we have

frlt,z,v) = f(t,x,v) in L°(Qr) weak-* as h — 0,
En(t,z) — E(t,x) in C(Qr) as h — 0,

where (f, E) is the unique solution to the Viasov-Poisson system (1)—(6).
Moreover, if fo belongs to BV (Q) and the time step satisfies the CFL condition,
then there exists £ € (0,1) such that

At

(14) 7

(lv;| +|EM) <1—€ V(i,j) €I xJ Vn>0.
Then, the convergence of fy, is strong in C°([0,T]; L},.(Q)).

REMARK 2.1. The main idea of the proof is to estimate zeroth and first order
moments to have a bound of the discrete electric field in W1H>°. Then we use a
compactness argument to prove the strong convergence. For the discrete distribution
function an L™ estimate is sufficient to have the weak-x convergence.

If the initial data belong to BV (Q), we are able to show that fr(t) remains bounded
in BV (Q) and to prove the strong convergence.

3. A priori estimates. In this section, we will give some properties satisfied
by the numerical approximation as well as by the solution of the continuous problem.
We can check that if the velocity step Av; = Av for all j € Z, the numerical scheme
preserves zeroth and first order moments. We will first prove a time decreasing prop-
erty on fQ d(fr(t,z,v))dxzdv for all convex functions ¢, which allows us to have a
maximum principle on f5(¢). We will also give an L™ estimate on the electric field
Ep(t). Then, in Proposition 3.2, we will obtain a uniform bound in x on f, in order
to obtain an L estimate on the first moment and a W estimate on the discrete
electric field.

PROPOSITION 3.1. Let us assume there exists a convex function ¢ such that

[ [ otsute iz < oo
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Then, under the stability condition (13), the numerical solution is well defined and
satisfies

L L
vVt e RT,7 >0, / / O(frn(t+ 7, 2,0))dedv < / / O(fr(t, z,v))dxdv.
0o Jr o Jr
Moreover,
Bu(t, 2)) < %L W(t,z) € RT x (0.L).

Proof. Using the scheme (9), we explicitly write the value of the numerical solution
at time t"*! in terms of the values at time t™,

) Bn vt -
= (1—At<m+—| |)> n +At¢ no AP

Az;  Av; Ag; ' A g
EM* B
(15) + AL+ At 15
AUJ‘ J Av Vj ’jJr
where we use the well-known notation r* = max(r,0) and r~ = max(—r,0). Under

the stability condition (13) the discrete distribution function fi’f;rl could be written as
a convex combination of f";, fi'y ;, fi%q ;. [i'j—1: [i'j+1; then considering an arbitrary

convex function ¢, we have

n +
0) o(r) < (18 (2 + 55 ) () + arga(rry)

n+ En—

o(f-1) + AtA o(f741)-
J

v E
+Atfxi¢( ) + At .

Then it follows for all n € N that

L
/O /qu(fh(tnﬂ,m ))dmdv—ZAmlAqub 5 ZAmlAvqu(f”)

//¢fht x,v))dzdv.

Now, let us prove that the discrete electric field is bounded. The argument is the
same as in the continuous case: For (¢,z) belonging to Qr,

L
|En(t, )| = ‘/0 K(x,y) (pn(t,y) — 1)dy

/nydy

L I 3
<Kz [ pnlt, y)dy+§<L+§ = 5L
0

/ K (x,y) pu(t,y)dy| +

Note that the electric field is uniformly bounded in time. O
REMARK 3.1. As a consequence of Proposition 3.1, we consider ¢(r) = r— (resp.,
o(r) = (r—||follL=)") and the initial data is positive (resp., bounded). Then we obtain
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that fy, is also positive (resp., bounded). We know the LP norm of the Vlasov equation
solution is preserved over time, but this property does not seem to be satisfied by the
numerical approzimation; indeed, if we take ¢(r) = |r|P, we are only able to prove
that the LP norm is decreasing (this simple scheme is dissipative).

Now, let us give a uniform bound in (¢,z) on fj, and an estimate on first moments

pr and jp,.
PROPOSITION 3.2. Assume that 0 < fo(z,v) < CR(v) = ﬁ for some X > 2.

Then, there exists a constant Cp depending only on T, L, and fy such that
0 < fu(t,z,v) < Cr Ru(v), (t,x,v) € (0,T) x (0,L) xR

where Ry (v) = m for v € [Uj_l/Q,Uj+1/2), jEZL.
For h small enough there exists Cp > 0,

(17) 0<pn(t,z) <Cr, |jn(t,2)| < Cr, (t,z) € Qp.
Proof. Notice that there exists c¢o = co(a, A) such that

Rp(vj+p)
Rp(vj)

Then we set A = (1+ %L coAt) and can easily check that, taking

<1l4¢yAv; forf=—-1lorl.

fgj |C7J| / fo(z,v)dzdv  or fgj = folzi, vy),
we have f5,(0,z,v) < A°C Ry,(v).

If we assume that f5(t",z,v) < A™ C Rp(v), using the numerical scheme (9), we
obtain

ntl mn n 77.
f + l_AtA’Uj |’Uj|+Ax7,|El | f%] +At ’U; im1,4
C Rh(vj) Az;Av; C Ry, (vj) Az; C Rp(vj)
Pt S BT JGe Balyioy)

Aml CR}L(’UJ) Av; CRp(vj—1) Rn(vj)

AUJ ORh(UJ+1) R (vj)

nf

Under the CFL condition (13) and using the property of Ry (v), we have
Iy il 1B7| vl B
1— At L+ A" 4+ At A" + At~ A" (1 A
C Rp(v;) = < (Axi + Avj >) + Ax; + Av; (1+co Avy)
< A" (1 + cho At) = A"FL

Finally,
fn+l

< An+1
C Ry (v))

V(i,j) € I x Z,

For a finite time T and for all n € {0,...,T/At}, A"l < e Then, as in the
continuous case, there exists a majorizing function of the discrete distribution

fr(t,z,v) < Cr Rp(v) for (t,z,v) € Qr.
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In order to prove the inequality (17), we observe

A’Uj h
fortoe =SSt < 23

jEN

<h+1/L < 4o
- a Jr (1+ o)A .

For h small enough, there exists a constant Cr depending only on fy, o, T, L such
that

1

pu(t,x) = /th(t,x,v)dv < Cr <h + _/R dv

(1 +Jv)?

)<—|—oo
«

and

. 1 dv
(el < [l < Cr (he 3 [ Gt ) <o o
3.1. Estimation for the derivatives of Ej. In Proposition 3.1, we have al-
ready seen that Ej is bounded in L. Now we give an estimate on the derivatives.
PRrROPOSITION 3.3. Under the same assumptions as in Proposition 3.1, for h
sufficiently small, there exists a constant Cr, which depends only on the initial data
and on the domain, such that

6Eh 8Eh
- - < .
(t,x)‘ + ‘ r (t,x)‘ Cr, (t,z)€Qrp

Proof. We first give an estimate of the derivative in x, which is explicitly given
in the distribution sense by the Poisson equation: let (¢,z) € Qp; then there exists
n € {0,...,T/At} such that ¢ € [t", ¢"+1),

OFE},

T (@) | = | i) — 1] < |pulte)| + 1

t—1t" t—t"
<(1- t" tnt 1.
(1= 50 ) ontene) + S (e a) +

By Proposition 3.2, it follows that

OF
S (ta) ’ <Cr Y(tz)eQr.

OE}

To obtain an estimate of , we define a new approximation of the current density
denoted by ju(t, ) for (t,x) € [t", ") X [x;_1/2, Tis1/2),

- - g, —gn
Jnt,z) = 5"+ (z — $¢—1/2)71+Am =,
K3

with
B = Ay (v 17— vy flay)
JEZ
and j, € L™ (O,T;WL‘X’(Q)). Recalling that p;, defined previously belongs to the

space W1 (0,T; L>(2)), we notice that integrating (9) with respect to v yields, as
in the continuous case,
9pn djn
V(t Q) —(t —(t =0.
(7'7;)6 T, at(am)+ ax(am)
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Now,

3Eh Ph
¢ ¢ /Kwy)a—ty / K(z,y) 2 ( y)dy
1

::—anx>+lhé It )y

and observing that |j'| < [ + [j|, Proposition 3.2 allows us to complete the
proof. O

3.2. Weak BV estimate for f;. The following lemma will be useful to obtain
the convergence of (Ej, fr) to the Vlasov equation solution.

LEMMA 3.1. Under the stability condition (13) on the time step and the condition
on the mesh (7), assume the initial data belong to L'(Q) N L*(Q). Consider R > 0
and T > 0 with h < R and At < T. Let jo,j1 € Z and Ny € N be such that
—R € (Uj071/27vj0+1/2)’ R € (Uj171/27Uj1+1/2)7 and T € ((NT — 1)At,NT At) We
define for all Lipschitzian functions ¢ : RT — RT

EFlh Atzz Z szAUJ

n=0 icl j=jo

¢( zg) o( in—l,j)| +Uj_ | ( 171]) = o( ﬁ-lj)'

(18) +EMo(f) — o) + EF lo(f7) — ¢(ffj+1)|]
and
(19) EFon(¢) = At Z 3 Z A:;;ZAUJ‘ () = o7

n=0 i€l j=jo

Then, there exists C > 0 depending only on T, R, fo,a, & such that
(20) EF1,(¢) <ChY? and EF(¢) < C At/

Proof. Let us begin by first proving the result for ¢(r) = r. Multiplying the
scheme (15) by Axz; Av; f}; and summing over i € {0, R 1}, je {jo, e ,jl},
and n € {0, . ,NT}, it follows that

B1 + By =0,
where

ZA%AUJ IR AR

n,4,j

BZZAtZ A’UJ'U;_ [f’LT,L_] i— 1]]fzg+AUJ 7 [fi??j_ ﬁl—l,j]fﬁj

n,t,J
+Axi E?+ [f’LT,L_] ,j 1]fzg+ Axl En_ [fn ir,lj—i-l]fir,lj
Noting that
n n 1 n
I = Ay =~ U = i = S + 52,
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then

= —— Z AmeAUJ n+1 - f’L]]

n,i,j

__ZAxZAUJ )? ZAQ;ZAUJ (fNrt1)2,

By scheme (15), we have

Z Az; Avj [ f] "+1 I ]2

n,i,j

Av; U;'_ [finj i— 13] + Avjv b [fznj - ﬁ-l,j]

- Z szAv

n,4,j

2
+Am1Ezn+ [fﬁ] z] 1]+A$ZEn [flr,L]_ ir;Lj+1]‘| :
Using the Cauchy—-Schwarz inequality and the stability condition (13),

1 n n n
By > —§At(1 -§) Z lAUj U;'r [fiy — fir 1;] + Avjv; [fi — i+1,j]2

n,%,J

+A$1En+ [flj 1] 1] + Az B [fiT,Lj_ Z}j+1]2‘|

1
— 5 Z A(El‘A’l}j( 0
/L7J

We now study the term By, which may be rewritten as

By = %Atz

n,%,J

Doy f [ = Fia Aoy [ = Fla

+ Az; BT (i = i P+ Az B [fi — £j+1]21

+ = Atz

nz

Ay B ((f75,)7 = (f15,-0)%] + Bas BY[(f15,)7 = (fi’fj1+1)2]]-

Then, since By + B2 = 0 the following inequality holds:

Aty

n,%,J

Av; U;'r [fznj - fin—l,j]2 + Av; Uj_ [f’Lnj - fﬁ-l,j]2

+ Az B} (7 - f[,bj—l]2 + Az B[ - f£j+1]2]

< = ZAxlAvj 2 ZA% [E|[( ZIJO 1)2 + (f£j1+1)2]
i,j

1
<> [ |fa(0)Pdedv + = ||fo||%oo 1Bl or) =
Qr 3

K
S 3
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The value K does not depend on h; indeed,

1/2
IEnllzr@r) < Tl follzr (@) and (/Q Ifh(O)IQdﬂrdv> < Tl follL2(q)-
T

Finally, the previous inequality and the Cauchy—Schwarz inequality lead to

EFip(Id) < AL‘ZAUJ”}|r [fznj i— 13] + Avjv b [fir,lj_ irfi-l,j]2

n,%,J

1/2
o+ Axy BT — P+ An B — Z}j+1]21

1/2
x| ALY Ax?(Avj |v;| + Ay | E}'|)

11,3
3
2TLR (R—i— §L)1

1/2

1/2
< pl/2 (5> /
- 13

Now, we prove the second estimate on EF5p,(Id), using the scheme (15):

EFy(Id) = At Y Az Av | 15 = fF
n,4,j
< A Z [Avj U;'r |fity = il |+ Avyor [f7 — fila ]
nij

+Ax1Ezn+| Z}] z] 1|+AZ‘1ETL7| fﬁj+1|‘|

As in the previous case, we use the Cauchy—Schwarz inequality and the stability
condition (13). We also recall that the discrete electric field is uniformly bounded:

) 51/2
2TLR—>| .
3

Finally, for all Lipschitzian functions, we have ¢ : RT — R,
EFyp(¢) < Lip(¢) EF1n(Id), EFyu(¢) < Lip(¢) EFan(Id).
Then, inequality (20) holds for all Lipschitzian functions ¢ : RT — R*. O

EFy,(Id) < At'/? K1/2

3.3. Strong BV estimate. In this section, we will assume that the initial data
fo(z,v) belong to BV (Q). In order to obtain the strong convergence in L, (Q), we
will obtain an estimation on the total variation of f(t).

Preliminary. Since our numerical approximations are functions of several vari-
ables, we generalize the definition of the total variation (see, e.g., LeVéque [12]). To
simplify, we give the definition for a function with two variables (z,y).

DEFINITION 3.1. Let g(x,y) be a function defined on R2. The total variation of
g is the number given by the following limit:

TVgy(g) = limsup — /|g x+e,y) —g(z,y)|dedy

e—0

+ Timsup © / l9(z,y +€) — gla, y)|dady.

e—0
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We can define the total variation of a piecewise constant function g analogously

by

TVay(g) = Z lyj+1 — ysl l9(@it1,y5) — 9(@i, y5)]
i,J
+[ziv1 — @il [9(zi, Y1) — 9(@i, y;)]-

PROPOSITION 3.4. Under the stability condition (14) and, if the initial data fq
belong to BV (Q), then there exists a constant Cp which depends only on fo, L, and

T such that

Vn € {0,...,T/At},  TVe(fu(t™)) < C7 TVl fo).

Proof. Let us write the scheme (9) on cells ¢ and ¢ + 1. Calculating the difference

between both terms and using the fact

n-+ n-+ n—+ n-+
By =BG - BT BT
n— __ pn— n— n—
E1+1 E1+1 E1 +Ez )

we directly obtain

n - n
fﬁﬁlg fznj-i-l _ < _ At A;)JZH + ZJ% + |AE;)J| ) (fifa; = fiy)
v i
A fiag) + My~ f )
nt o

+ AtA—vj( 11— fijo1) + AtA—,Uj(fiJrl,jJrl = fi'i+1)

En+ En+ n— n—

! E — F
+1 +1
+At71 — ( ﬁH,j - ﬁ-l,j—l) + At—————( ﬁi—l,j+1 -

Avj Avj

Let us multiply by Awv;, sum over i € {0,...,n, — 1}, and have j € Z:
+1 +1
Z Avﬂ 11 2J fsz

+

Y v B
21 < Av: | 1= At J ' ! .
( ) a ; o < AxiJrl + A{Ei AUJ‘ ) |fl+1,j f’L,j|
JF

(22) +AtZAvj A hi 1j|+AtZAUJA Flas — f ]

5,J i,
(23) FALY B = F ol A BT~ Sl

— 2.

+AtZ|E7++1 By = -l

+Atz |Ef — EP e — Fil -

irfi-l,j)'
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We use the fact that fj, is periodic in z to treat terms (21)—(23) and recall that under
the stability condition (14) the sum of coefficients in front of the term [f7 ; — fI';]
is equal to 1. Finally, we obtain the inequality

(24) ZAUJ L =< ZAUJ |fia,y — £
(25) +AtZ|E?++1 EM Iy — Fi ol
(26) +Atz |Ef — B9 i e — filal

Now, we have to study the terms (25)—(26), which represent a total variation of f, at
time ¢" in the function of the velocity variable v. We recall that the discrete electric
field is Lipschitz continuous in z; then

Hcl,T >0, ‘Eﬁ,’_l — Eln| <car Ax;,

where ¢; 7 is a constant which depends only on the domain, on the initial data, and
on the final time 7.

We also use the fact that the function « — max(x,0) is Lipschitz continuous with
a constant equal to 1.

+1 +1
ZA”J ﬁ;—lg fi <ZA”J |flrg = fily

5,J

+AL‘Z|E:Z+1 EY (| i+t1,j ﬁi—l,j—ll)

5,J

<A g = Fl + A enr Az | — £
1,] ]
We finally obtain an estimate of the total variation in x of the discrete distribution
function at time t"*! in the function of the total variation of the discrete distribution
at time ¢".
TV, denotes the total variation in x; in fact,

TV, (fa(t"Hh)) = 2 Aoy 8 1

(27) <TV, (fh(t")) +err ALTV, (fh(t")).

By a similar argument, using the fact that the mesh is admissible (7),

1 1
Vj+1 — Uj < <§ + 2_> A'Ujv
we obtain an estimate of the total variation at time ¢! in v:
(28)  Jepr >0, TV, (fh(t”“)) <71V, (fh(t")) Y ear ALTV, (fh(t")).

Thus, with inequalities (27) and (28), we express the total variation estimate at time
t"*! in the function of the total variation at time t". We set c5 7 = c1,r + cor,

(29) TV (™)) < TV (£t™)) + s ATV, (Ful07)).
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Then,

TV, ( fh(t”)) < exp(es.rT) TVao ( fh(O)) < exp(csr T) TVao ( fo). 0

REMARK 3.2. To achieve the proof of Proposition 3.3, we use the fact that if fo
belongs to BV(Q), then it satisfies the following inequality:

S A £ = 1+ Az |2 — ] < TVao(fo).
,J

4. Proof of Theorem 2.1. We consider a sequence of a mesh of the phase space
defined as in the beginning of the paper satisfying the condition (7), and we define a
time step At such that the stability condition (13) is true. This sequence is denoted
by (Mp)n>o-

For a given mesh, we are able to construct, by the finite volume scheme (9)—(11),
a unique pair (fp, Ep). Thus, we set

A= {Eh c Wh>®(Qr); Ej given by (11) for a mesh Mh}.

On the one hand, in Proposition 3.3 we have proved there exists a constant indepen-
dent on the mesh M, such that

o5,
ot

2

< .
ox < COr

VE, € A, ||Eh||Loo + H
LOQ

a

Lo

On the other hand, using the fact that the injection from W>°(Qr) to C°(Qr) is
compact, there exists a subsequence of (Ej,)n~0 and a function E belonging to C°(Qr)
such that

En(t,z) — E(t,z) in L=(Qr) weak-* as h — 0,

En(t,z) — E(t,z) in C°(Qr) strong as h — 0.

Moreover, we also know by Proposition 3.1 that the discrete distribution function
fn is bounded in L*°(Qr). Therefore, there exists a subsequence and a function
f € L>®(Qr) such that

fult,z,v) = f(t,z,v) in L(Qr) weak-x as h — 0.

The discrete charge py, is bounded in L*>(Qr); then up to the extraction of a
subsequence, we also have

pn(t,x) — p(t,z) in L=(Qr) weak-x as h — 0.

Let us prove that the limit p(t,z) is equal to [; f(t,z,v)dv. Consider ¥(t,z) €
LY (Qr); then we have

/OT/OL (Ph — /Rfdv) Y(t, x) dedt = /OT /OL /|v§r (fh - f)@/}(t,x) dvdzdt
+ /OT /OL /|v>r (fh—f)¢(t,m) dvdzdt.
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Since fr, — f in L*> weak-*, the first term of the right-hand side goes to zero for
every fixed r. Moreover, from the second estimate of Proposition 3.1, we have

dv
— fld d C h — .
~/|v>'r |fh f| U= /U|>T(|fh| - |f|) V=2 < * /v|>r (1 + |'U|))\>

Then, the second term can be small by choosing r large enough uniformly with respect
to h, and thus pj, converges to [, fdv in L>®(Qr) weak-*.

Moreover, if we assume the initial data belong to BV (Q), then we construct a
new approximation of the distribution function, continuous in time, denoted by fj, (it
is easy to prove that f; and fj, converge to the same limit), and we set

= {fh € C(0,T;Li,.(Q));  fn given by (9) for a mesh /\/lh}
and
B(t) = {fu(t) € LL.(Q): i€ B}.

A consequence of the Helly compactness theorem and the total variation estimate of
the discrete distribution function infers that B(t) C BV (Q); then B(t) is relatively
compact in L, (Q). Furthermore, using the continuity of f), we can prove that B is
uniformly equicontinuous:

Ve>0, >0, [fult)—fat)llr <e fa€B, 0<ti <t <T,[ti—ta| <.

Then, applying the Ascoli theorem we prove that f; strongly converges to f in
CO(O T Lloc)

4.1. Convergence to the weak solution of the Vlasov equation. Let ¢ €
C®(Qr), R >0, and jo,j1 € Z be such that

supp <<p(t, x, .)) C [-R,R]
and

—R € (vj,-1/2,Vjp41/2) and R € (v, _1/2,Vj,41/2)-

We multiply the finite volume scheme (9) by m ttn o fc o(t, x,v)dzdudt,
sum over i € {0,...,nz — 1}, j € {jo,...,j1}, andn € {0,...,Np = £},
FEi+FE;,=0
with
tn+1
n+1 n

Z(f i) At / (t,z,v)dzdvdt,

n,t,j
and

E2:Z AUJU;r(fZ}J i— 1])+Av] 7 (fZ}J_ Z}FL])—’_AxlEnJr( i, Z}jfl)

n,%,J

tn+1
+ Az B (fi — filjs) 1 Azi Av, /n / (t, z,v)dzdvdt.
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Moreover, we denote E o and E3 g by

Eio= fu(t,z,v) (?;O (t,z,v)dtdxdv +/ folx,v)p(0, z,v)dxdv
Qr
and
Eyo= fr(t, z,v) v%(tmv)—l—E(tm)a—(p(tmv) dzdvdt
2,0 - QT h I I 8x I b h Y av Y Y *

We will compare E; with F ¢ and Ey with Fj ¢ to establish that Ey g + Ea o goes to
zero as h — 0.

Comparison between E; and E; . Let us remark that E; g can be rewritten
as

- / <<p ) — (e, xm))dxdv + [ fole. o0, )
Q

n,i,J

By a discrete integration by parts, it follows that

El,O = - Z (fn-‘rl - fz J) / <p(t"+1,x,v)dxdv

N1, B

_/Q(fh(O,x,v)—fo(x,v))gp(()’x’v)dgcdv.

Thus,

tn+1

|Ey + E1 0] < nH il / /

n 1,]

4 / 00,2, 0) — fol,v)] |9(0. , v)|ddv
Q

t x,v)| dtdxdv

with the discrete initial data defined, for example, by

(0, 2,v) / folz,v)dedv V(z,v) € C; ;.

~ Gl

Using the assumption on the initial data fo € L*(Q) N L>(Q), we then have
tiy [ 11(0.2.0) = fow.0)] [o(0,,0)]dodo =0
-vJQ

Moreover, from the inequality on the term EFs, given by (20) in Lemma 3.1 (taking
é(r) =r for r € RT), we have

Supten ]

n,i,j

t z,v)| dtdzdv < C||p¢| L~ AtY2.

Then,

|E1+E1’0|—>0 as h — 0.
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Comparison between E; and FE3 . We first introduce the notation

4 Vj+1/2
E2,1 = Z ’Uj ( ij 7] / / t ZTi— 1/2, )dUdt

n,i,j Vj—1/2
vy
+v; (fi" i 1+1j / ol(t, Tiy1/2,V v)dvdt
Vj—1/2
! i+1/2
+En+ ( zg 1 / / t x7’l)j_1/2)d$dt
Ti—1/2
gt i+1/2
n—
E (fzg fz ,J+1 / / t Z, UjJrl/g)dﬂfdt .
Ti—1/2
On the one hand, we compare Ey and Es ;:
tn+1

|Ey — Ea 1| = / (t,z,v) @(t,xi_l/z,v)dvdt}

Zlv;r (fiy = fitaj) [Ax /

n,%,J

tn+1

/ (t,2,v) — @(t, Tip1/2, v)dvdt]

tn+1

(fzg fz—i—l] |:sz

tn

EZ”( e ’] 1) [ / (t,z,v) @(t,x,vj_l/g)dxdt]

tn+1

Eﬂ_ (fz] fz ,J+1 l:AUJ i / t Z, 'U (P(t,$,vj1/2)d$dt:|‘|

Using the inequality on E'Fyy, given by (20) in Lemma 3.1 with ¢(r) = r, there exists
¢ > 0 depending only on T', R, L, fy, «, & such that the following inequality holds:

|Ey — B3| < ||V~ b2

On the other hand, we estimate |Es g + Fs 1|, rewriting the term Fs; as follows (we
recall that ¢ has a compact support):

Eyq = me le/

n,i,j

gntt

Vi+1/2
/ o(t,Tiv1/2,v) — @(t, Ti—1/2,v)dvdt
Vj—1/2

tn+1

Tit1/2
+ En/ / t x,vj+l/2) - (,O(t, Z, Ujl/g)dﬂfdt‘| .

i—1/2

In the same way,

vJ+1/2
By = Z I l/ / Q(t, xi11/2,0) — @(t, T;_1 )2, v))dvdt

n,i,j Vj—1/2

tn+1

z+1/2
/ / (SD(t T UJ+1/2) Sﬂ(taxavj—l/z))dffdt .

i—1/2
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Therefore, there exists ¢ > 0 depending only on T', R, L, fy, «, &:

" s
|E20 + E21| < E i / ‘v - Uj‘ |<p(t, Tiy1/2,v) — @(t, 2212, v)|dvdt
n,i,j i Vj-1/2

tn+1

Tit1/2
+ / / |Eh(t,x) — EZ"} }(p(t,xmjﬂ/g) — @(t,x,vj_l/g)}dxdtl
tn x;

i—1/2

< clVellim 3 AtAw; Av; 7 [Avy + sup|Bn(t,2) — B
n,t,J

<cT Vel I follLt b

Finally, recalling that Fy + FEs = 0, we obtain

dp Oy dp /
At h) = — — Ey(t — | dtdzd 0 dxd
anh) = [ (GG + But) 52 ) s [ fole )02, )
=FEi 0+ Eap
=FEi1 0+ E1+ Ey+ Ey1 — By + Eo,

and from the previous estimates, we proved there exists a constant C' depending only
on ¢, fo, L, T, o, & such that

|Ero+ E1| < C (|| fo— fa(0)||p1 + AEY/2),
|Eyo — Ea| < ChY2,
|E2’0 + E2,1| < Ch.

Then, ¢(At,h) — 0 as h — 0.
As we know

fult,z,v) = f(t,z,v) in L=(Qr) weak-*
and
En(t,z) — E(t,z) in C°(Qr),

we have shown that the limit pair (f, E) of a subsequence (f, Fr)n>0 is a solution
of the Vlasov equation (1). To conclude, we have to prove that this couple is also a
solution of the Poisson equation (2).

REMARK 4.1. In practical calculation, we use a large but finite bound M for the
velocity space. In this paper, we assume that as h — 0, the support of the velocity
space goes to infinity, and the stability condition (13) imposes on us that

3 ~ L d At~ U h'te
e € (0,1), Vh o, an t_m_ )

4.2. Convergence to the solution of the Poisson equation. We recall that
the discrete electric field defined before is continuous in time, but for a simpler analysis
let us consider a new approximation piecewise constant in time:

~ L
Bt z) = / K(z.y) (pu(t.y) — 1)dy.
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Recalling that aafih is uniformly bounded, it is easy to prove that Ej, and Ej have the
same behavior as h goes to zero. Then E} converges almost everywhere to E.

Let us prove that E(¢,x) is a solution of the Poisson equation. Let 9 (¢, ) belong
to Ll (QT),

L
Bu(t.) vt odtds = [ | [7 K o) (oult) = Dy it )drd.
Qr Qr 0
The discrete charge py, converges to p(t, x) fR f(t,x,v)dv in L>®(Qp) weak-x, where
f is a solution of the Vlasov equation. Thus, using the Fubini theorem we can set

y) = fOL K (x,y)¥(t, z)dz which belongs to L'(Qr) and satisfies

| ot gty — [ pt.)glepiedy ash—o.
QT QT

Thus, we have

L
E(t,x) :/0 K(z,y) (p(t,y) — 1)dy and p(t,y):/Rf(t,yw)dv

Then, (f, E) is a solution of the Vlasov—Poisson system.

The weak formulation infers that the solution of the Vlasov—Poisson system be-
longs to C°([0,T[; D’), but observing the electric field E is bounded in W1>°(Qr)
and the initial data are continuous, we see that the distribution function f is also
continuous in (z,v). Let us recall that under our hypothesis, the solution of the
Vlasov—Poisson system (1)—(2) is unique; then any subsequence that we considered
converges to the same limit and the sequence (fr, Ep)p>0 converges to the unique
solution.

5. Error estimates. In this section, we give error estimates on the approxima-
tion (fn, En), assuming the initial data are smooth and have a compact support. We
follow the proof of Vila and Villedieu [18]. Let us introduce M(Qr), the space of
positive measure on Q7 and W1 (Qr), the set of functions in W°°(Q7), periodic
in x and compactly supported in (¢,v).

PROPOSITION 5.1. Under the stability condition (13) on the time step and the
condition on the mesh (7), assume the initial data belong to L'(Q) N L>(Q) and
are bounded by the function R(v) defined previously. Then, there exist V}117At and
Vi ar € M(Qr) such that for all p € Wh>(Qr), ¢ >0,

Oy Op Oy
[ (5 +0 5 + Bute) 52 ) ataaao + | ot )0, o

< /Q H(0)d} a + / (el + Voo vk ac

Qr

and
_/QT f? (% g + Ep(t, m)g )dtdwdv / fe(z,v)0(0, z,v)dzdv

< /Q H(0)d? ay + / (el + [Varwp))do? ap

T
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The measures satisfy the properties for all T > 0, R > 0, and there exists a constant
C depending only on T, R, L, fo, o, & such that

vhae((0,7) X (0,L) x B(O,R)) < C (A2 + 82 4+ | fo = f(0)]10),
VR ar((0,7) % (0,L) x B(O,R)) < C (AL 4+ 1Y/ + || fo = f(0) ] 2).

Proof. The idea of the proof is to follow the same argument as for the proof of the
convergence of the finite volume scheme to the weak solution of the Vlasov equation
given above. We use Lemma 3.1 with the convex function ¢(r) = r (resp., ¢(r) = r?)
to obtain the bound on the measure v, A, (resp., Vi o,)- a

From this proposition we obtain the following theorem which gives us an error
estimate on the approximation by the finite volume scheme. Now, we will assume the
initial data have a compact support.

THEOREM 5.1. Let fo(x,v) belong to WE>°(Q), let My, be a Cartesian mesh
of the phase space, and let At be the time step satisfying the CFL condition. There
exists 0 < € <1 such that

At . -

If we consider the numerical solution given by the scheme (9) denoted by fp(t,z,v),
and the discrete self-consistent field En(t, z) given by (10),

/ et f(t, 2, 0) — fat, @, 0)Pdtdzdo < Cor (B2 + A2) + Oyl fo = fa(0)]] 12

Proof. As we assume that the initial data have a compact support, for a finite
time T there exist R > 0 such that

V(L) € (0,7) x (0,L),  supp (f(t,2,.)) € BO, R).
Moreover, using the regularity of the initial data, the solution of the Vlasov—Poisson

system (E, f) is unique and f belongs to W1>°(Qr). Now, let p € W1(Qr). We
have

/ f? (8_@ +v ¢ + En(t, ) 8_@) dtdzdv —|—/ fE(z,v)9(0, z,v)drdv
Qr z v Q

=-2 f(EL — E)cp(t,x,v)a—fdtda:dv.
Qr 8'[}

From the first inequality of Proposition 5.1, for all ¢ € W1>°(Q7), ¢ > 0, we observe
that f¢ € W1H*(Qr) and f ¢ > 0; then using the regularity of the solution,

-2 /QT nf (% +v% + En(t,x) g—f) dtdxdv — 2 /Qfg(m,v)go((),m,v)da:dv

> 2 (v ap Vewu(f 0)) - 2 / fn(E - Eh)sz)(t,m,v)%dtdxdv.
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Moreover, from the second inequality of Proposition 5.1, for all ¢ € W1(Q7), ¢ > 0,

2 5 ¥ E £ 5 ¢ 2
/T fi <_t + v 9 + Ep(t,x) B dtdxdv + / fo(z,v)e(0, z,v)dzdv
2 <V27Atv v t,r,v‘P>-

We finally obtain
dp dp dy
— 2 —_
Agfjﬂ<& a-+&@@8>ﬁmm

> =2 [ (fa— B - B FLautsas
. v
(30) -2 ||vt,w,foL°° <Vi11,At7 vt7$7v50> - <Vi21,Ata Viazwp)-
We now construct the function ¢ giving the following result: Let us set o =

5H%||Loo LR, Ry = L+ R, and w = max(2R; 3L) and consider k € C'(R*;[0,1])
such that

1 ifrel0,Ry+wT),
k(r) =
0 ifre[R+wl+1,+00),
and k'(r) < 0 Vr € RT. Then, we consider
E(|(x,v)] +wt)e” " if (t,z,v) € Qr,
o(t, z,v) =
0 ift>T.
The function ¢ is not in W1 (Q7), but using a usual regularization technique in
time, it may be proved that such a function can be considered [18]. Let us compute

each term of the inequality (30). The discrete electric field is computed from the
Green kernel, and the following inequality holds:

|E(t,$) - Eh(ta J))| = ‘A K(J?,y)[f(t,y, U) - fh(tvya U)]dyd?] ’
< [ 1#p.0) = it.y.0)dyde,
Q
Thus, using the Cauchy—Schwarz inequality, we have

‘2 / (fn—1Ff) (Bn—E)p ? dtdzdv

1/2 1/2
( |fn— [P dtdmdv) (/ (En — E)?p dtdxdv)

1/2
of ( I dtdwdv)
Lo T

ov
1/2
( [ e~ 0ot dtdwdvdydw) .
QrxQ

<[z

Lo

2(2LR)Y/?
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In the domain of computation (¢,x,v) € [0,T) x (0,L) x B(0, R), the function k(.) is

equal to 1; then ¢ = e~®? and the previous inequality can be rewritten as

2 [ (=) (B - B O oo

1/2
( | i g dtdwdv)
Lo T

1/2
( | e ihtenw) - sty dtdydw) ,

<arw |

ov

<4LR Hﬁ / |f — fal? pdtdzdv.
0V || o Jor

Next, a direct computation gives

8SD(t z,v) =wk'(|(z,v)] +wt) et — ak(|(z,v)| +wt) e,

ot

% — o / —at
8x(t,ac,v)— |(x7v)|k(|(x,v)|+wt)e ,
Oy W , Cat
8v(t,x,v)— @0l E'(|(z,v)| +wt)e” ™"

Replacing the derivatives by their expression, we finally obtain

/T = Ful K ((0)] + wt) e (w+ v T(mEhﬁ"”)) dtdwdv

—a/ = fal2 k(|2 0)] + w i) e tdtdady

‘2Ha— .

—yiAt((o,T) % (0,L) x B(O,R)).

Since k' < 0 and w = max(2 R; 3L), we have

ve + Ep(t,x)v >0
|(,v)]
and therefore, since k(|(z,v)| +wt) = 1, if (¢,z,v) € (0,T) x (0, L) x B(0, R),

/ et |f — ful? dtdzdv < Cir |:V,11’At ((O,T) x (0, L) x B(O,R))

LR |f = ful? k(|(z,0)] + wt) et dtdedo
QT

vh ae((0,7) % (0,L) x B0, R))

+V,21,At((O,T) x (0,L) x B(O,R))].
From Proposition 5.1, the measures V,%’At et V,ll’m are bounded:
vh 2e((0,T) X (0,L) x BO,R)) < C (A2 4+ 12 4 | fy = fu(0)]|10),
v .ae((0,7) % (0,L) x B(O, R)) < C (A2 + 12 + || fo — £ (0) ] 12).

The proof is complete. 0
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