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Summary. We present accurate methods for the numerical solution of the Boltz-
mann equation of rarefied gas. The methods are based on a time splitting technique.
On the one hand, the transport is solved by a third order accurate (in space) Pos-
itive and Flux conservative (PFC) method. On the other hand, the collision step
is treated by a Fourier approximation of the collision integral, which guarantees
spectral accuracy in velocity, coupled with high order integrators in time preserving
stationary states. Several space dependent numerical tests in 2D and 3D illustrate
the accuracy and robustness of the methods.

1 Introduction.

In a microscopic description of rarefied neutral gas, the gas particles move by
a constant velocity until they undergo binary collisions. In a kinetic picture,
the properties of the gas are described by a density function in phase space,
f(t, x, v), called the distribution function, which gives the number of particles
per unit volume in phase space at time t. The distribution function satisfies
the Boltzmann equation, an integro-differential equation, which describes the
effect of the free flow and binary collisions between the particles. In absence
of external forces the time evolution of a single component mono atomic gas,
the Boltzmann equation reads to (Cf.[6, 27])

∂f

∂t
+ v · ∇xf =

1

kn
Q(f, f), x, v ∈ Rd (1)

where d > 1 denotes the dimension of the velocity space, the number kn > 0
is called Knudsen number and is proportional to the mean free path between
collisions. In the right hand side, Q(f, f) is the so-called collision operator
given by
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Q(f, f)(v) = Q+(f, f) − L[f ]f (2)

with

Q+(f, f) =

∫

Rd

∫

Sd−1

B(|v − v∗|, θ)f(v′)f(v′∗) dω dv∗, (3)

L[f ] =

∫

Rd

∫

Sd−1

B(|v − v∗|, θ)f(v∗) dω dv∗. (4)

In the above integrals, v and v∗ are the velocities after the collision of two par-
ticles which had the velocities v′ and v′∗ before the encounter. The deflection
angle θ is the angle between v − v∗ and v′ − v′∗.

Here the pre-collision velocities are parameterized by

v′ =
1

2
(v + v∗ + |v − v∗|ω), v′∗ =

1

2
(v + v∗ − |v − v∗|ω), (5)

where ω is a unit vector of the sphere Sd−1.
The quantities Q+(f, f) and L[f ]f are the gain and loss term, respectively.

The precise form of the kernel B, which characterizes the details of the binary
interactions, depends on the physical properties of the gas. In the case of
inverse k-th power forces between particles, the kernel has the form

B(|v − v∗|, θ) = bα(θ)|v − v∗|α, (6)

where α = (k − 5)/(k − 1). In particular, we will consider the variable hard
sphere (VHS) model [2] i.e. bα(θ) = Cα where Cα is a positive constant. The
case α = 0 is referred to as Maxwellian gas whereas the case α = 1 yields the
Hard Sphere gas. Note that in the case of Maxwellian gas the coefficient of
the loss term, L[f ], does not depend on v. Boltzmann’s collision operator has
the fundamental properties of conserving mass, momentum and energy

∫

Rd

Q(f, f)




1
v

|v|2


 dv = 0, (7)

and satisfies the well-known Boltzmann’s H-theorem
∫

Rd

Q(f, f) log(f)dv ≤ 0. (8)

Boltzmann H-theorem implies that any equilibrium distribution function, i.e.
any function f for which Q(f, f) = 0, has the form of a locally Maxwellian
distribution

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp(−|u− v|2

2T
), (9)

where ρ, u, T are the density, mean velocity and temperature of the gas

ρ =

∫

Rd

f(v)dv, u =
1

ρ

∫

Rd

v f(v)dv, T =
1

3ρ

∫

Rd

|u− v|2 f(v)dv. (10)
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Among the different approaches for the approximation of the Boltzmann
equation, we may distinguish between deterministic and Monte Carlo meth-
ods. The first usually provide accurate oscillations-free solutions, but they are
much more expensive than Monte Carlo methods with the same number of
discrete degrees of freedom. For example, if we denote by n the number of pa-
rameters which characterize the density with respect to the velocity variables
in a space homogeneous calculation, the computational cost of a conventional
deterministic method for the evaluation of the collisional integral is much
larger than n2.

As a consequence most numerical computations are based on probabilistic
Monte-Carlo techniques at different levels. Examples are the Direct Simula-
tion Monte Carlo method (DSMC) by Bird [2] and the modified Monte Carlo
method by Nanbu and Babovsky [14, 1]. For a detailed description of such
methods we refer to previous chapters of this book.

Probabilistic particle methods present different advantages: the computa-
tional cost is strongly reduced and approximatively can be considered of the
order of the number of points n. Moreover, the computer memory require-
ment is highly reduced, since the particles concentrate where the function is
not small, and memory is not wasted representing a function which is virtu-
ally zero in most phase space. For these reasons, particle methods have no
competitor for situations very far from thermodynamical equilibrium.

However, deterministic methods can be much more accurate, and can be
competitive with Monte Carlo methods for problems in which the solution
is not very far from thermodynamical equilibrium, and high accuracy is re-
quired. In the framework of deterministic approximations, the most popular
class of methods is based on the so called discrete velocity models (DVM) of
the Boltzmann equation. All these methods [4, 26, 12, 23] make use of regular
discretizations on hypercubes in the velocity field and construct a discrete col-
lision mechanics on the nodes of the hypercube in order to preserve the main
physical properties. Although the numerical results have shown that these
schemes are able to avoid fluctuations, their computational cost is high (in
general O(nan

2), where na is the number of parameters used for the angular
integration, typically in such methods na ≈ O(n1/3)) and, due to the particu-
lar choice of the integration points imposed by the conservation properties, the
order of accuracy is lower than that of a standard quadrature formula applied
directly to the collision operator. Hence we observe that the requirement of
maintaining at a discrete level the main physical properties of the continuous
equation makes it extremely difficult to obtain high order accuracy. More-
over, even if conservation properties are not imposed from the beginning, an
accurate scheme would provide an accurate approximation of the conserved
quantities.

In [35], Pareschi and Perthame developed a discretization of the collision
operator based on expanding in Fourier series the distribution function with
respect to the velocity variable. The resulting spectral approximation can be
evaluated with a computational cost of O(n2) which is lower than that of
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previous deterministic methods. Bobylev and Rjasanow [3] used a Fourier
transform approximation of the distribution function, and they were able to
obtain exact conservation by a suitable modification of the evolution equations
for the Fourier coefficients. The method proposed is second order accurate.
On the other hand, Pareschi and Russo [20] developed a scheme based on the
approximation of the distribution function by a periodic function in phase
space, and its discretization by truncated Fourier series. Evolution equations
for the Fourier modes are explicitly derived for the Variable Hard Sphere
(VHS) model. The method provides spectral accuracy in the velocity domain,
which is the highest accuracy achieved by a numerical method for the Boltz-
mann equation, and the computational complexity of the collisional operator
is O(n2). The method preserves mass, and approximates with spectral accu-
racy momentum and energy. For a more detailed description of the spectral
approach to the Boltzmann equation and to other kinetic equations see for
example [17].

Here, we are interested in the construction of an accurate method for the
space non homogeneous Boltzmann equation [10]. The discretization of the
transport step has to be done carefully because it induces physical oscilla-
tions in the velocity space. In this chapter we construct a fractional step
deterministic scheme for the time dependent Boltzmann equation, which is
based on five main ingredients

Fractional step in time allows to treat separately the transport and the colli-
sion.

Fourier-Spectral method for the evolution of the collision step allows a very
accurate discretization in velocity domain, at a reasonable computational
cost [20].

Positive and Flux Conservative (PFC) finite volume method for the free trans-
port [8] provides a third order (in space) accurate scheme for the evolution
of distribution function during the transport step. The scheme is conser-
vative, and preserves positivity. It is much less dissipative than Essen-
tially Non Oscillatory (ENO) and Weighted Essentially Non Oscillatory
(WENO) schemes usually used for hyperbolic systems of conservation laws
[9, 24]. We also refer to [7] for the implementation of different boundary
conditions.

Positive time discretization. A suitable time discretization of the collisional
equation is used, which allows a large stability time step, even for problems
with considerably small Knudsen number. The time discretization method
for the collision step is based on a modified Time Relaxed scheme [21].

Multiple resolution. A different resolution will be used in velocity space in the
transport and in the collision step. Considering that the collision step is
more expensive, and more accurate (spectral accuracy) than the transport
step, it is convenient to use more points in velocity space during the
transport step.



Accurate numerical methods for the Boltzmann equation 127

In the next section we give a general setup to solve kinetic equations in
non homogeneous situations. Then, we describe the PFC method for the free
transport and the spectral method for the evolution of the collision step.
Several numerical issues are discussed and time dependent and stationary
problems are proposed. Finally, in the last section we draw conclusions.

2 The general framework.

Let us consider the initial-boundary value problem for the Boltzmann trans-
port equation

∂f

∂t
+ v · ∇xf =

1

kn
Q(f, f) (11)

f(0, x, v) = f0(x, v)

where x ∈ Ω ⊂ Rd, v ∈ Rd, t ∈ [0, T ]. Boundary conditions will be specified
in the section on numerical results and we refer to [7] for their implementa-
tion. We discretize time into discrete values tn, and we denote by fn(x, v) an
approximation of the distribution function f(tn, x, v). As it is usually done
for a kinetic equation like (11), a simple first order time splitting is obtained
considering, in a small time interval ∆t = [tn, tn+1], the numerical solution of
the transport step

{
∂f∗

∂t
+ v · ∇xf

∗ = 0,

f∗(0, x, v) = fn(x, v),
(12)

and the space homogeneous collision step




∂f∗∗

∂t
=

1

kn
Q(f∗∗, f∗∗),

f∗∗(0, x, v) = f∗(∆t, x, v),
(13)

We shall denote by S1(∆t) and S2(∆t) the solution operators corresponding
respectively to the transport and collision step, i.e. we can write

f∗(∆t, x, v) = S1(∆t)f
n(x, v),

f∗∗(∆t, x, v) = S2(∆t)f
∗(∆t, x, v).

The approximated value at time tn+1 is then given by

fn+1(x, v) = f∗∗(∆t, x, v) = S2(∆t)S1(∆t)f
n(x, v). (14)

We assume that S1 and S2 represent either exact or at least second order
evolution operators in time of transport and collision step, respectively.

A second order scheme for non stiff problems can be easily derived simply
by symmetrizing the first order scheme [48]
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fn+1 = S1(∆t/2)S2(∆t)S1(∆t/2)f
n, (15)

provided every step is solved with a method at least second order accurate in
time [16]. Although higher order splitting strategies are available, in practice
they are seldomly used because of stability problems. We remind that second
order accuracy for such complex problems is considered “high order” in this
field.

In the next two sections we discuss transport and collision steps. As we
shall see, the grid step size in time, space and velocity are not directly related
by strict stability requirements, and therefore one can benefit from high order
accuracy whenever possible.

3 Discretization of the transport step.

In this section, we discuss the numerical resolution of the Vlasov equation
which characterizes the transport step (12)

∂tf + ∇x (v f) = 0, ∀(t, x) ∈ R+ × Rd. (16)

Then, the solution of the transport equation at time tn+1 reads

f(tn+1, x) = f(tn, x− v ∆t), ∀x ∈ Rd.

For simplicity, let us restrict ourselves to a one dimensional problem. We intro-
duce a uniform mesh, characterized by a finite set of mesh points {xi+1/2}i∈I
on the computational domain. We will use the notation ∆x = xi+1/2−xi−1/2,
Ci = [xi−1/2, xi+1/2] and xi the center of Ci. Assuming the values of the dis-
tribution function are known at time tn = n∆t on cells Ci, we compute the
new values at time tn+1 by integration of the distribution function on each
sub-interval. Thus, using the explicit expression of the solution, we have

∫ xi+1/2

xi−1/2

f(tn+1, x)dx =

∫ xi+1/2−v ∆t

xi−1/2−v ∆t
f(tn, x)dx,

then, setting

Φi+1/2(t
n) =

∫ xi+1/2

xi+1/2−v ∆t
f(tn, x)dx,

we obtain the conservative form
∫ xi+1/2

xi−1/2

f(tn+1, x)dx =

∫ xi+1/2

xi−1/2

f(tn, x)dx + Φi−1/2(t
n) − Φi+1/2(t

n). (17)

The evaluation of the average of the solution over [xi−1/2, xi+1/2] allows to
ignore fine details of the exact solution which may be costly to compute. The
main step is now to choose an efficient method to reconstruct the distribution
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function from the cell average on each cell Ci. We will consider a reconstruction
via primitive function preserving positivity and maximum values of f [8]. Let
F (tn, x) be a primitive of the distribution function f(tn, x), if we denote by

fni =
1

∆x

∫ xi+1/2

xi−1/2

f(tn, x)dx,

then F (tn, xi+1/2) − F (tn, xi−1/2) = ∆xfni and

F (tn, xi+1/2) = ∆x

i∑

k=0

fnk =: wni .

First we construct an approximation of the primitive on the small interval
[xi−1/2, xi+1/2] using the stencil {xi−3/2, xi−1/2, xi+1/2, xi+3/2}

F̃h(t
n, x) = wni−1 + (x− xi−1/2)f

n
i +

1

2∆x
(x− xi−1/2)(x− xi+1/2)[f

n
i+1 − fni ]

+
1

6∆x2
(x− xi−1/2)(x− xi+1/2)(x− xi+3/2)[f

n
i+1 − 2 fni + fni−1],

where we use the relation wni − wni−1 = ∆xfni . Thus, by differentiation, we
obtain a third order accurate approximation of the distribution function on
the interval [xi−1/2, xi+1/2]

f̃h(t
n, x) =

∂ F̃h
∂x

(tn, x) = fni +

+
1

6∆x2

[
2 (x− xi)(x− xi−3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni+1 − fni )

− 1

6∆x2

[
2 (x− xi)(x− xi+3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni − fni−1).

Unfortunately, this approximation does not preserve positivity of the distri-
bution function f . Then, in order to satisfy a maximum principle and to avoid
spurious oscillations we introduce slope correctors

fh(t
n, x) = fni + (18)

+
ε+i

6∆x2

[
2 (x− xi)(x− xi−3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni+1 − fni )

− ε−i
6∆x2

[
2 (x− xi)(x− xi+3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni − fni−1),

with

ε±i =





min
(
1; 2 fni /(f

n
i±1 − fni )

)
if fni±1 − fni > 0,

min
(
1;−2 (f∞ − fni )/(fni±1 − fni )

)
if fni±1 − fni < 0,

(19)
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where f∞ = max
j∈I

{fnj } is a local maximum.

The theoretical properties of this reconstruction can be summarized by
the following

Proposition 1. The approximation of the distribution function fh(x), defined
by (18)-(19), satisfies

• The conservation of the average: for all i ∈ I,
∫ xi+1/2

xi−1/2
fh(x)dx = ∆xfi.

• The maximum principle: for all x ∈ (xmin, xmax), 0 ≤ fh(x) ≤ f∞.

Moreover, if we assume the Total Variation of the distribution function f(x)
is bounded, then we obtain the global estimate:

∫ xmax

xmin

|fh(x) − f̃h(x)| dx ≤ 4TV (f)∆x,

where f̃h denotes the third order approximation of f without slope corrector.

Proof. Let us consider x ∈ Ci = [xi−1/2, xi+1/2] and denote by

α(x) =
1

∆x2

[
2 (x− xi)(x− xi−3/2) + (x− xi−1/2)(x− xi+1/2)

]
,

β(x) =
1

∆x2

[
2 (x− xi)(x− xi+3/2) + (x− xi−1/2)(x− xi+1/2)

]
.

It is easy to check that

∫ xi+1/2

xi−1/2

α(x)dx =

∫ xi+1/2

xi−1/2

β(x)dx = 0,

then the conservation of the average immediately follows. To obtain the preser-
vation of positivity, assuming the values fj are positive, we observe that in
the cell Ci, the function α(x) is increasing whereas β(x) decreases and α(x),
β(x) ∈ [−1, 2]. Then, we split fh(x) as the sum of h(x) and g(x) with

h(x) =
1

3

[
fi +

α(x)

2
ε+i (fi+1 − fi)

]
, g(x) =

1

3

[
2 fi −

β(x)

2
ε−i (fi − fi−1)

]
.

The function h(x) ( resp. g(x) ) is only a combination of fi and fi+1 ( resp.
fi−1 and fi ), then from the value of ε+i ( resp. ε−i ), it is easy to prove that
h(x) ( resp. g(x) ) is positive. Using a similar decomposition, we also prove
that fh(x) is bounded by f∞.
Now, we prove the global estimate on the positive reconstruction:
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∫ xmax

xmin

|fh(x) − f̃h(x)|dx

=
∑

i

∫ xi+1/2

xi−1/2

| α(x) (1 − ε+i )[fi+1 − fi] + β(x) (1 − ε−i )[fi − fi−1] | dx

≤ 2∆x
∑

i

(1 − ε+i )|fi+1 − fi| + 2∆x
∑

i

(1 − ε−i )|fi − fi−1|

≤ 4∆x
∑

i

|fi+1 − fi| ≤ 4∆xTV (f).

¤

Remark 1. If the solution is smooth, we can check numerically that the scheme
is third order. But, the numerical analysis of such a nonlinear scheme is really
difficult to perform.

4 Spectral approximation of the collision operator.

We consider now the space homogeneous Boltzmann equation in each cell,

∂f

∂t
= Q+(f, f) − L[f ]f (20)

with Q+ and L given by equations (3) and (4). To keep notation simple, we
have fixed kn = 1. A simple change of variables permits to write

Q+(f, f) =

∫

Rd

∫

Sd−1

B(|g|, θ)f(v′)f(v′∗) dω dg, (21)

L(f) =

∫

Rd

∫

Sd−1

B(|g|, θ)f(v − g) dω dg, (22)

where g = v − v∗ and then

v′ = v − 1

2
(g − |g|ω), v′∗ = v − 1

2
(g + |g|ω). (23)

First, from the conservation of the momentum and the total energy, (v′∗)
2 +

(v′)2 = v2
∗ + v2, we get the following result [35]:

Lemma 1. Let Supp(f(v)) ⊂ B(0, R) then

i) Supp(Q(f, f)(v)) ⊂ B(0,
√

2R),
ii)

Q(f, f)(v) =

∫

B(0,2R)

∫

Sd−1

B(|g|, θ)[f(v′)f(v′1) − f(v)f(v − g)] dω dg,

with v′, v′∗, v − g ∈ B(0, (2 +
√

2)R).
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2)R(2+

0-

R

V V 3V2V

Fig. 1. Restriction of the distribution function on the periodic box [−π, π]× [−π, π]
in two dimensions.

As a consequence of the above lemma, in order to write a spectral approx-
imation to (20) we can consider the distribution function f(v) restricted on
[−V, V ]d with V ≥ (2 +

√
2)R), assuming f(v) = 0 on [−V, V ]d \ B(0, R), and

extend it by periodicity to a periodic function on [−V, V ]d. In view of Fig. 1,
the shortest period can be restricted to [−V, V ], with V ≥ (3 +

√
2)R/2.

If the distribution function is well approximated by a function of com-
pact support in velocity space, then the above approximation will provide an
accurate evaluation of the collision integral.

To simplify the notation let us take V = π and hence R = λπ with λ =
2/(3 +

√
2). Hereafter, we used just one index to denote the tree-dimensional

sums with respect to the vector k = (k1, .., kd) ∈ Zd, hence we set

N∑

k=−N
=

N∑

k1,..,kd=−N
.

The approximate function fN is represented as the truncated Fourier series

fN (v) =
N∑

k=−N
f̂ke

ik·v, (24)

f̂k =
1

(2π)d

∫

[−π,π]d
f(v)e−ik·v dv.

In a Fourier-Galerkin method the fundamental unknowns are the coefficients
f̂k, k = −N, . . . , N . We obtain a set of ODEs for the coefficients f̂k by requir-
ing that the residual of (20) be orthogonal to all trigonometric polynomials
of degree ≤ N . Hence for k = −N, . . . , N

∫

[−π,π]d

(
∂fN
∂t

+ fN L(fN ) −Q+(fN , fN )

)
e−ik·v dv = 0. (25)
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By substituting expression (24) in (22) and (21) we get respectively

fN L(fN ) =

N∑

l=−N

N∑

m=−N
f̂l f̂mB̂(m,m)ei(l+m)·v,

and

Q+(fN , fN ) =

N∑

l=−N

N∑

m=−N
f̂l f̂mB̂(l,m)ei(l+m)·v,

where the kernel modes B̂(l,m) are given by

B̂(l,m) =

∫

B(0,2λπ)

∫

Sd−1

B(|g|, θ)e−ig· (l+m)
2 −i|g|ω· (m−l)

2 dω dg. (26)

Using the orthogonality property we get from (25)

∂f̂k
∂t

=

N∑

m=k−N
f̂k−m f̂m(B̂(k −m,m) − B̂(m,m)), (27)

with the initial condition

f̂k(0) =
1

(2π)d

∫

[−π,π]d
f0(v)e

−ik·v dv. (28)

The evaluation of the right hand side of (71) requires exactly O(N 2d) opera-
tions. We emphasize that the usual cost for a method based on N d parameters
for f in the velocity space is O(N 2dM) where M is the numbers of angle dis-
cretizations. The loss term on the right hand side is a convolution sum and
thus transform methods allow this term to be evaluated only in O(N d log N)
operations. Hence the most expensive part of the computation is represented
by the gain term.

4.1 Analysis of the kernel modes.

In this section we study the main characteristics of the kernel modes and in
particular we give an explicit representation of them for the VHS model.

Let us start from equation (26). In the VHS model, the kernel does not
depend on the angle θ: B = Cα|g|α. One has

B̂(l,m) = Cα

∫

B(0,2λπ)

|g|α exp

(
−ig · l +m

2

)
I2(|g|, l −m), dg (29)

where

I2(|g|, l −m) =

∫

Sd−1

exp

(
i|g|ω · l −m

2

)
dω. (30)

We shall consider separately 3D and 2D collision model. The 3D case is the
important one for practical application. However, a two dimensional collisional
model will be considered for test problems.
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2D case.

For the computation in 2D we start from (29) and (30). We will consider only
the VHS model.

In this case it is

I2 =

∫

S

exp(i|q| · ω) dω =

∫ 2π

0

exp(ir cos θ) dθ

= 2

∫ π

0

cos(r cos θ) dθ = 2πJ0(r), (31)

where r = |q| = |g||l − m|/2, and J0 is the Bessel function of order 0. By
inserting the result in the expression (29) for B̂(l,m), one obtains [20]

B̂(l,m) = Cα2π

∫

B(0,2λπ)

|g|α exp(−ig · (l +m)/2)J0(|l −m||g|/2) dg.

Making use of polar coordinates, the expression for the coefficients becomes

B̂(l,m) = Cα2π

∫ 2πλ

0

ρ1+α

(∫ 2π

0

cos(|l +m|ρ/2) cos θ dθ

)
J0(|l −m|ρ/2) dρ

= Cα4π2

∫ 2πλ

0

ρ1+αJ0(|l +m|ρ/2)J0(|l −m|ρ/2) dρ

= Cα4π2(2πλ)2+α
∫ 1

0

r1+αJ0(ξr)J0(ηr) dr (32)

where ξ = |l +m|λπ, η = |l −m|λπ. Taking now Cα = (4π2(2πλ)2+α)−1, the
expression of B̂(l,m) becomes

B̂(l,m) = Fα(ξ, η)

with

Fα(ξ, η) =

∫ 1

0

r1+αJ0(ξr)J0(ηr) dr. (33)

From (33) it is easy to prove that an analogue of proposition 2 holds also in
the two dimensional case. Note that also in this case each kernel mode can be
computed as a 1-D integral and stored in an array.

3D case.

Let q = |g|(l −m)/2. Then I2 is computed as follows

I2(|g|, l −m) =

∫

S2

eiq·ω dω = 2π

∫ π

0

ei|q| cos θ sin θ dθ

= 2π

∫ 1

−1

ei|q|µ dµ = 4π Sinc(|q|)

= 4π Sinc

( |g||l −m|
2

)
(34)
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where

Sinc(x) ≡ sinx

x
.

Let p = (l+m)/2. Then, taking into account the previous result, one obtains
[20]

B̂(l,m) = Cα4π

∫

B(0,2λπ)

|g|α Sinc(|l −m||g|/2) exp(−ip · g) dg

Making use of spherical coordinates, with ρ = |g|, one has

B̂(l,m) = Cα8π2

∫ 2πλ

0

ρ2+α Sinc(|l −m|ρ/2) dρ
∫ π

0

exp(−i|p|ρ cos θ) sin θ dθ

= Cα16π2

∫ 2πλ

0

ρ2+α Sinc(|l −m|ρ/2) Sinc(|l +m|ρ/2) dρ. (35)

With the change of variables ρ = 2λπr the coefficient B̂(l,m) can be written
as

B̂(l,m) = Cα16π2(2λπ)3+α
∫ 1

0

r2+α Sinc(ξr) Sinc(ηr) dr

where ξ = |l+m|λπ, η = |l−m|λπ. To simplify notations let us assume that

Cα = (16π2(2λπ)3+α)−1.

In this case the coefficient can be written as

B̂(l,m) = Fα(ξ, η)

where

Fα(ξ, η) =

∫ 1

0

r2+α Sinc(ξr) Sinc(ηr) dr. (36)

From (36) it is easy to prove the following

Proposition 2. Let Fα(ξ, η) be defined by (36) then

i) Fα(ξ, η) = Fα(η, ξ),
ii) if α > −3 then |Fα(ξ, η)| ≤ Fα(0, 0) = (3 + α)−1,
iii) if α > −1 then |Fα(ξ, η)| ≤ [ξη(1 + α)]−1.

For integer values of α, Fα has an explicit analytical expression. We give
here the expressions for α = 0 (Maxwellian gas) and α = 1 (Hard Sphere gas)

F0(ξ, η) =
p sin(q) − q sin(p)

2ξηpq
(37)

F1(ξ, η) =
p2(q sin(q) + cos(q)) − q2(p sin(p) + cos(p)) − 4ξη

2ξηp2q2
(38)

where p = (ξ + η), q = (ξ − η).
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Storage of Fourier coefficients.

Note that, since the five-fold integral (26) which defines the B̂(l,m) has been
reduced to a one-dimensional integral (36), for non-integer values of α, the
value of the coefficients can be easily computed numerically by an accurate
quadrature formula, and stored in an array at the beginning of the calculation.

In 3D, the storage of coefficients B̂(l,m) is of order O(n6), where n is
the number of half modes for each direction. But, it can be easily reduced to
O(n4). Indeed, the matrix B̂(l,m) only depends on |k| = |l+m| and |l−m|,
it is then replaced by the smaller matrix B̂(i, j), where integers i, j are given
by

0 ≤ i = |k|2 ≤ 3n2, 0 ≤ j = |l −m|2 ≤ 12n2.

4.2 Properties of the spectral method.

We state here the main theoretical results of the Fourier-Spectral method,
concerning consistency and spectral accuracy. For any function f(v), let fN (v)
denote the truncated Fourier series of f , and let PN : L2([−π, π]d) → IPN

denote the projection operator, with

IPN = span
{
eik·v | −N ≤ kj ≤ N, j = 1, .., d

}
.

Then the following results hold [20]

Proposition 3. Let f ∈ L2([−π, π]d), f ≥ 0, ∀ v ∈ [−π, π]d, and let us define



ρ
ρu
ρe


 :=

∫

[π,π]d
f




1
v

|v|2


 dv. (39)

and let us denote by ρN , ρuN , and ρeN the moments of fN , then the following
relations hold

ρ = ρN ,

|ρu− ρuN | ≤ C1

N
||f ||2,

|ρe− ρeN | ≤ C2

N2
||f ||2.

The estimates given above can be strongly improved if f is smooth. If
f ∈ Hr

p([−π, π]d), where r ≥ 0 is an integer and Hr
p([−π, π]d) is the subspace

of the Sobolev space Hr([−π, π]d), which consists of periodic functions [5], for
each ϕ ∈ L2([−π, π]d) we have

| < f,ϕ > − < f,ϕN > | ≤ ||ϕ||2 ||f − fN ||2 ≤ C

Nr
||ϕ||2||f ||Hr

p
,

where || · ||Hr
p

denotes the norm in Hr
p([−π, π]d), and < f, g > denotes the

scalar product in L2
p. This inequality shows that the projection error on
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the moments decay faster than algebraically when the solution is infinitely
smooth.

We state a consistency result in the L2-norm for the approximation of the
collision operator Q(f, f) with QN (fN , fN ) [20, 43],

Theorem 1. Let f ∈ L2([−π, π]d), and B(u, θ) = Cα|u|α, with α > 0 then

||Q(f, f) −QN (fN , fN )||2 ≤ C

(
||f − fN ||2 +

||Q(fN , fN )||Hr
p

Nr

)
, ∀ r ≥ 0,

(40)
where C depends on ||f ||2.

Proof. First, let us split the error in two parts

||Q(f, f) −QN (fN , fN )||2 ≤ ||Q(f, f) −Q(fN , fN )||2
+ ||Q(fN , fN ) −QN (fN , fN )||2

On the one hand, observing that Q(fN , fN ) ∈ IP 2N and hence Q(fN , fN ) is
periodic and infinitely smooth [5]

||Q(fN , fN ) −QN (fN , fN )||2 ≤ Cr
Nr

||Q(fN , fN )||2, ∀r ≥ 0. (41)

On the other hand using the symmetry of the Boltzmann operator, we get

Q(f, f) −Q(fN , fN ) = Q(f + fN , f − fN ). (42)

Now, let us prove that

||Q(f + fN , f − fN )||2 ≤ C||f + fN ||1 ||f − fN ||2. (43)

We use a duality argument : for each function ϕ ∈ L2([−π, π]d), we get form
the Hölder inequality
∣∣∣∣
∫
Q(f, g)ϕdv

∣∣∣∣ = Cα

∣∣∣∣
∫ ∫

|v − v∗|αg(v∗) f(v) (ϕ(v′) − ϕ(v)) dωdv?dv

∣∣∣∣

≤ Cα||g||1 sup
v∗∈[−π,π]d

∫
|v − v∗|αf(v)

∣∣∣∣
∫

Sd−1

(ϕ(v′) − ϕ(v))dω

∣∣∣∣ dv.

Let us fix v?, then from the Cauchy-Schwartz inequality we obtain
∫

|v − v∗|αf(v)

∣∣∣∣
∫

Sd−1

(ϕ(v′) − ϕ(v))dω

∣∣∣∣ dv

≤ ||f ||2
∥∥∥∥|v − v∗|α

∫

Sd−1

(ϕ(v′) − ϕ(v))dω

∥∥∥∥
2

.

Using the invariance by translation, it is enough to prove this estimate for
v∗ = 0. Moreover, the function v → |v|α defined in [−π, π]d is bounded, and
thus there exists a constant C, independant of N , such that
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∥∥∥∥|v|α
∫

Sd−1

(ϕ(v′) − ϕ(v))dω

∥∥∥∥
L2

≤ C ||ϕ||2. (44)

Finally, we have shown that there exists a constant C, independant of N ,
such that for each smooth function ϕ

∣∣∣∣
∫
Q(f, g)ϕdv

∣∣∣∣ ≤ C ||g||L1 ||f ||2||ϕ||2,

which proves the inequality (43) with g = f + fN and f = f − fN . Gathering
inequalities (41) and (43), we conclude the proof. ¤

The previous estimate states that the rate of convergence in the L2-norm
of QN (fN ) to Q(f) depends only on the speed of convergence of fN to f .
Hence if fN is spectrally accurate so it is QN (fN ). The following corollary
states the spectral accuracy of the approximation of the collision operator

Corollary 1. Let f ∈ Hr([−π, π]d), r ≥ 0 then

||Q(f) −QN (fN )||2 ≤ C

Nr
(||f ||Hr + ||Q(fN )||Hr ) . (45)

4.3 Time discretization of the collision operator.

Here we focus on the time evolution of the collision step. Let ∆t denote the
time step of the transport phase. The goal is to solve, in each cell, the space
homogeneous Boltzmann equation

∂f∗

∂t
=

1

kn
Q(f∗, f∗)

f∗(0, v) = fn(v)

where, for simplicity, we drop the space dependence. One could use any second
order time discretization, such as a Runge-Kutta method, with the same time
step, ∆t, used for the convection step, for the ordinary differential system of
the Fourier modes, (71). If the time step is too large (for accuracy or stability
reasons), then a smaller time step, ∆tc < ∆t, can be used during this phase.
Since each cell is independent, ∆tc may depend on the cell. If ∆tc << ∆t,
then a multi-step scheme can be used to improve efficiency and accuracy.
With standard methods such as Runge-Kutta or multi-step, it is difficult to
control positivity of the solution. Here we propose a time discretization which
provides essential positivity of the distribution function, and allows the use of
rather large time steps, even in regimes in which the Knudsen number is quite
small. The schemes that we use are based on a variation of time relaxed (TR)
schemes [21], which have been effectively used in the development of Monte
Carlo methods suitable for a very wide range of Knudsen number, and for the
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space non-homogeneous Boltzmann equation [10]. We briefly recall here the
idea behind the TR schemes.

Let us consider an equation of the form

∂f

∂t
=

1

kn
[P (f, f) − µf ] , (46)

f(0, v) = f0(v),

where µ 6= 0 is a constant and P a positive bilinear operator.
The Boltzmann equation for Maxwell molecules has the above form, with

Q+(f, f) = P (f, f), and L[f ] = µ.
Let us replace the time variable t and the function f = f(t, v) using the

equations
τ = (1 − e−µt/kn), F (τ, v) = f(t, v)eµt/kn . (47)

Then F is easily shown to satisfy

∂F

∂τ
=

1

µ
P (F, F ), (48)

with F (τ = 0, v) = f0(v).
Now, the solution to the Cauchy problem for (48) can be sought in the

form of a power series

F (τ, v) =

∞∑

k=0

τkfk(v), fk=0(v) = f0(v), (49)

where the functions fk are given by the recurrence formula

fk+1(v) =
1

k + 1

k∑

h=0

1

µ
P (fh, fk−h), k = 0, 1, . . . (50)

Making use of the original variables we obtain the following formal represen-
tation of the solution to the Cauchy problem (20), called Wild sum expansion
[29].

f(t, v) = e−µt/kn

∞∑

k=0

(
1 − e−µt/kn

)k
fk(v). (51)

The coefficients fk have the property that

lim
k→∞

fk(v) = M(v), (52)

where M(v) is the Maxwellian, satisfying

Q(M,M) = 0.

Representation (51) and property (52) suggest the use of a truncation of series
(51) as a numerical scheme for time discretization, namely
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fn+1(v) = (1 − τ)

m∑

k=0

τkfk(v) + τm+1M(v), (53)

with fk(v) computed from fn(v). Such scheme is of order m in µ∆t/kn, and
has the following properties [21]

Proposition 4. The Time-Relaxed scheme given by (53) satisfies

i) conservation: if P (f, g) is a non negative bilinear operator such that there
exist some functions φ(v) with the following property

∫

Rd

P (f, f)φ(v) dv = µ

∫

Rd

fφ(v) dv, (54)

and the initial condition f0 is a non negative function, then fn+1 is non-
negative for any µ∆t/kn, and satisfies

∫

Rd

fn+1φ(v) dv =

∫

Rd

fnφ(v) dv; (55)

ii) asymptotic preservation (AP):
for any m ≥ 1, we have

lim
µ∆t/kn→∞

fn+1 = M(v). (56)

Proof. The result is straightforward using the construction of the scheme.
¤

The above time discretization can be generalized using different weight func-

tions to combine the influence of the high order coefficients appearing in the
Wild sum (51). In general such schemes can be written as

fn+1 =

m∑

k=0

Akfk +Am+1M, (57)

where the coefficients fk are given by (50) using f = fn(v). The weights
Ak = Ak(τ) are nonnegative functions that satisfy some consistency condition.

Proposition 5. If Ak(τ) ≥ 0 satisfy

i) consistency:

lim
τ→0

A1(τ)/τ = 1, lim
τ→0

Ak(τ)/τ = 0, k = 2, . . . ,m+ 1, (58)

ii) conservation:
m+1∑

k=0

Ak = 1 τ ∈ [0, 1], (59)
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iii) asymptotic preservation (AP):

lim
τ→1

Ak(τ) = 0, k = 0, . . . ,m, (60)

then (57) is a consistent discretization of problem (46) that satisfies proposi-
tion 4.

A choice of functions which satisfies the previous requirements is given by

Ak = (1 − τ)τk, k = 0, . . . ,m, Am+1 = τm+1, (61)

which correspond to the scheme (53). A better choice of parameters is [19]

Ak = (1−τ)τk, k = 0, . . . ,m−1, Am = 1−
m∑

k=0

Ak−Am+1, Am+1 = τm+2,

(62)
which corresponds to take fm+1 = fm, fk = M , k ≥ m+ 2 in (51). However,
other choices are possible and it is an open problem the determination of
the optimal set of functions Ak that satisfies the previous requirements and
guarantees the most accurate approximation.

The Boltzmann equation for Maxwell molecules has the form (46), with
P (f, f) = Q+(f, f). In order to apply the same discretization to a more general
B.E., we can proceed as follows. We write the Boltzmann equation in the form
(46), with

P (f, g) = Q+(f, g) +
1

2
(µ(f + g) − L[f ]g − L[g]f) ,

where the operator P is written in a symmetric form. If we choose

µ ≥ L[f ](v) ∀v ∈ Rd, (63)

then P (f, f) is a positive symmetric operator. However, in general L(v) is
an unbounded function, and therefore a constant µ satisfying (63) does not
exist. Even if we consider that the discrete velocities lie in a bounded domain
Ωv = [−V, V ]3, a choice of µ satisfying (63) may lead to excessive numerical
viscosity, as is evident from standard truncation analysis.

Ideally, one should choose the smallest value of µ that guarantees positivity
of operator P . This should be obtained, for a given function f(v), by imposing
that

min
v∈Ωv

[Q+(v) + (µ− L(v))f(v)] = 0. (64)

A first order (non AP) TR scheme has the structure

fn+1(v) = A0(τ)f
n(v) +A1(τ)f1(v),

with f1 = P (fn, fn)/µ. Because of positivity of the coefficients A0(τ) and
A1(τ), if P (f, f) is positive, then the scheme is positive.
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Condition (64) is not practical, since the region of phase space Ωv near
the edge is not physically representative, because of the approximation of the
distribution function by a periodic function in velocity. A better choice is
obtained by computing a critical constant µc as

µc = max
v∈Ωc

(
L(v) − Q+

f

)
, (65)

where Ωc ⊂ Ωv is a smaller region, for example, Ωc = [−V/2, V/2]3. Then the
constant µ is computed as µ = Cµc, where C is a safety factor of order one.
In all the calculations we used the value C = 3/2, which we found a good
compromise between numerical positivity and numerical viscosity.

These practical criteria deserve further analysis. We have to keep in mind
that the spectral scheme itself does not preserve positivity rigorously [20].
However, the lack of positivity is very small, and can be neglected for all
practical purposes. Even if positive spectral scheme can be obtained, as shown
in [20] and [19], they are not practical, because of the lack of accuracy and
excessive smoothing.

Accuracy requires a small value of µ∆t/kn. If µ is kept constant, indepen-
dently of kn, then the time step becomes exceedingly small for small values
of kn, and the method becomes inefficient. The approach that we outlined
above allows rather large time steps, even for small values of kn. The reason
for this is that when kn is small, then gain and loss terms balance each other,
and therefore the quantity µ computed as above becomes small. It appears in
fact that for small values of kn, µ scales with kn, and the ratio µ/kn remains
bounded.

With these considerations in mind, we maintain the same criterion for the
evaluation of the optimal µ, even for higher order TR schemes.

A second order (non AP) TR scheme has the structure

fn+1(v) = A0(τ)f
m(v) +A1(τ)f1(v) +A2(τ)f2(v),

with f2(v) = P (fn, f1). The constant µ is computed as above, µ = 3/2µc,
with µc given by (65). For all practical purpose the scheme can be considered
positive, although it is not rigorously positive.

To conclude this section, let us mention that in [10], we present two algo-
rithms to reduce the computational cost and to improve accuracy. On the one
hand, a parallel algorithm based on the fractional step approach is given. On
the other hand, a simple multi-resolution is proposed to solve the transport
and collision steps using different grids.

5 Numerical tests.

In this section, we present test cases showing the effectiveness of the spectral-
PFC method to get an accurate solution of the Boltzmann equation. We first
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give two simple numerical tests in the 3D homogeneous case (without x) in
order to illustrate the spectral accuracy of the method. In space dependent
tests we used 2D and 3D models of the Boltzmann equation in velocity space
and present results to compare the scheme with the well known Monte-Carlo
method for the Boltzmann equation. We refer to [10] for more numerical
results (Riemann problem and stationary shock waves for a model Boltzmann
equation 2D in velocity). Finally, we present a comparison with the Monte
Carlo method for the evalutation of a stationary shock.

5.1 3D space homogeneous case: spectral accuracy.

We consider 3D Maxwellian molecules (i.e. α = 0), with C0 = 1/(4π). This
problem has an exact solution given by

f(t, v) =
exp(−v2/2S)

2S (2πσ)3/2

[
5S − 3 +

1 − S

S
v2

]
,

where S = 1− exp(−(t+ t0)/6), t ≥ 0, t0 = 5.6 > 6 log(5/2). This test is used
to check spectral accuracy, by comparing the error at a given time, when using
n = 8, 16, and 32 Fourier modes for each dimension, to check the accuracy in
the conservation of energy and to observe the evolution of the fourth moment.
Because of the symmetry of the problem, the moments of order 1 and 3 are
conserved, within round-off error. In figure 2 we report the L1 relative error
vs time, for different number of modes, and the fourth order moment.
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Fig. 2. 3D homogeneous case I: evolution of the numerical L1 relative error and the
fourth order moment of f(t, v).
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5.2 3D space homogeneous case: convergence to equilibrium.

We present a first result for the 3D Boltzmann equation without the transport
part and consider Maxwellian (α = 0) and hard-sphere (α = 1) molecules,
with Cα = 1/(2π). The initial condition is sum of two Gaussians

f(v, 0) =
1

2(2πσ2)3/2

[
exp

(
−|v − v1|2

2σ2

)
+ exp

(
−|v − v2|2

2σ2

)]
,

with σ2 = 0.2, v1 = (1, 1, 1/4), v2 = (−1,−1,−1/4) and the final time is
tmax = 2. This test is used to check the evolution of the distribution function
and to observe the relaxation to equilibrium.

We first define the directional temperature

Tα(t) =
1

ρ

∫

R3

(vα − uα)2f(t, v)dv, α ∈ {x, y, z}

where ρ and u are given by (53) and the entropy

H(t) =

∫

R3

f(t, v) log(f(t, v))dv.

In Fig. 3, the relaxation of Tα(t), with α ∈ {x, y, z} and H(t) for Hard-sphere
and Maxwellian molecules are presented starting from the same initial data.
Finally, the evolution of the distribution function f is given in Fig. 4.

5.3 Riemann problem: time dependent solutions.

This test deals with the numerical solution of the non homogeneous 1D× 2D
Boltzmann equation for hard sphere molecules (α = 1). We present some
results for one dimensional Riemann problem and compare them with the
numerical solution obtained by the Monte-Carlo scheme. Let us note that the
accuracy of the Monte Carlo solution is improved by performing averages of
the solution itself by repeating the calculation several times with different
seeds in the random number generator, and averaging the solution over the
different runs. Then, we have computed an approximation for different Knud-
sen numbers, from rarefied regime up to the fluid limit. The solution in the
hydrodynamic limit is also compared with the numerical solution of Euler sys-
tem, which is obtained by Nessyahu-Tadmor scheme [15] using a large number
of points (nx=1600). The initial data is given by





(ρl, ul, Tl) = (1, 0, 1) if 0 ≤ x ≤ 0.5,

(ρr, ur, Tr) = (0.125, 0, 0.25) if 0.5 < x ≤ 1,

In Fig. 3 we plot the results obtained in the rarefied regime (kn=10−2)
using the Spectral-PFC scheme and the Time Relaxed Monte Carlo (TRMC)
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Fig. 3. 3D homogeneous case II: evolution of the temperature and the entropy for
hard sphere molecules (1)-(2) and for Maxwellian molecules (3)-(4).
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Fig. 4. 3D homogeneous case II: evolution of the distribution function at time t=0,
0.1, 0.4 and 2 for hard sphere molecules (level set f(t, v) = 3.10−3)

method. The TRMC method is used with 100 cells in x containing 100 par-
ticles whereas the Spectral-PFC scheme is used with 64 points in x and the
size of the velocity grid is 64 × 64 points for the transport and the total
number of modes 32 × 32. We observe that the two solutions are in this case
very comparable even if small oscillations, due to the statistical noise, per-
sist. Concerning the computational time on one processor, the Spectral-PFC
scheme is more efficient than Monte Carlo in this situation because the av-
eraging highly increases the computational time (see Table 1). Let us note
that in the two cases (Monte-Carlo and Spectral methods), the Time Relaxed
scheme allows to use a large variety of Knudsen number (kn = 10−1, 10−2)
without increasing the computational cost. Finally, the computational time of
the Spectral-PFC scheme can be highly reduced using the parallel algorithm
presented before.
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We also give the result of the computations close to the Euler limit (kn =
10−4) using 128 space cells for the Spectral-PFC method. In this case, a
smaller time step (∆t = 0.001) is needed to keep good accuracy3, which
increases the computational time, while a small time step for the TRMC
method does not influence the numerical solution due to the low order of the
Monte-Carlo scheme (see Table 1). For this reason a large time step is used,
which explains the lower computational cost of the TRMC scheme.

Finally, the profiles obtained with TRMC and Spectral-PFC methods are
reported in Fig. 4. The use of first order scheme for the transport for the
TRMC scheme is clearly not sufficient to give accurate results. On the oppo-
site, using a small time step (∆t = 0.001), an accurate solution is obtained
by the Spectral-PFC method, which is much less diffusive.

TRMC S-PFC

kn = 10−1 17 mn 25 sec 10 mn 50 sec

kn =10−2 17 mn 25 sec 10 mn 50 sec

kn =10−4 17 mn 25 sec 44 mn 20 sec

Table 1. Riemann problem: the first column represents the value of Knudsen num-
bers kn, the second one is the computational time obtained for the TRMC scheme
and the third one is the computational time for the third order PFC scheme coupled
with the spectral method for the collision operator.

5.4 Shock profile: stationary solutions.

This test deals with the numerical solution of the non homogeneous 1D× 3D
Boltzmann equation for hard sphere molecules (α = 1). We present numerical
results for one dimensional stationary shock-profiles for different Knudsen
number and compare the solution with one obtained by the Monte-Carlo
method.

The gas is initially at the upstream equilibrium state in the left half-
space and in the downstream equilibrium state in the right-half space. The
upstream state are determined from downstream state using the Rankine-
Hugoniot relations [28]. In the present calculations, the downstream state is
characterized by

ρr = 1, T r = 1, M = 2,

where M is the Mach number of the shock. The downstream mean velocity is
then given by

(urx, u
r
y) = (−M

√
γ T , 0),

3 The degradation of accuracy is typical of Strang splitting when one of the term is
stiff (see [13]. Such degradation can be cured using a different approach for time
discretization
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Fig. 5. Riemann problem (kn = 10−2): evolution of (1) the density ρ, (2) mean
velocity u and (3) temperature T at t = 0.05, 0.15, 0.20.
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Fig. 6. Riemann problem (kn = 10−4): (1) the density ρ, (2) mean velocity u and
(3) temperature T at t = 0.20 obtained by the central scheme for Euler equations
(up) and by Spectral-PFC and TRMC methods for Boltzmann equations.

with γ = 5/3 since we have considered a 3D monoatomic gas in velocity space.
The results of the computation are shown in Fig. 5 and 6. On the one

hand, we compute a solution using the Spectral-PFC scheme (128 cells in
space and only 32 × 32 × 32 modes in velocity) up to t = 1.0, so that the
profile is practically stationary. On the other hand, Monte Carlo calculations
(TRMC) are performed by time-averaging the numerical solution after time
large enough (t = 2.0). We observe that there is a good agreement between
the TRMC and Spectral-PFC method. However, the TRMC scheme is used
with nx = 250 cells in space in order to avoid a too large numerical diffusion.
Indeed, with nx = 128, the shock is not well described with this method. In
any case, the TRMC is much cheaper in term of computational cost since we
are only interested in the stationary solution.
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Fig. 7. Shock profiles (ε = 1. 10−1): (1) the density ρ, (2) mean velocity u and (3)
temperature T obtained by the Spectral-PFC method and by the TRMC method.
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Fig. 8. Shock profiles (ε = 5. 10−2): (1) the density ρ, (2) mean velocity u and (3)
temperature T obtained by the Spectral-PFC method and by the TRMC method.

6 Conclusion.

In this chapter we present an accurate deterministic method for the numerical
approximation of the space non homogeneous, time dependent Boltzmann
equation. The method, based on a fractional step approach, couples a Positive
and Flux Conservative scheme for the treatment of the transport step with a
Fourier spectral method for the collision step.

It possesses a high order of accuracy for this kind of problems. In fact it
is second order accurate in time, third order accurate in space, and spectrally
accurate in velocity. The high accuracy is evident from the quality of the
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numerical results that can be obtained with a relatively small number of grid
points in velocity domain.

An effective time discretization allows the treatment of problems with a
considerable range of mean free path, and the decoupling between the trans-
port and the collision step makes it possible the use of parallel algorithms,
which become competitive with state-of-the-art numerical methods for the
Boltzmann equation.

The numerical results, and the comparison with other techniques, show
the effectiveness of the present method for a wide class of problems.
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