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1. The Monge-Kantorovich problem

1.1. The Monge problem. The theory of optimal transport goes back to the work of Monge
(Mémoire sur la théorie des déblais et des remblais, 1781). The basic idea is to determine
the most efficient way to move one distribution of mass onto another while minimizing a cost
function that measures the ”effort” of transportation. Imagine that you have a sandpile and a
hole at a distance away. The question is:

How can you move the sand to fill the hole while doing the least amount of work?

µ ∈ M1(X)

ν ∈ M1(Y )

T : X → Y

1
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Each grain of sand can be moved from where it is to a new position, but moving it farther costs
more effort. The problem asks for a map T that tells every grain of sand where to go. Your
plan is then to minimise the total transportation cost.
In modern terms, the sandpile is represented by some probability measure µ ∈ M1(X), and the
hole by another probability measure ν ∈ M1(Y ). Here and throughout, X and Y are assumed
to be Polish spaces.
Definition 1.1. Let µ ∈ M1(X) and ν ∈ M1(Y ). A measurable map T : X → Y is called a
transport map from µ to ν if

ν = T#µ,

i.e. if ν is the pushforward of µ by T .
The cost of transportation is then given by some function c : X × Y → R ∪ {+∞}, which is
typically assumed to be lower semicontinuous (see appendix A for definition and basic properties
of lower semicontinuity). For instance on Rd, the cost can be given by the Euclidean distance
c(x, y) = |x− y|, for x, y ∈ Rd. The quantity c(x, T (x)) represents the cost of moving one unit
of mass x to T (x). The total cost of the transport map T is thus

∫
c(x, T (x))µ(dx), and we

seek to minimize this quantity among all transport maps.
The Monge’s problem formulation is then:

Mc(µ, ν) := inf
T |T#µ=ν

∫
X
c(x, T (x))µ(dx).

Monge’s formulation is an optimization problem with nonlinear constraints. As such, it is in
general a hard problem. Moreover, it might exist no transport map between µ and ν. For
instance, if µ = δx, for some x ∈ X, what can be ν = T#µ? For any Borel set A ∈ B(Y ), we
thus have

T#µ(A) = δx
(
T−1(A)

)
=

1, if x ∈ T−1(A)
0, if not,

= δT (x)(A).
Thus, if ν is not a single Dirac mass, then there exists no transport map between µ and ν.

1.2. The Kantorovich relaxation. In [On the Translocation of Masses, 1942], Kantorovich
proposed a relaxation of Monge’s problem. The key idea is to allow ”mass splitting”, in contrast
to Monge’s formulation, where each point x is sent to a single destination T (x).
Definition 1.2. Let µ ∈ M1(X) and ν ∈ M1(Y ). A transport plan between µ and ν is a
probability measure on X × Y whose first marginal is equal to µ and second marginal equal to
ν. We denote by Π(µ, ν) the set of transport plans between µ and ν, that is:

Π(µ, ν) = {π ∈ M1(X × Y ) | (pX)#π = µ and (pY )#π = ν} ,
where pX and pY are the canonical projections onto X and Y respectively.
In probabilistic terms, the set of transport plans between µ and ν is the set of distributions of
random vectors (X, Y ), such that X ∼ µ and Y ∼ ν. Any such pair (X, Y ) is called a coupling
of X and Y .
Note that the set of transport plans is never empty, since we always have

µ⊗ ν ∈ Π(µ, ν),
which corresponds to the independent coupling (X, Y ) where X and Y are independent.
The Kantorovich problem formulation is then

Kc(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy).
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In terms of random variables, we have

Kc(µ, ν) = inf
X∼µ
Y∼ν

E [c(X, Y )] .

Unlike the Monge problem, the Kantorovich problem is a linear optimization problem over a
convex set of measures, which makes it much more tractable

Now assume that T is a transport map between µ and ν. Define

γT (dx, dy) = µ(dx)δT (x)(dy),

i.e.
γT = (Id× T )#µ,

where Id× T : X → X × Y is the map x 7→ (x, T (x)). Then,

∀A ∈ B(X), γT (A× Y ) =
∫
A×Y

µ(dx)δT (x)(dy)

=
∫
A
µ(dx) = µ(A),

and

∀B ∈ B(Y ), γT (X ×B) =
∫
X×B

µ(dx)δT (x)(dy)

=
∫
X
µ(dx)

(∫
B
δT (x)(dy)︸ ︷︷ ︸

=1T −1(B)(x)

)

=
∫
X
1T−1(B)(x)µ(dx)

= µ
(
T−1(B)

)
= T#µ(B) = ν(B).

Thus, γT is a transport plan between µ and ν. Moreover,∫
X×Y

c(x, y)γT (dx, dy) =
∫
X×Y

c(x, y)µ(dx)δT (x)(dy)

=
∫
X
c(x, T (x))µ(dx).

Therefore,

Kc(µ, ν) ≤
∫
X
c(x, T (x))µ(dx),

and optimizing over transport maps, one obtains that we always have:

Kc(µ, ν) ≤ Mc(µ, ν).

Moreover, assume that π is optimal in the Kantorovich problem (i.e. the infimum is attained at
π), and that π can be written π = γT , for some T . Then T is optimal for the Monge’s problem
and both problems coincide:

Kc(µ, ν) =
∫
X×Y

c(x, y)γT (dx, dy) =
∫
X
c(x, T (x))µ(dx) ≥ Mc(µ, ν),

so in that case,
Kc(µ, ν) = Mc(µ, ν).

In the next subsection, we illustrate when this equality occurs with a discrete example.
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1.3. Discrete example. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} two finite discrete spaces.
Consider

µ = 1
n

n∑
i=1

δxi
∈ M1(X)

ν = 1
n

n∑
j=1

δyj
∈ M1(Y ).

The measures µ and ν can be identified with row vectors in Rn. Now a transport plan π ∈
Π(µ, ν) between µ and ν takes the form

π =
( 1
n
πij

)
1≤i,j≤n

.

Then, the first marginal of π being µ implies that

∀i ∈ {1, . . . , n},
n∑
j=1

1
n
πij = µi = 1

n
, hence

n∑
j=1

πij = 1.

Likewise, the second marginal of π being ν implies that

∀j ∈ {1, . . . , n},
n∑
i=1

1
n
πij = νj = 1

n
, hence

n∑
i=1

πij = 1.

We thus have that (πij)1≤i,j≤n is a doubly stochastic matrix. Let

Bn = {n× n doubly stochastic matrices},

which is called the Birkhoff polytope. It is compact (as a closed subset of Mn([0, 1]) ≃ [0, 1]n2)
and convex. Then, the Kantorovich problem takes the form:

Kc(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy)

= inf
π∈Bn

1
n

n∑
i,j=1

c(xi, yj)πij.

It is well known that we have:

Theorem 1.1 (Birkhoff-von Neumann theorem (1946)). The n×n permutation matrices con-
stitue the extreme points of Bn. Moreover, Bn is the convex hull of the set of n×n permutation
matrices.

We recall that if K is a convex set, the extreme points of K are the points x ∈ K such that for
all a, b ∈ K, for all λ ∈ [0, 1],

x = λa+ (1 − λ)b ⇒ a = b or λ ∈ {0, 1}.

Figure 1. A convex set K and its extreme points (thick lines).

Now, a linear form on a compact convex subset K of a Euclidean space attains its minimum
on an extreme point of K (this is known as Choquet’s theorem).
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Hence, we get

Kc(µ, ν) = min
σ∈Sn

1
n

n∑
i,j=1

c(xi, yj)1σ(i)=j

= min
σ∈Sn

1
n

n∑
i=1

c(xi, yσ(i)).

In this example, one has that the Monge problem coincides with the Kantorovich problem.
Now as an example, take the cost to be the square of the Euclidean distance, c(x, y) = |x− y|2
on R × R, so our problem consists of finding

min
σ∈Sn

n∑
i=1

|xi − yσ(i)|2.

One can see that the minimum is attained when the two sequences (xi)1≤i≤n and (yi)1≤i≤n are
monotone ordering, i.e.

x1 < · · · < xn and y1 < · · · < yn.

To see this, one may assume that the sequence (xi)1≤i≤n is increasing. Now, if there is some i
such that yi > yi+1, then

(xi − yi)2 + (xi+1 − yi+1)2 = (xi − yi+1)2 + (xi+1 − yi)2 + 2(xi+1 − xi)(yi − yi+1)
≥ (xi − yi+1)2 + (xi+1 − yi)2.

Hence, one can reorder the sequence of (yi)1≤i≤n using successive transpositions while keeping
the total cost smaller. Thus, we get that

min
σ∈Sn

n∑
i=1

|xi − yσ(i)|2 =
n∑
i=1

|xi − yσ◦ψ−1(i)|2,

where σ and ψ are the permutations defined by
xψ(1) < · · · < xψ(n) and yσ(1) < · · · < yσ(n).

Here, the solution of Monge problem is unique and the optimal transport map is T : X → Y
given by T : xi 7→ yσ◦ψ−1(i, for i ∈ {1, . . . , n}.
The above discrete optimization problem is an example of a linear programming, or linear
optimization. The standard formulation of a linear programming consists of, given c ∈ RN ,
b ∈ RM and a M ×N matrix A,minimize ⟨c, x⟩ subject to the

constraints Ax = b, x ≥ 0.

This is known as the primal problem. The dual problem is then tomaximize ⟨b, y⟩ subject to the
constraints A⊺y ≤ c.

Intuitively, the ”constraints become the variables” and the ”variables become the constraints”.
Indeed, if x ∈ Rn is a solution of the primal problem subject to the constraints

∀i ∈ {1, . . . ,M}, (Ax)i = bi,

then multiplying each constraint by a scaling factor yi ∈ R and summing over all the constraints
give that

M∑
i=1

yi(Ax)i =
M∑
i=1

yibi,

i.e.
⟨A⊺y, x⟩ = ⟨b, y⟩.
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Thus, if we can find y ∈ RM such that A⊺y ≤ c, then since x ≥ 0, we get that

⟨b, y⟩ = ⟨A⊺y, x⟩ ≤ ⟨c, x⟩.

Thus, each y ∈ RM such that A⊺y ≤ c gives a possible lower bound for ⟨c, x⟩. As we seek for
the best lower bound, we have to maximize over such y, giving the dual problem formulation.
Moreover, under some mild conditions, we have the duality

min {⟨c, x⟩ |Ax = b, x ≥ 0} = max {⟨b, y⟩ |A⊺y ≤ c} .

Our initial problem of transporting the discrete measure µ = (µi)1≤i≤n to the measure ν =
(νj)1≤j≤m with cost c = (cij)1≤i≤n,1≤j≤m, with cij = c(xi, yj), is

minimize
∑

i=1,...,n
j=1,...,m

cijπij

over π subject to the constraints
m∑
j=1

πij = µi,
n∑
i=1

πij = νj, πij ≥ 0.

This is translated into a primal linear program by putting N = nm, M = n+m, and ”vectorize”
π, c, b as

π = (π11, . . . , π1m, π21, . . . , π2m, . . .)⊺ ∈ RN

c = (c11, . . . , c1m, c21, . . . , c2m, . . .)⊺ ∈ RN

b = (µ1, . . . , µn, ν1, . . . , νm)⊺ ∈ RM ,

and define the (n+m) × nm matrix A by

A =



m︷︸︸︷
1

m︷︸︸︷
0 · · ·

m︷︸︸︷
0

0 1 · · · 0
...
0 0 · · · 1
e1 e1 · · · e1
...
em em · · · em


where, in the first n rows, 1 is the row vector 1 = (1, . . . , 1) ∈ Rm, and the m last rows are
given by n times the ith basis row vector ei = (0, . . . , 1, . . . , 0) of Rm.
Now, letting y = (φ1, . . . , φn, ψ1, . . . , ψm) ∈ RM , and using the explicit form of the matrix A,
the dual problem writes:

maximize
n∑
i=1

φiµi +
m∑
j=1

ψjνj

over (φ, ψ) subject to the constraints

φi + ψj ≤ cij, for all i = 1, . . . , n and j = 1, . . . ,m.

Note that from a computational point of view, exploring the set of n×m matrices (πij) is much
more demanding than exploring the set of vectors (φ, ψ) ∈ Rn × Rm. Hence, an algorithmic
resolution should prefer the dual problem!
In fact, there is a general dual formulation for the Kantorovich problem.
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1.4. Kantorovich dual formulation. Let X and Y be Polish spaces. Let µ ∈ M1(X) and
ν ∈ M1(Y ). Let c : X × Y → [0,+∞] be a measurable function. We assume that c is lower
semicontinuous (see appendix A).
Let π ∈ Π(µ, ν) be a transport plan between µ and ν and define:

I(π) :=
∫
X×Y

c(x, y)π(dx, dy).

For (φ, ψ) ∈ L1(µ) × L1(ν), define:

J(φ, ψ) :=
∫
X
φdµ+

∫
Y
ψdν.

Denote
Φc =

{
(φ, ψ) ∈ L1(µ) × L1(ν) |φ(x) + Ψ(y) ≤ c(x, y)

for µ-almost all x ∈ X and ν-almost all y ∈ Y
}
.

We denote by Φc ∩Cb the same set than above with L1(µ) ×L1(ν) replaced by Cb(X) ×Cb(Y ).
Note that Φc ∩ Cb ⊂ Φc.

Theorem 1.2 (Kantorovich duality). We have
inf

π∈Π(µ,ν)
I(π) = sup

(φ,ψ)∈Φc

J(φ, ψ) = sup
(φ,ψ)∈Φc∩Cb

J(φ, ψ).

We will prove later the Kantorovich duality but only for the quadratic cost c(x, y) = 1
2 |x− y|2

on Rd × Rd. We refer to [2] for a proof in the general case.
We now turn to a closer analysis of the Kantorovich formulation, focusing on the existence and
structure of optimal transport plans.

2. Analysis of the Kantorovich formulation

2.1. Existence of minimizers. First we prove that the infimum of I over transport plans is
attained.

Theorem 2.1. There exists π∗ ∈ Π(µ, ν), such that
I(π∗) = inf

π∈Π(µ,ν)
I(π).

We say that π∗ is an optimal transport plan. Note that in general, it is not unique.
Proof. We first prove that the set of transport plans Π(µ, ν) is compact for the weak topology.
It is easily seen to be closed: let (πn)n ⊂ Π(µ, ν) such that πn

weakly−→ π. Then for all bounded
continuous function f on X × Y , ∫

X×Y
fdπn −→

n→∞

∫
X×Y

fdπ.

Then, for all g ∈ Cb(X), we have∫
X
gdµ =

∫
X×Y

gdπn −→
n→∞

∫
X×Y

gdπ,

hence ∫
X
gdµ =

∫
X×Y

gdπ,

which implies that (pX)#π = µ. Similarly, we have (pY )#π = ν. Hence, π ∈ Π(µ, ν), so Π(µ, ν)
is closed.
Now we prove that Π(µ, ν) is relatively compact, which is equivalent to Π(µ, ν) being tight by
Prokhorov’s theorem. Since X and Y are Polish spaces, µ and ν are tight, hence, for all ε > 0,
there exists a compact set KX ⊂ X, a compact set KY ⊂ Y such that

µ (Kc
X) ≤ ε/2 and ν (Kc

Y ) ≤ ε/2.
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Put K := KX×KY . Then K is compact as a product of compact spaces, and for all π ∈ Π(µ, ν),

π (Kc) = π ((KX ×KY )c)
= π ((Kc

X × Y ) ∪ (X ×Kc
Y ))

≤ π (Kc
X × Y ) + π (X ×Kc

Y )
= µ (Kc

X) + ν (Kc
Y )

≤ ε/2 + ε/2
= ε.

Hence, Π(µ, ν) is relatively compact, and thus compact.
Now we prove that I is lower semicontinuous, that is for all sequence (πn)n ⊂ M1(X×Y ) such
that πn

weakly−→
n→∞

π,

I(π) ≤ lim inf
n

I(πn).

By assumption, c is a lower semicontinuous function, hence (see appendix A) there exists a
nondecreasing sequence of bounded uniformly continuous functions (ck)k such that ck ↗ c as
k → ∞. Hence, we have,∫

ckdπ = lim
n→∞

∫
ckdπn = lim inf

n

∫
ckdπn ≤ lim inf

n

∫
cdπn.

But using monotone convergence theorem, we also have

lim
k→∞

∫
ckdπ =

∫
cdπ,

hence we get ∫
cdπ ≤ lim inf

n

∫
cdπn.

To conclude, we known (see appendix A) that a lower semicontinuous function on a compact
set attains its infimum, hence there exists π∗ ∈ Π(µ, ν), such that I(π∗) = infπ∈Π(µ,ν) I(π). □

Exercise 1. On R2 × R2, consider the cost function c(x, y) = |x − y|2, where | · | denotes the
Euclidean norm. Let

x1 = (0, 0), x2 = (1, 1), y1 = (1, 0), y2 = (0, 1),

and consider the probability measures

µ = 1
2δx1 + 1

2δx1 and ν = 1
2δy1 + 1

2δy1 .

Show that

Π(µ, ν) =
{
πα = αδ(x1,y1) +

(1
2 − α

)
αδ(x1,y2) + αδ(x2,y2) +

(1
2 − α

)
δ(x2,y1) | α ∈

[
0, 1

2

]}
,

and show that ∫
R2×R2

c dπα = 1, for all α ∈
[
0, 1

2

]
.

In particular, there is no unicity in general for the minimizer of the functional I.

Having established the existence of optimal transport plans, our next goal is to investigate the
geometric conditions characterizing optimality, through the notion of c-cyclical monotonicity.
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2.2. Cyclical monotonicity.

Definition 2.1. Let µ ∈ M1(X). The support of µ is the (closed) set

suppµ = {x ∈ X | ∀ε > 0, µ(B(x, ε)) > 0}.

Hence, the support of µ is the largest closed subset of X for which every open neighbourhood
of every point of the set has positive measure. For instance, the support of Lebesgue measure
on R is R, and the support of δx is {x}.
We will now characterize the support of an optimal transport plan.
Recall that in the problem of transporting the discrete measure µ = 1

n

∑n
i=1 δxi

to the measure
ν = 1

n

∑n
i=1 δyi

, we have found that for the quadratic cost, the minimum of
n∑
i=1

|xi − yσ(i)|2

over σ ∈ Sn is attained when the two supports of µ and ν satisfy

x1 < · · · < xn and y1 < · · · < yn.

Hence, locally, any ”reshuffling” of indices will increase the cost. For instance, for three points,
we have

3∑
i=1

|xi − yi|2 ≤
3∑
i=1

|xi+1 − yi|2,

with the convention that x4 = x1.
This motivates the following definition.

Definition 2.2. A subset Γ ⊂ X × Y is said to be c-cyclically monotone if for any finite
sequence of points (xi, yi)i=1,...,n in Γ, we have

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi+1, yi),

with the convention that xn+1 = x1.

We have then the following.

Theorem 2.2. Consider a continuous cost c and let π ∈ Π(µ, ν) be an optimal transport plan.
Then, supp π is c-cyclically monotone.

Proof. By contradiction, suppose that supp π is not c-cyclically monotone. Then, there exists
ε > 0 and n points (x1, y1), . . . , (xn, yn) in supp π such that

n∑
i=1

c(xi, yi) ≥
n∑
i=1

c(xi+1, yi) + ε.

By continuity of c, for all i ∈ {1, . . . , n}, there exists an open neighbourhood Ui of xi and an
open neighbourhood Vi of yi such that

|c(x, y) − c(xi, yi)| ≤ ε

4n, ∀(x, y) ∈ Ui × Vi,

and
|c(x, y) − c(xi+1, yi)| ≤ ε

4n, ∀(x, y) ∈ Ui+1 × Vi.

Let αi = π(Ui × Vi). Since (xi, yi) belongs to supp π, we have αi > 0 for all i. Let α =
min(α1, . . . , αn) and define πi the probability measure on X × Y defined by

πi(A) = 1
αi
π (A ∩ (Ui × Vi)) ,
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for all Borel set A ⊂ X×Y , that πi is the restriction of π to Ui×Vi. Define also µi = (pX)#πi ∈
M1(X) and νi = (pY )#πi ∈ M1(Y ). Finally, define

π′ = π − α

n

n∑
i=1

πi + α

n

n∑
i=1

µi+1 ⊗ νi.

Then π′ is a probability measure: it is a measure as a sum of measures, and we have

π′ ≥ π − α

n

n∑
i=1

πi

≥ π − α

n

n∑
i=1

1
αi
π|Ui×Vi

≥ π − 1
n

n∑
i=1

π|Ui×Vi

≥ π − 1
n

n∑
i=1

π = 0,

so π′ is a nonnegative measure. The mass of π′ is clearly 1. Moreover, it is easy to see that
π′ ∈ Π(µ, ν) by linearity.
We have, as µi+1 ⊗ νi ∈ M1(Ui+1 × Vi),∫

X×Y
c d(µi+1 ⊗ νi) =

∫
Ui+1×Vi

c d(µi+1 ⊗ νi)

≤
∫
Ui+1×Vi

(
c(xi+1, yi) + ε

4n

)
d(µi+1 ⊗ νi)

= c(xi+1, yi) + ε

4n.

As πi ∈ M1(Ui × Vi), we also have∫
X×Y

c dπi =
∫
Ui×Vi

c dπi

≥
∫
Ui+1×Vi

(
c(xi, yi) − ε

4n

)
dπi

= c(xi, yi) − ε

4n.

Finally, we get∫
X×Y

c dπ −
∫
X×Y

c dπ′ = α

n

n∑
i=1

(∫
X×Y

c dπi −
∫
X×Y

c d(µi+1 ⊗ νi)
)

≥ α

n

n∑
i=1

(
c(xi, yi) − c(xi+1, yi) − ε

2n

)
≥ α

n
ε− α

n

ε

2
= α

n

ε

2
> 0,

where we have use our assumption that supp π is not c-cyclically monotone. Thus
∫
c dπ′ <∫

c dπ, which contradicts the optimality of π. □

For the quadratic cost c(x, y) = 1
2 |x − y|2 on Rd × Rd, the c-cyclical monotonicity of a subset

Γ ⊂ Rd × Rd is equivalent to (using |x− y|2 = |x|2 + |y2| − 2⟨x, y⟩)
n∑
i=1

⟨yi, xi+1 − xi⟩ ≤ 0,
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for any finite sequence (xi, yi)i=1,...,n ⊂ Γ. We will say in that case that Γ is cyclically monotone
(i.e. we drop the c).

Before giving a characterization of cyclically monotone sets in Rd ×Rd, we collect a few results
on convex functions defined on Rd.

Let φ : Rd → R ∪ {+∞} be a proper convex function. We recall that φ proper means that
φ ̸≡ +∞, so the domain of φ, i.e. Dφ = {x | φ(x) < ∞}, is non-empty. Recall that φ is convex
if for all x, y ∈ Rd, for all t ∈ [0, 1],

φ(tx+ (1 − t)y) ≤ tφ(x) + (1 − t)φ(y),
and that a subset C ⊂ E is called convex if for all x, y ∈ C, the line segment [x, y] is included
in C, i.e.

∀x, y ∈ C, ∀t ∈ [0, 1], tx+ (1 − t)y ∈ C.

Note that the domain Dφ of a convex function is then a convex set (it can be open, closed
or neither), and thus λ(∂Dφ) = 0, where λ denotes Lebesgue measure on Rd by the following
lemma:

Lemma 2.1. Let C ⊂ Rd be a convex set. Then, λ(∂C) = 0.

Proof. If C̊ = ∅, then C lies in an affine subspace of dimension strictly less than d, and thus
has zero Lebesgue measure.
Suppose that C̊ ̸= ∅. By invariance by translation of Lebesgue measure, one can suppose that
0 ∈ C̊. Moreover, by intersecting with the ball centered at 0 with radius R and letting R ↑ +∞,
one can suppose that C is bounded. Let t ∈ (0, 1). We claim that

∂C ⊂ 1
t
C̊.

Indeed, since 0 ∈ C̊, there exists r > 0 such that B(0, r) ⊂ C. By convexity of C, for all q ∈ C,
for all t ∈ (0, 1), for all x ∈ B(0, r),

tq + (1 − t)x ∈ C,

i.e.
B(tq, (1 − t)r) ⊂ C.

Now let p ∈ ∂C and let (pn)n ⊂ C such that pn → p. Hence, for all n, we have
B(tpn, (1 − t)r) ⊂ C.

As pn → p, for n large enough, we have that tp ∈ B(tpn, (1 − t)r/2) and thus
B(tp, (1 − t)r/2) ⊂ B(tpn, (1 − t)r).

Hence, B(tp, (1 − t)r/2) ⊂ C, so tp ∈ C̊, that is ∂C ⊂ 1
t
C̊, which proves the claim.

00

p
tp

∂C1
t
C̊

C̊

Note that by convexity of C̊ (exercise), we also have that C̊ ⊂ 1
t
C̊, since for all t ∈ (0, 1), and

all q ∈ C̊, tq + (1 − t)0 = tq ∈ C̊.
Since the interior and the boundary of any set are disjoint, we get that

∂C ⊂ 1
t
C̊ \ C̊,
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and thus

λ(∂C) ≤ λ
(1
t
C̊ \ C̊

)
= λ

(1
t
C̊
)

− λ
(
C̊
)

= 1
td
λ
(
C̊
)

− λ
(
C̊
)
.

Letting t ↑ 1 gives that λ(∂C) = 0. □

A proper convex function φ is continuous and locally Lipschitz on D̊φ, hence by Rademacher’s
theorem, φ is differentiable λ-almost everywhere.
If φ is differentiable at x, then, for all z ∈ Rd,

φ(z) ≥ φ(x) + ⟨∇φ(x), z − x⟩,
where ∇φ(x) is the gradient of φ at x. It says that the graph of φ lies above its tangent at
x. When φ is not differentiable, we can generalize this idea by introducing the subdifferential
∂φ(x) at x, which is the set:

∂φ(x) =
{
y ∈ Rd | φ(z) ≥ φ(x) + ⟨y, z − x⟩, for all z ∈ Rd

}
.

Thus, ∂φ : x 7→ ∂φ(x) is a set-valued function, and when φ is differentiable at x, one has
∂φ(x) = {∇φ(x)}. One can compare the two convex functions |x| and x2 to understand the
difference (for φ(x) = |x|, one has ∂φ(0) = [−1, 1]).

−2 −1 1 2

1

2

x

y

(a) y = |x|

−2 −1 1 2

1

2

x

y

(b) y = x2

We also define the subdifferential of φ as the following subset of Rd × Rd:
∂φ =

⋃
x∈Rd

{x} × ∂φ(x).

The Legendre transform (or convex conjugate) of a proper function φ is:

φ∗(y) = sup
x∈Rn

(
⟨x, y⟩ − φ(x)

)
, for all y ∈ Rd.

From a geometric interpretation, the Legendre transform φ∗ describes the family of all affine
functions that lie below φ. For a given slope y ∈ Rd, the best affine function of slope y
that lies below φ is x 7→ ⟨y, x⟩ − φ∗(y). For example, the Legendre transform of x 7→ 1

2x
2 is

y 7→ 1
2y

2, while the Legendre transform of x 7→ |x| is the convex indicator function of [−1, 1],
i.e. ∞·1[−1,1]c .
Note that obviously, for all x, y ∈ Rd, one has

⟨x, y⟩ ≤ φ(x) + φ∗(y).
Note also that the Legendre transform of a proper convex function is a proper convex lower
semicontinuous function (as the supremum of a family of affine functions).
We now give a characterization for a point to be in the subdifferential of a convex function.

Lemma 2.2. Let φ be a proper convex function on Rd. Then, for all x, y ∈ Rd,
⟨x, y⟩ = φ(x) + φ∗(y) ⇔ y ∈ ∂φ(x).
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Proof. We already know that for all x, y ∈ Rd, ⟨x, y⟩ ≤ φ(x) + φ∗(y). Hence,
⟨x, y⟩ = φ(x) + φ∗(y) ⇔ ⟨x, y⟩ ≥ φ(x) + φ∗(y)

⇔ ⟨x, y⟩ ≥ φ(x) + ⟨z, y⟩ − φ(z),∀z ∈ Rd

⇔ φ(z) ≥ φ(x) + ⟨y, z − x⟩,∀z ∈ Rd

⇔ y ∈ ∂φ(x). □

We have then the following characterization of cyclically monotone subsets of Rd × Rd.

Theorem 2.3. A set Γ ⊂ Rd × Rd is cyclically monotone if and only if there exists a proper
convex lower semicontinuous function φ : Rd → R ∪ {+∞} such that Γ ⊂ ∂φ.

Proof. (⇐) Suppose that Γ ⊂ ∂φ for some convex function φ. Let (xi, yi)i=1,...,n ⊂ Γ. Then, for
all i ∈ {1, . . . , n}, yi ∈ ∂φ(xi), therefore,

∀z ∈ Rd, φ(z) ≥ φ(xi) + ⟨yi, z − xi⟩.
In particular, for z = xi+1,

φ(xi+1) ≥ φ(xi) + ⟨yi, xi+1 − xi⟩.
Summing these inequalities over i gives that

n∑
i=1

φ(xi+1) ≥
n∑
i=1

φ(xi) +
n∑
i=1

⟨yi, xi+1 − xi⟩.

But the first two sums being equal, one obtains that
n∑
i=1

⟨yi, xi+1 − xi⟩ ≤ 0,

i.e. Γ is cyclically monotone.
(⇒) Assume Γ is cyclically monotone. We will construct φ explicitly. Suppose that we have
some convex function φ with Γ ⊂ ∂φ. Let (x0, y0) ∈ Γ, and suppose that φ(x0) = 0. By
induction, for all (xi, yi)i=1,...,n ⊂ Γ, we have that for all x ∈ Rd,

φ(x) ≥ ⟨yn, x− xn⟩ + ⟨yn−1, xn − xn−1⟩ + · · · + ⟨y0, x1 − x0⟩.
Indeed, (x0, y0) ∈ ∂φ, hence for all x,

φ(x) ≥ φ(x0) + ⟨y0, x− x0⟩ = ⟨y0, x− x0⟩,
since φ(x0) = 0, so the base case is proven. Suppose that for all (xi, yi)i=1,...,n ⊂ Γ, we have
that for all x ∈ Rd,

φ(x) ≥ ⟨yn, x− xn⟩ + ⟨yn−1, xn − xn−1⟩ + · · · + ⟨y0, x1 − x0⟩.
Let (xn+1, yn+1) ∈ Γ ⊂ ∂φ. Then, for all x ∈ Rd,

φ(x) ≥ φ(xn+1) + ⟨yn+1, x− xn+1⟩.
Applying the induction hypothesis to x = xn+1 gives the result.
Hence, we define, for all x ∈ Rd,

φ(x) = sup
n≥1

(xi,yi)i=1,...,n⊂Γ

{
⟨yn, x− xn⟩ + ⟨yn−1, xn − xn−1⟩ + · · · + ⟨y0, x1 − x0⟩

}
.

Then we have that φ is a convex lower semicontinuous function as a supremum of affine (and
thus convex) functions. Choosing n = 1 and (x1, y1) = (x0, y0) yield that

φ(x) ≥ ⟨y0, x− x0⟩,
for all x, hence φ(x0) ≥ 0. Moreover, by cyclic monotonicity, for all (xi, yi)i=1,...,n ⊂ Γ, we have

⟨yn, x0 − xn⟩ + ⟨yn−1, xn − xn−1⟩ + · · · + ⟨y0, x1 − x0⟩ ≤ 0,
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hence φ(x0) ≤ 0. Finally φ(x0) = 0, so φ is a proper function. It remains to prove that Γ ⊂ ∂φ.
Let (x′, y′) ∈ Γ and let α < φ(x′). Hence, there exists n and (xi, yi)i=1,...,n ⊂ Γ such that

α ≤ ⟨yn, x′ − xn⟩ + · · · + ⟨y0, x1 − x0⟩.

Now consider the sequence (xi, yi)i=1,...,n+1 ⊂ Γ with (xn+1, yn+1) = (x′, y′). We get that, for all
z ∈ Rd,

φ(z) ≥ ⟨yn+1, z − xn+1⟩ + ⟨yn, xn+1 − xn⟩ + · · · + ⟨y0, x1 − x0⟩
≥ ⟨y′, z − xn+1⟩ + α.

Letting α ↑ φ(x′) gives that for all z ∈ Rd,

φ(z) ≥ φ(x′) + ⟨y′, z − xn+1⟩,

i.e. y′ ∈ ∂φ(x′), hence (x′, y′) ∈ ∂φ. □

3. The case of the quadratic cost

3.1. Kantorovich duality for the quadratic cost. In this section, we prove the Kantorovich
duality in the case of a quadratic cost c(x, y) = 1

2 |x− y|2 defined on Rd ×Rd, where | · | denotes
the Euclidean norm on Rd. Let µ and ν be probability measures on Rd with finite second
moments: ∫

Rd
|x|2µ(dx) < ∞ and

∫
Rd

|x|2ν(dx) < ∞.

Define
M := 1

2

∫
Rd

|x|2µ(dx) + 1
2

∫
Rd

|y|2ν(dy) < ∞.

Since |x− y|2 = |x|2 + |y|2 − 2⟨x, y⟩, we have

I(π) = 1
2

∫
Rd×Rd

|x− y|2π(dx, dy) = M −
∫
Rd×Rd

⟨x, y⟩π(dx, dy).

Note that an optimal transport plan π∗ is then also optimal for the cost −⟨x, y⟩, i.e. if

min
π∈Π(µ,ν)

∫
Rd×Rd

1
2 |x− y|2dπ(x, y) =

∫
Rd×Rd

1
2 |x− y|2dπ∗(x, y),

then
max

π∈Π(µ,ν)

∫
Rd×Rd

⟨x, y⟩dπ(x, y) =
∫
Rd×Rd

⟨x, y⟩dπ∗(x, y).

Now let (φ, ψ) ∈ L1(µ) × L1(ν), such that for µ-almost all x ∈ Rd and ν-almost all y ∈ Rd,

φ(x) + ψ(y) ≤ 1
2 |x− y|2.

Define, for almost all x, y ∈ Rd,

φ̃(x) = 1
2 |x|2 − φ(x)

ψ̃(y) = 1
2 |y|2 − ψ(y).

Since µ and ν have finite second moment, we have (φ̃, ψ̃) ∈ L1(µ) × L1(ν), and for almost all
x, y,

φ̃(x) + ψ̃(y) = 1
2 |x|2 + 1

2 |y|2 − φ(x) − ψ(y)

≥ 1
2 |x|2 + 1

2 |y|2 − 1
2 |x− y|2 = ⟨x, y⟩.
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Redefining φ̃ and ψ̃ to be +∞ on µ-negligible and ν-negligible sets respectively, we can assume
that the above inequality holds true for all x, y ∈ Rd without changing the values of the integrals
of φ̃ and ψ̃. Moreover, we have

J(φ̃, ψ̃) = M − J(φ, ψ).
Hence, Kantorovich duality takes the following form:

Theorem 3.1. Let µ and ν be two probability measures on Rd with finite second moments. We
have,

max
π∈Π(µ,ν)

∫
Rd×Rd

⟨x, y⟩dπ(x, y) = inf
φ(x)+ψ(y)≥⟨x,y⟩

J(φ, ψ).

Moreover, the above infimum is attained at a pair (φ, φ∗), where φ is a proper convex function.
Any pair at which the infimum is attained is called a pair of optimal Kantorovich potentials.

Proof. Let (φ, ψ) ∈ L1(µ) × L1(ν) such that
φ(x) + ψ(y) ≥ ⟨x, y⟩,

for all x, y ∈ Rd. Integrating over π gives that∫
Rd×Rd

⟨x, y⟩dπ(x, y) ≤
∫
Rd×Rd

φ(x)dπ(x, y) +
∫
Rd×Rd

ψ(y)dπ(x, y)

=
∫
Rd
φ(x)dµ(x) +

∫
Rd
ψ(y)dν(y).

Taking the maximum over transport plans and the infimum over (φ, ψ) gives the inequality

max
π∈Π(µ,ν)

∫
Rd×Rd

⟨x, y⟩dπ(x, y) ≤ inf
φ(x)+ψ(y)≥⟨x,y⟩

J(φ, ψ).

Now let π be an optimal transport plan, i.e.

max
γ∈Π(µ,ν)

∫
Rd×Rd

⟨x, y⟩dγ(x, y) =
∫
Rd×Rd

⟨x, y⟩dπ(x, y).

The support of π is then cyclically monotone, hence there exists a proper convex function φ
such that

supp π ⊂ ∂φ.

Thus, by the subdifferential characterization lemma, we get that for π-almost all x, y,
⟨x, y⟩ = φ(x) + φ∗(y).

Integrating over π (φ and φ∗ being proper convex functions, they are bounded below by some
affine functions, hence their integrals are well defined), one gets that,∫

Rd×Rd
⟨x, y⟩dπ(x, y) =

∫
Rd

(
φ(x) + φ∗(y)

)
dπ(x, y)

=
∫
Rd
φ(x)dµ(x) +

∫
Rd
φ∗(y)dν(y).

Hence, the infimum is attained at the pair (φ, φ∗), which proves the theorem. □

Remark 3.1. The idea of the proof is based on the so-called ”double convexification trick”. If
(φ, ψ) are such that

φ(x) + ψ(y) ≥ ⟨x, y⟩, ∀x, y ∈ Rd

then ∀y, ψ(y) ≥ ⟨x, y⟩ − φ(x), for all x, hence ψ ≥ φ∗ and thus∫
φdµ+

∫
ψdν ≥

∫
φdµ+

∫
φ∗dν.

We can thus reduce the functional J by replacing ψ by φ∗. Moreover, since φ(x) ≥ ⟨x, y⟩−φ∗(y),
∀x, y, we have φ ≥ φ∗∗, so we can further reduce the functional by replacing φ by φ∗∗:∫

φdµ+
∫
ψdν ≥

∫
φdµ+

∫
φ∗dν ≥

∫
φ∗∗dµ+

∫
φ∗dν.
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There’s no point in repeating this process because of Legendre duality (see Appendix B): f is
a proper convex and lower semicontinuous function if and only if f ∗∗ = f .
Hence, the pair of optimal Kantorovich potentials (φ, ψ) can be taken to be a pair of proper
convex and lower semicontinuous functions which are convex conjugates to each other, i.e.
φ = ψ∗ and ψ = φ∗.

3.2. Brenier’s theorem. We now prove Brenier’s theorem which is at the core of the theory
of optimal transport.

Theorem 3.2 (Brenier theorem). Let µ and ν be two probability measures on Rd with finite
second moments. We consider the Monge-Kantorovich problem associated with the quadratic
cost c(x, y) = 1

2 |x − y|2, for x, y ∈ Rd. Assume that µ is absolutely continuous with respect
to Lebesgue measure. Then, there exists a unique optimal transport plan π ∈ Π(µ, ν) which is
given by

π = (Id× ∇φ)#µ,

where ∇φ is the unique (i.e. uniquely determined µ-almost everywhere) gradient of a convex
function φ which pushes µ forward to ν, i.e. ∇φ#µ = ν. In particular, the Monge problem
admits a unique solution.

Proof. Let π be an optimal transport plan and let (φ, φ∗) be optimal Kantorovich convex
potentials, so that ∫

Rd×Rd
⟨x, y⟩π(dx, dy) =

∫
Rd
φdµ+

∫
Rn
φ∗dν

=
∫
Rd×Rd

(
φ(x) + φ∗(y)

)
π(dx, dy).

Hence, we have ∫
Rd×Rd

(
φ(x) + φ∗(y) − ⟨x, y⟩

)
π(dx, dy) = 0.

But since φ(x) + φ∗(y) ≥ ⟨x, y⟩, for all x, y, the integrand is nonnegative, hence we get that

φ(x) + φ∗(y) = ⟨x, y⟩, for π-almost all x, y ∈ Rd.

In particular, φ and φ∗ are finite π-almost everywhere, hence µ(Dφ) = 1. Moreover, since φ is
convex, we have µ(∂Dφ) = 0 since µ is absolutely continuous with respect to Lebesgue measure.
Hence, we get

µ
(
D̊φ

)
= 1.

In particular, D̊φ is non-empty. Moreover, on D̊φ, φ is differentiable almost everywhere, hence
φ is µ-almost everywhere differentiable.
Now by the characterization of subdifferential lemma, we have that

y ∈ ∂φ(x), for π-almost all x, y ∈ Rd.

But since φ is µ-almost everywhere differentiable, we have that

∂φ(x) = {∇φ(x)}, µ-almost everywhere.

Since a property that is true µ-almost everywhere is also true π-almost everywhere, we finally
obtain that for π-almost all x, y ∈ Rd, y ∈ ∂φ(x) = {∇φ(x)}, i.e.

y = ∇φ(x), for π-almost all x, y ∈ Rd.

This implies that
π = (Id× ∇φ)#µ,
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or equivalently that π(dx, dy) = µ(dx)δ∇φ(x)(dy). Indeed, for any A,B Borel sets, we have
π(A×B) = π ({(x, y) | x ∈ A, y ∈ B})

= π ({(x, y) | x ∈ A, y ∈ B} ∩ {y = T (x)})
= π ({(x, T (x)) | x ∈ A, T (x) ∈ B} ∩ {y = T (x)})
= µ(A ∩ T−1(B))
= (Id× ∇φ)#µ(A×B),

where we have denoted T = ∇φ.
It remains to prove unicity. Let π1 and π2 be two optimal transport plans for the Kantorovich
problem. Define π = 1

2π1 + 1
2π2. Then π is also an optimal solution (easy). By the above, there

exists φ1, φ2, φ three convex functions such that
(i) π1 = (Id× ∇φ1)#µ, i.e. (x, y) = (x,∇φ1(x)) π1-a.e.
(ii) π2 = (Id× ∇φ2)#µ, i.e. (x, y) = (x,∇φ2(x)) π2-a.e.
(iii) π = (Id× ∇φ)#µ, i.e. (x, y) = (x,∇φ(x)) π-a.e.

But then (iii) holds also π1-almost everywhere. Therefore we get that
(x,∇φ1(x)) = (x,∇φ(x)) π1-a.e.,

hence
∇φ1 = ∇φ µ-a.e.

The same holds for ∇φ2. Finally, ∇φ is unique µ-a.e.
Finally, we have seen that if π is an optimal transport plan that can be written π = (Id×T )#µ
for some T , then T is optimal in Monge’s problem and both problems coincide, thus we have
that

inf
T |T#µ=ν

∫
Rd

1
2 |x− T (x)|2µ(dx) =

∫
Rd

1
2 |x− ∇φ(x)|2µ(dx),

and ∇φ is the (µ-almost surely) unique solution of Monge’s problem. □

4. Wasserstein distances

Let p ∈ [1,+∞). Define Pp(X) the set of probability measures which admit a pth moment:

Pp(X) =
{
µ ∈ M1(X) |

∫
X
d(x, x0)pdµ(x) < ∞, for some x0 ∈ X

}
.

Note that by the triangle inequality,
d(x, y) ≤ d(x, x0) + d(x0, y),

so if µ ∈ Pp(X), then for all y ∈ X, ∫
X
d(x, y)pdµ(x) < ∞.

For the particular cost c(x, y) = d(x, y)p we define:

Definition 4.1. For µ and ν in Pp(X), the Wasserstein p-distance between µ and ν is defined
by,

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
X×X

d(x, y)pπ(dx, dy)
)1/p

.

One can proved that Wp is indeed a metric (for p > 1, the triangle inequality is not completely
trivial to prove).
We are interested in the following dual formulation for the case p = 1. Define

||f ||Lip = sup
x,y∈X
x ̸=y

|f(x) − f(y)|
d(x, y) ,

so that f is 1-Lipschitz if and only if ||f ||Lip ≤ 1.
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Proposition 4.1. For all µ and ν in P1(X), one has

W1(µ, ν) = sup
{∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ∣∣∣ ||f ||Lip ≤ 1
}
.

Note that it ressembles the Rubinstein distance without the bounded condition on functions.
Proof. Let π ∈ Π(µ, ν). First remark that∫

X×X
d(x, y)π(dx, dy) < ∞,

by the triangle inequality since µ, ν ∈ P1(X). Now let f be a 1-Lipschitz function on X. Then,∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ =
∣∣∣∣∫ (

f(x) − f(y)
)
π(dx, dy)

∣∣∣∣
≤
∫

|f(x) − f(y)|π(dx, dy)

≤
∫
d(x, y)π(dx, dy),

since ||f ||Lip ≤ 1. Taking the infimum over transport plans and the supremum over 1-Lipschitz
functions gives the inequality

sup
||f ||Lip≤1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ W1(µ, ν)

For the converse inequality, we will use the Kantorovich duality. Let ε > 0. Then, there exists
(φ, ψ) ∈ L1(µ) × L1(ν) such that φ(x) + ψ(y) ≤ d(x, y), for µ-almost all x ∈ X and ν-almost
all y ∈ X, and such that ∫

φdµ+
∫
ψdν ≥ W1(µ, ν) − ε.

Now define, for all x ∈ X,
ψd(x) = sup

y∈X

(
ψ(y) − d(x, y)

)
.

Then, for all x, x′ in X, using the triangle inequality d(x′, y) ≤ d(x′, x) + d(x, y), we have

ψd(x) ≤ sup
y∈X

(
ψ(y) − d(x′, y) + d(x′, x)

)
= sup

y∈X

(
ψ(y) − d(x′, y)

)
+ d(x′, x)

= ψd(x′) + d(x′, x),

hence ψd is 1-Lipschitz. Note also that ψd(x) ≥ ψ(x) (taking y = x in the definition of ψd),
and from the inequality φ(x) +ψ(y) ≤ d(x, y), we also have ψd(x) ≤ −φ(x). Thus, one obtains

sup
||f ||Lip≤1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≥ −
∫
ψddµ+

∫
ψddν

≥
∫
φdµ+

∫
ψdν

≥ W1(µ, ν) − ε.

Letting ε → 0 concludes the proof. □

One can prove:

Theorem 4.1. Let (µn)n and µ be probability measures in Pp(X). Then,
Wp(µn, µ) −→

n→∞
0

if and only if µn
weakly−→
n→∞

µ and
∫
X d(x, x0)pdµn(x) −→

n→∞

∫
d(x, x0)pdµ(x), for some x0 ∈ X.

We refer for instance to [2] for a proof.
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Appendix A. Lower semicontinuity

Let (X, d) be a metric space.
Definition A.1. A function f : X → R ∪ {+∞} is said to be lower semicontinuous at x ∈ X
if for every sequence xn → x in X, we have:

f(x) ≤ lim inf
n

f(xn).

We say that f is lower semicontinuous on X if f is lower semicontinuous at every point x ∈ X.
Equivalently, f is lower semicontinuous at x ∈ X if

∀ε > 0,∃δ > 0 such that if d(x, y) < δ then f(x) ≤ f(y) + ε.

x

y

Figure 3. The characteristic function 1(−1,1) of the open set (−1, 1) is a lower
semicontinuous function.

Example A.1. Let A ⊂ X. Then 1A is lower semicontinuous if and only if A is open.
Proposition A.1 (Level set characterization). A function f : X → R ∪ {+∞} is lower semi-
continuous if and only if for all α ∈ R, the sublevel set {x ∈ X | f(x) ≤ α} is closed.

Proof. Let α ∈ R. Let (xn)n ⊂ {f ≤ α} such that xn → x. Hence, for all n, f(xn) ≤ α, so
lim inf

n
f(xn) ≤ α.

Since f is lower semicontinuous, we get:
f(x) ≤ lim inf f(xn) ≤ α,

so x ∈ {f ≤ α}. Hence, {f ≤ α} is closed.
Now, suppose that for all α, {f ≤ α} is closed, or equivalently that {f > α} is open. Let (xn)n
such that xn → x.
Suppose that f(x) < ∞. Let ε > 0, and consider the open set {f > f(x) − ε}. Then obviously,
x ∈ {f > f(x) − ε}, hence there exists n0 such that for all n ≥ n0, xn ∈ {f > f(x) − ε}, that is

∃n0,∀n ≥ n0, f(xn) > f(x) − ε.

Hence,
sup
n

inf
k≥n

f(xk) ≥ f(x) − ε,

and letting ε → 0, we get, lim infn f(xn) ≥ f(x).
If now f(x) = +∞, then for all M > 0, {f > M} is open and contains x, so again we get that

lim inf
n

f(xn) ≥ M, for all M,
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hence lim infn f(xn) = +∞ = f(x). □

Proposition A.2. Let f : X → R ∪ {+∞} be a lower semicontinuous function and suppose
that X is compact. Then:

(i) f is bounded below,
(ii) f attains its infimum on X, i.e., ∃x0 ∈ X such that f(x0) = infx∈X f(x).

Proof. (i) By contradiction, suppose that f is not bounded below. Then there exists a sequence
(xn)n ∈ X such that f(xn) → −∞. Since X is compact, up to extracting a subsequence, we
can suppose that (xn)n converges to some x ∈ X. Since f is lower semicontinuous, we have,

f(x) ≤ lim inf
n

f(xn) = −∞,

which is a contradiction since f takes values in R ∪ {+∞}.
(2) Let m = infx∈X f(x). Let (xn)n ⊂ X be a minimizing sequence such that f(xn) → m.
Again, since X is compact, up to extracting a subsequence, we can suppose that (xn)n converges
to some x ∈ X, and by lower semicontinuity:

f(x) ≤ lim inf
n

f(xn) = m.

But since m ≤ f(x) by definition, we get that f(x) = m, and the infimum is attained. □

Proposition A.3. (i) Let (fi)i∈I be a family of lower semicontinuous functions on X.
Then, f := supi∈I fi is lower semicontinuous.

(ii) If f : X → R ∪ {+∞} is lower semicontinuous and bounded below, then there exists a
nondecreasing sequence (fn)n of bounded, uniformly continuous functions (even Lips-
chitz) such that f = supn fn.

Proof. (i) For any α ∈ R, we have,
{f ≤ α} = {sup

i∈I
fi ≤ α} =

⋂
i∈I

{fi ≤ α}.

But for all i ∈ I, {fi ≤ α} is closed since fi is lower semicontinuous, hence {f ≤ α} is closed
as an intersection of closed sets.
(ii) If f ≡ +∞, then fn = n works. So suppose that there exists x0 such that f(x0) < ∞.
Define for each n ∈ N:

fn(x) := inf
y∈X

(
f(y) + nd(x, y)

)
, for all x ∈ X.

Then:
• It is clear that for all x ∈ X, fn(x) ≤ fn+1(x), so the sequence is nondecreasing.
• From the previous point, we get that for all n, fn ≥ f0 = infy∈X f(y). Since f is lower

bounded, so is fn.
• ∀x ∈ X, fn(x) ≤ f(x). Indeed, by definition,

fn(x) ≤ f(y) + nd(x, y), for all y ∈ X,

in particular for y = x, we get fn(x) ≤ f(x).
• ∀x ∈ X, fn(x) < ∞. Indeed,

fn(x) ≤ f(x0) + nd(x, x0) < ∞.

• Each fn is n-Lipschitz: let x, x′ ∈ X. Then,
fn(x) = inf

y∈X

(
f(y) + nd(x, y)

)
≤ inf

y∈X

(
f(y) + nd(x, x′) + nd(x′, y)

)
= inf

y∈X

(
f(y) + nd(x′, y)

)
+ nd(x, x′)

= fn(x′) + nd(x, x′).
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Exchanging the roles of x and x′, we get that
|fn(x) − fn(x′)| ≤ nd(x, x′),

that is fn is n-Lipschitz (and in particular uniformly continuous on X).
• Now we prove that fn(x) → f(x) for all x. By definition, for all ε > 0, there exists y ∈ X,

such that
f(y) + nd(x, y) ≤ fn(x) + ε.

Hence, there exists a sequence (yn)n such that

f(yn) + nd(x, yn) ≤ fn(x) + 1
n
.

Suppose that f(x) < ∞. Let m be a lower bound of f . Hence,

m+ nd(x, yn) ≤ fn(x) + 1
n

≤ f(x) + 1
n

so nd(x, yn) is bounded from above. It implies that d(yn, x) → 0, so yn → x. Using

f(yn) ≤ f(yn) + nd(x, yn) ≤ fn(x) + 1
n

≤ f(x) + 1
n
,

and taking the liminf, we get that
lim inf

n
f(yn) ≤ lim inf

n
fn(x) ≤ f(x).

But since f is lower semicontinuous, and yn → x, we also have f(x) ≤ lim infn f(yn).
Hence, lim infn fn(x) = f(x). But since the sequence (fn(x))n is increasing, we have that

lim
n→∞

fn(x) = f(x).

Now if f(x) = +∞, suppose by contradiction that (fn(x))n is bounded from above by
some M . We still have that yn → x, so

M ≥ lim inf
n

f(yn) = +∞,

which is a contradiction. Hence (fn(x))n is not bounded from above, and since it is
increasing, one has fn(x) → +∞.

Finally, replacing fn by fn ∧n, one obtains an increasing sequence (fn)n of bounded, uniformly
continuous functions such that f = supn fn. □

Appendix B. Legendre duality

Theorem B.1 (Legendre duality). Let φ : Rd → R∪{+∞} be a proper function. The following
assertions are equivalent:

(i) φ is convex and lower semicontinuous,
(ii) φ = ψ∗ for some proper function ψ,

(iii) φ∗∗ = φ.

Proof. (iii)⇒(ii) is obvious.
(ii)⇒(i) is easy.
It remains to show that (i)⇒(iii). So let φ be a convex and lower semicontinuous function. By
definition of the Legendre transform, one has

φ∗(y) ≥ ⟨x, y⟩ − φ(x), ∀x, y
hence,

φ(x) ≥ ⟨x, y⟩ − φ∗(x), ∀x, y
and thus

φ(x) ≥ sup
y

(
⟨x, y⟩ − φ∗(x)

)
, ∀x

= φ∗∗(x), ∀x.
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Hence, it remains to prove that φ∗∗ ≥ φ. Assume first that Dφ = Rd. Then, for all x, ∂φ(x) ̸= ∅
by convexity of φ. So let y0 ∈ ∂φ(x). By the subdifferential characterization lemma,

φ(x) + φ∗(y0) = ⟨x, y0⟩.
Hence,

φ(x) = ⟨x, y0⟩ − φ∗(y0)

≤ sup
y

(
⟨x, y⟩ − φ∗(y)

)
= φ∗∗(x).

Hence, φ∗∗ ≥ φ if Dφ = Rd. Now if Dφ ⊊ Rn, introduce the ”infimal convolution”

φε(x) = inf
y

(
φ(x− y) + 1

ε
|y|
)

= inf
y

(
φ(y) + 1

ε
|x− y|

)
,

for all x. Since φ is proper, there exists x0 such that φ(x0) < ∞, hence, for all x,

φε(x) ≤ φ(x0) + 1
ε

|x− x0| < ∞,

i.e. Dφε = Rd.
Moreover, φε is easily seen to be convex (exercise). Now we prove that φε is lower semicontin-
uous. Let us show that for all α ∈ R, the sublevel set {φε ≤ α} is closed. So let xn ∈ {φε ≤ α}
with xn → x. By definition, for all n, there exists yn such that

φε(xn) ≥ φ(xn) + 1
ε

|xn − yn| − 1
n
.

Now, since,
φε(xn) ≤ φ(x0) + 1

ε
|xn − x0|.

and since xn → x, then for n large enough, the right-hand side is bounded by some constant
M > 0. Combining the two above inequalities gives that

φ(xn) + 1
ε

|xn − yn| ≤ M + 1
n

for n large enough. Hence, the sequence (yn)n is bounded (if not, this imposes that φ(xn) → −∞
which is not possible since φ is lower semicontinuous), so one can extract a convergent subse-
quence ynk

→ y, for some y. Thus, one obtains, using the fact that φ is lower semicontinuous,
that

φ(x) + 1
ε

|y − x| ≤ lim inf
k

(
φ(xnk

) + 1
ε

|ynk
− xnk

| − 1
nk

)
≤ lim inf

k
φε(xnk

)

≤ α.

Hence, one obtains that φε(x) ≤ α, so x ∈ {φε ≤ α}, hence the sublevel set {φε ≤ α} is closed.
Finally, φε is lower semicontinuous.
Thus we get that φε is a convex and lower semicontinuous function with domain equal to the
whole of Rd, so φ∗∗

ε = φε. Moreover (exercise), for all x
lim inf
ε→0

φε(x) ≥ φ(x).

Finally, using that φε ≤ φ, we get that
φ∗∗(x) = sup

y

(
⟨x, y⟩ − φ∗(y)

)
= sup

y
inf
z

(
⟨y, x− z⟩ + φ(z)

)
≥ sup

y
inf
z

(
⟨y, x− z⟩ + φε(z)

)
= φ∗∗

ε (x)
= φε(x).
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Taking the lim inf as ε → 0, gives that φ∗∗ ≥ φ. □
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