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1. Introduction

Let (ξi)i≥1 be i.i.d. random variables, with E(ξ1) = 0 and E(ξ2
1) = 1, and consider the random

walk (Sn)n≥0 defined by S0 = 0 and for n ≥ 1,
Sn = ξ1 + · · · + ξn.

The central limit theorem gives the asymptotic position of the rescaled random walk:
Sn√
n

(d)−→
n→∞

N,

where N is normal random variable with distribution N (0, 1), and where (d)−→
n→∞

means conver-
gence in distribution. But one can wonder what happens for the whole trajectory of the walk,
and if one has a functional central limit theorem. More precisely, for t ∈ [0, 1], we can consider
the interpolated rescaled random walk defined by

X
(n)
t = 1√

n

(
S⌊nt⌋ + (nt− ⌊nt⌋)ξ⌊nt⌋+1

)
,

where ⌊·⌋ denotes the floor function, i.e. ⌊u⌋ is the greater integer such that
⌊u⌋ ≤ u < ⌊u⌋ + 1.
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Thus, for any t ∈ [ k
n
, k+1

n
),

X
(n)
t = 1√

n
(Sk + (nt− k)ξk+1) ,

so X(n)
t is the affine interpolation between 1√

n
Sk and 1√

n
Sk+1, see Fig 1.
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Figure 1. The interpolated random walk.

Now we can consider the random walk at different times. Let t0 = 0 < t1 < · · · < tk ≤ 1. The
increments of the random walk being independent, we have(

X
(n)
⌊t1⌋, X

(n)
⌊t2⌋ −X

(n)
⌊t1⌋, . . . , X

(n)
⌊tk⌋ −X

(n)
⌊tk−1⌋

) (d)−→
n→∞

(N1, N2, . . . , Nk) ,

where the random variables N1, N2, . . . , Nk are independent and
Nj ∼ N (0, tj − tj−1),

for all j. By the continuous mapping theorem, we get that(
X

(n)
⌊t1⌋, X

(n)
⌊t2⌋, . . . , X

(n)
⌊tk⌋

) (d)−→
n→∞

(N1, N1 +N2, . . . , N1 +N2 + · · · +Nk) ,

Note that for all j,
N1 + · · · +Nj ∼ N (0, tj).

Now recall Slutsky lemma: if (Xn)n converges in distribution to some random variable X and
(Yn)n converges in probability to some constant y, then

(Xn, Yn) −→
n→∞

(X, y)

in distribution. Since, for all j

X
(n)
tj −X

(n)
⌊tj⌋ = ntj − ⌊ntj⌋√

n
ξ⌊ntj⌋+1

P−→
n→∞

0,

from the previous convergence, Slutsky lemma, and the continuous mapping theorem, we also
have (

X
(n)
t1 , X

(n)
t2 , . . . , X

(n)
tk

) (d)−→
n→∞

(N1, N1 +N2, . . . , N1 +N2 + · · · +Nk) .
Hence, for any fixed number of times, we have convergence of the finite-dimensional distributions
of the sequence of random function (X(n)

t , t ∈ [0, 1]). But we would like to have the convergence
in distribution of the whole random function (X(n)

t , t ∈ [0, 1]), which does not follow from the
finite-dimensional distribution convergence. This is the content of Donsker theorem or Donsker
invariance principle, that states that the rescaled random walk converges in distribution to the
Brownian motion, see Fig 2: (

X
(n)
t ; t ∈ [0, 1]

) (d)−→
n→∞

(Bt; t ∈ [0, 1]) ,

where (Bt; t ∈ [0, 1]) is a stochastic process that satisfies:
• B0 = 0,
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• for all k ≥ 1, for all t0 = 0 < t1 < · · · < tk ≤ 1, the random variables
Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

are independent with Btj − Btj−1 ∼ N (0, tj − tj−1) (one says that the increments are
independent and stationary),

• t 7→ Bt is almost surely continuous.

0 t

Figure 2. A Brownian trajectory.

The stochastic process (Bt; t ∈ [0, 1]) is thus a random variable with values in C , the space of
continuous functions from [0, 1] to R, whose distribution has some prescribed properties: for
any k, and all t1 < · · · < tk, the random vector (Bt1 , . . . , Btk) is a centered Gaussian vector in
Rk with covariance given by E(BsBt) = min{s, t}. It is not obvious that such a process exists!
And Donsker theorem is not obvious neither. The aim of the first part of this course is to prove
Donsker theorem. To that end, we will need criteria to handle convergence in distribution
for random variables with values in C , i.e. random continuous functions. Since convergence
in distribution of random variables depends only on the distribution of the random variables,
we thus need to understand convergence of probability measures on C , and more generally
probability measures on a metric space. So we start by studying probability measures on
metric spaces through their topological and measurable properties.

2. Probability measures on metric spaces

2.1. A bit of topology.

Definition 2.1. Let E be a topological space.
• We say that E is metrizable if there exists a metric d : E×E → [0,+∞) which induces

the same topology than the one of E. Hence, any open set of E is the union of open
balls of the form:

B(x, r) = {y ∈ E | d(x, y) < r},
for x ∈ E and r > 0.

• We say that E is separable if it contains a countable dense subset.
• A metric space (E, d) is complete if any Cauchy sequence in E is converging in E.

Definition 2.2. A topological space E is said to be a Polish space if it is separable and
metrizable and such that the metric d makes (E, d) complete.

Remark 2.1. It is useful to known that a space is metrizable even if the distance is unknown!
For instance, one can use sequential compactness to prove compactness, etc. . .
Note that completeness is a metric property and not a topological one: two metrics d1 and d2
can induce the same topology on E and E can be complete for d1 and not for d2. For instance,
the distance

d′(x, y) = | arctan x− arctan y|
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R, induces the same topology than the one given by the usual metric d(x, y) = |x− y|. But R
equipped with d′ is not complete.
In the sequel, ”(E, d) is a Polish space” means that E is a Polish space whose topology is
induced by the metric d and such that (E, d) is complete.

Examples:
• R and more generally Rd, equipped with the usual distance, are Polish spaces.
• A compact metric space K is a Polish space: for any n ≥ 1,

K ⊂
⋃
x∈K

B
(
x,

1
n

)
,

so by compactness, one can extract a finite subcover: there exists kn and x1, . . . , xkn in
K such that

K ⊂
kn⋃
j=1

B
(
xj,

1
n

)
.

The subset {xj; 1 ≤ j ≤ kn, n ≥ 1} is then countable and dense in K. Hence, K is
separable. Moreover, K is complete: for any Cauchy sequence (xn)n, by compactness,
there exists a subsequence (xφ(n))n that converges in K. But a Cauchy sequence that
admits an accumulation point converges, hence K is complete.

• The space
C([0, 1]) = {f : [0, 1] → R | f continuous}

is a separable complete metric space. The metric on C([0, 1]) is given by the uniform
norm

d(f, g) = ||f − g||∞ = sup
t∈[0,1]

|f(t) − g(t)|,

so the sequence (fn)n converges to f if (fn)n converges uniformly to f . By the Stone-
Weierstrass theorem, the set of polynomials on [0, 1] is dense in C([0, 1]), and thus the
set of polynomials with rational coefficients, which is countable, is dense in C([0, 1]), so
C([0, 1]) is separable. Moreover, let (fn) be a Cauchy sequence in C([0, 1]), i.e. for all
ε > 0, there exists N , such that, for all m,n ≥ N , for all t ∈ [0, 1],

|fn(t) − fm(t)| < ε.

Hence, for all t ∈ [0, 1], the sequence of real numbers (fn(t))n is a Cauchy sequence in
R which is complete, hence, there exists f(t) ∈ R such that fn(t) → f(t). Define f by
f : t 7→ f(t). Letting m goes to infinity in the above majoration, one gets that for all
n ≥ N , for all t ∈ [0, 1],

|fn(t) − f(t)| < ε,

i.e. (fn)n converges uniformly to f . It is well known that the uniform limit of a sequence
of continuous functions is continuous: by continuity of fN , there exists δ > 0 such that
for all |t− s| < δ, |fN(t) − fN(s)| < ε. Hence,

|f(t) − f(s)| ≤ |f(x) − fN(x)| + |fN(x) − fN(y)| + |fN(y) − f(y)|
≤ 3ε.

Thus f is continuous and C([0, 1]) is complete.
• Note that the above is still true when [0, 1] is replace by a compact metric space K, i.e.
C(K), the space of continuous functions from K to R, is a Polish space. One has to use
the general statement of the Stone-Weierstrass theorem:

Theorem 2.1 (Stone-Weierstrass theorem). Let K be a compact metric space. Let A
be a subalgebra of C(K) such that A contains a non-zero constant function. Then A
is dense in C(K) if and only if it separates points: for any x, y ∈ X, there exists a
function f ∈ A such that f(x) ̸= f(y).
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(see [2]).
Let {xn}n be a countable dense subset of K (recall that K is separable since it is

compact). Define f0 ≡ 1, and for n ≥ 1, fn(x) = d(x, xn), for x ∈ K. Let A be the
subalgebra of C(K) generated by linear combinations with rationals coefficients of the
fn, n ≥ 0. Then A is countable and satisfies the assumptions of Stone-Weierstrass
theorem, hence it is dense in C(K).

• Note that the space C(R+), the space of continuous function from R+ to R, equipped
with the topology of uniform convergence is not separable. But if one endows C(R+)
with the compact-open topology, i.e. the topology of uniform convergence on compact
sets given by the metric

d(f, g) =
∑
k≥1

sup
t∈[0,k]

|f(t) − g(t)| ∧ 1
2k ,

then one can prove that C(R+) is a Polish space.
• Any separable Hilbert space is a Polish space, so for instance L2(R) is a Polish space.
• Any separable Banach space is a Polish space, so for instance Lp(R), for p ∈ [1,+∞) is

a Polish space.
• A finite product of Polish spaces is Polish (exercise).
• As a counterexample, one has that L∞(R), the space of essentially bounded functions

on R, is not separable: denote for t ∈ [0, 1], ft = 1[0,t]. Then, for any t ̸= s,
||ft − fs||∞ = 1,

where || · ||∞ denotes the essential supremum, i.e. ||f ||∞ = inf{a > 0 | λ(|f | > a) = 0}.
Thus, the open balls B(ft, 1

2), for t ∈ [0, 1], are pairwise distincts. Now suppose that
L∞(R) is separable, and let A ⊂ L∞(R) be a countable dense subset. By density, any
non-empty open set intersects A, hence each balls B(ft, 1

2), for t ∈ [0, 1] contains an
element of A. But since they are disjoint and there are uncountably many of them, this
contradicts the fact that A is countable.

• Note also that the space
Cb(R) = {f : R → R | f continuous and bounded}

equipped with the uniform norm ||·||∞ is a complete normed space, but is not separable.

Exercise 1. Prove that Cb(R) is not separable (mimic the proof for L∞(R), i.e. find
an uncountable family {fi}i∈I in Cb(R) such that ||fi − fj||∞ ≥ 1 for i ̸= j).

2.2. Regularity of probability measures on metric spaces. Let E be a topological space.
We will always, unless specified, equipped E with the Borel σ-algebra, denoted by B(E), which
is the σ-algebra generated by the class of open sets of E. We will denote by M1(E) the space
of probability measures on (E,B(E)).

Exercise 2. Let (E, d) be a metric space. Let A ⊂ E, and define for all x ∈ E,
d(x,A) = inf{d(x, y) | y ∈ A}.

Show that x 7→ d(x,A) is 1-Lipschitz on E. Show also, that we have the equivalence
x ∈ A ⇔ d(x,A) = 0.

We will need the following useful lemma. We use the standard notations:
a ∧ b = min{a, b} ; a ∨ b = max{a, b}.

Lemma 2.1. Let (E, d) be a metric space.
(1) Let F ⊂ E be a closed set. Define, for all n,

fn(x) = (1 − nd(x, F )) ∨ 0, x ∈ E.
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(2) Let G ⊂ E be an open set. Define, for all n,

gn(x) = nd(x,Gc) ∧ 1, x ∈ E.

Then, for all n, fn and gn are bounded Lipschitz functions, and, as n → ∞,

fn ↘ 1F and gn ↗ 1G.

Proof. We have that fn is bounded by 1. If x ∈ F , then d(x, F ) = 0 since F is closed, hence
fn(x) = 1 for all n. If x ̸∈ F , then d(x, F ) > 0, hence there exists n0 such that d(x, F ) > 1

n0
,

so for all n ≥ n0, nd(x, F ) > 1, that is fn(x) = 0. Hence, fn ↘ 1F , as n → ∞ ((fn)n is
obviously nonincreasing). Moreover, since x 7→ max(x, 0) is 1-Lispschitz and x 7→ nd(x, F ) is
n-Lispschitz, one obtains that fn is n-Lipschitz for all n. The proof for (gn)n is similar and left
as an exercise. □

A first consequence of this lemma is the following: a probability measure on a metric space is
uniquely characterized by the integrals of bounded continuous functions.

Proposition 2.1. Let (E, d) a metric space and let µ, ν ∈ M1(E). If for all bounded and
continuous (or Lipschitz) function f , ∫

E
fdµ =

∫
E
fdν,

then µ = ν.

Proof. Let G be an open set. By lemma 2.1, there exists a nondecreasing sequence (gn)n of
bounded continuous functions such that gn ↗ 1G as n → ∞. By assumption, we have∫

E
gndµ =

∫
E
gndν,

for all n, and by monotone convergence theorem, we get

µ(G) =
∫
E
1Gdµ =

∫
E
1Gdν = ν(G).

Since probability measures on the Borel σ-algebra B(E) are characterized by their values on
open sets (by Dynkin π–λ theorem 7.3, since the class of open sets is a π-system), we get
µ = ν. □

Proposition 2.2. Let (E, d) be a metric space and let µ ∈ M1(E). Then, for any Borel set
A, one has

µ(A) = inf{µ(U) | U open such that A ⊂ U}.
One says that µ is exterior regular. We also have,

µ(A) = sup{µ(F ) | F closed such that F ⊂ A}.

In other words, for any Borel set A and for every ε > 0, there exists an open set U and a closed
set F such that F ⊂ A ⊂ U and

µ(U \ F ) ≤ ε.

Remark 2.2. One may wonder why we want to approximate a Borel set from the outside by
an open set, and from the inside by a closed set, and not the other way around. But in that
case, the best possible choice would be Å ⊂ A ⊂ A, which obviously does not work: consider
for instance the Lebesgue measure on [0, 1] and the set of rationals Q.

Proof. Define

A = {A ∈ B(E) | ∀ε > 0, ∃U open and F closed such that F ⊂ A ⊂ U and µ(U \ F ) ≤ ε}.

We will show that A is a σ-algebra that contains the open sets, hence, we will have A = B(E).
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We start by showing that A contains the class of open sets. Let ε > 0 and let A be an open set.
We have to find an open set U and a closed set F with F ⊂ A ⊂ U and such that µ(U \F ) ≤ ε.
Set U = A. For F , define

Fn =
{
x ∈ A | d(x,Ac) ≥ 1

n

}
.

The sequence of sets Fn is clearly increasing, i.e. Fn ⊂ Fn+1, for all n. Since the function
x 7→ d(x,Ac) is continuous, each Fn is closed. Moreover, since Ac is closed, we have d(x,Ac) > 0
for every x ∈ A, and thus there exists n large enough such that d(x,Ac) ≥ 1

n
. Therefore,

A =
⋃
n

Fn,

and thus,
lim
n
µ(Fn) = µ (∪nFn) = µ(A).

Hence, for n large enough, we have
µ(Fn) ≥ µ(A) − ε,

so we choose F of the form Fn for some sufficiently large n. Hence, A ∈ A, and so A contains
the class of open sets.
Now let us show that A is a σ-algebra:

(i) It clearly contains E (take U = F = E).
(ii) It is closed under complementation: if A ∈ A, then there exist an open set U and a

closed set F such that F ⊂ A ⊂ U and µ(U \ F ) ≤ ε. Set U ′ = F c, which is open, and
F ′ = U c, which is closed. We have F ′ ⊂ Ac ⊂ U ′ and since U ′ \ F ′ = U \ F , it follows
that µ(U ′ \ F ′) ≤ ε.

(iii) It is closed under countable unions: let ε > 0. Let, for each n, An ∈ A. Then there
exist open sets Un and closed sets Fn such that Fn ⊂ An ⊂ Un and

µ(Un \ Fn) ≤ ε

2n+1 .

Then
∪nFn ⊂ ∪nAn ⊂ ∪nUn

and
(∪nUn) \ (∪nFn) ⊂ ∪n(Un \ Fn)

(since if x belongs to one of the Un and to none of the Fn’s, there exists n such that
x ∈ Un \ Fn). Therefore,

µ ((∪nUn) \ (∪nFn)) ≤ µ (∪n(Un \ Fn)) ≤
∑
n

µ(Un \ Fn) ≤ ε

2 ,

where we used sub-σ-additivity.
Set U ′ = ⋃

n Un, which is open as a union of open sets. We can’t do the same for F ,
since an arbitrary union of closed sets isn’t necessarily closed. So define F ′

n = ⋃
k≤n Fk,

which is closed as a finite union of closed sets. Since ⋃n Fn = ⋃
n

⋃
k≤n Fk, and the

sequence is increasing, and since µ(⋃n Fn) < ∞, there exists nε such that

µ (∪nFn) ≤ µ (∪k≤nεFk) + ε

2 .

Now set F ′ = ∪k≤nεFk. Then F ′ ⊂ A ⊂ U ′, and

µ(U ′ \ F ′) = µ(U ′) − µ(F ′) = µ(U ′) − µ(∪nFn) + µ(∪nFn) − µ(F ′) ≤ ε

2 + ε

2 = ε.

Therefore, A is a σ-algebra that contains the open sets, and hence A is the Borel σ-algebra
B(E). □

One of the most important notion of this course is the notion of tightness. We first introduce
this notion for a single probability measure on a Polish space.
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Proposition 2.3. Let E be a Polish space and let µ ∈ M1(E). Then, µ is tight, i.e. for all
ε > 0, there exists a compact subset Kε ⊂ E, such that

µ (Kc
ε) ≤ ε.

It says that on a Polish space, almost all the mass of a probability measure is concentrated
on a compact set. Before proving this fact, a reminder about compactness may be useful, see
Appendix 7.1.

Proof of Proposition 2.3. Let ε > 0. Since E is separable, there exists a dense sequence (xn)n
in E, hence for all k ≥ 1, we have,

E =
⋃
n

B
(
xn,

1
k

)
.

Since, ⋃
N

N⋃
n=1

B
(
xn,

1
k

)
=
⋃
n

B
(
xn,

1
k

)
,

we have

1 = µ(E) = lim
N→∞

µ

(
N⋃
n=1

B
(
xn,

1
k

))
,

so there exists Nk such that

µ

 Nk⋃
n=1

B
(
xn,

1
k

) ≥ 1 − ε

2k .

Now define

K =
⋂
k

Nk⋃
n=1

B
(
xn,

1
k

)
.

By construction K is totally bounded, hence K is a compact set since E is complete. Then,

µ
(
K
c
)

≤ µ(Kc) = µ

⋃
k

Nk⋂
n=1

Bf

(
xn,

1
k

)c
≤
∑
k

µ

 Nk⋂
n=1

Bf

(
xn,

1
k

)c
=
∑
k

µ

 Nk⋃
n=1

Bf

(
xn,

1
k

)c
≤
∑
k

ε

2k = ε,

which concludes the proof. □

On a Polish space, we can then improve the regularity of probability measures:

Proposition 2.4. Let E be a Polish space. Then every µ ∈ M1(E) is inner regular, i.e. for
all A ∈ B(E),

µ(A) = sup {µ(K) | K ⊂ A compact} .

Proof. By exterior regularity, we have that
µ(A) = sup {µ(F ) | F ⊂ A closed} ,

hence for all A ∈ B(E) and all ε > 0, there exists a closed set F ⊂ A such that
µ(A) − µ(F ) ≤ ε.



CONVERGENCE OF PROBABILITY MEASURES 9

By tightness, there exists a compact set Kε such that µ(Kc
ε) ≤ ε. Put K = F ∩ Kε. Then K

is a compact set included in F , hence also in A, and we have

µ(A \K) = µ(A \ (F ∩Kε)) = µ ((A \ F ) ∪ (A \Kε))
≤ µ(A \ F ) + µ(Kc

ε)
≤ 2ε. □

3. Convergence of probability measures and the Portmanteau theorem

3.1. Weak convergence.

Definition 3.1. Let E be a metric space. Let (µn)n ⊂ M1(E) and µ ∈ M1(E). We say that
(µn)n converges weakly to µ, if for all bounded and continuous function f ∈ Cb(E), we have∫

E
fdµn −→

n→∞

∫
E
fdµ.

We denote this convergence by µn
weakly−→
n→∞

µ, or µ ⇀
n→∞

µ or µ ⇒
n→∞

µ

In probabilistic term, if Xn has distribution µn and X has distribution µ, then weak convergence
corresponds to convergence in distribution for random variables:

Xn
(d)−→
n→∞

X ⇔ µn
weakly−→
n→∞

µ.

Note that since integrals
∫
E fdµ for all bounded continuous function f characterize the measure

µ by Proposition 2.1, the limit is unique.
For instance, the sequence of Dirac masses on R (δ 1

n
)n converges weakly to δ0. But note that

the sequence (δn)n does not converge weakly to a probability measure. Indeed, if for instance
f is a continuous function which goes to 0 at infinity, one has∫

fdδn = f(n) → 0.

The problem here is that the mass of the sequence (δn)n ”escapes” at infinity. An important
part of this course will be to give a criterion in order to avoid this phenomenon. This is the
notion of ”tightness” for sequences that will be introduced later.
Note that one says that (µ)n converges vaguely to a bounded measure (but not necessarily a
probability measure) if for all continuous function vanishing at infinity f , one has∫

fdµn −→
n→∞

∫
fdµ.

In the above example, one has that (δn)n converges vaguely to the zero measure.

Example 3.1. Let (E, d) be a metric space. Let (xn)n ⊂ E and x ∈ E. Then (δxn)n converges
weakly to δx if and only if (xn)n converges to x.
Indeed, assume that xn → x. Then, for any continuous function f on E, we have∫

E
fdδxn = f(xn) −→

n→∞
f(x) =

∫
E
fdδx,

by continuity of f . Hence, (δxn)n converges weakly to δx. Now suppose that xn ̸→ x. Then,
there exists some ε > 0, such that d(xn, x) > ε for infinitely many indices n. Consider the
bounded continuous function

f(y) = max
{

1 − 1
ε
d(y, x), 0

}
.

Then, f(x) = 1 while f(xn) = 0 for infinitely many indices n. Hence, f(xn) does not converge
to f(x).
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Let µ ∈ M1(E) and let g : E → F be a continuous function between two metric spaces. We
denote by g#µ the pushforward measure (or image measure) of µ by g, i.e.

g#µ(A) = µ
(
g−1(A)

)
= µ ({g ∈ A}) ,

for all Borel set A ∈ B(F ). It is a probability measure on (F,B(F )) and we recall that by the
change of variables formula, one has∫

F
fdg#µ =

∫
E
f ◦ gdµ,

for any integrable measurable function f : F → R.
The following result is well known for convergence in distribution of random variables, in term
of weak convergence, it states:

Theorem 3.1 (Continuous mapping theorem). Let E and F be metric spaces. Let (µn)n ⊂
M1(E) converging weakly to µ ∈ M1(E). Let g : E → F be a continuous function. Then the
sequence of pushforward measures (g#µn)n converges weakly to g#µ.

Proof. Let f be a bounded continuous function on F . Then, by the change of variable formula,∫
F
fdg#µn =

∫
E
f ◦ gdµn −→

n→∞

∫
E
f ◦ gdµ =

∫
F
fdg#µ,

since f ◦ g is a bounded continuous function on E. □

3.2. The Portmanteau theorem. We now give a criterion for weak convergence. This is
known as the Portmanteau theorem (even if there is no mathematician named Portmanteau...).

Theorem 3.2 (Portmanteau theorem). Let (E, d) be a metric space and (µn)n and µ be prob-
ability measures on E. The following assertions are equivalent:

(1) The sequence (µn)n converges weakly to µ.
(2) For all bounded and uniformly continuous function f ,

∫
fdµn −→

n→∞

∫
fdµ.

(3) For all bounded and Lipschitz function f ,
∫
fdµn −→

n→∞

∫
fdµ.

(4) For all open set G ⊂ E, µ(G) ≤ lim infn µn(G).
(5) For all closed set F ⊂ E, µ(F ) ≥ lim supn µn(F ).
(6) For all Borel set A ∈ B(E) of µ-continuity, i.e. such that µ(∂A) = 0, µn(A) −→

n→∞
µ(A).

(7) For all bounded measurable function f which is continuous µ-almost everywhere,
∫
fdµn −→

n→∞∫
fdµ.

Proof. Since
{Lipschitz functions} ⊂ {uniformly continuous functions} ⊂ {continuous functions},

we have (1) ⇒ (2) ⇒ (3).
Obviously, (4) ⇔ (5) using complementation.
Let us prove that (4) + (5) ⇒ (6). Let A ∈ B(E) such that µ(∂A) = 0. Since Å ⊂ A ⊂ A, we
have

µ(Å) = µ(A) = µ(A).
Since for all n, µn(Å) ≤ µn(A) ≤ µn(A), we have

lim sup
n

µn(A) ≤ lim sup
n

µn(A)
(5)
≤ µ(A) = µ(A) = µ(Å)

(4)
≤ lim inf

n
µn(Å) ≤ lim inf

n
µn(A),

hence we get lim infn µn(A) = lim supn µn(A) = µ(A), i.e. µn(A) −→
n→∞

µ(A).
Now we prove that (6) ⇒ (7). Let f be continuous µ-a.e. and bounded. By linearity, one can
suppose that f is bounded by 1. We can also suppose that f ≥ 0 (it not, just write f = f+−f−).
Then for any ν ∈ M1(E), using Fubini’s theorem, we have∫ 1

0
ν(f ≥ t)dt =

∫ 1

0

∫
E
1{f≥t}dνdt =

∫
E

∫ 1

0
1{t≤f}dtdν =

∫
E
fdν.
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Hence, for all n, ∫
E
fdµn =

∫ 1

0
µn(f ≥ t)dt.

Denote by D the set of discontinuities of f . Now remark that for all t ∈ R,
∂{f ≥ t} ⊂ {f = t} ∪D.

Indeed, let x ∈ ∂{f ≥ t} = {f ≥ t} \ Int{f ≥ t}. If x ∈ Dc, i.e. f is continuous at x, then
x ∈ {f = t}. Indeed, let xn ∈ {f ≥ t} such that xn → x. Then, f(xn) → f(x) by continuity
at x, and thus x ∈ {f ≥ t}. Moreover, if f(x) > t, then by continuity {f > t} would contain
a neighbourhood of x, hence x ∈ Int{f > t} ⊂ Int{f ≥ t}, which contradicts the fact that
x ∈ ∂{f ≥ t}. Hence, x ∈ {f = t} ∪D.
Now remark that the set {t ∈ R |µ(f = t) > 0} has Lebesgue measure equal to zero. Indeed,
{t ∈ R |µ(f = t) > 0} is the set of the atoms of the probability measure µf equal to the image
measure of µ by f , and as such is at most countable (exercise). Hence, µ ({f = t}) = 0 holds
for Lebesgue-almost all t ∈ R. Hence,

µ (∂{f ≥ t}) ≤ µ ({f = t}) + µ(D)
which is equal to 0 for Lebesgue almost all t. So, we get that:

• µn(f ≥ t) −→
n→∞

µ(f ≥ t) Lebesgue almost everywhere, by assumption (6),
• µn(f ≥ t) ≤ 1, which is integrable on [0, 1] with respect to Lebesgue measure,

so by dominated convergence theorem,∫
E
fdµn =

∫ 1

0
µn(f ≥ t)dt −→

n→∞

∫ 1

0
µ(f ≥ t)dt =

∫
E
fdµ.

This proves (7).
Moreover, (7) ⇒ (1) is trivial.
It remains to prove (3) ⇒ (4). Let G be an open set. From lemma 2.1, there exists a nonde-
creasing sequence (gk)k such that gk is bounded and k-Lispschitz for all k, such that

gk ↗ 1G, as k → ∞.
Hence,

µn(G) =
∫
1Gdµn ≥

∫
gkdµn −→

n→∞

∫
gkdµ.

Using monotone convergence theorem, one obtains,

lim inf
n

µn(G) ≥
∫
gkdµ −→

k→∞

∫
1Gdµ = µ(G),

which concludes the proof. □

Example 3.2. Recall that if X is a real random variable, its cumulative distribution function
is the function

FX : R → [0, 1]
t 7→ P(X ≤ t).

In other words, if µ denotes the distribution of X (i.e. the image measure of P by X), then
FX(t) = µ((−∞, t]), for all t ∈ R. It is well known that convergence in distribution is charac-
terized by the following: for all t ∈ R such that FX is continuous at t, we have

FXn(t) −→
n→∞

FX(t).

Recall that FX is a càdlàg (”continue à droite avec limite à gauche”, French for ”right continuous
with left limits”) function and that the points of discontinuity of FX are exactly the atoms of
the distribution of X. Hence, FX continuous at t is equivalent to µ({t}) = 0. Moreover,
∂(−∞, t] = {t}, hence FX continuous at t is equivalent to say that (−∞, t] is a set of µ-
continuity. Hence, the Portmanteau theorem implies that if Xn → X in distribution, i.e.
µn → µ weakly, then, FXn(t) −→

n→∞
FX(t), for all t continuity point of FX .
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Conversely, let ε > 0 and consider first the open interval (a, b). Let D be the set of discontinuity
points of FX . Since D is countable (exercise: prove it), there exists ak ↘ a, and bk ↗ b such
that for all k, ak and bk are continuity points of FX (since D is countable, Dc is dense in R).
Hence,

lim inf
n

P (Xn ∈ (a, b)) ≥ lim inf
n

P (Xn ∈ (ak, bk])
≥ lim inf

n
(FXn(bk) − FXn(ak))

= FX(bk) − FX(ak)
= P (X ∈ (ak, bk])

by assumption. Letting k → ∞, we get

lim inf
n

P (Xn ∈ (a, b)) ≥ P (X ∈ (a, b)) .

Now let U be an open set. Since any open set is the countable union of disjoint open intervals,
we write

U =
⋃
i

(ai, bi),

for some ai and bi. Now, choose N large enough such that

VN =
N⋃
i=1

(ai, bi)

satisfies P(X ∈ VN) > P(X ∈ U) − ε. Eventually, we get

lim inf
n

P(Xn ∈ U) ≥ lim inf
n

P(Xn ∈ VN) = P(X ∈ VN) > P(U) − ε.

Since ε is arbritarly, we obtain lim infn P(Xn ∈ U) ≥ P(X ∈ U), and we conclude, using the
Portmanteau theorem, that Xn converges in distribution to X.

Exercise 3. Show that the continuous mapping theorem is still true if one only assume that g
is continuous µ-almost everywhere. Hint: Let D be the set of discontinuities of g. Show that if
A is a closed set in F , one has g−1(A) ∩Dc ⊂ g−1(A) and use the Portmanteau theorem, item
(5).

Exercise 4. Let (E, d) be a separable metric space. We say that the sequence of random
variables (Xn)n converges in probability to the random variable X if for all ε > 0,

lim
n→∞

P (d(Xn, X) > ε) = 0.

We denote this convergence by Xn
P−→

n→∞
X. (The assumption that E is separable is to ensure

that d(X, Y ) is measurable for two random variables X and Y ).
Show that if Xn

P−→
n→∞

X then Xn
(d)−→

n→∞
X.

Show that if Xn
(d)−→

n→∞
x, where x ∈ E is deterministic, then Xn

P−→
n→∞

x.

4. Topology on M1(E)

Let Y be a real normed space. Denote by Y ∗ the topological dual of Y , i.e. the space of
continuous (i.e. bounded) real linear forms on Y . The topology on Y ∗ induced by the norm

||ϕ|| = sup
||x||=1

|ϕ(x)|

is often too finer to be useful, for instance (in infinite dimension) there are very few sets that are
compact for the norm topology. Another topology, which is coarser (i.e. smaller), is given by
the weak∗ topology: it is the weakest topology on Y ∗ making all evaluation maps evx : Y ∗ → R,
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ϕ 7→ ϕ(x), continuous, as x ranges over Y . A basis of neighbourhood of ϕ ∈ Y ∗ for the weak∗

topology is given by the sets

V(ϕ, x1, . . . , xk, ε) =
k⋂
i=1

{
ψ ∈ Y ∗ |

∣∣∣ϕ(xi) − ψ(xi)
∣∣∣ < ε

}
,

indexed by x1, . . . , xk ∈ Y , and ε > 0.
In particular, it can be proved that a sequence (ϕn)n in Y ∗ converges to ϕ ∈ Y ∗ for the weak∗

topology, if and only if
ϕn(x) −→

n→∞
ϕ(x),

for all x ∈ Y , i.e. if ϕn converges pointwise to ϕ.

In our case, we consider the normed space Y = Cb(E), where E is a metric space. By Propo-
sition 2.1, the map from M1(E) to the topological dual of Cb(E) defined by

M1(E) → Cb(E)∗

µ 7→
(
f 7→

∫
E
fdµ

)
is injective, so M1(E) can be identified with a subset of Cb(E)∗. The weak topology on M1(E)
is defined as the restriction of the weak∗ topology of Cb(E)∗ to M1(E) and the notion of
weak convergence for sequences of probability measures corresponds to the notion of sequencial
convergence of this topology.

We will now see that the weak convergence is metrizable when E is separable, and there are
several metrics of interest on M1(E). We first introduce the Lévy-Prokhorov distance.

Let (E, d) be a metric space. Define the (open) ε-neighbourhood of a subset A ⊂ E by

Aε = {x ∈ E | d(x,A) < ε}.

It is useful to note that if A is a closed set, then

A =
⋂
ε>0

Aε.

Definition 4.1. Let (E, d) be a metric space and let µ, ν ∈ M1(E). The Lévy-Prokhorov
distance between µ and ν is defined by

ρ(µ, ν) = inf {ε > 0 | ∀B ∈ B(E), µ(B) ≤ ν(Bε) + ε} .

Note that since Bε = B
ε (since d(x,B) = d(x,B)), one can replace in the definition of the

Prokhorov distance B ∈ B(E) by B ⊂ E closed. Note also that obviously, for all B ∈ B(E),

µ(B) ≤ ν(B1) + 1,

hence ρ(µ, ν) ∈ [0, 1].
To manipulate this distance, it is useful to note that:

• If for all Borel set B,
µ(B) ≤ ν(Bε) + ε,

then ρ(µ, ν) ≤ ε.
• If there exists a Borel set B such that

µ(B) > ν(Bε) + ε,

then ρ(µ, ν) ≥ ε.
Before proving that ρ is indeed a distance, let us compute an example.
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Example 4.1. Let us compute the Lévy-Prokhorov distance between two Dirac masses δx and
δy, with x ̸= y. By definition,

ρ(δx, δy) = inf {ε > 0 | ∀B ∈ B(E), δx(B) ≤ δy(Bε) + ε} .
Let ε > d(x, y). Let B be a Borel set. If x ̸∈ B, then obviously

0 = δx(B) ≤ δy(B) + ε.

On the other hand, if x ∈ B, and since y ∈ Bε ⇔ d(x, y) < ε, we also have
1 = δx(B) ≤ δy(Bε) + ε = 1 + ε.

Hence, ρ(δx, δy) ≤ ε and letting ε ↓ d(x, y) gives ρ(δx, δy) ≤ d(x, y) ∧ 1.
Now, if 0 < ε < d(x, y) ∧ 1. Then, y ̸∈ {x}ε, hence

δx({x}) > δy({x}ε) + ε,

hence, we obtain ρ(δx, δy) ≥ d(x, y) ∧ 1. Finally,
ρ(δx, δy) = d(x, y) ∧ 1.

Proposition 4.1. The Prokhorov distance ρ is a metric on M1(E).

Proof. Let ε > 0. Then for all B ∈ B(E), since B ⊂ Bε,
µ(B) ≤ µ(Bε) + ε.

Hence, for all ε > 0, ρ(µ, µ) ≤ ε, and so ρ(µ, µ) = 0.
Let us show that ρ is symmetric (which is not obvious from the definition!). If ρ(µ, ν) > ε,
there exists a Borel set B such that

µ(B) > ν(Bε) + ε.

Now one remarks that
((Bε)c)ε ⊂ Bc.

(exercise: prove it).
Thus,

µ
(
((Bε)c)ε

)
+ ε ≤ µ (Bc) + ε < ν ((Bε)c) ,

thus there exists A = (Bε)c (which is a Borel set) such that ν(A) > µ(Aε) + ε. Hence,
ρ(ν, µ) ≥ ε.

Letting ε ↑ ρ(µ, ν) gives that ρ(ν, µ) ≥ ρ(µ, ν). Exchanging the roles of µ and ν gives the
equality.
Now we prove that ρ(µ, ν) = 0 implies that µ = ν. Suppose that for all ε > 0,

ρ(µ, ν) < ε.

Then for all closed set B, µ(B) ≤ ν(Bε) + ε. Take ε = 1
k
. One has that

B =
⋂
k

B
1
k ,

since d(x,B) = 0 ⇔ x ∈ B, since B is closed. Since (B 1
k )k is decreasing in k, one gets that

µ(B) ≤ lim
k
ν
(
B

1
k

)
= ν(B).

By symmetry, we get µ(B) = ν(B). Since probability measures on a metric space are charac-
terized by their values on closed sets, we get µ = ν.
It remains to prove the triangle inequality. Let µ, ν, γ in M1(E). Let ε > 0 and δ > 0 such
that

ρ(µ, ν) < ε and ρ(ν, γ) < δ.

Then for all Borel set B,
µ(B) ≤ ν(Bε) + ε and ν(B) ≤ γ(Bδ) + δ.
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Now remark that (Bε)δ ⊂ Bε+δ. Hence,

ν(Bε) ≤ γ
(
(Bε)δ

)
+ δ ≤ γ(Bε+δ) + δ,

and thus
µ(B) ≤ γ(Bε+δ) + ε+ δ.

Hence, ρ(µ, γ) ≤ ε+ δ, and letting ε ↓ ρ(µ, ν) and δ ↓ ρ(ν, γ) gives the triangle inequality. □

When E is separable, the weak convergence is metrizable by the Lévy-Prokhorov distance:

Theorem 4.1. Let (E, d) be a separable metric space. Let (µn)n and µ be probability measures
on E. Then µn

weakly−→
n→∞

µ if and only if ρ(µn, µ) −→
n→∞

0.

Proof. Suppose that ρ(µn, µ) −→
n→∞

0. Let ε > 0. Hence, for n large enough, for all closed set F ,

µn(F ) ≤ µ(F ε) + ε.

Now taking ε = 1
k
,

lim sup
n

µn(F ) ≤ µ
(
F

1
k

)
+ 1
k
,

and noticing that F = ∩kF
1
k and that the intersection is decreasing, we get, letting k → ∞,

that
lim sup

n
µn(F ) ≤ µ(F ),

which proves that µ converges weakly to µ by the Portmanteau theorem.
Conversely, assume that µn

weakly−→
n→∞

µ. Let ε > 0. Since E is separable, let (xn)n be a dense
sequence in E such that

E =
⋃
n

B(xn, ε).

Define B1 = B(x1, ε), and for n ≥ 1, Bn+1 = B(xn+1, ε)\ (B1 ∪· · ·∪Bn). The Bn’s are pairwise
disjoints (if there are empty sets among the Bn’s, just reindex them), and

E =
⋃
n

Bn.

Now let N be large enough, such that

µ

(
N⋃
k=1

Bk

)
> 1 − ε.

Denote by G the family of open sets of the form
(Bi1 ∪ · · · ∪Bik)ε , with {i1, . . . , ik} ⊂ {1, . . . , N}.

Hence, for any G ∈ G, by the Portmantean theorem, we have
lim inf

n
µn(G) ≥ µ(G),

thus there exists n0 such that for all n ≥ n0,
µn(G) ≥ µ(G) − ε.

Moreover, as G is a finite family, this holds uniformly over G: there exists n0 such that for all
n ≥ n0, for all G ∈ G,

µn(G) ≥ µ(G) − ε.

Now let A ∈ B(E) be a Borel set. Define, IA = {k ∈ {1, . . . , N} | Bk ∩ A ̸= ∅}, and let

G(A) =
⋃
k∈IA

Bk.
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Then G(A)ε belongs to G, and moreover G(A)ε ⊂ A3ε. Hence, for n ≥ n0,
µ(A) = µ (A ∩G(A)) + µ (A ∩G(A)c)

≤ µ (G(A)ε) + µ

 ⋃
k>N+1

Bk


≤ µn (G(A)ε) + 2ε

≤ µn
(
A3ε

)
+ 3ε.

Hence, one obtains that for n ≥ n0, ρ(µn, µ) ≤ 3ε, which concludes the proof. □

Proposition 4.2. Let E be a separable metric space. Then M1(E) is separable.
Proof. Let µ ∈ M1(E). We use the same notations than in the previous proof. Let (xn)n be a
dense sequence in E such that

E =
⋃
n

B(xn, ε).

and define B1 = B(x1, ε), and for n ≥ 1, Bn+1 = B(xn+1, ε) \ (B1 ∪ · · · ∪ Bn) so that for N
large enough, we have

µ

(
N⋃
k=1

Bk

)
> 1 − ε.

Let A be a Borel set and denote as before G(A) = ⋃
k∈IA

Bk, where IA = {k ∈ {1, . . . , N} |
Bk ∩ A ̸= ∅}. Then,

µ(A) ≤ µ (G(A)) + µ (A \G(A))
≤
∑
k∈IA

µ(Bk) + ε.

By density of Q, choose q1, . . . , qN ∈ Q ∩ [0, 1] such that
N∑
k=1

|qk − µ(Bk)| < ε and
N∑
k=1

qk = 1.

(First choose r1, . . . , rN ∈ Q ∩ [0, 1] such that ∑N
k=1 |rk − µ(Bk)| < ε and put qk = rk∑N

k=1 rk

and

use the fact that ∑N
k=1 µ(Bk) > 1 − ε). Hence, denoting π = ∑N

k=1 qkδxk
, one obtains that

µ(A) ≤
∑
k∈IA

qk + 2ε = π (G(A)) + 2ε ≤ π
(
A3ε

)
+ 3ε.

Hence, we get ρ(µ, π) ≤ 3ε, and finally the countable set{
n∑
k=1

qkδxk
| n ≥ 1, q1, . . . , qn ∈ Q ∩ [0, 1],

n∑
k=1

qk = 1
}

is dense in M1(E). □

We now introduce another metric on M1(E). Define, for all f : E → R,

||f ||Lip := sup
x,y∈E
x ̸=y

|f(x) − f(y)|
d(x, y) ,

and
||f ||BL := ||f ||∞ + ||f ||Lip.

This defines a norm on the space of bounded Lipschitz functions on E (exercise).
Definition 4.2. Let (E, d) be a metric space and let µ, ν ∈ M1(E). The Kantorovich-
Rubinstein (or Fortet-Mourier) distance between µ and ν is defined by

β(µ, ν) := sup
||f ||BL≤1

∣∣∣∣∫
E
fdµ−

∫
E
fdν

∣∣∣∣ .
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It is easy to verify that β is a metric on M1(E), so the details are left as an exercise.
Both the Lévy-Prokhorov distance and the Kantorovich-Rubinstein distance induce the topol-
ogy of weak convergence as a consequence of the following lemma:
Lemma 4.1. For all µ, ν ∈ M1(E),

1
4β(µ, ν) ≤ ρ(µ, ν) ≤ 2

√
β(µ, ν).

Proof. We start with the second inequality. Assume that µ ̸= ν, so β(µ, ν) > 0 (if not the
inequality is trivial). Let ε > 0 and let B ∈ B(E). Consider the functions

fε(x) = max
{

0, 1 − 1
ε
d(x, F )

}
,

as in lemma 2.1. Then
1B ≤ fε ≤ 1Bε ,

and ||fε||BL ≤ 1 + 1
ε
, thus,

µ(B) ≤
∫
fεdµ ≤

∫
fεdν +

(
1 + 1

ε

)
β(µ, ν)

≤ ν(Bε) +
(

1 + 1
ε

)
β(µ, ν).

Thus,
ρ(µ, ν) ≤ max

{
ε,
(

1 + 1
ε

)
β(µ, ν)

}
.

Choose ε = 2
√
β(µ, ν). Then we get,

ρ(µ, ν) ≤ max
{

2
√
β(µ, ν), β(µ, ν) + 1

2
√
β(µ, ν)

}
≤ 2

√
β(µ, ν),

for β(µ, ν) ≤ 1
4 by a simple analysis of functions. If β(µ, ν) > 1

4 , the inequality is trivial since
ρ(µ, ν) is bounded by 1.
Now we prove the first inequality. Suppose without loss of generality that ρ(µ, ν) > 0 and let
ε > ρ(µ, ν). Let f such that ||f ||BL ≤ 1. Hence, ||f ||∞ ≤ 1 and ||f ||Lip ≤ 1. Then, using
Fubini’s theorem, ∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ =
∣∣∣∣∫ 1

−1
µ ({f > t}) dt−

∫ 1

−1
ν ({f > t}) dt

∣∣∣∣
≤
∫ 1

−1
|µ ({f > t}) − ν ({f > t})| dt.

Now remark that since f is 1-Lipschitz, we have {f > t}ε ⊂ {f > t−ε}. Then, since ρ(µ, ν) < ε,
we have

µ ({f > t}) ≤ ν ({f > t}ε) + ε

≤ ν ({f > t− ε}) + ε.

Hence,
µ ({f > t}) − ν ({f > t}) ≤ ν ({f > t− ε}) − ν ({f > t}) + ε

= ν ({t− ε < f ≤ t}) + ε.

Exchanging the role of µ and ν, we get by symmetry,
|µ ({f > t}) − ν ({f > t})| ≤ µ ({t− ε < f ≤ t}) + ν ({t− ε < f ≤ t}) + ε.

Using Fubini’s theorem again, one obtains∫ 1

−1
µ ({t− ε < f ≤ t}) dt =

∫
E

∫ 1

−1
1{f≤t<f+ε}dtdµ ≤ ε.
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The same holds for the measure ν, so eventually, we get∣∣∣∣∫
E
fdµ−

∫
E
fdν

∣∣∣∣ ≤
∫ 1

−1
µ ({t− ε < f ≤ t}) dt+

∫ 1

−1
ν ({t− ε < f ≤ t}) dt+ 2ε

≤
∫
E

∫ 1

−1
1{f≤t<f+ε}dtdµ+

∫
E

∫ 1

−1
1{f≤t<f+ε}dtdν +

∫ 1

−1
εdt

≤ 4ε.
Letting ε ↓ ρ(µ, ν) gives β(µ, ν) ≤ 4ρ(µ, ν). □

Since we have seen that the Lévy-Prokhorov distance is a metric for weak convergence, we then
have:

Proposition 4.3. Let E be a separable metric space and let (µn)n and µ be probability measures
on E. Then, the following assertions are equivalent:

(i) the sequence (µn)n converges weakly to µ.
(ii) β(µn, µ) −→

n→∞
0.

(iii) ρ(µn, µ) −→
n→∞

0.

5. Tightness and Prokhorov theorem

We start with a first compactness result when the underlying space is compact. The main
ingredient for the proof is the Riesz representation theorem (or Riesz-Markov-Kakutani theo-
rem):

Theorem 5.1 (Riesz representation theorem). Let (X, d) be a compact metric space. Let
Λ: C(X) → R be a linear form such that:

(i) Λ is positive: for all f ≥ 0, Λ(f) ≥ 0,
(ii) Λ(1) = 1.

Then, there exists on X a unique Borel probability measure µ such that for all f ∈ C(X),

Λ(f) =
∫
X
fdµ.

Hence, the Riesz representation theorem asserts that the topological dual of C(X) corresponds
to the set of bounded signed measures on X (recall that a finite signed measure is a measure
taking values in R).
In fact, the above theorem holds if X is only assumed to be locally compact (X is Hausdorff
and any point of X admits a compact neighbourhood) and separable and with C(X) replaced
by Cc(X), the space of continuous functions with compact support, or C0(X), the space of
continuous functions vanishing at infinity. Of course, if X is compact, then Cc(X) = C0(X) =
C(X). This theorem is not easy and we refer for instance to Rudin [3] for a proof. Note that
Riesz theorem is a way to construct Lebesgue measure on R starting with the Riemann integral.
Note also that, when X is not compact, the topological dual of Cb(X) consists of objects more
general that measures (in fact bounded finitely additive measures).

Theorem 5.2. Let K be a compact space. Then, M1(K) is compact.

Proof. Recall that the space of continuous functions C(K) is separable. Let A = {fk}k be a
dense subset of C(K). Since K is compact, every fk is bounded, hence for all n,∣∣∣∣∫

K
fkdµn

∣∣∣∣ ≤ ||fk||∞ < ∞.

Thus, since [−||fk||∞, ||fk||∞] is compact, there exists an extraction φk such that
∫
fkdµφk(n)

converges as n → ∞. Using a diagonal extraction argument, one can construct an extraction
φ such that for all k, ∫

K
fkdµφ(n)
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converges, as n → ∞, to some Λ(fk) ∈ R. We now prove that this convergence holds on the
whole of C(K). Let ε > 0 and let f ∈ C(K). By density of A, there exists k such that
||f − fk||∞ < ε. Then,∣∣∣∣∫ fdµφ(n) −

∫
fdµφ(m)

∣∣∣∣
≤
∣∣∣∣∫ fdµφ(n) −

∫
fkdµφ(n)

∣∣∣∣+ ∣∣∣∣∫ fdµφ(m) −
∫
fkdµφ(m)

∣∣∣∣+ ∣∣∣∣∫ fkdµφ(n) −
∫
fkdµφ(m)

∣∣∣∣
≤ 3ε,

for n,m large enough, since ||f − fk||∞ < ε and since
∫
fkdµφ(n) converges for any k. Hence,(∫

fdµφ(n)
)
n

is a Cauchy sequence in R and thus converges to some Λ(f). Define Λ: f 7→ Λ(f).
Then Λ is a linear form on C(K) as the pointwise limit of a sequence of linear forms. Moreover,
as ∣∣∣∣∫ fdµφ(n)

∣∣∣∣ ≤ ||f ||∞,

letting n → ∞, one has that
|Λ(f)| ≤ ||f ||∞.

As such, Λ is a bounded linear form on C(K), i.e. Λ belongs to the topological dual of C(K).
Moreover, one has Λ(1) = 1 and Λ is clearly a positive linear form, i.e. if f ≥ 0, then Λ(f) ≥ 0.
By the Riesz representation theorem, there exists a probability measure µ ∈ M1(K) such that

Λ(f) =
∫
K
fdµ,

for all f ∈ C(K). Hence, for all f ∈ C(K),∫
K
fdµφ(n) −→

n→∞

∫
K
fdµ,

i.e. (µφ(n))n converges weakly to µ, so M1(K) is (sequentially) compact. □

Remark 5.1. In fact, we have proved the Banach-Alaoglu theorem in our particular case of
C(K), which states that the closed (for the norm) unit ball of the dual of a normed vector
space Y is compact for the weak∗ topology. Recall that unless a normed vector space is finite
dimensional, its closed unit ball is not compact for the norm topology!
But note that we cannot expect the above result to be true when the space K is not compact
anymore (recall the counterexample of (δn)n ⊂ M1(R)). Indeed, the space M1(E) is in general
not closed for the weak∗ topology on Cb(K)∗.
Note also that if Y is not separable, the closed unit ball of Y ∗ is not metrizable for the weak∗

topology. In particular, compactness and sequential compactness are not equivalent.

So we need a criterion that will allow us to still extract weakly converging subsequences. This
is the content of Prokhorov’s theorem, whose key idea is captured by the following notion of
tightness for sequences of probability measures.

Definition 5.1. Let (E, d) be a metric space. Let A ⊂ M1(E). We say that A is tight, if for
all ε > 0, there exists a compact subset K ⊂ E, such that

∀µ ∈ A, µ(Kc) ≤ ε.

We have already seen that a single measure is tight on a Polish space. As an exercise, prove
that a finite family A = {µ1, . . . , µN} of probability measures on a Polish space is tight.
One of the most important result in this course is then the following theorem.

Theorem 5.3 (Prokhorov theorem). Let (E, d) be a metric space and let A ⊂ M1(E). If A is
tight then A is relatively compact. Moreover, if (E, d) is Polish, then if A is relatively compact,
then A is tight.
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Proof. (⇐) We first prove that if A is relatively compact then it is tight when (E, d) is a Polish
space. Let (µn)n ⊂ A converging weakly to some µ. Let (Gn)n be an increasing sequence of
open sets such that E = ⋃

nGn. Then, for all ε > 0, there exist n such that for all µ ∈ A,
µ(Gn) > 1 − ε.

Indeed, if this is not the case, there exists ε > 0, such that for all n, there exists µn ∈ A, such
that

µn(Gn) ≤ 1 − ε.

Since A is relatively compact, there exists a subsequence (µφ(n))n weakly converging to some
probability measure µ. Hence, by the Portmanteau theorem, for all n

µ(Gn) ≤ lim inf
N

µφ(N)(Gn) ≤ lim inf
N

µφ(N)(Gφ(N)) ≤ 1 − ε,

which contradicts the fact that E = ⋃
nGn.

Now let (xn)n be a dense sequence in E. Then, for all k ≥ 1,

E =
⋃
n≥1

B(xn,
1
k

),

and let Gn = ⋃n
j=1 B(xj, 1

k
), so E is the increasing limit of the Gn’s. By the previous claim,

there exists nk such that for all µ ∈ A,

µ

 nk⋃
j=1

B(xj,
1
k

)
 > 1 − ε

2k .

Set
K =

⋂
k≥1

nk⋃
j=1

Bf (xj,
1
k

).

Then, we have, for all µ ∈ A,

µ (Kc) ≤
∑
k≥1

µ

 nk⋃
j=1

B(xj,
1
k

)
c ≤

∑
k

ε

2k = ε,

and by construction K is totally bounded, hence since E is complete, K is compact, and A is
tight.
(⇒) Now we prove that if A is tight then it is relatively compact. So let (µn)n ⊂ A. We have
to prove that there exists a subsequence of (µn)n that converges weakly. By tightness, for all
j ≥ 1, there exists a compact Kj ⊂ E such that, for all n,

µn(Kj) > 1 − 1
j
.

Up to replacing Kj by ⋃j
i=1 Ki, one can assume that the sequence of compact sets (Kj)j is

increasing. Now for all n and all j, define νjn by

νjn(A) = µn(A ∩Kj)
µn(Kj)

,

so νjn is a probability measure on the compact set Kj. Hence, we have for all j, (νjn)n ⊂ M1(Kj)
which is compact since Kj is compact, hence there exists a subsequence that converges weakly
to some probability measure νj ∈ M1(Kj). By diagonal extraction, there exists an increasing
φ such that, for all j,

νjφ(n) ⇀
n→∞

νj.

Now, consider for all j, the sequence (µφ(n)(Kj))n ⊂ [0, 1]. By diagonal extraction again (or
the fact that [0, 1]N is compact), there exists a subsequence (µφ◦ψ(n)(Kj))n such that for all j

µφ◦ψ(n)(Kj) −→
n→∞

aj ∈ [0, 1],
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where aj ≥ 1 − 1
j
. Set ϕ = φ ◦ ψ. Hence, we have that for all j,ν

j
ϕ(n) ⇀

n→∞
νj

µϕ(n)(Kj) −→
n→∞

aj ∈
[
1 − 1

j
, 1
]
.

Let now B ∈ B(E). Then, for all j
aj+1ν

j+1(B2ε) ≥ aj+1ν
j+1(Bε)

(Portmanteau)

≥ lim sup
n

(
µϕ(n)(Kj+1)νj+1

ϕ(n)(Bε)
)

= lim sup
n

µϕ(n)(Bε ∩Kj+1)

≥ lim sup
n

µϕ(n)(Bε ∩Kj)

= lim sup
n

(
µϕ(n)(Kj)νjϕ(n)(Bε)

)
≥ aj lim inf

n
νjϕ(n)(B

ε)
(Portmanteau)

≥ ajν
j(Bε).

(We have used that if an and bn are nonnegative and an → a, then lim supn(anbn) = a lim supn(bn)).
Now using that B = ⋂

ε>0 B
ε, we get that for all closed set F ,

aj+1ν
j+1(F ) ≥ ajν

j(F ),
and by exterior regularity of probability measures on a metric space, the fact that

aj+1ν
j+1(B) ≥ ajν

j(B),
for all Borel set B. We thus have a nondecreasing sequence of measures (ajνj)j, hence µ defined
by

µ(B) = lim
j→∞

ajν
j(B), B ∈ B(E),

is a measure on E (since the pointwise limit of a nondecreasing sequence of measure is a
measure). Moreover, since 1 − 1

j
≤ aj ≤ 1, we have

µ(E) = lim
j→∞

aj = 1.

Hence, µ is a probability measure on E and we have µ = limj→∞ νj. It remains to prove that
(µϕ(n))n converges weakly to µ. So let f be a continuous and bounded function on E. We have,∣∣∣∣∫
E
fdµϕ(n) −

∫
E
fdµ

∣∣∣∣ ≤
∣∣∣∣∣
∫
Kc

j

fdµϕ(n)

∣∣∣∣∣+
∣∣∣∣∣
∫
Kj

fdµϕ(n) −
∫
Kj

fajdν
j

∣∣∣∣∣+
∣∣∣∣∣
∫
Kj

fajdν
j −

∫
E
fdµ

∣∣∣∣∣
≤ ||f ||∞

j
+
∣∣∣∣∣
∫
Kj

fdµϕ(n) −
∫
Kj

fajdν
j

∣∣∣∣∣+
∣∣∣∣∣
∫
Kj

fajdν
j −

∫
E
fdµ

∣∣∣∣∣
≤ ||f ||∞

j
+
∣∣∣∣∣
∫
Kj

fµϕ(n)(Kj)dνjϕ(n) −
∫
Kj

fajdν
j
ϕ(n)

∣∣∣∣∣+
∣∣∣∣∣
∫
Kj

fajdν
j
ϕ(n) −

∫
Kj

fajdν
j

∣∣∣∣∣
+
∣∣∣∣∣
∫
Kj

fajdν
j −

∫
E
fdµ

∣∣∣∣∣
≤ ||f ||∞

j
+
∣∣∣µϕ(n)(Kj) − aj

∣∣∣+ ∣∣∣∣∣
∫
Kj

fajdν
j
ϕ(n) −

∫
Kj

fajdν
j

∣∣∣∣∣
+
∣∣∣∣∣
∫
Kj

fajdν
j −

∫
E
fdµ

∣∣∣∣∣ .
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Since µϕ(n)(Kj) converges to aj as n → ∞ and since (νjϕ(n))n converges weakly to νj, we get
that

lim sup
n

∣∣∣∣∫
E
fdµϕ(n) −

∫
E
fdµ

∣∣∣∣ ≤ ||f ||∞
j

+
∣∣∣∣∣
∫
Kj

fajdν
j −

∫
E
fdµ

∣∣∣∣∣ .
But ∣∣∣∣∣

∫
Kj

fajdν
j −

∫
E
fdµ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Kj

fajdν
j −

∫
E
fdνj

∣∣∣∣∣+
∣∣∣∣∫
E
fdνj −

∫
E
fdµ

∣∣∣∣
≤ ||f ||∞|aj − 1| + +

∣∣∣∣∫
E
fdνj −

∫
E
fdµ

∣∣∣∣ ,
and since µ is the limit of νj, letting j → ∞, we finally get

lim sup
n

∣∣∣∣∫
E
fdµϕ(n) −

∫
E
fdµ

∣∣∣∣ = 0.

Thus, (µϕ(n))n converges weakly to µ, and A is relatively compact. □

Remark 5.2. The most interesting fact for us is that tightness implies relative compactness.
Note that this holds under the assumption that (E, d) is only a metric space.

The typical use of this theorem will be the following: if one can prove that a sequence (µn)n of
probability measures on E is tight, then by Prokhorov theorem, it is relatively compact, hence
for any subsequence, one can extract a weakly convergent sub-subsequence. If moreover, one
can prove that there is a unique accumulation point, then the whole sequence converges in view
of the following easy but useful lemma:

Lemma 5.1. Let (E, d) be a metric space and let (xn)n ⊂ E and x ∈ E. Then xn → x if
and only if for all subsequence (xφ(n))n, there exists a further sub-subsequence (xφ◦ψ(n))n that
converges to x.

Proof. The direct half is trivial (and not very useful...). Now, if xn ̸→ x, there exists ε > 0, and
some φ such that d(xφ(n), x) > ε, for all n. But then, no subsequence of (xφ(n))n can converge
to x. □

Example 5.1. Recall that for µ a probability measure on R (or more generally on Rd), its
characteristic function or Fourier transform is the function µ̂

µ̂(t) =
∫
R
eitxµ(dx), t ∈ R.

By Fourier inversion formula, µ is characterized by µ̂. Moreover, let µn and µ be probability
measures on R. It is well known that weak convergence is characterized by pointwise conver-
gence of characteristic functions:

µn ⇀
n→∞

µ ⇔ µ̂n(t) →
n→∞

µ̂(t), ∀t ∈ R.

Lévy’s theorem asserts that in fact, we don’t need to know a priori that the limit is the
characteristic function of a probability measure, we just need continuity at 0:

Theorem 5.4 (Lévy’s theorem). Let µn and µ be probability measures on R. Suppose that
there exists a function ϕ, which is continuous at 0, such that,

∀t ∈ R, µ̂n(t) →
n→∞

ϕ(t).

Then ϕ is the characteristic function of a probability measure µ on R, and
µn ⇀

n→∞
µ.

Proof. Let us show that for any µ ∈ M1(R), and all δ > 0,

µ (|x| > 2/δ) ≤ 1
δ

∫ δ

−δ
(1 − µ̂(t)) dt.
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Indeed, using Fubini theorem, we have
1
δ

∫ δ

−δ
(1 − µ̂(t)) dt = 1

δ

∫
R

∫ δ

−δ

(
1 − eitx

)
dtµ(dx) = 2

∫
R

(
1 − sin(δx)

δx

)
µ(dx).

Now, since the function f : u 7→ 1 − sinu
u

is nonnegative and satisfies f(u) > 1
2 for |u| > 2, we

get

2
∫
R

(
1 − sin(δx)

δx

)
µ(dx) ≥ 2

∫
|δx|>2

(
1 − sin(δx)

δx

)
µ(dx) ≥ µ (|δx| > 2) ,

which proves the claim.
Let ε > 0. By assumption, µ̂n converges pointwise to ϕ. Since µ̂n(0) = 1, we also have ϕ(0) = 1.
Moreover, since ϕ is continuous at 0, there exists δ > 0 such that

1
δ

∫ δ

−δ
(1 − ϕ(t)) dt < ε

2 .

By dominated convergence theorem, we also have that there exists n0 such that for all n ≥ n0,∣∣∣∣∣1δ
∫ δ

−δ
(1 − µ̂n(t)) dt− 1

δ

∫ δ

−δ
(1 − ϕ(t)) dt

∣∣∣∣∣ < ε

2 .

Hence, for all n ≥ n0, one has
1
δ

∫ δ

−δ
(1 − µ̂n(t)) dt < ε,

and thus
sup
n≥n0

µn (|x| > 2/δ) ≤ ε.

As such, the sequence (µn)n is tight, so by Prokhorov theorem, there exists a subsequence (µnk
)k

that converges weakly to some probability measure µ. By dominated convergence theorem, this
implies pointwise convergence of the corresponding characteristic functions:

µ̂nk
(t) →

k→∞
µ̂(t), ∀t ∈ R.

Hence, one obtains that ϕ(t) = µ̂(t), for all t ∈ R, so ϕ is the characteristic function of µ. Since
µ is characterized by its characteristic function, we get that any weak accumulation point of
(µn)n is equal to µ, so the whole sequence converges weakly to µ. □

6. Convergence of stochastic processes

In the sequel, we denote by C = C([0, 1]) the space of continuous functions from [0, 1] to R.

Definition 6.1. A continuous stochastic process X = (Xt)t∈[0,1] is a random variable with
values in C .

It means that the map

X : Ω → C

ω 7→ X(ω)

is a measurable map from the probability space (Ω,F ,P) to the measurable space (C ,B(C )).
Hence, for almost all ω ∈ Ω,

X(ω) : [0, 1] → R
t 7→ Xt(ω)

is a continuous function on [0, 1], i.e. the map t 7→ Xt is a.s. a continuous random function.
We will use the notations (Xt)t∈[0,1] or (X(t))t∈[0,1] interchangeably.
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6.1. Borel σ-algebra and cylindrical σ-algebra. Let, for all t ∈ [0, 1],
πt : C → R

x 7→ xt

be the evaluation map at time t. The cylindrical σ-algebra Cyl(C ) is the smallest σ-algebra
such that all the evaluation maps πt, t ∈ [0, 1], are measurable, i.e.

Cyl(C ) = σ (πt, t ∈ [0, 1])

= σ

 ⋃
t∈[0,1]

π−1
t (B(R))

 .
Then we have the following.

Proposition 6.1. We have,
B(C ) = Cyl(C ).

Proof. For all t ∈ [0, 1], πt is continuous (since if Xn → X in C , i.e. Xn → X uniformly,
then Xn → X pointwise, i.e. for all t ∈ [0, 1], πt(Xn) → πt(X)). Thus, by definition of the
cylindrical σ-algebra Cyl(C ), one has

Cyl(C ) ⊂ B(C ).
Now we prove that any open ball of C lies in Cyl(C ). Let x ∈ C and let r > 0. Since

B(x, r) =
⋃
s∈Q

0<s<r

Bf (x, s),

it suffices to prove that any closed ball lies in Cyl(C ). But,
Bf (x, r) = {y ∈ C | d(x, y) ≤ r}

=
{
y ∈ C | sup

t∈[0,1]
|x(t) − y(t)| ≤ r

}
=

⋂
t∈[0,1]

{y ∈ C | |x(t) − y(t)| ≤ r}

(continuity)

=
⋂

t∈[0,1]∩Q
{y ∈ C | |x(t) − y(t)| ≤ r}

=
⋂

t∈[0,1]∩Q
π−1
t (Bf (x(t), r)) .

As such, Bf (x, r) ∈ Cyl(C ). Since C is separable, any open set is a countable union of
open balls or closed balls. Hence, the sets of open balls is included in Cyl(C ), and finally
B(C ) ⊂ Cyl(C ). □

This has the following important consequence. For all k ≥ 1, and all 0 ≤ t1 < · · · < tk ≤ 1,
define

πt1,...,tk : C → Rk

f 7→ (f(t1), . . . , f(tk)),
and consider the class of cylinders

C =
{
π−1
t1,...,tk

(B1 × · · · ×Bk) | k ≥ 1, 0 ≤ t1 < · · · < tk ≤ 1, B1, . . . , Bk ∈ B(R)
}
.

Then, C is a π-system that generates Cyl(C ). Hence,
B(C ) = σ(C).
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Since by Dynkin π–λ theorem, two probability measures are equal if and only if they are equal
on a π-system that generates the Borel σ-algebra, we get the for all µ and ν in M1(C ), µ and
ν are equal if and only if for all t1 < · · · < tk,

πt1,...,tk#µ = πt1,...,tk#ν,

where T#µ denotes the image measure of µ by the map T . From a probabilistic point of view,
let X = (Xt)t∈[0,1] and Y = (Yt)t∈[0,1] be two continuous processes, i.e. two random elements of
C . Then,

X
(d)= Y

if and only if they have the same finite-dimensional distributions: for all k ≥ 1, and all 0 ≤
t1 < · · · < tk ≤ 1,

(Xt1 , . . . , Xtk) (d)= (Yt1 , . . . , Ytk)
(as random vectors in Rk!).
In the sequel, we will denote for all k ≥ 1 and all t1, . . . , tk by

µt1,...,tk = πt1,...,tk#µ

the finite-dimensional marginals of µ ∈ M1(C ).
Note that by the continuous mapping theorem, if the sequence (µn)n of probability measures
on C converges weakly to some µ ∈ M1(C ), then all the finite-dimensional marginals of µn
converges to that of µ: for all k ≥ 1, and all 0 ≤ t1 < · · · < tk ≤ 1,

µt1,...,tkn ⇀
n→∞

µt1,...,tk .

The above convergence is thus weak convergence in M1(Rk) and is called convergence of the
finite-dimensional distributions. But the converse does not hold! For instance, consider the
sequence of continuous functions (zn)n, where

zn(t) = max
{

1 − n
∣∣∣t− 1

n

∣∣∣, 0} , t ∈ [0, 1].

Then, the sequence of Dirac masses (δzn)n converges in the sense of finite dimensional distri-

1
n

0 1

1

butions to the Dirac mass at the zero function δ0. Indeed, recall that δzn converges weakly to
δ0 if and only if zn → 0 (the zero function). But ||zn||∞ = 1, hence zn does not converge to the
zero function. But clearly, for any fixed t ∈ [0, 1], zn(t) → 0 as n → ∞, and so δzn converges in
finite-dimensional distributions to the zero function.

Strategy: The strategy for proving that a sequence of probability measures (µn)n ⊂ M1(C )
converges weakly to some probability measure µ is thus the following:

• Prove that (µn)n is tight. By Prokhorov theorem, it implies that (µn)n is relatively com-
pact: for all subsequence of (µn)n, there exists a further sub-subsequence that converges
weakly.

• Prove that there is a unique accumulation point. To that end, prove that the finite-
dimensional distributions converge to that of µ.
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Indeed, if we known that (µn)n is relatively compact, then for all subsequence of (µn)n, there
exists a further sub-subsequence, say µni

, that converges weakly to some ν (depending on the
subsequence). By the continuous mapping theorem, the finite dimensional distributions will
also converge: for all k, for all t1, . . . , tk,

µt1,...,tkni
⇀ νt1,...,tk .

But if we also known that for all t1, . . . , tk,
µt1,...,tkn ⇀

n→∞
µt1,...,tk ,

then,
νt1,...,tk = µt1,...,tk ,

for all k, and thus ν = µ since finite-dimensional distributions characterize probability measures
on C . Hence, for all subsequence, there exists a further sub-subsequence that converges weakly
to the same µ, hence the whole sequence (µn)n converges weakly to µ.

6.2. Tightness in C . To understand tightness of families of probability measures on C , we first
need the understand compactness in C . This is done using the Arzelà-Ascoli theorem, which
will be of fundamental importance in the sequel. First recall the definition of equicontinuity.

Definition 6.2. Let K be a compact metric space. A subset A ⊂ C(K) is said to be (uniformly)
equicontinuous if for all ε > 0, there exists δ > 0, such that for all f ∈ A, for all x, y ∈ K such
that d(x, y) < δ, we have

|f(x) − f(y)| < ε.

We can restate this definition using the modulus of continuity. Define, for f continuous,
ωδ(f) = sup

d(x,y)<δ
|f(x) − f(y)|,

so f is uniformly continuous if and only if ωδ(f) → 0 as δ → 0. Then A ⊂ C(K) is equicontin-
uous if and only if

sup
f∈A

ωδ(f) −→
δ→0

0.

Roughly speaking, a sequence of functions is equicontinuous if and only if it is ”uniformly
uniformly continuous”.

Theorem 6.1 (Arzelà-Ascoli theorem). Let K be a compact metric space. Then A ⊂ C(K) is
relatively compact if and only if

(1) A is ”pointwise uniformly bounded”:
∀x ∈ K, sup

f∈A
|f(x)| < ∞.

(2) A is equicontinuous:
sup
f∈A

ωδ(f) −→
δ→0

0.

Proof. Suppose that A is relatively compact. Since the evaluation map πx : f 7→ f(x) is con-
tinuous, πx(A) is a compact subset of R. Since πx(A) contains πx(A) = {f(x) | f ∈ A}, we get
that for all f ∈ A, |f(x)| < ∞. This proves (1). Replacing A by its closure, one may suppose
that A is compact (a subfamily of an equicontinuous family is equicontinuous). Let ε > 0. Let
g1, . . . , gr a finite family of functions in A such that

A ⊂
r⋃

k=1
B(gk, ε).

Let f ∈ A and let k ∈ {1, . . . , r} such that d(f, gk) < ε. Since K is compact, gk is uniformly
continuous for all k, and since the family g1, . . . , gr is finite, there exists δ > 0, such that for all
k ∈ {1, . . . , r}, ωδ(gk) < ε. Hence, for all x, y ∈ K, such that d(x, y) < δ,

|f(x) − f(y)| ≤ |f(x) − gk(x)| + |gk(x) − gk(y)| + |gk(y) − f(y)| ≤ 3ε.
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This proves the equicontinuity of A.
Conversely, assume (1) and (2). Let (fn)n ⊂ A. Our aim is to prove that there exists a
subsequence of (fn)n that converges uniformly to some f . Since K is compact, K is separable,
and denote by Q = {q1, q2, . . .} a dense countable subset of K. By assumption (1), for all q ∈ Q,
the sequence (fn(q))n is included in a compact subset of R. Hence, there exists a subsequence
(fϕq(n)(q))n that converges to some f(q) ∈ R. Using a diagonal extraction argument, one has
that there exists an extraction ϕ such that for all q ∈ Q, fϕ(n)(q) → f(q), as n → ∞. We have
that f is uniformly continuous on Q. Indeed, by (2), for all ε > 0, there exists δ > 0, such that
for all x, y ∈ Q such that d(x, y) < δ, for all n, we have

|fϕ(n)(x) − fϕ(n)(y)| < ε,

and letting n → ∞ gives that |f(x) − f(y)| < ε. Hence, f is uniformly continuous on a dense
subset of K, so there exists a unique extension, still denoted by f , to K, which is uniformly
continuous (exercise). It remains to prove that (fϕ(n))n converges uniformly to f (exercise). Let
δ > 0 such that

sup
g∈A

ωδ(g) < ε and ωδ(f) < ε.

Since Q is dense, one has
K ⊂

⋃
q∈Q

B(q, δ).

By compactness of K, there exists a finite subcover, say:

K ⊂
J⋃
j=1

B(qj, δ).

Let x ∈ K, and let j ∈ {1, . . . , J} such that d(x, qj) < δ. Then, we have
|fϕ(n)(x) − f(x)| ≤ |fϕ(n)(x) − fϕ(n)(qj)| + |fϕ(n)(qj) − f(qj)| + |f(qj) − f(x)|

≤ sup
g∈A

ωδ(g) + max
j=1,...,J

|fϕ(n)(qj) − f(qj)| + ωδ(f)

≤ 2ε+ max
j=1,...,J

|fϕ(n)(qj) − f(qj)|.

Now, since fϕ(n)(q) −→
n→∞

f(q) for any q ∈ Q, there exists n0 (depending only on ε), such that
for all n ≥ n0,

max
j=1,...,J

|fϕ(n)(qj) − f(qj)| ≤ ε.

Finally, supx∈K |fϕ(n)(x) − f(x)| ≤ 3ε, for all n ≥ n0. This concludes the proof. □

Remark 6.1. When K = [0, 1] (or more generally a compact convex subset of Rd), one can
replace assumption (1) in Arzelà-Ascoli theorem by:

(1’) supf∈A |f(0)| < ∞.
Indeed, (1’)+(2) implies easily (1). Let x ∈ [0, 1] and write

|f(x)| ≤ |f(0)| +
n∑
k=1

|f(xk) − f(xk−1)|,

where for k = 1, . . . , n, xk = k
n
x, so |xk − xk−1| = x

n
≤ 1

n
. Choose n large enough so that 1

n
< δ.

Then, for all f ∈ A,
|f(x)| ≤ sup

f∈A
|f(0)| + n sup

f∈A
ωδ(f),

which is finite by (1) and (2).

Exercise 5. Let X a metric space and Y a complete metric space. Let f : A → Y be a
uniformly continuous function on a dense subset A ⊂ X. Then, there exists a unique uniformly
continuous extension of f to the whole X.

The next proposition is then more or less a direct translation of the Arzelà-Ascoli theorem.
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Proposition 6.2. Let A ⊂ M1(C ). Then, A is tight if and only if one has:
(i) the family {µ0 | µ ∈ A} is a tight family in M1(R),

(ii) for all ε > 0 and all η > 0, there exists δ > 0 such that for all µ ∈ A,
µ ({x ∈ C | ωδ(x) > η}) ≤ ε.

Proof. Assume A is tight. Let ε > 0, and let K a compact set in C such that for all µ ∈ A,
µ(K) ≥ 1 − ε.

By continuity K0 := π0(K) is compact in R and then

µ0(K0) = µ
(
π−1

0 (K0)
)

= µ ({x ∈ C | x0 ∈ K0}) ≥ µ(K) ≥ 1 − ε,

for all µ ∈ A. This proves the first item. Now let also η > 0. Since K ⊂ C is compact, by Arzelà-
Ascoli theorem K is equicontinuous. Hence, there exists δ > 0 such that supx∈K ωδ(x) < η.
Hence, for all µ ∈ A,

µ ({x ∈ C | ωδ(x) ≤ η}) ≥ µ(K) ≥ 1 − ε,

which proves the second assertion.
Conversely, assume (i) and (ii). Let ε > 0 and for all n, let δn > 0 such that for all µ ∈ A,

µ
({
x ∈ C | ωδn(x) ≤ 1

n

})
≥ 1 − ε

2n .

Let also K0 ⊂ R a compact set such that, for all µ ∈ A,
µ0(K0) ≥ 1 − ε.

Now, define,
K =

⋂
n

{
x ∈ C | ωδ(x) ≤ 1

n

}
∩ {x ∈ C | x0 ∈ K0}.

Then K is closed. Indeed, {x ∈ C | x0 ∈ K0} = π−1
0 (K0) is the inverse image of the compact

set K0 by the continuous function π0, hence is closed. Moreover, for all n,
{
x ∈ C | ωδ(x) ≤ 1

n

}
is closed, since if (xk)k ⊂ C converges uniformly to x, then for all s, t ∈ [0, 1],

|x(s) − x(t)| ≤ |x(s) − xk(s)| + |xk(s) − xk(t)| + |xk(t) − x(t)|
≤ ||x− xk||∞ + ωδ(xk) + ||xk − x||∞

≤ 2||x− xk||∞ + 1
n

≤ 1
n

as k → ∞.

By Arzelà-Ascoli theorem, K is relatively compact, hence compact, and we have, for all µ ∈ A,

µ(Kc) ≤
∑
n≥1

µ
({
x ∈ C | ωδn(x) > 1

n

})
+ µ(Kc

0)

≤
∑
n≥1

ε

2n + ε = 2ε.

Hence, A is tight in C . □

In more probabilistic terms, the previous proposition translates as:

Proposition 6.3. Let (X(n))n be a sequence of stochastic processes in C . Then, (X(n))n is
tight if and only if one has

(i) the sequence (X(n)
0 )n is tight (in R),

(ii) for all ε > 0 and all η > 0, there exists δ > 0 such that

lim sup
n

P
(
ωδ(X(n)) > η

)
≤ ε.
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The previous proposition is not very convenient to use, since it involves the modulus of continu-
ity, which is generally difficult to handle. Several criteria for tightness are known; the following
one, due to Kolmogorov, is perhaps the easiest to apply.
For f ∈ C([0, 1]), define the α-Hölder norm (it’s not a norm) by

Nα(f) = sup
s,t∈[0,1]
s ̸=t

|f(s) − f(t)|
|s− t|α

.

Proposition 6.4 (Kolmogorov criterion). Let (X(n))n≥1 be a sequence of random variables in
C . Suppose that

• the sequence (X(n)(0))n≥1 is tight in R,
• there exists β, p, C positive such that for all s, t ∈ [0, 1],

sup
n≥1

E
∣∣∣X(n)(s) −X(n)(t)

∣∣∣p ≤ C|t− s|1+β.

Then, (X(n))n≥1 is tight. More precisely, for all α ∈]0, β
p
[ and all ε > 0, there exists M > 0

such that
sup
n≥1

P(Nα(X(n)) > M) ≤ ε.

To prove this criterion, we will need the following lemma. Denote, for all k ≥ 0,

Dk =
{
i

2k | i = 0, . . . , 2k
}

the dyadic rationals of order k, and let D = ⋃
k≥0 Dk the dyadic rationals in [0, 1]. Any dyadic

rational d ∈ Dl can be written

d =
l∑

k=0

ak
2k ,

where a0, . . . , al are in {0, 1}. Note that Dk ⊂ Dk+1 for all k, and recall also that D is dense in
[0, 1].

0 1
1
2

1
4

3
41

8
3
8

5
8

7
8

Figure 3. The dyadic rationals in [0, 1].

Lemma 6.1. Let x : [0, 1] → R. Suppose there exists α > 0 and K ≥ 0 such that for all k ≥ 0
and for any two consecutive elements s and t of Dk, one has

|xt − xs| ≤ K|t− s|α.

Then, for all s, t ∈ D, we have

|xt − xs| ≤ 2K
1 − 2−α |t− s|α.

If moreover, x ∈ C , then Nα(x) ≤ 2K
1−2−α .

Proof. Let s, t ∈ D and assume without loss of generality that s < t. Note that if s and t
are consecutive in some Dl, then the inequality is trivial since K ≤ 2K

1−2−α . If not, the idea is
to write the interval [s, t] as a union of intervals [τk, τk+1], where τk and τk+1 are consecutive
dyadic rationals in some Dl.
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So let l ≥ 1 be the unique integer such that

1
2l < t− s ≤ 1

2l−1 .

(Draw a picture).

q q + 1
2l−1s t

Suppose first that there exists q ∈ Dl−1 such that q ≤ s < t < q + 1
2l−1 , i.e. s and t lie between

two consecutive dyadic rationals in Dl−1. Thus, we can write s and t as:

s = q +
∑
k≥l

ak
2k and t = q +

∑
k≥l

bk
2k ,

where ak and bk are in {0, 1} and are equal to zero for k large enough. Let for n ≥ l,

sn = q +
n∑
k=l

ak
2k and tn = q +

n∑
k=l

bk
2k ,

and let L ≥ 1 large enough such that sL = s and tL = t. Then, sn and sn+1 are equal or are
two consecutive dyadic of Dn+1 and the same holds for tn and tn+1, hence, using the convention
that sl−1 = tl−1 = q,

d(xs, xt) = d(xsL
, xtL)

≤
L∑

k=l−1
d(xsk

, xsk+1) +
L∑

k=l−1
d(xtk , xst+1)

≤ 2K
∑
k≥l−1

1
2(k+1)α

= 2K
1 − 2−α

1
2lα

≤ 2K
1 − 2−α (t− s)α.

Now suppose that there exists q ∈ Dl−1 such that q − 1
2l−1 < s < q ≤ t < q + 1

2l−1 . This time,

q − 1
2l−1

q + 1
2l−1s tq

we write

s = q −
∑
k≥l

ak
2k and t = q +

∑
k≥l

bk
2k ,

and the same reasoning as in the previous case gives the result.
If moreover x ∈ C , by density of D in [0, 1], one obtains Nα(x) ≤ 2K

1−2−α . □

Proof of Kolmogorov’s criterion. For all k ≥ 0 and all n ≥ 0, define

Zn,k = max
0≤i≤2k−1

∣∣∣∣X(n)
(
i

2k
)

−X(n)
(
i+ 1
2k

)∣∣∣∣ .
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Then,

P
(
Zn,k ≥ K2−kα

)
= P

(
∃i ∈ {0, . . . , 2k − 1},

∣∣∣∣X(n)
(
i

2k
)

−X(n)
(
i+ 1
2k

)∣∣∣∣ ≥ K2−kα
)

≤
2k−1∑
i=0

P
(∣∣∣∣X(n)

(
i

2k
)

−X(n)
(
i+ 1
2k

)∣∣∣∣ ≥ K2−kα
)

≤ 2k max
0≤i≤2k−1

P
(∣∣∣∣X(n)

(
i

2k
)

−X(n)
(
i+ 1
2k

)∣∣∣∣ ≥ K2−kα
)

≤ 2kK−p2kpα E
(∣∣∣∣X(n)

(
i

2k
)

−X(n)
(
i+ 1
2k

)∣∣∣∣p) ,
using Markov inequality. By assumption, we get

P
(
Zn,k ≥ K2−kα

)
≤ CK−p2−k(β−pα).

Since 0 < α < β
p
, by the previous lemma, we have

P
(
Nα(X(n)) > 2K

1 − 2−α

)
≤ P

(
∃k ≥ 0, Zn,k > K2−kα

)
≤ CK−p∑

k≥0
2−k(β−pα) = CK−p

1 − 2β−pα ,

the right hand side being independent of n and goes to 0 as K → ∞. Hence, we obtain that
for all ε > 0, there exists M > 0 such that

sup
n≥0

P
(
Nα(X(n)) > M

)
≤ ε.

Now from the inequality ωδ(X) ≤ Nα(X)δα, we deduce that

P
(
ωδ(X(n)) > η

)
≤ P

(
Nα(X(n)) > ηδ−α

)
,

hence for all ε > 0, there exists δ > 0, such that

sup
n

P
(
ωδ(X(n)) > η

)
≤ ε,

which implies, together with the first assumption of the proposition, the tightness of (X(n))n
by the ”probabilistic” Ascoli criterion of Proposition 6.3. □

6.3. Donsker theorem.

Theorem 6.2 (Donsker theorem). Let (ξk)k≥1 be a sequence of i.i.d. random variables with
E(ξ1) = 0 and Var(ξ1) = 1. Define (Sn)n≥0 by S0 = 0, and Sn = ξ1 + · · · + ξn, for n ≥ 1.
Consider the continuous stochastic process (X(n)

t )t∈[0,1] defined by

X
(n)
t = 1√

n

(
S⌊nt⌋ + (nt− ⌊nt⌋)ξ⌊nt⌋+1

)
,

for t ∈ [0, 1] and n ≥ 0. Then, as n → ∞, X(n) converges in distribution to a Brownian motion
(Bt)t∈[0,1].

We will prove Donsker theorem under the additional assumption that E(ξ4
1) < ∞ in order to

apply Kolmogorov criterion with p = 4 (it does not work for p = 2). We refer to Billingsley [1]
for the general statement.

Proof of Donsker theorem. Recall that, for t ∈ [0, 1], the interpolated random walk is

X
(n)
t = 1√

n

(
S⌊nt⌋ + (nt− ⌊nt⌋)ξ⌊nt⌋+1

)
,

that is if nt ∈ [k, k + 1), then

X
(n)
t = 1√

n
(Sk + (nt− k)ξk+1) .
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The proof that the finite-dimensional distributions converge has been seen in the introduction
(for the symmetric random walk, but the proof is the same here). Hence, it remains to prove
that (X(n))n is tight. To that end, we are going to prove that (X(n))n satisfies Kolmogorov
criterion with p = 4 and β = 1, i.e. for all s, t ∈ [0, 1]

sup
n≥1

E
∣∣∣X(n)

t −X(n)
s

∣∣∣4 ≤ C|t− s|2.

Note that the first condition in Kolmogorov criterion is trivially satisfied since X(n)
0 = 0 for all

n. So assume without loss of generality that s < t. First assume that nt and ns are integers,
say nt = m and nt = k. Then,

∣∣∣X(n)
t −X(n)

s

∣∣∣ = 1√
n

|Sm − Sk| = 1√
n

∣∣∣∣∣∣
m∑

j=k+1
ξj

∣∣∣∣∣∣ .
But,

E

 m∑
j=k+1

ξj

4

=
∑
a,b,c,d

E(ξaξbξcξd),

and due to the independence and the centering of the ξj’s, the only contributing terms are
those for which the four indices are equal or only two of them are different. Hence,

E

 m∑
j=k+1

ξj

4

=
m∑

a=k+1
E(ξ4

a) +
(

4
2

)
m∑

a,b=k+1
a̸=b

E(ξ2
a)E(ξ2

b )

= (m− k)E(ξ4
1) + 6(m− k)(m− k − 1)E(ξ4

1),

since (E(x2
1))2 ≤ E(ξ4

1) by Cauchy-Schwarz inequality. Hence, we obtain

E
∣∣∣X(n)

t −X(n)
s

∣∣∣4 ≤ 1
n2 (m− k)2 E(ξ4

1) = (t− s)2 E(ξ4
1).

Now if k ≤ ns < nt < k + 1, i.e. nt and ns are in the same interval, then

E
∣∣∣X(n)

t −X(n)
s

∣∣∣4 = 1
n2 |nt− ns|4 E ξ4

1

= n2(t− s)2(t− s)2 E ξ4
1

≤ C(t− s)2,

for some constant C > 0, since in this case (nt − ns) ≤ 1. If now ns and nt are in different
interval, say k ≤ ns < k + 1 ≤ m ≤ nt < m+ 1, then, using (a+ b+ c)4 ≤ 33/4(a4 + b4 + c4),

E
∣∣∣X(n)

t −X(n)
s

∣∣∣4 ≤ C
(
E
∣∣∣X(n)

t −X(n)
m

∣∣∣4 + E
∣∣∣X(n)

m −X
(n)
k+1

∣∣∣4 + E
∣∣∣X(n)

k+1 −X(n)
s

∣∣∣4)

= C

 1
n2 (nt−m)4 E ξ4

1 + 1
n2 E

∣∣∣∣∣∣
m∑

j=k+2
ξj

∣∣∣∣∣∣
4

+ 1
n2 (ns− (k + 1))4 E ξ4

1


≤ C ′(t− s)2,

for some constant C ′ > 0, since ns− (k+ 1) ≤ 1, nt−m ≤ 1, and by the previous case (a sum
over an empty set is 0 by convention). Finally, we have obtained that for all s, t ∈ [0, 1], for all
n,

E
∣∣∣X(n)

t −X(n)
s

∣∣∣4 ≤ C(t− s)2.

Hence, by Kolmogorov criterion the sequence of random variables (X(n))n is tight in C . This
concludes the proof of Donsker theorem. □
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7. Appendix.

7.1. Compactness. To be clear, we recall here the (French!) definition of a compact space.
Usually, in the Anglo-Saxon literature, the Hausdorff condition (i.e. distinct points have disjoint
neighbourhoods) is omitted.

Definition 7.1. A topological space X is called compact if it is Hausdorff and if every open
cover of X has a finite subcover.

We now introduce the notion of total boundedness, which is a generalization of compactness.

Definition 7.2. A metric space (E, d) is totally bounded if and only if for all ε > 0, there
exists a cover of E by balls of radius (at most) ε whose centers lie in E.

For instance, a compact metric space (E, d) is totally bounded, since from the cover

E ⊂
⋃
x∈E

B(x, ε),

one can extract a finite subcover by compactness. The converse statement is not true, for
instance (0, 1) is totally bounded, but not compact.
Note also that any totally bounded space is bounded (as a finite union of bounded sets is
bounded), but the reverse is not true. For instance, consider a space X equipped with the
discrete metric d(x, y) = 1 if x ̸= y and 0 otherwise. Then it is bounded as supx,y∈X d(x, y) = 1,
but not totally bounded if X is not finite, as any ball of radius ε = 1

2 is a singleton, and no
finite union of singletons can cover X.

Exercise 6. Let (E, d) be a metric space and let X ⊂ E a totally bounded subset. Show that
any subset Y of X is totally bounded.

Proposition 7.1. Let (E, d) be a metric space and let A ⊂ E. Then A is totally bounded if
and only if A is totally bounded.

Proof. (⇐) This is easy, since A ⊂ A, so if A is totally bounded, so is A.
(⇒) Assume A is totally bounded. Let ε > 0, and consider the finite cover

A ⊂
n⋃
i=1

B(xi, ε/2),

for some x1, . . . , xn in A. Since the closure of a finite union is the union of the closure, and
since the closure of any open ball with radius ε/2 is included in an open ball with the same
center and radius ε, we get

A ⊂
n⋃
i=1

B(xi, ε/2) ⊂
n⋃
i=1

B(xi, ε).

Hence A is totally bounded. □

Theorem 7.1. Let (E, d) be a metric space. The following assertions are equivalent:
(i) E is compact.

(ii) E is sequentially compact: any sequence in E has a convergent subsequence converging
to some point in E.

(iii) E is complete and totally bounded.

Proof. The equivalence between (i) and (ii) is the well known Bolzano-Weierstrass theorem.
(ii)⇒(iii): Let (xn)n be a Cauchy sequence. By (ii), (xn)n admits a converging subsequence,
hence the whole sequence converges. Thus E is complete. Suppose by contradiction that E
does not admit a finite subcover by balls of radius ε. Let x1 ∈ E. Then B(x1, ε) does not
cover E, hence there exists x2 ∈ E such that d(x2, x1) ≥ ε. Suppose that we have constructed
x1, . . . , xn−1. Since ⋃n−1

i=1 B(xi, ε) does not cover E there exists xn such that d(xn, xk) ≥ ε, for
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all k ≤ n− 1. Hence, we obtain a sequence (xn)n≥1 such that any k ̸= l, d(xk, xl) ≥ ε, and thus
cannot admit a converging subsequence. This contradicts (ii) and E is totally bounded.
(iii)⇒(ii): Let (xn)n in E. By assumption, for all k ≥ 1, there exists a finite cover of E by
balls of radius 1

k
. Hence, for any k, there exists an infinite number of elements of (xn)n that lie

in the same ball Bk of radius 1
k
. Hence, for any k, there exists a subsequence (xφk(n))n such that

for all n, xφk(n) ∈ Bk. By a diagonal extraction argument, there exists a subsequence (xφ(n))n
such that d(xφ(m), xφ(n)) ≤ 2

m
, for all n ≥ m. We recall here how this works: for any k, there

exists a subsequence (xφk(n))n such that for all n, xφk(n) ∈ Bk, hence for all m,n,

d(xφk(m), xφk(n)) ≤ 2
k
.

For k = 1, we get that there exists (xφ1(n))n such that for all m,n,
d(xφ1(m), xφ1(n)) ≤ 2.

For k = 2, there exists an infinite number of elements of the sequence (xφ1(n))n that lie in the
ball B2. Hence, there exists (xφ1◦φ2(n))n such that for all m,n,

d(xφ1◦φ2(m), xφ1◦φ2(n)) ≤ 2
2 = 1.

Repeating the argument, we obtain that there exists (xφ1◦···◦φk(n))n such that for all m,n,

d(xφ1◦···◦φk(m), xφ1◦···◦φk(n)) ≤ 2
k
.

Now define φ by
φ(k) = φ1 ◦ · · · ◦ φk(k),

for all k. Then, for all m and all n ≥ m,

d(xφ(m), xφ(n)) ≤ 2
m
,

since φ1 ◦· · ·◦φn is extracted from φ1 ◦· · ·◦φm as n ≥ m. Hence, (xφ(n))n is a Cauchy sequence,
and since E is complete it converges. This proves (ii). □

As an exercise, prove Tychonoff theorem using diagonal extraction:

Theorem 7.2 (Tychonoff theorem).
[0, 1]N

is sequentially compact (for the product topology).

Exercise 7. Let (E, d) be a metric space. Show that
(i) If E is compact, then any continuous function is bounded.
(ii) If E is totally bounded, then any uniformly continuous function is bounded.
(iii) If E is bounded, then any Lipschitz function is bounded.

Definition 7.3. Let (E, d) be a metric space. A subset A ⊂ E is relatively compact if its
closure A is compact.

In terms of sequences, a subset A ⊂ E is relatively compact if and only if for any sequence
(xn)n in A, there exists a convergent subsequence (xφ(n))n, but the limit may not lie in A.

On a complete metric space, we have the following.

Proposition 7.2. Let (E, d) be a complete metric space and let A ⊂ E. Then A is relatively
compact if and only if A is totally bounded.

Proof. If A is relatively compact, then A is compact, hence it is totally bounded (no completude
needed here). Now, if A is totally bounded, then A is also totally bounded, and since it is closed
in the complete metric space E, it is also complete. Hence, A is complete and totally bounded,
hence compact. □
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7.2. Dynkin π–λ theorem. Let E be a set. Recall that a λ-system Λ is a class of subsets of E
that contains E, that is closed under countable increasing unions and under taking complement
of subsets in supersets:

(i) E ∈ Λ,
(ii) if (An)n is a increasing countable collection of sets of Λ, i.e. An ⊂ An+1 for all n, then⋃

nAn ∈ Λ,
(iii) if A ⊂ B are two sets of Λ, B \ A ∈ Λ.

Then Dynkin π–λ theorem asserts that:

Theorem 7.3 (Dynkin π–λ theorem). If A is a π-system, i.e. is closed under finite intersec-
tions, then the smallest λ-system containing A is equal to the σ-algebra generated by A.

It has the following important consequence: if A is a π-system and if two probability measures
on σ(A) are equal on A, they are equal on σ(A). Indeed,

Λ = {A ∈ σ(A) | µ(A) = ν(A)}
is a λ-system containing A, hence by Dynkin π–λ theorem, it contains σ(A).
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