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1. Introduction

If you commute by bus to come to the university, you can do a bit of statistics while
waiting for the bus: knowing that the buses on your route come on average every 10
minutes, what is your average waiting time? The naive answer you might give is that
if buses are coming on average every 10 minutes and you arrive at a random time, your
average waiting time will be about 5 minutes. So, it is just that you are so unlucky that,
most of the time you wait something like 10 minutes for the bus to arrive?

Not really... The naive answer would be true if the buses arrived exactly every 10
minutes. But things don’t go that way, and buses do not arrive exactly on schedule due
to random complications, traffic, strike, demonstrations, etc... If you arrive at a random
time, the probability that you arrive in a long interval between the arrival of two buses is
greater than the probability that you arrive in a shorter interval, and your waiting time
will be on average longer than expected.

This phenomenon is known as the waiting time paradox and can be modeled by a
counting process such as the Poisson process. This is the basic process for modeling
queueing systems.

Let us start with an example of a counting process in discrete time. A heads or tails
game is modelized by the Bernoulli process. Let (εn)n≥1 be i.i.d. random variables with
Bernoulli distribution pδ1 + (1 − p)δ0 and define S0 = 0, and for all n ≥ 1,

Sn = ε1 + · · · + εn.

The Bernoulli process thus counts the number of successes up to time n and of course, Sn

has a Binomial distribution with parameters n and p. The success times are defined by
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2 INTRODUCTION TO POISSON PROCESSES

T0 = 0 and
Tn = inf{k > Tn−1 | Sk = n},

and correspond to the jump times of (Sn)n≥0. It is a standard exercice in probability
theory to show that the random variables T0, T1 − T0, . . . , Tn − Tn−1, . . . are independent
and identically distributed with geometric distribution with parameter p. One recovers
the process Sn from its jump times by

Sn = sup{k ≥ 0 | Tk ≤ n}.

Hence, {Sn ≥ k} = {Tk ≤ n} so {Sn = k} = {Tk ≤ n, Tk+1 > n}, and a straightforward
computation shows that if the increments are i.i.d. with geometric distribution, we have
Sn ∼ B(n, p)

In applications, modeling by a discrete time process is not always appropiate, and we
will see that the Poisson process is a continuous time analogue of the Bernoulli process.

2. Definition as a counting process

We need to consider stochastic processes indexed not only by integers but also by
continuous time. The generalization is straightforward.

Definition 2.1. A stochastic process (in continuous time) is a family of random
variables (Xt)t≥0, indexed by t ∈ R+, defined on some probability space (Ω, F ,P). A
filtration on (Ω, F ,P) is a non-decreasing family of sub-σ-algebras (Ft)t≥0.

Definition 2.2. A point process on [0, +∞[ is an increasing sequence of random
variables (Tn)n≥0 with values in [0, +∞[ such that Tn → +∞ a.s. The counting process
(Nt)t≥0 associated to the sequence (Tn)n≥0 is the process defined by

Nt =
+∞∑
n=1

1[0,t](Tn) = sup{n ≥ 1 | Tn ≤ t},

for t ∈ R+.

Immediate properties are: almost surely, t 7→ Nt is non-decreasing, càdlàg (”continue
à droite avec limites à gauche”, french for right-continuous with left limits), meaning that,
for all t > 0,

lim
s↘t

Ns = Nt and lim
s↗t

Ns = Nt− exists.

Moreover, observe that
{Tn ≤ t} = {Nt ≥ n}

and that the point process is recovered from (Nt)t≥0 by

Tn = inf{t ≥ 0 | Nt ≥ n}.

We now give a first and simple definition of a Poisson process.

Definition 2.3. Let (Zn)n≥1 be a sequence of independent exponentially distributed
random variables with parameter λ. Define, T0 = 0 and for all n ≥ 1,

Tn =
n∑

k=1
Zk.

Then (Tn)n≥0 is a point process on [0, +∞[ and the associated counting process (Nt)t≥0 is
called a Poisson process with rate λ.
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Figure 1. A example of a typical trajectory of a Poisson process.

The sequence (Tn)n≥0 has to be understood as times of occurrences of some events, for
instance, arrivals of clients in some queue. The random variables Tn will be called arrival
times and the increments Tn − Tn−1 inter-arrival times. A typical trajectory of a Poisson
process is given by Figure 1.

Recall that a random variable X is exponentially distributed with parameter λ > 0,
if it has density

λe−λt
1(0,+∞)(t)

with respect to Lebesgue measure. We denote this distribution by E(λ). Equivalently,
the survival probability of X is given by

P(X > t) = e−λt, t ≥ 0.

The exponential distribution is characterized by the following memoryless property:

Proposition 2.1. A continuous random variable X with values in R∗
+ is exponentially

distributed if and only if for all t, s ≥ 0,
P(X > t + s | X > t) = P(X > s).

Proof. If X ∼ E(λ), then

P(X > t + s | X > t) = P(X > t + s)
P(X > t) = e−λt = P(X > t).

Conversely, define f by f(t) = logP(X > t). Then f is right continuous, f(0) = 0 and
satisfies the equation f(t + s) = f(t) + f(s), for all t, s ≥ 0. One deduces that f is linear,
that is there exists λ > 0 such that f(t) = −λt, thus X is exponentially distributed. □

In terms of conditional distribution, it says that if X is exponentially distributed, the
conditional distribution of X − t given {X > t} is still an exponential distribution with
same parameter. This is an essential fact behind the definition of a Poisson process.

Recall that a random variable X has Gamma distribution Γ(α, β) with parameter
shape α > 0 and rate β > 0, if it has the density with respect to Lebesgue measure given
by

βα

Γ(α)xα−1e−βx
1(0,+∞)(x),

where Γ(α) =
∫ +∞

0 xα−1e−xdx is the Gamma function. When α = n is an integer, it is
the so-called Erlang’s distribution, with denisty

βn

(n − 1)!x
n−1e−βx

1(0,+∞)(x).



4 INTRODUCTION TO POISSON PROCESSES

When α = 1, it is the exponential distribution E(β).
Proposition 2.2. Let X and Y be independent random variables with distribution

Γ(α1, β) and Γ(α2, β) respectively. Then, X + Y has distribution Γ(α1 + α2, β).
Proof. Exercise (use the change of variables formula). □

An immediate consequence is:
Corollary 2.1. Let X1, . . . , Xn be independent random variables with exponential

distribution E(α). Then, X1 + · · · + Xn has Gamma distribution Γ(n, λ).
We can now state the following properties for a Poisson process:
Proposition 2.3. Let (Tn)n≥0 be the point process associated to a Poisson process

(Nt)t≥0 with rate λ. Let n ≥ 1. We have:
(i) the random variable Tn is distributed according to the Γ(n, λ) distribution;

(ii) for all t ≥ 0, Nt has a Poisson distribution with parameter λt;
(iii) given {Nt = n}, the random vector (T1, . . . , Tn) is distributed as the order statis-

tics (U(1), . . . , U(n)) of n i.i.d. random variables uniformly distributed on [0, t].
Proof. Item (i): This is the above corollary.
Item (ii): Since,

{Nt ≥ n} = {Tn ≤ t}
we have,

{Nt = n} = {Tn ≤ t < Tn+1}.

Hence, using that Tn ∼ Γ(n, λ), Tn+1 = Tn + Zn+1 and the independence of Tn and Zn+1,
we have, for all n ≥ 0,

P(Nt = n) = P(Tn ≤ t, Tn + Zn+1 > t)

=
∫
1{0<x<t}1{x+z>t}

λn

(n − 1)!x
n−1e−λxλe−λzdxdz

=
∫
1{0<x<t}

λn

(n − 1)!x
n−1

(∫
1{x+z>t}λe−λ(x+z)dz

)
dx

= λn

(n − 1)!e
−λt

∫
1{0<x<t}x

n−1dx

= (λt)n

n! e−λt.

Item (iii): Let U1, . . . , Un be n i.i.d. random variables, uniformly distributed on
[0, t]. Recall that the order statistics (U(1), . . . , U(n)) are defined by sorting the values
of U1, . . . , Un in increasing order. Hence, U(1) is the minimum of U1, . . . , Un, U(2) is the
2th smallest value, etc...

First we compute the distribution of (U(1), . . . , U(n)). Let φ be a bounded measurable
function. Then,

E
[
φ(U(1), . . . , U(n))

]
= E

[
φ(U(1), . . . , U(n))1{∃ σ∈Sn, Uσ(1)<···<Uσ(n)}

]
=

∑
σ∈Sn

E
[
φ(Uσ(1), . . . , Uσ(n))1{Uσ(1)<···<Uσ(n)}

]
= n!E

[
φ(U1, . . . , Un)1{U1<···<Un}

]
,

since U1, . . . , Un are i.i.d., hence exchangeable. So we get,

E
[
φ(U(1), . . . , U(n))

]
=

∫
1{0<x1<···<xn<t}

n!
tn

dx1 · · · dxn,
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which gives that the density of (U(1), . . . , U(n)) is

(u1, . . . un) 7→ n!
tn
1{0<u1<u2<···<un<t},

with respect to Lebesgue measure on Rn. Now, we compute the distribution of (T1, . . . , Tn)
conditionally on {Nt = n}. We have

E
[
φ(T1, . . . , Tn)1{Nt=n}

]
= E

[
φ(T1, . . . , Tn)1{Tn≤t<Tn+1}

]
=

∫
]0,+∞[n

φ(z1, . . . , z1 + · · · + zn)1{z1+···+zn<t<z1+···+zn+1}λ
n+1eλ(z1+···+zn+1)

n+1∏
i=1

dzi,

since Tk is the sum k independent and exponentially distributed random variables. Using
the change of variables x1 = z1, . . . , xn+1 = z1 + . . . + zn+1 from (0, +∞)n+1 to {0 < x1 <
· · · < xn+1}, with Jacobian equal to one, we get

E
[
φ(T1, . . . , Tn)1{Nt=n}

]
=

∫
φ(x1, . . . , xn)1{0<x1<···<xn<t<xn+1}λ

n+1e−λxn+1
n+1∏
i=1

dxi

=
∫

φ(x1, . . . , xn)1{0<x1<···<xn<t}λ
ne−λt

n∏
i=1

dxi,

where we perform the integration with respect to the last variable in the last equality.
Since Nt ∼ P(λt), we obtain

E
[
φ(T1, . . . , Tn) | Nt = n

]
=

∫
φ(x1, . . . , xn)1{0<x1<···<xn<t}

n!
tn

dx1 · · · dxn,

hence the result. □

Remark 2.1. The last item of the proposition thus says that if we known that n
clients have arrived at time t, their arrival times are uniformly distributed on [0, t].

A fundamental result is the following. We will see a converse to the statement in the
next section.

Theorem 2.1. Let (Nt)t≥0 be a Poisson process with rate λ. Then, (Nt)t≥0 has inde-
pendent and stationary increments, that is:

(i) for all n ≥ 1, and all 0 = t0 < t1 < · · · < tn, the random variables
Nt1 , Nt2 − Nt1 , . . . , Ntn − Ntn−1

are independent;
(ii) for all t > s, Nt − Ns has the same distribution than Nt−s.

Proof. Let (Nt)t≥0 be a Poisson process with rate λ. By definition,

Nt =
+∞∑
n=1

1[0,t](Tn), t ∈ R+,

where (Tn − Tn−1)n≥1 is a sequence of independent and exponentially distributed random
variables with parameter λ.

We have to prove that for all n ≥ 1, for all 0 = t0 < t1 < · · · < tn, the random
variables Nt1 , Nt2 − Nt1 , . . . , Ntn − Ntn−1 are independent. We restrict ourselves to the
case n = 2, the proof for any n can be done in the same way, but notations become a bit
cumbersome. (Exercise: prove the general case).
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So let us prove that for all t, s ≥ 0, for all k, l ≥ 0, the random variables Nt − Ns and
Ns are independent. We can restrict to l ≥ 1, since the probabilities sum to one. We
have, using the relation {Nt = n} = {Tn ≤ t < Tn+1},

P(Ns = k, Nt − Ns = l) = P(Ns = k, Nt = k + l) = P(Tk ≤ s < Tk+1, Tk+l ≤ t < Tk+l+1).

Hence, since the increments ∆Tk = Tk − Tk−1 are independent and exponentially dis-
tributed,

P(Ns = k, Nt − Ns = l)

=
∫
1{z1+···+zk<s<z1+···+zk+1,z1+···+zk+l<t<z1+···+zk+l+1}λ

k+l+1e−λ(z1+···+zk+l+1)
k+l+1∏

i=1
dzi

=
∫
1{xk<s<xk+1,xk+1<t<xk+l+1}1{0<x1<···<xk+l+1}λ

k+l+1e−λxk+l+1
k+l+1∏

i=1
dxi

=
∫
1{0<x1<···<xk<s<xk+1<···<xk+l<t}λ

k+le−λt
k+l∏
i=1

dxi,

performing the integration with respect to the variable zk+l+1. Since,∫
1{0<x1<···<xk<s}

k∏
i=1

dxi = sk

k!

and likewise, ∫
1{s<xk+1<···<xk+l<t}

k+l∏
i=k+1

dxi = (t − s)l

l! ,

we get

P(Ns = k, Nt − Ns = l) = sk

k!
(t − s)l

l! λk+le−λt

= (λs)k

k! e−λs (λ(t − s))l

l! e−λ(t−s).

Hence, Ns and Nt −Ns are independent, with distributions P(λs) and P(λ(t−s)) respec-
tively. Moreover, Nt − Ns has the same distribution than Nt−s, hence the stationarity of
the increments. □

Example 2.1 (Inspection paradox). We return to the example of the introduction
concerning the average waiting time between the arrival of two buses. Suppose that buses
arrive at your station according to a Poisson process with rate λ equal to 0.1 (i.e. on
average one bus every 10 minutes). That is, the arrivals of buses are given by the point
process (Tn)n≥1 such that the increments are independent and exponentially distributed
with parameter λ. The counting process (Nt)t≥0 therefore counts the number of bus stops
at the station. A commuter arrives at time t to the station. The waiting time of the
commuter is thus Rt = TNt+1 − t. Moreover, let St = t − TNt be the amount of time
elapsed since the previous arrival. Then, Rt and St are independent : let r > 0 and
0 < s < t, then

P(St > s, Rt > r) = P(TNt < t − s, TNt+1 > r + t)
= P(no arrivals between t − s and r + t)
= P(Nr+t − Nt−s = 0)
= P(Nr+s = 0)
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by the stationarity of the increments. Hence,

P(St > s, Rt > r) = e−λ(r+s) = e−λse−λs.

Thus, Rt and St are independent, Rt is exponentially distributed with parameter λ, and
P(St > s) = e−λs for 0 < s < t, that is St has distribution min(E, t) where E ∼ E(λ).

Hence, since St + Rt = TNt+1 − TNt , we get that

E(TNt+1 − TNt) = E(St) + E(Rt) = 1 − e−λt

λ
+ 1

λ
>

1
λ

.

In average, the interval [TNt , TNt+1] of arrival times between a fixed deterministic time is
greater than the average time between two arrivals. This is the inspection paradox: the
average intertime between the last passage of the bus before t and the next passage of the
bus after t is greater than the average passage time of the buses!

3. Processes with independent and stationary increments

It may be natural to model arrivals of clients in a queue by a counting process which
enjoys the following properties: the number of clients who arrive in the interval [s, t] is
independent of the number of clients arrived before time s, and such that the distribution
of the number of clients in [s, t] is the same than the distribution of the number of clients
in [0, t − s]. The last theorem shows that the Poisson process enjoys these two properties.
We will see than in fact, this is the only counting process with these two properties.

Definition 3.1. We say that a stochastic process (Xt)t≥0 is a process with independent
and stationary increments if X0 = 0 and

(i) the map t 7→ Xt is right-continuous;
(ii) For all n ≥ 1, for all 0 = t0 ≤ t1 ≤ · · · ≤ tn, the random variables Xt1 , Xt2 −

Xt1 , . . . , Xtn − Xtn−1 are independent;
(iii) For all s, t ≥ 0, Xt+s − Xs has the same distribution than Xt.

Remark 3.1. If we replace right-continuous by càdlàg in the definition, the process
(Xt)t≥0 is called a Lévy process.

Remark 3.2. Note that condition that the increments are independent, i.e. item (ii)
is equivalent to: for all s, t ≥ 0,

Xt+s − Xs is independent of σ(Xu, 0 ≤ u ≤ s),

which is, by Dynkin’s theorem, equivalent to: for all 0 < t1 < · · · < tk,

Xtk
− Xtk−1 is independent of σ(Xt1 , Xt1 , . . . , Xtk−1).

We first need to generalize the notion of stopping times to the context of continuous
time processes.

Definition 3.2. A stopping time T (relative to a filtration (Ft)t≥0) is a random
variable T : Ω → [0, +∞] such that for all t ∈ [0, +∞[,

{T ≤ t} ∈ Ft.

The σ-algebra FT of T -past is defined as the collection of sets A ∈ F such that for all
t ∈ [0, +∞[,

A ∩ {T ≤ t} ∈ Ft.

Exercise 3.1. Show that FT is indeed a σ-algebra.
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Remark 3.3. Let (Nt)t≥0 be a counting process associated to the point process
(Tn)n≥0. From the relation

{Tn ≤ t} = {Nt ≥ n},

we see that for all n ≥ 0, Tn is a stopping time relative to the natural filtration of (Nt)t≥0.

Lemma 3.1. Any stopping time T is a non-increasing limit of a sequence of stopping
times (Tn)n, where Tn is valued in

{
k

2n , k ≥ 0
}

∪ {+∞}.

Proof. It suffices to take

Tn =
∑
k≥0

k + 1
2n

1{ k
2n ≤T < k+1

2n } + (+∞)1{T =+∞},

details are left as an exercise. □

Contrary to discrete time, measurability questions are much more difficult in contin-
uous time. But for instance we have the following:

Lemma 3.2. Let (Xt)t≥0 be a stochastic process which is right-continuous. Then, for
all a.s. finite stopping time τ , Xτ is Fτ -measurable.

Proof. By the previous lemma, there exists a non-increasing sequence τn with values
in the dyadic numbers such that τn ↘ τ . Writing,

Xt∧τn =
∑
k≥0

k2−n≤t

Xk2−n1{τn=k2−n} + Xt1{τn>t},

we see that Xt∧τn is Fτ -measurable. As Xt∧τ = limn→∞(↓)Xt∧τ by right-continuity, we
have that Xt∧τ is Fτ -measurable. Eventually, for all measurable set A, we have

{Xτ ∈ A} ∩ {τ ≤ t} = {Xt∧τ ∈ A} ∩ {τ ≤ t},

hence Xτ is Fτ -measurable. □

Definition 3.3. We say that two stochastic processes (Xt)t≥0 and (Yt)t≥0 have the
same distribution if they have the same finite-dimensional distributions: for all n ≥ 1 and
all t1 < · · · < tn, we have

(Xt1 , Xt2 , . . . , Xtn) (d)= (Yt1 , Yt2 , . . . , Ytn),

where (d)= denotes equality in distribution.

Processes with independent and stationary increments enjoy the following Markov
property:

Theorem 3.1. Let (Xt)t≥0 be a process with independent and stationary increments,
then, for all s ≥ 0, the process (Xt+s − Xs)t≥0 is independent of Fs and has the same
distribution than (Xt)t≥0.

This is more or less obvious from the definition, but we provide the proof as it offers
useful insight for the proof of the strong Markov property, which we will see next.

Proof. Denote Yt = Xt+s − Xs, for all s. Let 0 = t0 < t1 < · · · < tn, and f1, . . . , fn

bounded measurable functions. Then, since the increments of (Xt)t≥0 are independent,
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we have
E

[
f1(Yt1)f2(Yt2 − Yt1) · · · fn(Ytn − Ytn−1)

]
= E

[
f1(Xt1+s − Xs)f2(Xt2+s − Xt1+s) · · · fn(Xtn+s − Xtn−1+s)

]
=

n∏
i=1

E
[
fi(Xti+s − Xti−1+s)

]
=

n∏
i=1

E
[
fi(Yti

− Yti−1)
]

,

proving that the increments of (Yt)t≥0 are also independent. Moreover,

Yti
− Yti−1 = Xti+s − Xti−1+s

(d)= Xti−ti−1

by the stationarity of the increments of (Xt)t≥0. Hence, the increments of (Yt)t≥0 are
independent and stationary, and the processes (Yt)t≥0 and (Xt)t≥0 have the same distri-
bution. □

Now we extend the Markov property to stopping times.

Theorem 3.2. Let (Xt)t≥0 be a process with independent and stationary increments
and let T be finite stopping time. Then, the process (Xt+T − XT )t≥0 is independent of FT

and has the same distribution than (Xt)t≥0.

Proof. Let YT = Xt+T − XT . By proposition 3.1, T can be approximate by a non-
increasing sequence (τn)n≥1 of stopping times with values in the set of dyadic numbers.
Then, using the fact that the trajectories are right-continuous, we can write, for f1, . . . , fn

bounded measurable functions,

E
[
f1(Yt1)f2(Yt2 − Yt1) · · · fn(Ytn − Ytn−1)

]
= lim

n→∞
E

[
f1(Xt1+τn − Xτn)f2(Xt2+τn − Xt1+τn) · · · fn(Xtn+τn − Xtn−1+τn)

]
= lim

n→∞

∑
k≥0

E
[
1{τn=k2−n}f1(Xt1+k2−n − Xk2−n)f2(Xt2+k2−n − Xt1+k2−n)

· · · fn(Xtn+k2−n − Xtn−1+k2−n)
]
,

where we use the dominated convergence theorem to exchange expectation and limit.
Since τn is a stopping time, we have {τn = k2−n} ∈ Fk2−n , and by the previous theorem,
the process (Xt+k2−n − Xk2−n)t≥0 is independent of Fk2−n and has the same distribution
than (Xt)t≥0. Hence, we get

E
[
f1(Yt1)f2(Yt2 − Yt1) · · · fn(Ytn − Ytn−1)

]
= lim

n→∞

∑
k≥0

E
[
1{τn=k2−n}

]
E

[
f1(Xt1+k2−n − Xk2−n)f2(Xt2+k2−n − Xt1+k2−n)

· · · fn(Xtn+k2−n − Xtn−1+k2−n)
]

= lim
n→∞

∑
k≥0

E
[
1{τn=k2−n}

]
E

[
f1(Xt1)f2(Xt2 − Xt1) · · · fn(Xtn − Xtn−1)

]

=
n∏

i=1
E

[
fi(Xti+s − Xti−1+s)

]
,

since T < ∞ a.s. The theorem follows. □

We now state the fundamental result:
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Theorem 3.3. Let (Tn)n≥0 be a point process on [0, +∞[ and (Nt)t≥0 the counting
process associated to (Tn)n≥0. Suppose that (Nt)t≥0 is a process with independent and
stationary increments. Then (Nt)t≥0 is a Poisson process (with some parameter λ).

Proof. We have to prove that the increments (Tk − Tk−1)k≥1 are i.i.d. and exponen-
tially distributed with parameter some λ. First we show that T1 ∼ E(λ). We have,

P(T1 > t + s) = P(Nt+s = 0) = P(Nt+s − Ns = 0, Ns = 0).
Since the increments of (Nt)t≥0 are independent and stationary, we have
P(T1 > t+s) = P(Nt+s−Ns = 0)P(Ns = 0) = P(Nt = 0)P(Ns = 0) = P(T1 > t)P(T1 > s).
Hence, the distribution of T1 has the memoryless property, and thus is the exponential
distribution with parameter λ = − logP(T1 > 1). Now we use the strong Markov property:
since Tk is a stopping time, the process (Yt)t≥0 defined by Yt = NTk+t − NTk

, has the same
distribution than (Nt)t≥0 and is independent of FTk

. Hence, define
T ′

1 = inf{t ≥ 0 | Yt = 1}.

Then, T ′
1 has the same distribution than T1, thus is exponentially distributed with pa-

rameter λ, and is independent of FTk
. But since NTk

= k by definition of Tk, we have
T ′

1 = inf{t ≥ 0 | NTk+t − NTk
= 1}

= inf{t ≥ 0 | NTk+t = k + 1}
= inf{s ≥ 0 | Ns = k + 1} − Tk

= Tk+1 − Tk.

Hence, Tk+1 −Tk is exponentially distributed with parameter λ and is independent of FTk
,

hence independent of the increments Tk − Tk−1, . . . , T2 − T1, T1. □
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