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2 DISCRETE-TIME MARTINGALES

1. Introduction

By way of introduction, we quote Joseph Leo Doob: ”Martingale theory illustrates the
history of mathematical probability: the basic definitions are inspired by crude notions of
gambling, but the theory has become a sophisticated tool of modern abstract mathemat-
ics, drawing from and contributing to other fields.” [Doob, What is a Martingale?, The
American Mathematical Monthly, 78(5), (1971).]

2. Definitions

2.1. Filtrations.

Definition 2.1. A sequence of random variables X = (Xn)n≥0 defined on some prob-
ability space (Ω, F ,P) is called a stochastic process.

Definition 2.2. A filtration on (Ω, F ,P) is a non-decreasing sequence of sub-σ-
algebras of F :

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F .

One says that (Ω, F , (Fn)n≥0 ,P) is a filtered probability space.

Example 2.1. Let (Ω, F ,P) = ([0, 1[, B([0, 1[), λ), where λ is Lebesgue measure. The
filtration (Fn)n≥0 defined by

Fn = σ
([

i

2n
,
i + 1
2n

[
, i = 0, . . . , 2n − 1

)
, n ≥ 0

is called the dyadic filtration.

If the parameter n denotes time, then Fn is interpreted as available information up to
time n.

Example 2.2. For a stochastic process (Xn)n≥0, we define its natural filtration FX =
(FX

n )n≥0 by: for all n ≥ 0,
FX

n = σ(X0, X1, · · · , Xn),
which is the smallest σ-algebra such that X0, . . . , Xn are measurable.

Definition 2.3. We say that a stochastic process X = (Xn)n≥0 is adapted to the
filtration (Fn)n≥0, if for all n ≥ 0, Xn is Fn-measurable. We say that a stochastic process
(Xn)n≥0 is adapted if it is adapted to some filtration.

A stochastic process is obviously adapted to its natural filtration.

Remark 2.1. If (Fn)n≥0 and (Gn)n≥0 are two filtrations such that Gn ⊂ Fn for all
n ≥ 0, and if (Xn)n≥0 is adapted to (Gn)n≥0, then (Xn)n≥0 is adapted to (Fn)n≥0.

2.2. Martingales. In the sequel, we fix a filtered probability space (Ω, F , (Fn)n≥0,P).

Definition 2.4. Let (Xn)n≥0 be an adapted stochastic process such that E(|Xn|) < ∞,
for all n ≥ 0. The process (Xn)n≥0 is said to be

• a martingale: if for any n ≥ 0,
E(Xn+1 | Fn) = Xn;

• a supermartingale: if for any n ≥ 0,
E(Xn+1 | Fn) ≤ Xn;

• a submartingale: if for any n ≥ 0,
E(Xn+1 | Fn) ≥ Xn.
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Remark 2.2. An easy consequence of the definition, is that if (Xn)n≥0 is a martingale,
then for all m ≥ n, one has

E(Xm | Fn) = Xn.

We use induction: this is true for m = n + 1 by definition. Suppose it is true for some
m > n + 1. Then

E(Xm+1 | Fn) = E (E(Xm+1 | Fm) | Fn) ,

by the tower property of conditional expectations, since Fn ⊂ Fm. Hence, by the martin-
gale property,

E(Xm+1 | Fn) = E(Xm | Fn) = Xn,

by induction hypothesis. Moreover, by taking the expectation, one has that the sequence
of expectations (E(Xn))n≥0 is constant.

An analogous statement holds for a supermartingale and a submartingale by replacing
the sign = by ≤ and ≥ respectively: if (Xn)n≥0 is a supermatingale, then

E(Xm | Fn) ≤ Xn, for all m ≥ n,
and E(Xn) is non-increasing, while if (Xn)n≥0 is a submatingale, then

E(Xm | Fn) ≥ Xn, for all m ≥ n,
and E(Xn) is non-decreasing.

Remark 2.3. If (Xn)n≥0 is a submartingale, then (−Xn)n≥0 is a supermartingale.
Thus, most of the results concerning supermartingales are immediately deduced from the
case of submartingales (and vice versa). Furthermore, (Xn)n≥0 is a martingale if and only
if it is both a supermartingale and a submartingale

Remark 2.4. If one interprets the random variable Xn as a gambler’s holdings at
time n, then the σ-algebra Fn is the information available to the gambler up to time n,
and in particular the results of all the previous games. The martingale property

E(Xn+1 | Fn) = Xn

thus reflects the fact that the mean value of the gain at time n+1, when the past is known
up to time n, is exactly Xn: on average the player neither loses nor wins. A martingale
thus corresponds to a fair game. Similarly, a supermartingale corresponds to an unfair
game (unfair to the player), and a submartingale to a favourable game.

Example 2.3. The random walk on Z. Let (εn)n≥1 be a sequence of independent
and identically distributed random variables, with Bernoulli distribution on {−1, 1} with
parameter p (p ∈ (0, 1)). Let x ∈ Z and define the random walk (Xn)n≥0 by X0 = x and
for n ≥ 1,

Xn = x + ε1 + · · · + εn.

We consider the filtration (Fn)n≥0 defined by
F0 = {∅, Ω} and Fn = σ(X1, . . . , Xn), n ≥ 1.

Note that it is also the natural filtration of (εn)n≥1 (exercise). Then,
E(Xn+1 | Fn) = E(Xn + εn+1 | Fn) = Xn + E(εn+1 | Fn) = Xn + E(εn+1),

since εn+1 is independent of Fn. Since E(εn+1) = 2p − 1, we have that (Xn)n≥0 is a
martingale if p = 1

2 , a supermartingale if p < 1
2 , and a submartingale if p > 1

2 .
Example 2.4. Let (Yn)n≥0 be a sequence of bounded i.i.d. random variables with

E(Y0) = 1. Define Zn = ∏n
k=0 Yk. Then, the stochastic process (Zn)n≥0 is a (FY

n )n≥0-
martingale: for all n ≥ 0,

E(Zn+1 | FY
n ) = E

(
Yn+1Zn | FY

n

)
= Zn E(Yn+1) = Zn.
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Not all martingales come from an i.i.d. sequence of random variables, as the following
example shows:

Example 2.5 (Closed martingale). Let Y ∈ L1(Ω, F ,P) and let (Fn)n≥0 be a filtra-
tion. Define, for all n ≥ 0,

Xn = E(Y | Fn).
Then, (Xn)n≥0 is obviously (Fn)n≥0-adapted, and is a martingale: for all n ≥ 0,

E(Xn+1 | Fn) = E (E(Y | Fn+1) | Fn) = E(Y | Fn) = Xn,

where we use the tower property of conditional expectations. A martingale of this form
is said to be a closed martingale.

2.3. Martingale transforms.

Proposition 2.1. Let X = (Xn)n≥0 be a (Fn)n≥0-martinagle (resp. a supermartin-
gale, resp. a submartingale). Let (Gn)n≥0 be a smaller filtration (i.e. Gn ⊂ Fn for all
n ≥ 0) such that X is adapted to (Gn)n≥0. Then X is a (Gn)n≥0-martinagle (resp. a
supermartingale, resp. a submartingale).

Proof. It suffices to apply the tower property of conditional expectations:
E(Xn+1 | Gn) = E (E(Xn+1 | Fn) | Gn) = E(Xn | Gn) = Xn,

since Xn is Gn-measurable. □

In particular, a (Fn)n≥0-(super,sub)-martingale is a (super,sub)-martingale relative to
its natural filtration.

Proposition 2.2. Let φ : R → [0, +∞[ be a convex function. If (Xn)n≥0 is a martin-
gale, then (φ(Xn))n≥0 is a submartingale. If moreover φ is non-decreasing, and if (Xn)n≥0
is a submartingale, then (φ(Xn))n≥0 is a submartingale.

Remark 2.5. In particular, if (Xn)n≥0 is a martingale, (|Xn|)n≥0 and (X+
n )n≥0 are

submartingales.1 If moreover E(X2
n) < ∞, for all n ≥ 0, then (X2

n)n≥0 is a submartingale.

Proof. This follows immediately from the conditional Jensen inequality. □

Definition 2.5. A stochastic process (Hn)n≥1 is called a predictable process if Hn is
Fn−1-measurable for each n ≥ 1.

Example 2.6. Show that a predictable martingale X satisfies: Xn = X0 a.s. for all
n ≥ 0.

The following transform is called a martingale transform of X. It can be seen as a
discrete stochastic integral of X.

Proposition 2.3. Let X = (Xn)n≥0 be an adapted process and (Hn)n≥0 a bounded
predictable process. Define the process (H · X) by (H · X)0 = 0, and for all n ≥ 1,

(H · X)n =
n∑

k=1
Hk (Xk − Xk−1) .

Then,
(i) if (Xn) is a martingale, then ((H · X)n) is a martingale;

(ii) if (Xn) is a supermartingale (resp. a submartingale) and Hn ≥ 0 for all n, then
((H · X)n) is a supermartingale (resp. a submartingale).

1Recall that f+ denotes the positive part of the function f , i.e. f+(x) = max(f(x), 0), and f− its
negative part, i.e. f−(x) = max(−f(x), 0).
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Proof. (i) Since Hn is bounded, (H · X)n is in L1. Since (Hn) is predictable and
(Xn) is adapted, (H · X)n is also adapted. Now,

E ((H · X)n+1 − (H · X)n | Fn) = E ((Hn+1(Xn+1 − Xn) | Fn)
= Hn+1 E ((Xn+1 − Xn) | Fn) ,

since Hn+1 is Fn-measurable. Hence, the conclusion follows since (Xn) is a martingale.
Item (ii) is left as an exercise. □

Remark 2.6. In a casino gambling game, if Xn − Xn−1 is the gambler’s gain in the
n-th round, one can interpret (Hn)n as a gambling strategy, that is Hn is the amount the
player bet in the n-th round. Hence, (Hn)n must be predictable: the value of Hn has to
be decided at time n − 1, before the result of Xn is known. The martingale transform
(H · X)n is thus the total gain of the gambler at time n.

Example 2.7 (St. Petersburg game). Consider the following roulette game in a casino.
They are 37 pockets in the roulette, 18 of which are red, 18 are black and one is green.
If the player bets on ”red” and the balls lands in a red pocket, the gain is the double of
the bet. Otherwise, the bet is lost. The chance of winning is thus p = 18

37 < 1
2 . Consider a

sequence (εn)n≥1 of i.i.d random variable with distribution pδ1+(1−p)δ−1. Then, (Xn)n≥1
where Xn = ε1 + · · · + εn, is a supermartingale. If the gambler bets a random amount of
Hn at the n-th round, the total amount of profit at time n is then

Gn =
n∑

k=1
Hkεk = (H · X)n.

The gambler adopts the following strategy: in the first round, the bet is H1 = 1. If she
wins, she leaves the casino. If she loses, she doubles the stake: H2 = 2. If she wins,
she leaves the casino, otherwise she doubles again the stake, and so on. The gambling
strategy (Hn)n≥1 is thus defined by the predictable process:

Hn =

0 if there is k ∈ {1, . . . , n − 1} such that εk = 1,
2n−1 else

= 2n−1
1{ε1=−1,...,εn−1=−1}.

Since (Gn)n is a supermartingale, we have E(Gn) ≤ E(G1) < 0. You can’t beat the
system...

3. Stopping times

3.1. Definition.

Definition 3.1. A random variable T : Ω → N ∪ {+∞} is called a stopping time
(with respect to the filtration (Fn)n≥0) if for all n ≥ 0,

{T ≤ n} ∈ Fn.

Remark 3.1. Since {T = n} = {T ≤ n} \ {T ≤ n − 1}, T is a stopping time if and
only if for all n ≥ 0,

{T = n} ∈ Fn.

Remark 3.2. A stopping time is thus a random time, which can be interpreted as
a stopping rule for deciding whether to continue or stop a process on the basis of the
present information and past events, for instance playing until you go broke or you break
the bank, etc. . .

Example 3.1. (i) If T = n a.s., then clearly T is a stopping time.
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(ii) Let (Xn)n≥0 be an adapted stochastic process, and consider the first time Xn

reaches the borel set A:
TA = inf{n ≥ 0 | Xn ∈ A},

with the convention that inf ∅ = +∞. It is called the hitting time of A. Then
TA is a stopping time. Indeed,

{TA = n} = {X0 ̸∈ A, X1 ̸∈ A, . . . , Xn−1 ̸∈ A, Xn ∈ A}

=
n−1⋂
k=0

{Xk ̸∈ A} ∩ {Xn ∈ A} ∈ Fn.

(iii) Show that τA = sup{n ≥ 1 | Xn ∈ A} the last passage time in A is not a stopping
time.

Recall the notations: x ∧ y = inf(x, y) and x ∨ y = max(x, y).

Proposition 3.1. If S and T are two stopping times, then S ∧ T , S ∨ T and S + Y
are also stopping times.

Proof. Writing
{S ∧ T ≤ n} = {S ≤ n} ∪ {T ≤ n}

and
{S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n}

gives the result for S ∧ T and S ∨ T . For S + T , we write:
{S + T ≤ n} =

⋃
k≤n

{S = k} ∩ {T ≤ n − k} ∈ Fn,

since Fk ⊂ Fn for all k ≤ n. □

Remark 3.3. In particular, if T is a stopping time, then for all n ≥ 0, T ∧ n is a
bounded stopping time.

Proposition 3.2. If (Tk)k is a sequence of stopping times, then infk Tk, supk Tk,
lim infk Tk and lim supk Tk are also stopping times.

Proof. Exercise. □

Proposition 3.3. Let T be a stopping time. Then,
FT = {A ∈ F | ∀n ≥ 0, A ∩ {T = n} ∈ Fn}

is a σ-algebra, called the σ-algebra of T -past.

Remark 3.4. Obviously, T is FT -measurable.

Proof. It is obvious that Ω ∈ FT . If A ∈ FT , then for all n,
Ac ∩ {T = n} = {T = n} \ A = {T = n} \ (A ∩ {T = n}) ∈ Fn,

hence Ac ∈ FT . If (Ak)k is countable collection of FT -mesurable set, then(⋃
k

Ak

)
∩ {T = n} =

⋃
k

(Ak ∩ {T = n}) ∈ Fn,

hence ⋃k Ak ∈ FT . □

Proposition 3.4. Let S and T be two stopping times such that S ≤ T . Then,
FS ⊂ FT .
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Proof. Let A ∈ FS. Then, for all n ≥ 0,

A ∩ {T = n} = A ∩ {S ≤ n} ∩ {T = n} =
n⋃

k=0
A ∩ {S = k} ∩ {T = n} ∈ Fn. □

Definition 3.2. Let (Xn)n≥0 be an adapted stochastic process and T a stopping time.
If T < ∞ a.s., we define the random variable XT by

XT (ω) = XT (ω)(ω) = Xn(ω) if T (ω) = n.

Note that XT is FT -measurable, since
{XT ∈ B} ∩ {T = n} = {Xn ∈ B} ∩ {T = n} ∈ Fn,

for any Borel set B.

3.2. Optional stopping theorem.

Theorem 3.1 (Doob’s optional stopping theorem). Let X = (Xn)n≥0 be a martingale
(resp. a supermartingale, resp. a submartingale) and let T be a stopping time. Then
(Xn∧T )n≥0 is also a martingale (resp. a supermartingale, resp. a submartingale). More-
over, if S ≤ T are two bounded stopping times, then

E(XT | FS) = XS (resp. E(XT | FS) ≤ XS, resp. E(XT | FS) ≥ XS.)

Proof. We only deal with the case of martingales, the super and sub-martingales
cases being similar. For all n ≥ 1, define

Hn = 1{T ≥n}.

Since {T ≥ n} = {T ≤ n − 1}c ∈ Fn−1, the process (Hn)n is predictable. Now remark
that

X0 +(H ·X)n = X0 +
n∑

k=1
Hk(Xk −Xk−1) = X0 +

n∑
k=1

(Xk −Xk−1)1{T ≥k} =

Xn if T ≥ n

XT if T < n.
Hence,

Xn∧T = X0 + (H · X)n,

so (Xn∧T )n≥0 is a martingale. The same argument applies if X is a supermartingale (resp.
a submartingale), since the predictable process H is non-negative.

Now suppose that T is bounded, say T ≤ N a.s., and let A ∈ FT . Then,
E(XT1A) =

∑
k≤N

E(Xk1A∩{T =k}) =
∑
k≤N

E
(
E(XN | Fk)1A∩{T =k}

)
=
∑
k≤N

E
(
XN1A∩{T =k}

)
,

since A ∩ {T = k} ∈ Fk, for all k. Hence,
E(XT1A) = E(XN1A),

for all A ∈ FT , thus XT = E(XN | FT ) since XT is FT -measurable.
Now if S ≤ T are two stopping times bounded by N , we apply the above to the

martingale (Xn∧T )n≥0, hence
XS = E(XN∧T | FS) = E(XT | FS).

□

Remark 3.5. As a consequence, if S ≤ T are two bounded stopping times, then
• if X is a martingale, then E(XS) = E(XT );
• if X is a submartingale, then E(XS) ≤ E(XT ).

Definition 3.3. The stochastic process (Xn∧T )n≥0 is called the stopped process, and
is denoted by XT = (XT

n )n≥0, i.e. XT
n = Xn∧T , for all n ≥ 0.
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Example 3.2. The assumption that the the stopping time is bounded in the optional
stopping theorem cannot be weakened without further assumptions on the process. In-
deed, consider the symmetric random walk (Xn)n≥0 starting at 0. Let T1 be the hitting
time of 1. By the optional stopping theorem, for all n ≥ 0,

E(XT1
n ) = E(X0) = 0.

Since the walk is a recurrent Markov chain, we known that T1 < ∞ a.s. Hence, n ∧ T1
converges to T1, but we cannot taking the limit in the expectation since E(XT1) = 1.
There is no contradiction since the stopping time T1 is not bounded (as the walk is null
recurrent).

We have a partial converse to the previous theorem:

Proposition 3.5. Let X = (Xn)n≥0 be an integrable and adapted stochastic process.
Then X is a martingale if and only if for all bounded stopping time T , we have

E(XT ) = E(X0).

Proof. The ”only if” part follows from the optional stopping theorem. So, suppose
that X is integrable and adapted and that E(XT ) = E(X0), for all bounded stopping
time. Let k < n. It suffices to prove that for all A ∈ Fk, E(Xk1A) = E(Xn1A). Let
A ∈ Fk. Define

T = k1A + n1Ac .

Then T is a obviously a bounded stopping time since A ∈ Fk ⊂ Fn. Hence,
E(XT ) = E(Xk1A) + E(Xn1Ac) = E(Xk1A) + E(Xn) − E(Xn1A)

= E(X0)
by assumption, and since E(Xn) = E(X0) since n is also a stopping time, we get

E(Xk1A) = E(Xn1A). □

3.3. The gambler ruin’s problem. A gambler is playing heads or tails against the
bank. Her initial fortune is a ≥ 1 and the initial fortune of the bank is b ≥ 1. We are
interested to determine the probability of ruin of the player or of the bank. Let (εn)n≥1
be a sequence of i.i.d. random variables with distribution pδ1 +(1−p)δ−1. Define X0 = a,
and Xn = a + ε1 + · · · + εn, for n ≥ 1. Consider the stopping times

τ0 = inf{n ≥ 0 | Xn = 0}, τa+b = inf{n ≥ 0 | Xn = a + b}, τ = τ0 ∧ τa+b.

First consider a fair game, i.e. p = 1
2 . Then X = (Xn)n≥0 is a martingale, and

by Doob’s optional stopping theorem, the stopped process Xτ = (Xn∧τ )n≥0 is also a
martingale, which is bounded by a + b.

Since τ < ∞ a.s., (but not bounded, as (Xn)n≥0 is null recurrent), we have that
Xn∧τ −→

n→∞
Xτ a.s.

Thus by the dominated convergence theorem, we get that
E (Xn∧τ ) −→

n→∞
E (Xτ ) .

Since Xτ is a martingale, we have E (Xn∧τ ) = E(X0) = a, hence E (Xτ ) = a. We deduce
that

P(Xτ = a + b) = a

a + b
, and P(Xτ = 0) = b

a + b
.

The ruin probability of the gambler is thus P(τ = τ0) = P(Xτ = 0) = b
a+b

(note that if
b ≫ a, then P(Xτ = 0) ≈ 1, so don’t play against the bank...).
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Now consider an unfair game, i.e. p ̸= 1
2 . Let q = 1 − p, and put r = q

p
. Then, the

process Z defined by
Zn = rXn , n ≥ 0,

is a martingale. Indeed,
E
(
rXn+1 | Fn

)
= rXn E (rεn+1) = rXn(rp + r−1q) = rXn .

Note that τ < ∞ a.s., as either τ0 or τa+b (not both!) is a.s. finite by the law of large
numbers. Hence, since Zn∧τ → Zτ a.s. and since Zτ is bounded, one gets using again the
dominated convergence theorem and the optional stopping theorem that

ra = E(Zτ ) = P(Zτ = 0) + ra+b P(Zτ = a + b),
and the ruin’s probabilities are thus

P(τ = τa+b) = ra − 1
ra+b − 1 and P(τ = τ0) = ra+b − ra

ra+b − 1 .

4. Doob’s decomposition

Definition 4.1. Let X = (Xn)n≥0 be a stochastic process. We denote by (∆Xn)n≥0
the process given by the increments of X:

∆X0 = X0 and ∆Xn = Xn − Xn−1, for all n ≥ 1.

Remark 4.1. An adapted process X = (Xn)n≥0 is thus a martingale if and only if
E(∆Xn+1 | Fn) = 0, for all n ≥ 1.

Theorem 4.1 (Doob’s decomposition). Let (Xn)n≥0 be a submartingale. Then, (Xn)n≥0
can be written

Xn = Mn + An,

where (Mn)n≥0 is a martingale and (An)n≥0 is a predictable non-decreasing process. This
decomposition is unique almost surely. It is called the Doob’s decomposition of (Xn)n≥0.

Proof. We start with the existence. Define:
M0 = X0 and ∆Mn = Xn − E(Xn | Fn−1), for all n ≥ 1.

Obviously,
E(∆Mn | Fn−1) = 0,

hence (Mn)n≥0 is a martingale. Now define:
A0 = 0 and ∆An = E(Xn | Fn−1) − Xn−1, for all n ≥ 1.

Clearly (An)n≥0 is predictable. Since (Xn)n≥0 is a submartingale,
E(Xn | Fn−1) ≥ Xn−1,

hence one has ∆An ≥ 0, and An is non-decreasing. By construction, it is clear that
Xn = Mn + An.

Now we prove the unicity a.s. Consider a second decomposition
Xn = M ′

n + A′
n,

where (M ′
n)n≥0 is a martingale and (A′

n)n≥0 is predictable and non-decreasing. Then,
∆A′

n = ∆Xn − ∆M ′
n.

By taking the conditional expectation given Fn−1, and using the fact that (M ′
n)n≥0 is a

martingale and (A′
n)n≥0 is predictable, we get that

∆A′
n = E(∆Xn | Fn−1) = ∆An.



10 DISCRETE-TIME MARTINGALES

Hence, An = A′
n a.s. and thus M ′

n = Mn a.s. □

Recall that if (Xn)n is a martingale, then (X2
n)n is a submartingale by Jensen’s in-

equality. We make the following definition.

Definition 4.2. Let (Xn)n≥0 be a L2-martingale. The unique predictable process
(An)n such that (X2

n −An)n is a martingale is called the square variation process of (Xn)n

and is denoted by ⟨X⟩ = (⟨X⟩n)n.

Proposition 4.1. Let (Xn)n≥0 be a L2-martingale. Then, for all n ≥ 0,

⟨X⟩n =
n∑

k=1
E
(
(Xk − Xk−1)2 | Fk−1

)
E(⟨X⟩n) = E(X2

n) − E(X2
0 ).

Proof. From the proof of Doob’s decomposition, one has that the square variation
process of (Xn)n is given by

⟨X⟩n =
n∑

k=1

(
E
(
X2

k | Fk−1
)

− X2
k−1

)
.

On the other hand, we have:
n∑

k=1
E
(
(Xk − Xk−1)2 | Fk−1

)
=

n∑
k=1

E
(
X2

k + X2
k−1 − 2XkXk−1 | Fk−1

)

=
n∑

k=1

(
E
(
X2

k | Fk−1
)

+ X2
k−1 − 2Xk−1 E(Xk | Fk−1)

)

=
n∑

k=1

(
E
(
X2

k | Fk−1
)

− X2
k−1

)
since (Xn)n is a martingale. The first formula follows. Now taking the expectation in the
definition of ⟨X⟩n gives the second one. □

Example 4.1. We continue the example of the symmetric random walk:

Xn = ε1 + · · · + εn,

where (εk)k are i.i.d. random variables with uniform distribution on {−1, 1}. The process
(Xn)n≥0 is a martingale and since Xk − Xk−1 = εk is independent of Fk−1, its square
variation process is

⟨X⟩n =
n∑

k=1
E(ε2

k) = n.

Hence, (X2
n − n)n≥0 is a martingale.

Now, (|Xn|)n≥0 is also a submartingale and we can apply Doob’s decomposition. Its
associated increasing predictable process is then

An =
n∑

k=1
(E (|Xk| | Fk−1) − |Xk−1|) .

Now remark that

|Xk| =


|Xk−1| + εk if Xk−1 > 0,
|Xk−1| − εk if Xk−1 < 0,
1 if Xk−1 = 0.
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Hence, since εk is independent of Fk−1, and E(εk) = 0, we have

E (|Xk| | Fk−1) =

|Xk−1| if Xk−1 ̸= 0,
1 if Xk−1 = 0,

which gives
An =

n∑
k=1

1{Xk−1=0} = #{0 ≤ k ≤ n − 1 | Xk = 0}.

This is the local time of (Xn)n at 0.

5. Martingale convergence theorems

5.1. L2 convergence. We start with an easy result concerning the convergence in
L2 of martingales.

Let X be a square-integrable martingale, that is Xn ∈ L2, for all n ≥ 0. The following
proposition states that the increments of a square-integrable martingale are orthogonal.

Proposition 5.1. Let X be a square-integrable martingale, then for all n ̸= k,
E(∆Xn∆Xk) = 0.

Proof. Suppose that n > k. Since ∆Xk = Xk − Xk−1 is Fk-measurable,
E(∆Xn∆Xk | Fk) = ∆Xk E(∆Xn | Fk) = 0,

by the martingale property. Then we take the expectation. □

Furthermore, if the martingale is bounded in L2, we have the following convergence
theorem.

Theorem 5.1. Let X = (Xn)n≥0 be a martingale, which is bounded in L2, that is

sup
n≥0

E
(
X2

n

)
< +∞.

Then X converges in L2.

Remark 5.1. The L2-boundedness condition is equivalent to supn E(⟨X⟩n) < ∞ since
E(⟨X⟩n) = E(X2

n) − E(X2
0 ) (see Proposition 4.1).

Proof. We have,

E(X2
n) = E

(X0 +
n∑

k=1
∆Xn

)2


= E(X2
0 ) +

n∑
k=1

E
(
(∆Xn)2

)
,

by the orthogonal property of the increments. Hence, since supn≥0 E(X2
n) < ∞ by as-

sumption, one has that the series∑
n≥1

E
(
(∆Xn)2

)
< ∞.

Moreover, for all n, p ≥ 0,

E
(
(Xn+p − Xn)2

)
=

n+p∑
k=n+1

E
(
(∆Xk)2

)
,

since the increments are orthogonal. Thus, as p → ∞ and n → ∞, we get that
lim

n→∞
lim

p→∞
E
(
(Xn+p − Xn)2

)
= 0,
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hence (Xn)n≥0 is a Cauchy sequence in the Hilbert space L2, hence it converges in L2. □

We will now study the almost sure convergence and the convergence in Lp for p > 1.

5.2. Almost sure convergence.
5.2.1. Upcrossing lemma. Let a < b. Introduce the family of stopping times:

τ1 = inf{n ≥ 0 | Xn ≤ a}
σ1 = inf{n > τ1 | Xn ≥ b},

and for k ≥ 2,
τk = inf{n > σk−1 | Xn ≤ a}
σk = inf{n > τk | Xn ≥ b}.

We thus have
0 ≤ τ1 < σ1 < τ2 < σ2 < · · · < σk−1 < τk < σk < · · ·

For n ≥ 1, define the number of upcrossings of X accross [a, b] until time n by
Ua,b

n = sup{k ≥ 1 | σk ≤ n} =
∑
k≥1

1{σk≤n}.

b

a

τ1 σ1 τ2 σ2 τ3 σ3 τ4 n

Figure 1. A stochastic process with 3 upcrossings over [a, b].

Note that by construction, for all k ≥ 1, Xτk
≤ a < b ≤ Xσk

on {σk < ∞}, and that
{Ua,b

n ≥ k} = {σk ≤ n}, see Figure 1.
If we think of X as a stock price, a trading strategy would be to buy the stock when

its price has fallen below a and to sell it when it exceeds b. Each time the price makes an
upcrossing from a to b, we make a profit of at least b − a. The maximal profit up to time
n will thus be given by the number of such upcrossing times b − a minus the possible loss
at n. This idea is formalized in the lemma below.

Lemma 5.1 (Doob’s upcrossing inequality). Let X = (Xn)n≥0 be a supermartingale.
Then

(b − a)E
(
Ua,b

n

)
≤ E((Xn − a)−).

Proof. Define the process H by
Hn =

∑
k≥1

1{τk<n≤σk}

=

1 if n ∈ {τk + 1, . . . , σk} for some k ≥ 1,
0 else.
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Then H is non-negative, bounded by 1, and predictable since:
{Hn = 1} =

⋃
k≥1

{τk ≤ n − 1} ∩ {σk ≤ n − 1}c ∈ Fn−1.

Now we claim that the martingale transform H · X satisfies
(H · X)n ≥ Ua,b

n (b − a) − (Xn − a)−.

This can be understood from the above picture. Each upcrossing of [a, b] results in a
profit of at least b − a and the term (Xn − a)− overestimates the eventual loss due to the
possible incomplete upcrossing at the end. Formally,

(H · X)n =
n∑

k=1
Hk (Xk − Xk−1)

=
n∑

k=1

∑
j≥1

1{τj+1≤k≤σj} (Xk − Xk−1)

=
∑
j≥1

n∑
k=1

1{τj+1≤k≤σj} (Xk − Xk−1)

=
∑
j≥1

1{τj<n}

σj∧n∑
k=τj+1

(Xk − Xk−1)

=
∑
j≥1

(
Xσj

− Xτj

)
1{σj≤n} +

∑
j≥1

(
Xn − Xτj

)
1{σj−1≤n<σj}1{τj<n}

=
Ua,b

n∑
j=1

(
Xσj

− Xτj

)
+ 1{τ

U
a,b
n +1

<n}(Xn − Xτ
U

a,b
n +1

)

since {σj ≤ n} = {Ua,b
n ≥ j} and {σj−1 ≤ n < σj} = {Ua,b

n = j − 1}. Thus,
(H · X)n ≥ Ua,b

n (b − a) − (Xn − a)−,

since Xσj
− Xτj

≥ b − a, and on {τUa,b
n +1 < n}, Xn − Xτ

U
a,b
n +1

≥ Xn − a ≥ −(Xn − a)−.
Since H · X is a supermartingale, we have E ((H · X)n) ≤ E ((H · X)0) = 0, so we get

the inequality. □

5.2.2. Almost sure convergence.

Theorem 5.2. Let X = (Xn)n≥0 be a supermartingale with supn≥0 E(X−
n ) < ∞.

There exists a random variable X∞ with E(|X∞|) < ∞ such that
Xn −→

n→∞
X∞ a.s.

Proof. Let a < b and Ua,b
n the number of upcrossings over [a, b] of X up to time n.

By Doob’s upcrossing inequality, and using that (x − a)− ≤ |a| + x−, we have
(b − a)E(Ua,b

n ) ≤ E((Xn − a)−) ≤ |a| + E(X−
n ) ≤ |a| + sup

n
E(X−

n ) < ∞,

by assumption. Define
Ua,b = sup

n
Ua,b

n .

By monotone convergence theorem, one gets that E(Ua,b) < ∞, hence Ua,b < ∞ a.s. Now
define,

Ca,b =
{

lim inf
n

Xn < a < b < lim sup
n

Xn

}
.

Then,
Ca,b ⊂

{
Ua,b = +∞

}
,
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hence Ca,b is a null set. But,

C =
{

lim inf
n

Xn < lim sup
n

Xn

}
=

⋃
a,b∈Q
a<b

Ca,b,

hence P(C) = 0, and (Xn)n converges in R a.s. It remains to prove that the limit X∞ is
in L1 which will imply that X∞ is finite a.s. By Fatou’s lemma, one has

E(|X∞|) ≤ lim inf
n

E(|Xn|) ≤ sup
n

E(|Xn|).

Writing
|Xn| = X+

n + X−
n = Xn + 2X−

n

and since (Xn)n is a supermartingale E(Xn) ≤ E(X0), we get that
sup

n
E(|Xn|) ≤ E(X0) + 2 sup

n
E(X−

n ) < ∞

by assumption. Hence X∞ ∈ L1, and in particular X∞ < ∞ a.s. □

Remark 5.2. If (Xn)n is a non-negative supermartingale, then the assumption of the
theorem is automatically verified, hence a non-negative supermartingale converges almost
surely!

If (Xn)n is a submartingale, (−Xn)n is a supermartingale, so one deduces:

Corollary 5.1. Let X = (Xn)n≥0 be a submartingale with supn≥0 E(X+
n ) < ∞.

There exists a random variable X∞ with E(|X∞|) < ∞ such that
Xn −→

n→∞
X∞ a.s.

The analogous statement for martingales is:

Corollary 5.2. Let X = (Xn)n≥0 be a martingale which is non-negative or bounded
in L1, i.e. supn≥0 E(|Xn|) < ∞. There exists a random variable X∞ with E(|X∞|) < ∞
such that

Xn −→
n→∞

X∞ a.s.

5.3. Lp convergence, p > 1.
5.3.1. Maximal Inequalities.

Lemma 5.2 (Doob’s maximal inequality). Let X = (Xn)n≥0 be a non-negative sub-
martingale and denote

X∗
n = sup

0≤k≤n
Xk, n ≥ 0.

For all n ≥ 0, and all λ > 0, one has
λP (X∗

n ≥ λ) ≤ E
(
Xn1{X∗

n≥λ}
)

≤ E(Xn).

Proof. The second inequality is obvious (since X is non-negative). We introduce the
stopping time τλ = inf{n ≥ 0 | Xn ≥ λ}. Note that

{τλ ≤ n} = {X∗
n ≥ λ}.

Introduce also the bounded stopping time τ = τλ∧n. Using the optional stopping theorem
applied to τ ≤ n, one has

E(Xn) ≥ E(Xτ )

= E
(
Xτ1{X∗

n≥λ}
)

+ E
(
Xτ1{X∗

n<λ}
)

≥ λP (X∗
n ≥ λ) + E

(
Xn1{X∗

n<λ}
)

,
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since on {X∗
n ≥ λ}, τ = τλ and thus Xτ ≥ λ, and on {X∗

n < λ}, τ = n. Therefore,

λP (X∗
n ≥ λ) ≤ E(Xn) − E

(
Xn1{X∗

n<λ}
)

= E
(
Xn1{X∗

n≥λ}
)

. □

Corollary 5.3. Let X = (Xn)n≥0 be a martingale. Then, for all n ≥ 0 and all
λ > 0,

λP
(

sup
0≤k≤n

|Xn| ≥ λ

)
≤ E

(
|Xn|1{sup0≤k≤n |Xk|≥λ}

)
≤ E |Xn|.

Proof. This follows immediately using Doob’s maximal inequality since if (Xn)n≥0
is a martingale, then (|Xn|)n≥0 is a non-negative submartingale. □

Example 5.1 (Kolmogorov’s inequality). The following inequality, due to Kolmogorov,
can be proved directly, but the proof becomes immediate using martingale theory. Let
(Xn)n≥0 be a sequence of square-integrable independent random variables such that
E(X1) = 0. Put Sn = ∑n

k=1 Xk. Then, for all n ≥ 0, and all λ > 0,

P
(

sup
0≤k≤n

|Sk| ≥ λ

)
≤ 1

λ2 Var(Sn).

Indeed, it suffices to apply Doob’s maximal inequality to the submartingale (S2
n)n≥0.

Proposition 5.2 (Doob Lp maximal inequality). Let p > 1. Let X = (Xn)n≥0 be a
non-negative submartingale such that Xn ∈ Lp for all n ≥ 0. Denote

X∗
n = sup

0≤k≤n
Xk, n ≥ 0.

Then for all n ≥ 0, X∗
n ∈ Lp, and

||X∗
n||p ≤ p

p − 1 ||Xn||p.

Proof. Since X is non-negative,

(X∗
n)p ≤

(
n∑

k=0
Xk

)p

≤ (n + 1)p−1
n∑

k=0
Xp

k ,

hence X∗
n is in Lp since Xn ∈ Lp for all n ≥ 0.

Writing xp =
∫ x

0 pλp−1dλ and using Fubini’s theorem, one has

E ((X∗
n)p) =

∫ +∞

0
pλp−1 P(X∗

n ≥ λ)dλ

≤ p
∫ +∞

0
λp−2 E

(
Xn1{X∗

n≤λ}
)

dλ

using Doob’s maximal inequality. Hence,

E ((X∗
n)p) ≤ pE

(
Xn

∫ X∗
n

0
λp−2dλ)

)
= p

p − 1 E
(
Xn(X∗

n)p−1
)

≤ p

p − 1 (E(Xp
n))1/p (E ((X∗

n)p))(p−1)/p

by Hölder’s inequality (with conjugates p and q = p
p−1). Dividing by (E ((X∗

n)p))(p−1)/p

gives the result. □
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5.3.2. Lp convergence, p > 1.

Theorem 5.3. Let p > 1. Let X = (Xn)n≥0 be a martingale which is bounded in Lp,
i.e. supn≥0 E(|Xn|p) < ∞. Then, X converges a.s. and in Lp towards a random variable
X∞ such that

E(|X∞|p) = sup
n≥0

E(|Xn|p).

Proof. Since the martingale X is bounded in L1, we already know that X converges
a.s. to some X∞. By Doob’s Lp maximal inequality, we have

E ((X∗
n)p) ≤

(
p

p − 1

)p

sup
n≥0

E(|Xn|p),

where X∗
n = sup0≤k≤n |Xk|. By monotone convergence, we get

E ((X∗
∞)p) ≤

(
p

p − 1

)p

sup
n≥0

E(|Xn|p) < ∞.

Since |Xn| ≤ X∗
∞ for all n, by the dominated convergence theorem, we get that (Xn)n

converges to X∞ in Lp. Since x 7→ |x|p is a convex function, by Jensen’s inequality for
conditional expectations, we have that the sequence (E(|Xn|p))n is non-decreasing, hence
by monotone convergence,

E(|X∞|p) = sup
n≥0

E(|Xn|p). □

Remark 5.3. Note that the theorem does not hold for p = 1, and we will need the
notion of uniform integrability to obtain L1 convergence. For instance, if (Xn)n≥1 is a
sequence of i.i.d. random variables with Gaussian distribution N (0, 1), define S0 = 0, and
Sn = X1 + · · · + Xn, for n ≥ 1. Hence,

Mn = eSn−n/2, n ≥ 0,

is non-negative (and in particular bounded in L1) martingale which converges to 0 a.s.
but the convergence does not hold in L1 (exercise).

6. Uniformly integrable martingales

6.1. Definition, examples. We start with the definition of uniform integrability of
a family of random variables.

Definition 6.1. A family of random variables X = (Xi)i∈I is said to be uniformly
integrable if

lim
a→∞

sup
i∈I

E
(
|Xi|1{|Xi|≥a}

)
= 0.

Example 6.1. (i) A random variable X ∈ L1 is uniformly integrable by the
dominated convergence theorem. Likewise, a finite family {X0, X1, . . . , XN} is
uniformly integrable.

(ii) If (Xn)n≥0 is uniformly integrable, then it is bounded in L1. Indeed, choose a > 0
large enough such that

sup
n

E
(
|Xn|1{|Xn|≥a}

)
≤ 1,

and write
E(|Xn|) = E

(
|Xn|1{|Xn|≥a}

)
+ E

(
|Xn|1{|Xn|<a}

)
≤ 1 + a,

Then supn E(|Xn|) < ∞. The converse is wrong as shown by the following
example.
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(iii) A non uniformly integrable example: let Xn defined on the probability space
([0, 1], B([0, 1]), λ), where λ denotes Lebesgue measure, by

Xn(ω) =

n if ω ∈ (0, 1
n
)

0 else,

that is, Xn = n1(0, 1
n

). Then, for all n, E(|Xn|) = 1, and E(|Xn|1{|Xn|≥a}) = 1 for
n ≥ a, so (Xn) is not uniformly integrable. Moreover, it is easy to see that (Xn)
converges in probability to 0, but does not converges in L1.

(iv) A dominated family of random variables is easily seen to be uniformly integrable:
let (Xn)n such that there exists an integrable random variable Z > 0 such that
|Xn| ≤ Z for all n. Then,

sup
n

E
(
|Xn|1{|Xn|≥a}

)
≤ E

(
Z1{Z≥a}

)
−→
a→∞

0,

by the dominated convergence theorem.
(v) If (Xn)n≥0 is bounded in Lp for some p > 1, that is supn E(|Xn|p) < ∞, then it is

uniformly integrable. Indeed, using Hölder’s inequality, and Markov inequality,
one has

E
(
|Xn|1{|Xn|≥a}

)
≤ (E(|Xn|p))1/p P (|Xn| ≥ a)1−1/p

≤ 1
a1−1/p

(E(|Xn|p))1/p (E(|Xn|))1−1/p .

Hence, since (Xn)n≥0 is bounded in Lp, there exists a constant M > 0, such that

sup
n

E
(
|Xn|1{|Xn|≥a}

)
≤ M

a1−1/p
−→
a→∞

0.

Proposition 6.1. A family of random variables (Xn)n≥0 is uniformly integrable if
and only if it is bounded in L1 and equicontinuous: for all ε > 0, there exists δ > 0 such
that

P(A) < δ ⇒ sup
n

E(|Xn|1A) < ε.

Proof. The ”only if” part. Writing

E(|Xn|1A) = E
(
|Xn|1A1{|Xn|<a}

)
+ E

(
|Xn|1A1{|Xn|≥a}

)
≤ aP(A) + E

(
|Xn|1{|Xn|≥a}

)
,

for A = Ω, we get
sup

n
E(|Xn|) ≤ a + sup

n
E
(
|Xn|1{|Xn|≥a}

)
hence, (Xn)n≥0 is bounded in L1 since it is uniformly integrable. Now, let ε > 0. By
uniform integrability, for a large enough, one has

sup
n

E
(
|Xn|1{|Xn|≥a}

)
< ε/2.

Choose δ = ε/2a. Then if P(A) < δ, by the above inequality, we get

sup
n

E(|Xn|1A) ≤ a
ε

2a
+ ε

2 = ε,

hence (Xn)n≥0 is equicontinuous.
The ”if” part. Put M = supn E(|Xn|) < ∞. By Markov inequality, for all n ≥ 0,

P(|Xn| ≥ a) ≤ M

a
.
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For ε > 0, let δ > 0 such that P(A) < δ implies supn E(|Xn|1A) < ε. Then for a large
enough such that a > M/δ, one has for all n ≥ 0,

P(|Xn| ≥ a) < δ,

hence, for all n ≥ 0,
E
(
|Xn|1{|Xn|≥a}

)
< ε,

hence (Xn)n is uniformly integrable. □

We have the following refinement of the dominated convergence theorem.

Theorem 6.1. A family of random variables X = (Xn)n≥0 converges in L1 if and
only if X is uniformly integrable and converges in probability.

Proof. If (Xn)n≥0 converges in L1 then it converges in probability (by Markov in-
equality). Let ε > 0. Choose N large enough such that for all n ≥ N ,

E (|Xn − XN |) <
ε

2 .

Since X0, X1, . . . , XN is a finite family of random variables, it is uniformly integrable.
Hence, by equicontinuity, we can choose η > 0 such that for all measurable set A such
that P(A) < η,

sup
0≤k≤N

E (|Xk|1A) <
ε

2 .

Moreover, for all n > N ,

E (|Xn|1A) ≤ E (|XN |1A) + E (|Xn − XN |) < ε.

This proves the equicontinuity of the family (Xn)n≥0, hence the uniform integrability.
Conversely, suppose that (Xn)n≥0 converges in probability to say X and that it is

uniformly integrable. The family (Xn −Xm)n,m≥0 is also uniformly integrable (this follows
easily from the equicontinuity of (Xn)n). Hence, for ε > 0, we can choose a large enough
such that

sup
n,m

E
(
|Xn − Xm|1{|Xn−Xm|≥a}

)
≤ ε.

Hence, for all m, n ≥ 0,

E (|Xn − Xm|) ≤ E
(
|Xn − Xm|1{|Xn−Xm|≤ε}

)
+ E

(
|Xn − Xm|1{ε<|Xn−Xm|≤a}

)
+ E

(
|Xn − Xm|1{|Xn−Xm|≥a}

)
≤ ε + aP (|Xn − Xm| > ε) + ε.

The convergence in probability of (Xn)n implies that it is a Cauchy sequence for the
convergence in probability:

P (|Xn − Xm| > ε) ≤ P
(

|Xn − X| >
ε

2

)
+ P

(
|X − Xm| >

ε

2

)
−→

n,m→∞
0.

Hence, we have that
lim

n,m→∞
E (|Xn − Xm|) = 0,

so (Xn)n is a Cauchy sequence in L1 which is complete, hence converges in L1. □
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6.2. L1 convergence. We recall the definition of a closed martingale.

Definition 6.2. A martingale X = (Xn)n≥0 is said to be a closed martingale if there
exists an integrable random variable Y such that

Xn = E(Y | Fn), for all n ≥ 0.

We now have all the ingredients to prove the following theorem.

Theorem 6.2. Let X = (Xn)n≥0 be a martingale. The following assertions are equiv-
alent:

(i) X is a closed martingale;
(ii) X is uniformly integrable;

(iii) X converges almost surely and in L1.

Proof. (i) ⇒ (ii). Let (Xn)n be a closed martingale: there exists Y ∈ L1, such that
Xn = E(Y | Fn), for all n ≥ 0. Let ε > 0. Since Y is uniformly integrable, there exists
δ > 0 such that

P(A) < δ ⇒ E(|Y |1A) < ε.

Now by Markov inequality,

P(|Xn| ≥ a) ≤ 1
a
E(|Xn|) ≤ 1

a
E(|Y |) < δ,

for a large enough. Hence, for all n ≥ 0,

E
(
|Xn|1{|Xn|≥a}

)
≤ E

(
E(|Y | | Fn)1{|Xn|≥a}

)
= E

(
E(|Y |1{|Xn|≥a} | Fn)

)
= E

(
|Y |1{|Xn|≥a}

)
,

where we use the fact that {|Xn| ≥ a} is Fn-measurable. Since P(|Xn| ≥ a) < δ, we
conclude using the uniform integrability of Y .

(ii) ⇒ (iii). Since (Xn)n is uniformly integrable, it is bounded in L1. Hence, we have
already seen that (Xn) converges a.s. The convergence in L1 follows by Theorem 6.1.

(iii) ⇒ (i). Suppose that Xn → X∞ a.s. and in L1. Let n ≥ 0 be fixed and let
A ∈ Fn. By the martingale property, for m > n, we have

E (Xm1A) = E (Xn1A) .

Since Xm converges in L1 to X∞, letting m → ∞ in the above equality gives,
E(X∞1A) = E(Xn1A).

Since Xn is Fn-measurable, we deduce that Xn = E(X∞ | Fn). □

Remark 6.1. By the previous theorem, a closed martingale Xn = E(Y | Fn) converges
a.s. and in L1 to some X∞. Denote by

F∞ = σ

⋃
n≥0

Fn


the σ-algebra limit of the filtration (Fn)n≥0. Then X∞ = E(Y | F∞). Indeed, X∞ is
F∞-measurable as the limit of (Xn)n, so it suffices to prove that for all A ∈ F∞,

E(Y 1A) = E(X∞1A).
But, since X∞ converges in L1 to X∞, we have seen that for all n ≥ 0, and all A ∈ Fn,

E(Xn1A) = E(X∞1A),
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hence for all n ≥ 0, and all A ∈ Fn,
E(Y 1A) = E(X∞1A).

But it is easy to see that
M = {A ∈ F | E(Y 1A) = E(X∞1A)}

is a λ-system2 which contains the π-system3 ⋃
n≥0 Fn. By Dynkin’s π-λ theorem, M

contains σ
(⋃

n≥0 Fn

)
and the conclusion follows.

Remark 6.2. Consider the symmetric random walk (Xn)n≥0. Since, lim supn Xn =
+∞ and lim infn Xn = −∞, the martingale (Xn)n≥0 does not converge, which is consistent
with the fact that it is not uniformly integrable.

Example 6.2 (Kolmogorov’s 0–1 law). Let (Xn)n≥1 be a sequence of random variables.
Define, for all n ≥ 1,

Fn = σ(Xk, 1 ≤ k ≤ n)
the σ-algebra generated by X1, . . . , Xn. Define also, for all n ≥ 0,

Gn = σ(Xn+1, Xn+2, . . .).
The tail σ-algebra T is defined as

T =
⋂

n≥0
Gn.

Intuitively, the σ-algebra of tail events consists of events which do not depend on the
first finitely many times of the process (Xn)n≥1. For instance, the random variables
lim supn Xn and lim infn Xn are T -measurable. The classical Kolmogorov’s 0–1 law states
that if (Xn)n≥1 is a sequence of independent random variables, then the tail σ-algebra T
is trivial: for all A ∈ T , P(A) ∈ {0, 1}. We can give an alternative proof using martingale
theory (exercise: prove it directly!).

Let A ∈ T , and consider the closed martingale defined by
Xn = E (1A | Fn) ,

for all n ≥ 1. By the previous theorem, (Xn)n≥1 converges a.s. and in L1 to E (1A | F∞),
where F∞ = σ(∪n≥1Fn). But since obviously T ⊂ F∞, one has E (1A | F∞) = 1A.

But A ∈ Gn for all n, so A is independent of Fn for all n, hence,
E (1A | Fn) = E (1A) ,

so we get P(A) = 1A, so P(A) ∈ {0, 1}.

6.3. Optional stopping theorem for uniformly integrable martingales. We
now generalize the Doob’s optional theorem to non-necessarily bounded stopping times,
but for uniformly integrable martingale.

Proposition 6.2. Let X = (Xn)n≥0 be a uniformly integrable submartingale and T a
finite stopping time. Then XT = (Xn∧T )n≥0 is a uniformly integrable submartingale.

Proof. By the optional stopping theorem applied to the bounded stopping time n∧T
and to the submartingale (X+

n∧T )n, one has that E(X+
n∧T ) ≤ E(X+

n ). Hence,
sup

n
E(X+

n∧T ) ≤ sup
n

E(X+
n ) < ∞,

2Recall that a λ-system is a collection of subsets which contains Ω and is closed under complements
of subsets in supersets and under countable increasing unions.

3Recall that a π-system is a collection of subsets closed under finite intersections.
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since (Xn) is uniformly integrable, so it is bounded in L1. Hence, by the martingale
convergence theorem (Theorem 5.2), Xn∧T → XT a.s. and E(|XT |) < ∞. Now, write

E(|Xn∧T |1{|Xn∧T |≥a}) = E(|XT |1{|Xn∧T |≥a}1{T ≥n}) + E(|Xn|1{|Xn|≥a}1{T >n})
≤ E(|XT |1{T ≥n}) + E(|Xn|1{|Xn|≥a}).

But one has supn E(|XT |1{T ≥n}) = 0 by the dominated convergence theorem. Hence the
uniform integrability of (Xn∧T )n follows from the uniform integrability of (Xn)n. □

Theorem 6.3 (Optional stopping theorem for uniformly integrable martingales). Let
X = (Xn)n≥0 be a uniformly integrable submartingale. Let S ≤ T be two finite stopping
time. Then, we have

XS ≤ E(XT | FS).

Proof. Consider the two bounded stopping times S ∧ n ≤ T ∧ n. By the optional
stopping theorem, one has

E(XS∧n) ≤ E(XT ∧n).
Since XT (resp. XS) is a uniformly integrable submartingale by the previous proposition,
it converges a.s. and in L1 to XT (resp. XS). Hence, letting n → ∞ in the above equality,
we get

E(XS) ≤ E(XT ).
Now, let A ∈ FS. We have to prove that

E(XS1A) ≤ E(XT1A).
Consider the stopping time

R = S1A + T1Ac .

It is indeed a stopping time since
{R = n} = ({S = n} ∩ A) ∪ ({T = n} ∩ Ac) ∈ Fn

since A ∈ FS ⊂ FT . Hence,
E(XS1A) = E(XR1A) = E(XR) − E(XR1Ac) = E(XR) − E(XT1Ac),

and since R ≤ T , we have E(XR) ≤ E(XT ), hence,
E(XS1A) ≤ E(XT ) − E(XT1Ac) = E(XT1A),

proving that XS ≤ E(XT | FS). □

7. Backwards martingales

Definition 7.1. A backwards filtration is a family of σ-algebras F−n, indexed by
non-positive integers −n ∈ −N such that

· · · ⊂ F−n ⊂ F−n+1 ⊂ · · · ⊂ F−1 ⊂ F0

that is for all n ∈ N, F−n ⊂ F−n+1. We aslo define:
F−∞ =

⋂
n∈−N

Fn,

which is again a σ-algebra.

Note that here, the σ-algebra Fn becomes smaller and smaller as n → −∞.

Definition 7.2. The stochastic process X = (Xn)n∈−N is called a backwards mar-
tingale (resp. supermartingale, submartingale), if for all n ∈ −N, Xn is Fn-measurable,
E(|Xn|) < ∞, and for all n ≤ m ≤ 0,

Xn = E(Xm | Fn) (resp. Xn ≥ E(Xm | Fn), resp. Xn ≤ E(Xm | Fn).)
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Convergence is particularly simple for backwards martingales:

Theorem 7.1. Let (Xn)n∈−N be a backwards martingale. Then, (Xn)n∈−N is uniformly
integrable and converges a.s. and in L1 as n → −∞ to some X−∞. Moreover, for all
n ∈ −N,

E(Xn | F−∞) = X−∞

Proof. The proof parallels that of the ”forward” case. Fixed K ≥ 0, and define, for
all 0 ≤ n ≤ K,

Yn = X−K+n and Gn = F−K+n,

and for n > K, we put Yn = X0 and Gn = F0.
Then, (Yn)n≥0 is a ”forward” martingale with respect to the filtration (Gn)n≥0. By

Doob’s upcrossing inequality, we have

(b − a)E
(
Ua,b

K

)
≤ E((YK − a)−) ≤ |a| + E(|X0|),

where Ua,b
n denotes the number of upcrossing across [a, b] of Yn. Letting K → ∞, we

find, by monotone convergence theorem, that the number Ua,b of upcrossing across [a, b]
of (Xn)n∈−N satisfies

E
(
Ua,b

)
< ∞,

hence is finite a.s. As in the ”forward” case, this implies that (Xn)n∈−N converges a.s. and
Fatou’s inequality implies that X−∞ ∈ L1 (the details are left as an exercise). Moreover,
by the backwards martingale property, one has that for all n ≥ 0,

X−n = E (X0 | F−n) .

Hence, one proves that (Xn)n∈−N is uniformly integrable exactly as in the proof of Thm 6.2.
The convergence in L1 follows by Theorem 6.1.

Now let A ∈ F−∞. Since F−∞ ⊂ Fn, for all n ≤ 0, A is also Fn-measurable, and the
martingale property gives, that for all m ≤ n ≤ 0,

E(Xm1A) = E(Xn1A).
Hence, letting m → −∞, and using the L1-convergence, we obtain that

E(X−∞1A) = E(Xn1A),
that is, since X−∞ is F−∞-measurable, X−∞ = E(Xn | F−∞). □

Corollary 7.1. Let Y ∈ L1 and (Gn)n≥0 a non-increasing sequence of σ-algebras.
Let G∞ = ⋂

n≥0 Gn. Then we have,

E(Y | Gn) −→
n→∞

E(Y | G∞), a.s. and in L1.

Proof. For all n ≥ 0, define X−n = E(Y | Gn) and F−n = Gn. Then (X−n)n≥0 is a
backwards martingale relative to the backwards filtration (F−n)n≥0 and we can apply the
previous theorem. □

Example 7.1 (The strong law of large numbers). Let (Xn)n≥1 be a sequence of in-
dependent and identically distributed random variables, such that E(|X1|) < ∞. Define
S0 = 0, and

Sn = X1 + · · · + Xn.

The strong law of large numbers states that
Sn

n
−→
n→∞

E(X1) a.s.
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We give a new proof of the law of large numbers using backwards martingale. Define, for
all n ≥ 0,

Y−n = Sn

n
,

and
F−n = σ(Sn, Xn+1, Xn+2, . . .).

Then the family (F−n)n≥0 is a backwards filtration, and (Y−n)n≥0 a backwards martingale:
We first remark that, for all 1 ≤ k ≤ n,

E (Xk | F−n) = E (Xk | Sn) = E (Xn | Sn) .

Indeed, the first equality uses the fact that Xk is independent of σ(Xn+1, Xn+1, . . .), and
the second one the fact that (Xk, Sn) has the same distribution that (Xn, Sn), for all
1 ≤ k ≤ n. Then, writing Sn−1 = Sn − Xn, one has

E(Y−n+1 | F−n) = 1
n − 1 E(Sn−1 | Sn) = 1

n − 1
(
Sn − E(Xn | Sn)

)
= 1

n − 1

(
Sn − 1

n
Sn

)
= Sn

n
= Y−n.

Hence, (Y−n)n≥0 is a backwards martingale, so it is uniformly integrable, and converges
almost surely to

Y−∞ = E (X1 | F−∞) .

Since Y−∞ is measurable relative to the tail σ-algebra
T =

⋂
n≥0

σ(Xn, Xn+1, . . .),

which is trivial by Kolmogorov’s zero-one law, we have that Y−∞ is constant a.s., so we
deduce that

E (X1 | F−∞) = E(X1).
Thus,

Sn

n
−→
n→∞

E(X1) a.s.

8. Examples and applications

8.1. Pólya urns. We consider an urn containing initially 1 red ball and 1 black ball.
We draw a ball uniformly at random, put it back in the urn with an additional ball of
same color. We repeat the procedure and denotes by Xn the number of red balls at time
n. Initially, X0 = 1. At each time n, the total number of balls is n + 2. It is easy to see
that the process (Xn)n≥0 is a (inhomogeneous) Markov chain with transition probabilities:

P(Xn+1 = k | Xn = k) = 1 − k

n + 2

P(Xn+1 = k + 1 | Xn = k) = k

n + 2 .

Hence, the conditional distribution of Xn+1 given Xn is given by the Markov kernel
ν(Xn, dy):

ν(Xn, dy) =
(

1 − Xn

n + 2

)
δXn + Xn

n + 2δXn+1.

Thus, computing the conditional expectation of Xn+1 given Fn gives

E(Xn+1 | Fn) = E(Xn+1 | Xn) =
(

1 − Xn

n + 2

)
Xn + Xn

n + 2(Xn + 1) = n + 3
n + 2Xn.
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Hence, if we denote by Mn the proportion of red balls at time n, i.e. Mn = Xn

n+2 , we get

E(Mn+1 | Fn) = Mn,

that is (Mn)n≥0 is a martingale. Since it is positive and bounded by 1, (Mn)n≥0 converges
a.s. and in every Lp, p > 1, to some M∞ ∈ [0, 1] a.s. We now compute the distribution of
M∞. First, the distribution of Xn is uniform on {1, . . . , n + 1}: this is done by induction.
It is obvious for n = 0. Suppose it is true at time n. Then, for all k = 1, . . . , n + 1,

P(Xn+1 = k) = P(Xn+1 = k | Xn = k)P(Xn = k) + P(Xn+1 = k | Xn = k − 1)P(Xn = k − 1)

=
(

1 − k

n + 2

)
1

n + 1 + k − 1
n + 2

1
n + 1

= 1
n + 2 ,

and

P(Xn+1 = n + 2) = P(Xn+1 = n + 2 | Xn = n + 1)P(Xn = n + 1) = 1
n + 2 .

Thus, Xn+1 is uniformly distributed on {1, . . . , n + 2}. One easily deduces that M∞ is
uniformly distributed on [0, 1] (exercise).

8.2. Galton-Watson branching process. Let (Xn,i)n≥0,i≥1 be independent and
identically distributed random variables with discrete distribution P(X1,1 = k) = pk, for
k ≥ 0. We assume that p0 > 0 and p0 + p1 < 1 to avoid trivialities. We also suppose that
X1,1 ∈ L2 and put m = E(X1,1) and σ2 = Var(X1,1). We define the branching process
(Zn)n≥0 by Z0 = 1, and for n ≥ 0,

Zn+1 =
Zn∑
i=1

Xn,i.

We interpret Xn,i as the number of children of the i-th individual of the n-th generation,
and Zn as the size of the population at time n. It is easy to see (exercise) that (Zn)n≥0 is
a Markov chain with transition kernel Q(x, y) = µ∗x(y), where µ denotes the distribution
of X1,1 and µ∗x the x-times convolution of µ with itself.

Now, define, for all n ≥ 0, Wn = m−nZn. Then, (Wn)n is a martingale relative to the
filtration defined by Fn = σ(Xk,i, k < n, i ≥ 1):

E(Wn+1 | Fn) = m−(n+1) E(Zn+1 | Fn)

= m−(n+1) E
(

Zn∑
i=1

Xn,i | Fn

)

= m−(n+1) ∑
k≥1

E
(
1{Zn=k}

k∑
i=1

Xn,i | Fn

)

= m−(n+1) ∑
k≥1

1{Zn=k} E
(

k∑
i=1

Xn,i | Fn

)

= m−(n+1) ∑
k≥1

1{Zn=k} E
(

k∑
i=1

Xn,i

)
,

where we use the fact that Zn is Fn-measurable in the penultimate equality, and the
independence of Xn,i and Fn in the last one. Hence, since the random variables Xn,i have
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the same distribution, E
(∑k

i=1 Xn,i

)
= km, hence

E(Wn+1 | Fn) = m−n
∑
k≥1

1{Zn=k}k = m−nZn = Wn,

proving that (Wn)n is a martingale. Since (Wn)n is non-negative, it converges almost
surely to some finite random variable W∞. Moreover, by Fatou’s inequality, we have
E(W∞) ≤ E(W0) = 1.

A central question in branching process theory is to establish when extinction of the
population occurs. The probability of extinction is defined by

π = lim
n

P(Zn = 0).

Observe that since Zn is integer valued, Zn goes to zero if and only if there exists n such
that Zn = 0, and thus for all k ≥ n, Zk = 0. Moreover, one can see that if Zn converges,
then it is to 0 or +∞. Indeed, let j ≥ 1. Then, using the Markov property, one has

P
(

N⋂
n=k

{Xn = j}
)

= P(XN = j | XN−1 = j)P(XN−1 = j | XN−2 = j) · · ·P(Xk = j)

= (Q(j, j))N−k P(Xk = j).

Since by assumption p0 > 0, we have µ∗j(0) > 0 and thus Q(j, j) < 1. Hence,

P

⋂
n≥k

{Xn = j}

 = lim
N→∞

P
(

N⋂
n=k

{Xn = j}
)

= 0,

and we deduce that P(lim infn Xn = j) = 0. Hence, all states j ≥ 1 are visited only a
finite number of times, so Zn can not converge to j ̸= 0. We thus have:

• (Subcritical case). Let m < 1. then Zn = mnWn converges a.s. to 0. We have
extinction of the population with probability one.

• (Critical case) Let m = 1. Then Zn = Wn converges a.s. to W∞, which is finite
a.s. and E(W∞) ≤ 1. Again, we must have W∞ = 0 and we have extinction of
the population with probability one. Note that since E(Zn) = 1 for all n ≥ 1,
the convergence does not hold in L1.

• (Supercritical case) Let m > 1. We prove that Wn is bounded in L2. Indeed,

E
(
(Zn)2 | Fn−1

)
=
∑
k≥0

1{Zn−1=k} E
(( k∑

i=1
Xn,i

)2
)

=
∑
k≥0

1{Zn−1=k}
(
kσ2 + k2m2

)
= Zn−1σ

2 + (Zn−1)2m2,

hence
E
(
(Zn)2

)
= E(Zn−1)σ2 + E

(
(Zn−1)2

)
m2

and thus, since E(Zn−1) = mn−1 since Wn is a martingale, we get

E
(
(Wn)2

)
= 1

mn+1 σ2 + E
(
(Wn−1)2

)
.

Hence,

E
(
(Wn)2

)
=

n+1∑
k=0

1
mk

σ2 ≤ σ2 1
1 − 1

m

.
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So supn E ((Wn)2) < ∞, and (Wn)n converges in L2 and also in L1 to W∞.
In particular, E (W∞) = E (W0) = 1. Hence, P(W∞ > 0) > 0, and thus the
population has an exponential growth with positive probability.

8.3. Martingale proof of the Radon-Nikodym theorem. Recall that the Radon-
Nikodym theorem states that if (E, E) is a measurable space and λ and ν are two σ-finite
measures on (E, E) such that ν ≪ λ (i.e. for all A ∈ E , λ(A) = 0 ⇒ ν(A) = 0), there
exists a measurable function f : E → [0, +∞[ such that for all A ∈ E ,

ν(A) =
∫

A
fdλ.

The function f is unique λ-almost everywhere, and is called the Radon-Nikodym deriva-
tive, and is usually denoted by dν

dλ
.

We give below a proof of this theorem, using martingales, in the special case of the
probability space ([0, 1[, B([0, 1[), λ), where λ denotes Lebesgue measure, but the argument
can be generalized in a straightforward way to probability spaces (Ω, F ,P) where F is
generated by a countable collection of sets.

Recall that the dyadic filtration on B([0, 1[) is defined by,

Fn = σ

([
k

2n
,
k + 1

2n

[
, k = 0, 1, . . . , 2n − 1

)
, n ≥ 0.

Let ν be another probability measure on ([0, 1[, B([0, 1[) which is absolutely continuous
with respect to λ. Define (fn)n≥0 by

fn(ω) =
2n−1∑
k=0

2nν

([
k

2n
,
k + 1

2n

[)
1[ k

2n , k+1
2n [(ω).

Then, (fn)n≥0 is a (Fn)n≥0-martingale: we have to prove that for all A ∈ Fn,∫
fn+11Adλ =

∫
fn1Adλ.

Since Fn is finitely generated, it suffices to prove the above equality for A of the form[
i

2n , i+1
2n

[
, for some i = 0, 1, . . . , 2n − 1. Hence, writing A =

[
2i

2n+1 , 2i+1
2n+1

[
∪
[

2i+1
2n+1 , 2i+2

2n+1

[
, we

have, ∫
fn+11Adλ =

2n+1−1∑
k=0

2n+1ν

([
k

2n+1 ,
k + 1
2n+1

[) ∫
1[ k

2n+1 , k+1
2n+1 [1Adλ

= ν
([ 2i

2n+1 ,
2i + 1
2n+1

[)
+ ν

([2i + 1
2n+1 ,

2i + 2
2n+1

[)
= ν

([
i

2n
,
i + 1
2n

[)
=
∫

fn1Adλ.

Eventually, we get that for all A ∈ Fn,∫
fn+11Adλ = ν(A) =

∫
fn1Adλ.

Thus, (fn)n≥0 is a martingale and is non-negative, hence it converges a.s. to some f∞.
Moreover, we show that (fn)n≥0 is uniformly integrable. First, since ν is absolutely
continuous with respect to λ, then for all ε > 0, there exist δ > 0 such that λ(A) < δ ⇒
ν(A) < ε. Indeed, if it were not the case, there exists An such that λ(An) < 1

2n and
ν(An) > ε. By Borel-Cantelli lemma, we get λ(lim supn An) = 0, and since

ν(lim sup
n

An) ≥ lim sup
n

ν(An) ≥ ε > 0,
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this contradicts the fact that ν ≪ λ. Now, we have, {fn ≥ a} being in Fn,∫
fn1{fn≥a}dλ = ν(fn ≥ a),

and Markov inequality gives

λ(fn ≥ a) ≤
∫

fndλ

a
= 1

a
.

Hence, choosing a large enough, we get supn

∫
fn1{fn≥a}dλ < ε, hence (fn)n≥0 is uniformly

integrable. Therefore, (fn)n≥0 is a closed martingale such that

fn = E(f∞ | Fn),

where E denotes expectation with respect to λ. As such, we get that for all A ∈ Fn,

ν(A) =
∫

fn1Adλ =
∫

f∞1Adλ.

Since B([0, 1[) is generated by the filtration (Fn)n≥0, Dynkin’s π-λ theorem implies that
for all A ∈ B([0, 1[),

ν(A) =
∫

f∞1Adλ,

giving that the Radon-Nikodym derivative is f∞ = dν
dλ

.

8.4. Classical convergence theorems. Martingales allow us to relax the indepen-
dence assumption in classical theorems such as the law of large numbers and the central
limit theorem by considering them in place of sums of independent random variables.

8.4.1. The law of large numbers.

Theorem 8.1. Let X = (Xn)n≥0 be a square integrable martingale. On the set
{⟨X⟩∞ = +∞}, we have

Xn

⟨X⟩n

−→
n→∞

0, a.s.

Remark 8.1. If Sn = ε1 + · · · εn is a sum of n i.i.d. random variables, centered with
variance equal to 1, the square variation process of Sn is ⟨S⟩n = n. Hence, from the above
theorem, one recovers the strong law of large numbers under the condition of a finite
second moment.

Proof. Assume without loss of generality that X0 = 0. Define the process H by

Hn = 1
1 + ⟨X⟩n

,

for n ≥ 0. Then, H is predictable (since ⟨X⟩ is predictable) and bounded by 1 on
{⟨X⟩∞ = +∞}. Now define Y by the martingale transform Y = H · X. We are going to
show that Y is bounded in L2. We have, by definition of Y , (∆Yk)2 = H2

k(∆Xk)2, hence

E
(
(∆Yk)2

)
= E

(
H2

k E
(
(∆Xk)2 | Fk−1

))
,

since Hk is Fk−1-measurable. Now, recall the formula

⟨X⟩k =
k∑

j=1
E
(
(Xj − Xj−1)2 | Fj−1

)
.

Hence,
∆⟨X⟩k = E

(
(∆Xk)2 | Fk−1

)
,
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so we get
n∑

k=1
E
(
(∆Yk)2

)
=

n∑
k=1

E
(
H2

k∆⟨X⟩k

)
=

n∑
k=1

E
(

⟨X⟩k − ⟨X⟩k−1

(1 + ⟨X⟩k)2

)
.

Since ⟨X⟩ is non-decreasing, ⟨X⟩k−1 ≤ ⟨X⟩k, thus
⟨X⟩k − ⟨X⟩k−1

(1 + ⟨X⟩k)2 ≤ ⟨X⟩k − ⟨X⟩k−1

(1 + ⟨X⟩k)(1 + ⟨X⟩k−1)
= 1

1 + ⟨X⟩k

− 1
1 + ⟨X⟩k−1

.

Taking the sum over k, one gets
n∑

k=1
E
(
(∆Yk)2

)
≤ E

(
1 − 1

1 + ⟨X⟩n

)
≤ 1.

Recall that the increments of a square integrable martingale are orthogonal in L2. Thus,

E(Y 2
n ) =

n∑
k=1

E
(
(∆Yk)2

)
≤ 1.

Hence, Y is bounded in L2, and thus converges a.s. and in L2 by the martingale conver-
gence theorem. We conclude using Kronecker’s lemma: if (xn)n is a real sequence such
that ∑

n

xn < ∞,

then for all positive and non-decreasing sequence (bn)n such that bn → ∞,

lim
n→∞

1
bn

n∑
k=1

bkxk = 0.

We apply Kronecker’s lemma to xn = ∆Xn

1+⟨X⟩n
and b = 1 + ⟨X⟩n, giving that on {⟨X⟩∞ =

+∞},
1

1 + ⟨X⟩n

n∑
k=1

∆Xn −→
n→∞

0 a.s.

which proves the theorem. □

8.4.2. The central limit theorem.

Theorem 8.2 (Central limit theorem). Let (Xn)n≥1 be a sequence of random variables
such that: for all k ≥ 1,

• E(Xk | Fk−1) = 0;
• E(X2

k | Fk−1) = 1;
• E(|Xk|3 | Fk−1) ≤ K for some constant K > 0.

Define, (Sn)n≥0 by S0 = 0, and Sn = X1 + · · · + Xn, for n ≥ 1. Then, we have
Sn√

n

(d)−→
n→∞

N (0, 1).

Proof. Let u ∈ R. By Taylor-Lagrange formula, we have

e
iu 1√

n
Xk = 1 + iu

1√
n

Xk − u2

2n
X2

k + Rk(u),

where the remainder term satisfies |Rk(u)| ≤ |u|3
6n3/2 |Xk|3. Now, we write,

E
(

e
iu 1√

n
Sk

)
= E

(
e

iu 1√
n

Sk−1e
iu 1√

n
Xk

)
= E

(
e

iu 1√
n

Sk−1 E
(

e
iu 1√

n
Xk | Fk−1

))
,
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since Sk−1 is Fk−1-measurable. By assumption, we have

E
(

e
iu 1√

n
Xk | Fk−1

)
= 1 − u2

2n
+ E (Rk(u) | Fk−1) ,

hence, ∣∣∣∣∣E
(

e
iu 1√

n
Sk −

(
1 − u2

2n

)
e

iu 1√
n

Sk−1

)∣∣∣∣∣ ≤ |u|3

6n3/2 E(|Xk|3 | Fk−1) ≤ |u|3

6n3/2 K.

For n large enough, we have 0 ≤ 1 − u2

2n
≤ 1, hence∣∣∣∣∣∣

(
1 − u2

2n

)n−k

E
(

e
iu 1√

n
Sk

)
−
(

1 − u2

2n

)n−p+1

E
(

e
iu 1√

n
Sk−1

)∣∣∣∣∣∣ ≤ |u|3

6n3/2 K.

Writing

E
(

e
iu 1√

n
Sn

)
−
(

1 − u2

2n

)n

=
n∑

k=1

(1 − u2

2n

)n−k

E
(

e
iu 1√

n
Sk

)

−
(

1 − u2

2n

)n−p+1

E
(

e
iu 1√

n
Sk−1

) ,

and using the triangle inequality, we get∣∣∣∣∣E
(

e
iu 1√

n
Sn

)
−
(

1 − u2

2n

)n∣∣∣∣∣ ≤ |u|3

6
√

n
K.

Hence, ∣∣∣∣∣E
(

e
iu 1√

n
Sn

)
−
(

1 − u2

2n

)n∣∣∣∣∣ −→
n→∞

0,

and since
(
1 − u2

2n

)n
→ e−u2/2, we conclude using Levy’s theorem. □

8.5. Martingales and Markov chains. Let A be a finite subset of Zd. The bound-
ary of A is defined by

∂A =
{
x ∈ Zd \ A | ∃ y ∈ A, |y − x| = 1

}
,

where | · | denotes the usual L1-norm. The closure of A is defined as A = A ∪ ∂A, and A
is said to be the interior of A.

The discrete Laplacian ∆ on Zd is defined by

∆f(x) = 1
2d

d∑
i=1

(f(x + ei) + f(x − ei) − f(x)) ,

where (ei)i=1,...,d is the canonical basis. A function h on A is said to be harmonic on A if

∆h(x) = 0, for x ∈ A,

that is to say that h has the discrete mean-value property:

h(x) = 1
2d

∑
y∈Zd

|y−x|=1

h(y), for x ∈ A,
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i.e. for all x in the interior A of the domain, h(x) is the average of the function values on
the boundary of A. Now, let g be a bounded function on ∂A. Then, h is a solution of the
Dirichlet problem on A if ∆h = 0 on A,

h = g on ∂A.

Now if (Xn)n≥0 is the simple random walk on Zd, its transition kernel is given by

Qf(x) = 1
2d

d∑
i=1

(f(x + ei) + f(x − ei)) .

Hence, the discrete Laplacian ∆ corresponds to the operator ∆ = I − Q. This motivates
the following.

Let E be a countable state space and let (Xn)n≥0 be the canonical Markov chain on
E with transition probability Q, starting from x ∈ E. Recall that for a non-negative
function on E, one has

Qf(x) =
∑
y∈E

f(y)Q(x, y) = Ex (f(X1)) .

Definition 8.1. A non-negative function f : E → R+ is called harmonic if
Qf = f,

that is, for all x ∈ E, ∑
y∈E

f(y)Q(x, y) = f(x).

A non-negative function f : E → R+ is called superharmonic if
Qf ≥ f.

More generally, for a non-empty subset A ⊂ E, the function f is said to be harmonic
(resp. superharmonic) on A if for all x ∈ A, Qf(x) = f(x) (resp. Qf(x) ≥ f(x)).

A link between martingales and Markov chains can be made through harmonic func-
tions:

Proposition 8.1. Let f : E → R+. The function f is harmonic (resp. superhar-
monic) if and only if for all x ∈ E, the stochastic process (f(Xn))n≥0 is a martingale
(resp. supermartingale) under Px relative to its natural filtration.

Proof. Let f be harmonic. Hence, Qf = f , and by induction Qnf = f . Hence, since
Ex (f(Xn)) = Qnf(x) < ∞, f(Xn) is integrable for all n ≥ 0. Moreover, by the Markov
property, the conditional distribution of Xn+1 given Fn is given by the kernel Q, that is

Px(Xn+1 ∈ dy | Fn) = Q(Xn, dy),
hence:

Ex (f(Xn+1) | Fn) =
∑
y∈E

f(y)Q(Xn, y) = Qf(Xn) = f(Xn),

since f is harmonic. Hence, (f(Xn))n≥0 is a martingale.
Conversely, for all x ∈ E, the martingale property implies that

Ex (f(X1)) = Ex (f(X0)) ,

that is, Qf(x) = f(x), for all x ∈ E. □

In the same way, we have:
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Proposition 8.2. Let A ⊂ E be a non-empty subset and let
τA = inf{n ≥ 0 | Xn ∈ A}

be the first hitting time of A. Let f : E → R+. If the function f is harmonic (resp.
superharmonic) on Ac, then for all x ∈ Ac, the stopped process XτA = (Xn∧τA

)n≥0 is a
martingale (resp. a supermartingale) under Px.

Proof. We have
Ex

(
f(X(n+1)∧τA

) | Fn

)
= Ex

(
f(Xn+1)1{τA>n} | Fn

)
+ Ex

(
f(XτA

)1{τA≤n} | Fn

)
.

Since τA is a stopping time, we have {τA > n} ∈ Fn, hence,
Ex

(
f(X(n+1)∧τA

)1{τA>n} | Fn

)
= 1{τA>n} Ex (f(Xn+1) | Fn)
= 1{τA>n}Qf(Xn)
= 1{τA>n}f(Xn),

since f is harmonic on Ac and on {τA > n}, Xn ∈ Ac. For the second term, we just
remark that f(XτA

)1{τA≤n} = f(Xn∧τA
)1{τA≤n} is Fn measurable. Hence,

Ex

(
f(X(n+1)∧τA

) | Fn

)
= f(Xn)1{τA>n} + f(Xn∧τA

)1{τA≤n} = f(Xn∧τA
),

so (Xn∧τA
)n≥0 is a martingale. □

The following theorem now gives a solution of the discrete Dirichlet problem.

Theorem 8.3. Let A ⊂ E be a non-empty subset. Let g : A → R+ be a bounded
function. Suppose that the hitting time of A is finite a.s. Define the function h on E by:

h(x) = Ex(g(XτA
)), x ∈ E.

Then, h is the unique bounded function on E such that h is harmonic on Ac and coincides
with g on A.

Proof. If x ∈ A, then τA = 0 Px-a.s., hence h(x) = Ex(g(X0)) = g(x), so h and g
coincide on A. If x ∈ Ac, τA = 1 + τA ◦ θ1 a.s., where (θn)n denotes the shift operator,
hence

h(x) = Ex(g(XτA
)) = Ex(Ex(g(XτA

) ◦ θ1 | F1)) = Ex(EX1(g(XτA
))),

by the Markov property. Hence,
h(x) = Ex(h(X1)) = Qh(x),

so h is harmonic on Ac. It remains to prove the unicity. Let f be another bounded function
which is harmonic on Ac and coincide with g on A. For x ∈ A, f(x) = g(x) = h(x), so
f and h coincide on A. For x ∈ Ac, define Yn = f(Xn∧τA

), for all n ≥ 0. By the
previous proposition, Y is a martingale under Px. Since it is bounded, by the martingale
convergence theorem Yn converges Px-a.s. and in L1 to f(XτA

) = g(XτA
), since XτA

∈ A.
Hence,

f(x) = Ex(Y0) = Ex(Yn) → Ex(g(XτA
)),

by the L1-convergence. Hence, f = h on Ac. □
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