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2 DISCRETE-TIME MARTINGALES

1. Introduction

By way of introduction, we quote Joseph Leo Doob: "Martingale theory illustrates the
history of mathematical probability: the basic definitions are inspired by crude notions of
gambling, but the theory has become a sophisticated tool of modern abstract mathemat-
ics, drawing from and contributing to other fields.” [Doob, What is a Martingale?, The
American Mathematical Monthly, 78(5), (1971).]

2. Definitions
2.1. Filtrations.

DEFINITION 2.1. A sequence of random variables X = (X,,)n>0 defined on some prob-
ability space (2, F,P) is called a stochastic process.

DEFINITION 2.2. A filtration on (S, F,P) is a non-decreasing sequence of sub-o-
algebras of F:
FoCFHC---CF,C---CF
One says that (U, F, (Fn), >0, P) is a filtered probability space.

ExampLE 2.1. Let (2, F,IP) = ([0, 1], B(]0, 1[), A), where X is Lebesgue measure. The
filtration (F,,)n>0 defined by

1 i+ 1
= — —1,1=0,...,2" -1 >
Fn 0({27“ om [,z 0,..., >, n >0
is called the dyadic filtration.

If the parameter n denotes time, then F,, is interpreted as available information up to
time n.

EXAMPLE 2.2. For a stochastic process (X,,),>0, we define its natural filtration F* =
(FX) >0 by: for all n > 0,

n

‘Fi( = O-(X07X17 T JX'I’L)7
which is the smallest o-algebra such that X, ..., X,, are measurable.

DEFINITION 2.3. We say that a stochastic process X = (X,)n>0 is adapted to the
filtration (Fp)n>o0, if for alln >0, X,, is F,-measurable. We say that a stochastic process
(Xn)n>o is adapted if it is adapted to some filtration.

A stochastic process is obviously adapted to its natural filtration.

REMARK 2.1. If (F,)n>0 and (G, )n>0 are two filtrations such that G, C F, for all
n >0, and if (X,,),>0 is adapted to (G, )n>0, then (X,),>0 is adapted to (F,)n>o0-

2.2. Martingales. In the sequel, we fix a filtered probability space (2, F, (Fy)n>0, P).

DEFINITION 2.4. Let (X,,)n>0 be an adapted stochastic process such that E(|X,|) < oo,
for alln > 0. The process (X,)n>o s said to be

e o martingale: if for any n > 0,

E(Xpi1 | Fn) = Xo;
e a supermartingale: if for any n > 0,

E(Xpi1 | Fn) < Xy;
e a submartingale: if for any n > 0,

E(Xpi1 | Fn) = X,
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REMARK 2.2. An easy consequence of the definition, is that if (X,,),>0 is a martingale,

then for all m > n, one has
E(X,, | Fn) = X,.

We use induction: this is true for m = n + 1 by definition. Suppose it is true for some

m > n+ 1. Then
E(Xmt1 [ Fn) = E(E(Xpi1 | Fr) [ Fr)
by the tower property of conditional expectations, since F, C F,,. Hence, by the martin-
gale property,
E(Xm-i-l |]:n) = E(Xm | Fn) = Xn,

by induction hypothesis. Moreover, by taking the expectation, one has that the sequence
of expectations (E(X,,)),>o is constant.

An analogous statement holds for a supermartingale and a submartingale by replacing
the sign = by < and > respectively: if (X,,),>0 is a supermatingale, then

E(X | Fn) < X, forallm>n,

and E(X,,) is non-increasing, while if (X,,),>0 is a submatingale, then
E(X, | Fn) > X, forall m>n,

and E(X,,) is non-decreasing.

REMARK 2.3. If (X, ),>0 is a submartingale, then (—X,,),>0 is a supermartingale.
Thus, most of the results concerning supermartingales are immediately deduced from the
case of submartingales (and vice versa). Furthermore, (X,,),>0 is a martingale if and only
if it is both a supermartingale and a submartingale

REMARK 2.4. If one interprets the random variable X, as a gambler’s holdings at
time n, then the o-algebra F,, is the information available to the gambler up to time n,
and in particular the results of all the previous games. The martingale property

E(Xpi1 | Fn) = X,
thus reflects the fact that the mean value of the gain at time n+ 1, when the past is known
up to time n, is exactly X,: on average the player neither loses nor wins. A martingale

thus corresponds to a fair game. Similarly, a supermartingale corresponds to an unfair
game (unfair to the player), and a submartingale to a favourable game.

EXAMPLE 2.3. The random walk on Z. Let (£,),>1 be a sequence of independent
and identically distributed random variables, with Bernoulli distribution on {—1, 1} with
parameter p (p € (0,1)). Let € Z and define the random walk (X,,),>0 by Xo =  and
for n > 1,

Xn:l‘+€1+"‘+€n.
We consider the filtration (F,,),>o defined by

Fo=1{2,Q} and F,=0(Xy,...,X,), n>1
Note that it is also the natural filtration of (&,),>1 (exercise). Then,
E(Xni1 | Fn) = E(Xn + g1 | Fn) = Xn + E(ens1 | Fr) = Xo + E(enqa),

since €,4; is independent of F,. Since E(e,41) = 2p — 1, we have that (X, ),>0 is a

martingale if p = %, a supermartingale if p < %, and a submartingale if p > %

ExAMPLE 2.4. Let (Y},),>0 be a sequence of bounded i.i.d. random variables with
E(Yy) = 1. Define Z,, = [}, Ys. Then, the stochastic process (Z,)n>0 is a (F) )p>o-
martingale: for all n > 0,

E(Znir | FY) =B (Yor1Zu | FY) = Zu E(Yai1) = Zn.
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Not all martingales come from an i.i.d. sequence of random variables, as the following
example shows:

EXAMPLE 2.5 (Closed martingale). Let Y € L'(Q, F,P) and let (F,),>0 be a filtra-
tion. Define, for all n > 0,
X, =EY | F).
Then, (X,)n>0 is obviously (F,).>0-adapted, and is a martingale: for all n > 0,
E(Xn-H |-7:n> :E(E<Y‘fn+l) |]:n) :E(Y|]:n) = Xo,
where we use the tower property of conditional expectations. A martingale of this form
is said to be a closed martingale.

2.3. Martingale transforms.

PROPOSITION 2.1. Let X = (X,)n>0 be a (F)n>o-martinagle (resp. a supermartin-
gale, resp. a submartingale). Let (Gn)n>o0 be a smaller filtration (i.e. G, C F, for all
n > 0) such that X is adapted to (G,)n>0. Then X is a (G,)n>o-martinagle (resp. a
supermartingale, Tesp. a submartingale).

ProOF. It suffices to apply the tower property of conditional expectations:
since X,, is G,,-measurable. O

In particular, a (F,),>0-(super,sub)-martingale is a (super,sub)-martingale relative to
its natural filtration.

PROPOSITION 2.2. Let p: R — [0, 400[ be a convex function. If (X,)n>0 @S a martin-
gale, then (¢(X,))n>0 i a submartingale. If moreover ¢ is non-decreasing, and if (X,)n>0
is a submartingale, then (p(X,))n>0 @s a submartingale.

REMARK 2.5. In particular, if (X,),>o is a martingale, (|X,,|)n>0 and (X,"),>0 are
submartingales.! If moreover E(X?) < oo, for all n > 0, then (X?2),,5¢ is a submartingale.

Proor. This follows immediately from the conditional Jensen inequality. U

DEFINITION 2.5. A stochastic process (Hy)n>1 is called a predictable process if Hy, is
Fn_1-measurable for each n > 1.

EXAMPLE 2.6. Show that a predictable martingale X satisfies: X,, = X a.s. for all
n > 0.

The following transform is called a martingale transform of X. It can be seen as a
discrete stochastic integral of X.

PROPOSITION 2.3. Let X = (X,,)n>0 be an adapted process and (H,)n>o a bounded
predictable process. Define the process (H - X) by (H - X)o =0, and for alln > 1,

(H-X)y =Y Hy(Xi — Xi1).
k=1
Then,
(i) if (X,.) is a martingale, then ((H - X),) is a martingale;
(i) if (X,) is a supermartingale (resp. a submartingale) and H, > 0 for all n, then
((H - X),) is a supermartingale (resp. a submartingale).

'Recall that f* denotes the positive part of the function f, i.e. f*(z) = max(f(z),0), and f~ its
negative part, i.e. f~(x) = max(—f(x),0).
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PROOF. (i) Since H, is bounded, (H - X), is in L'. Since (H,) is predictable and
(X,) is adapted, (H - X),, is also adapted. Now,

E((H - X)np1 = (H - X)o | Fn) = E((Hnp1 (X1 = Xa) [ Fn)
= Hopt B (Xngr = Xa) [ Fn)

since H, .1 is F,-measurable. Hence, the conclusion follows since (X,,) is a martingale.
Item (ii) is left as an exercise. 0

REMARK 2.6. In a casino gambling game, if X, — X,,_; is the gambler’s gain in the
n-th round, one can interpret (H,), as a gambling strategy, that is H,, is the amount the
player bet in the n-th round. Hence, (H,), must be predictable: the value of H,, has to
be decided at time n — 1, before the result of X,, is known. The martingale transform
(H - X), is thus the total gain of the gambler at time n.

EXAMPLE 2.7 (St. Petersburg game). Consider the following roulette game in a casino.
They are 37 pockets in the roulette, 18 of which are red, 18 are black and one is green.
If the player bets on "red” and the balls lands in a red pocket, the gain is the double of
the bet. Otherwise, the bet is lost. The chance of winning is thus p = % < % Consider a
sequence (€,),>1 of i.i.d random variable with distribution pd; +(1—p)d_1. Then, (X,,)n>1
where X,, = ¢; +--- 4 &, is a supermartingale. If the gambler bets a random amount of
H,, at the n-th round, the total amount of profit at time n is then

k=1
The gambler adopts the following strategy: in the first round, the bet is H; = 1. If she
wins, she leaves the casino. If she loses, she doubles the stake: Hy = 2. If she wins,
she leaves the casino, otherwise she doubles again the stake, and so on. The gambling
strategy (H,),>1 is thus defined by the predictable process:

H - 0 if there is k € {1,...,n — 1} such that g, = 1,
T 2 else
:2n_11{51:—1 ..... en_1=—1}-
Since (Gy), is a supermartingale, we have E(G,) < E(G;) < 0. You can’t beat the
system...
3. Stopping times
3.1. Definition.

DEFINITION 3.1. A random wariable T: Q@ — N U {400} is called a stopping time
(with respect to the filtration (F,)n>0) if for all n > 0,

{T <n}eF,.

REMARK 3.1. Since {T'=n} ={T <n} \ {T <n—1}, T is a stopping time if and
only if for all n > 0,
{T =n} e F,.

REMARK 3.2. A stopping time is thus a random time, which can be interpreted as
a stopping rule for deciding whether to continue or stop a process on the basis of the
present information and past events, for instance playing until you go broke or you break
the bank, etc. ..

EXAMPLE 3.1. (i) If T'=n a.s., then clearly T is a stopping time.



6 DISCRETE-TIME MARTINGALES

(ii) Let (X,)n>0 be an adapted stochastic process, and consider the first time X,
reaches the borel set A:

Ty=inf{n >0| X, € A},

with the convention that inf @ = 4-oc0. It is called the hitting time of A. Then
T4 is a stopping time. Indeed,

{TA:TL} :{XO €A,X1 €A7---7Xn—1 ¢A,Xn EA}
. nﬁl{xk ¢ A} N {X, € A} € F,.

k=0

(iii) Show that 74 = sup{n > 1| X,, € A} the last passage time in A is not a stopping
time.

Recall the notations: = Ay = inf(x,y) and z V y = max(z,y).

PropPoOsSITION 3.1. If S and T are two stopping times, then SAT, SVT and S+Y
are also stopping times.

Proor. Writing
{SAT <n}={S <n}U{T <n}
and
{SVT <n}={S<n}n{T <n}
gives the result for S AT and SV T. For S+ T, we write:

{S+T<n}=J{S=ktn{T <n—-k}eF,

k<n

since F, C F,, for all £ <n. O

REMARK 3.3. In particular, if T is a stopping time, then for all n > 0, T"A n is a
bounded stopping time.

PROPOSITION 3.2. If (T})x is a sequence of stopping times, then infy T}, sup Ty,
lim infy, T}, and limsup,, T} are also stopping times.

PROOF. Exercise. dJ
PROPOSITION 3.3. Let T be a stopping time. Then,
Fr={AeF|¥n>0,AN{T =n} € F,}
is a o-algebra, called the o-algebra of T-past.
REMARK 3.4. Obviously, T is Fr-measurable.
PRrOOF. It is obvious that Q2 € Fr. If A € Frp, then for all n,
AN{T =n}={T=n}\A={T =n}\ (AN{T =n}) € F,,

hence A® € Fp. If (Ag)x is countable collection of Fr-mesurable set, then

(L}gAk) NA{T =n} :LkJ(Akﬂ{T:”}) € Fu,

hence U A, € Fr. O

PROPOSITION 3.4. Let S and T be two stopping times such that S < T. Then,
Fg C Fr.
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PROOF. Let A € Fg. Then, for all n > 0,

Am{T:n}:Am{Sgn}m{T:n}:LnJAm{S:k:}m{T:n}efn. O

DEFINITION 3.2. Let (X,)n>0 be an adapted stochastic process and T a stopping time.
If T < 00 a.s., we define the random variable Xt by
Xr(w) = Xpey(w) = Xp(w) if T(w) =n.
Note that Xr is Fpr-measurable, since
{Xr e B}n{T =n} ={X,, € B}nN{T =n} e F,
for any Borel set B.
3.2. Optional stopping theorem.

THEOREM 3.1 (Doob’s optional stopping theorem). Let X = (X,,),>0 be a martingale
(resp. a supermartingale, resp. a submartingale) and let T be a stopping time. Then
(Xpar)n>0 @s also a martingale (resp. a supermartingale, resp. a submartingale). More-
over, if S < T are two bounded stopping times, then

]E(XT | .Fs) = XS (resp. E(XT | .Fs) S Xs, resp. E(XT | fs) Z Xs)

Proor. We only deal with the case of martingales, the super and sub-martingales
cases being similar. For all n > 1, define

Hn - l{TZn}-

Since {T" > n} = {T < n —1}° € F,_1, the process (H,), is predictable. Now remark
that

Xo+(H-X) = Xo+ Y Hp(Xp—Xpm1) = Xo+ Y (X — Xim1) Lrspy =

k=1 k=1

X, T >n
XT if T'<n.

Hence,
Xonr = Xo+ (H - X)),
50 (XnaT)n>0 is @ martingale. The same argument applies if X is a supermartingale (resp.

a submartingale), since the predictable process H is non-negative.
Now suppose that T is bounded, say T' < N a.s., and let A € Fr. Then,

E(Xrla) = Y E(Xplangr—ty) = > E (E(Xn | Fi)Lanir=ry) = > B (XnTangr=s) ,
k<N k<N k<N
since AN{T =k} € Fy, for all k. Hence,

E(Xrl4) =E(Xn1la),

for all A € Fr, thus X = E(Xy | Fr) since Xr is Fr-measurable.
Now if S < T are two stopping times bounded by N, we apply the above to the
martingale (X,a7)n>0, hence

Xs =E(Xnar | Fs) = E(X7 | Fs).

REMARK 3.5. As a consequence, if S < T are two bounded stopping times, then
e if X is a martingale, then E(Xg) = E(X7);
e if X is a submartingale, then E(Xg) < E(X7).

DEFINITION 3.3. The stochastic process (Xuar)n>o @s called the stopped process, and
is denoted by XT = (XT),s0, i.e. XI' = Xpunr, for alln > 0.
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EXAMPLE 3.2. The assumption that the the stopping time is bounded in the optional
stopping theorem cannot be weakened without further assumptions on the process. In-
deed, consider the symmetric random walk (X,,),> starting at 0. Let 7} be the hitting
time of 1. By the optional stopping theorem, for all n > 0,

E(X) =E(Xy) = 0.

Since the walk is a recurrent Markov chain, we known that 7T} < oo a.s. Hence, n A T}
converges to Tj, but we cannot taking the limit in the expectation since E(Xz,) = 1.
There is no contradiction since the stopping time 7} is not bounded (as the walk is null
recurrent).

We have a partial converse to the previous theorem:

PROPOSITION 3.5. Let X = (X,,)n>0 be an integrable and adapted stochastic process.
Then X is a martingale if and only if for all bounded stopping time T, we have

E(X7) = E(Xo).

PROOF. The "only if” part follows from the optional stopping theorem. So, suppose
that X is integrable and adapted and that E(X7) = E(X,), for all bounded stopping
time. Let k& < n. It suffices to prove that for all A € F, E(X314) = E(X,14). Let
A € Fj.. Define

T - k::H_A + n]_Ac.
Then T is a obviously a bounded stopping time since A € F, C F,. Hence,
E(X7) =E(X3la) + E(X,14c) = E(Xil4) + E(X,) —E(X,14)
= E(Xo)
by assumption, and since E(X,,) = E(Xj) since n is also a stopping time, we get

E(X14) = E(X,14). 0

3.3. The gambler ruin’s problem. A gambler is playing heads or tails against the
bank. Her initial fortune is ¢ > 1 and the initial fortune of the bank is 6 > 1. We are
interested to determine the probability of ruin of the player or of the bank. Let (g;,),>1
be a sequence of i.i.d. random variables with distribution pd; + (1 —p)d_;. Define Xy = a,
and X,, =a+e¢e;+---+¢,, for n > 1. Consider the stopping times

70 =inf{n > 0| X, =0}, 7Tp=if{n>0|X,=a+b}, 7T=79ATats

First consider a fair game, i.e. p = % Then X = (X,)n>0 is a martingale, and
by Doob’s optional stopping theorem, the stopped process X7 = (Xpar)n>0 is also a
martingale, which is bounded by a + b.

Since 7 < 00 a.s., (but not bounded, as (X,,),>0 is null recurrent), we have that
Xopnr — X, as.
n—oo

Thus by the dominated convergence theorem, we get that
E (Xonr) — E(X,).

Since X7 is a martingale, we have E (X,1,) = E(X) = a, hence E (X;) = a. We deduce
that

a oy b
a+b’
The ruin probability of the gambler is thus P(7 = 7p) = P(X, = 0) = a%b (note that if
b > a, then P(X, = 0) ~ 1, so don’t play against the bank...).

P(X, =a+b) =
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Now consider an unfair game, i.e. p # % Let ¢ =1 —p, and put r = %. Then, the

process Z defined by

is a martingale. Indeed,
E (an+1 ‘-Fn) — /r.Xn E (7“5"+1) — an(Tp + Tﬁlq) _ an_

Note that 7 < 0o a.s., as either 75 or 7,44 (not both!) is a.s. finite by the law of large
numbers. Hence, since Z,,, — Z; a.s. and since Z7 is bounded, one gets using again the
dominated convergence theorem and the optional stopping theorem that

r* =R(Z) =P(Z, =0) + r"""P(Z, = a + b),
and the ruin’s probabilities are thus

re —1 rath _ pa

P(T = Tayp) = ratb _ 1 and  P(T =) = patb _1°

4. Doob’s decomposition

DEFINITION 4.1. Let X = (X,)n>0 be a stochastic process. We denote by (AX,)n>0
the process given by the increments of X :

AXg=Xy and AX,=X,—X,_1, foralln>1.
REMARK 4.1. An adapted process X = (X,,)n>0 is thus a martingale if and only if
E(AX, 41| F,) =0, foralln>1.

THEOREM 4.1 (Doob’s decomposition). Let (X,,)n>0 be a submartingale. Then, (X,)n>0
can be written

Xn = Mn + Ana
where (M,)n>0 is a martingale and (A,)n>o is a predictable non-decreasing process. This
decomposition is unique almost surely. It is called the Doob’s decomposition of (X,)n>0-

Proor. We start with the existence. Define:
My=Xo, and AM, =X, —E(X,|F,1), foralln > 1.
Obviously,
E(AM, | Foy) =0,
hence (M,,)n>0 is a martingale. Now define:
Ap=0 and AA,=E(X,|F,-1)— X,_1, foralln > 1.
Clearly (A;)n>0 is predictable. Since (X,,),>0 is a submartingale,
E(X, | Fuo1) > X1,

hence one has AA,, > 0, and A,, is non-decreasing. By construction, it is clear that

X, =M, + A,.
Now we prove the unicity a.s. Consider a second decomposition
X, =M + A,

where (M]),>o is a martingale and (A/,),>o is predictable and non-decreasing. Then,
AA, = AX, — AM'.

By taking the conditional expectation given F,_;, and using the fact that (M)),>o is a
martingale and (A!,),>o is predictable, we get that

AA =E(AX, | Fo1) = AA,.
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Hence, A, = A/, a.s. and thus M) = M, a.s. O

Recall that if (X)), is a martingale, then (X?2), is a submartingale by Jensen’s in-
equality. We make the following definition.

DEFINITION 4.2. Let (X,),>0 be a L?*-martingale. The unique predictable process
(A,)n such that (X2 — A,), is a martingale is called the square variation process of (X, )n

and is denoted by (X) = ((X)n)n-

PROPOSITION 4.1. Let (X,,)n>0 be a L*-martingale. Then, for alln > 0,

(X = B (X~ Xim)? | Fis)

E(X)n) = E(X;) — E(X).

PRrROOF. From the proof of Doob’s decomposition, one has that the square variation
process of (X,,), is given by

n

(X)n =3 (B (X2 Fier) = XP0).

k=1
On the other hand, we have:

M=

znj E((Xp = Xp-1)? [ Frcr) = DB (X2 + X7y = 2X, X5 1 | Fion)
k=1

i
I

I
M=

(]E (X,? ‘ fkfl) + X]3,1 —2Xk E<Xk | kal))

i
I

I
NE

(B (X81 Fimn) = Xi)

i
I

since (X,,), is a martingale. The first formula follows. Now taking the expectation in the
definition of (X),, gives the second one. O

EXAMPLE 4.1. We continue the example of the symmetric random walk:
Xn:51+"'+5na

where (gi)y are i.i.d. random variables with uniform distribution on {—1,1}. The process
(Xp)n>o0 is a martingale and since X — X1 = ¢, is independent of Fj_, its square
variation process is

(X)o = S EE) =

Hence, (X2 — n),>o is a martingale.
Now, (|X,|)n>0 is also a submartingale and we can apply Doob’s decomposition. Its
associated increasing predictable process is then

n

Ap = ;; (E ([ Xkl [ Frr) = [Xpal) -

Now remark that
| Xpa| +ep if Xgoq >0,
| Xi| = ¢ | Xpoa] —er i Xpq <0,
1 if X1 =0.
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Hence, since ¢y, is independent of Fj_1, and E(g;) = 0, we have

Xy if Xpq #£0,

which gives

Ap =3 Lx, =y = #{0 <k <n— 1] X, =0}
k=1
This is the local time of (X,,), at 0.

5. Martingale convergence theorems

5.1. L? convergence. We start with an easy result concerning the convergence in
L? of martingales.

Let X be a square-integrable martingale, that is X,, € L?, for all n > 0. The following
proposition states that the increments of a square-integrable martingale are orthogonal.

PROPOSITION 5.1. Let X be a square-integrable martingale, then for all n # k,

E(AX,AXy) =0.
PROOF. Suppose that n > k. Since AX;, = X, — X,_1 is Fr-measurable,
E(AX,AX | Fr) = AX E(AX, | Fx) =0,

by the martingale property. Then we take the expectation. O

Furthermore, if the martingale is bounded in L?, we have the following convergence
theorem.

THEOREM 5.1. Let X = (X,,)n>0 be a martingale, which is bounded in L?, that is

il;}gE (Xi) < +00.

Then X converges in L?.
REMARK 5.1. The L:-boundedness condition is equivalent to sup, E((X),,) < oo since
E((X),) = E(X?) — E(X?) (see Proposition 4.1).

ProoF. We have,

E(X2) =E ((Xg + i AXn>2)

— B(X2) + ki E((AX,)%),

by the orthogonal property of the increments. Hence, since sup,,> E(X?) < oo by as-
sumption, one has that the series

S E((AX,)?) < .

Moreover, for all n,p > 0,

E ((Xn+p - Xn)2) = HE:p E ((AX’f)Q) ’

k=n+1
since the increments are orthogonal. Thus, as p — oo and n — oo, we get that

lim 1im E (X, — X,)*) =0,

n—00 P—00
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hence (X,,),>0 is a Cauchy sequence in the Hilbert space L?, hence it converges in L?. [
We will now study the almost sure convergence and the convergence in LP for p > 1.

5.2. Almost sure convergence.
5.2.1. Upcrossing lemma. Let a < b. Introduce the family of stopping times:

7 =inf{n > 0| X, <a}
op = inf{n > n | X,, > b},
and for k > 2,
7, = inf{n > op_1 | X, < a}
o, = inf{n > 7| X,, > b}.
We thus have

0< M <oO<Pm<o< <O 1 <Tp<o0p<---
For n > 1, define the number of upcrossings of X accross [a, b] until time n by

Ut = sup{k > 1|0y <n} = > Liop<ny-
k>1

FIGURE 1. A stochastic process with 3 upcrossings over [a, b].

Note that by construction, for all £ > 1, X, <a <b < X,, on {0, < oo}, and that
{U* >k} = {0}, < n}, see Figure 1.

If we think of X as a stock price, a trading strategy would be to buy the stock when
its price has fallen below a and to sell it when it exceeds b. Each time the price makes an
upcrossing from a to b, we make a profit of at least b — a. The maximal profit up to time
n will thus be given by the number of such upcrossing times b — a minus the possible loss
at n. This idea is formalized in the lemma below.

LEMMA 5.1 (Doob’s upcrossing inequality). Let X = (X,)n>0 be a supermartingale.
Then
(b—a)E (Us") < E((X, —a)).

PROOF. Define the process H by
H, = Z ]1{7'1@<n§0k}

k>1

)1 ifne{n+1,...,04} for some k > 1,
|0 else.
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Then H is non-negative, bounded by 1, and predictable since:
{H, =1} = U{Tk§n—1}ﬁ{ak§n—1}ce]:n,1.
k>1
Now we claim that the martingale transform H - X satisfies
(H-X), >U%b—a)— (X, —a)".

This can be understood from the above picture. Each upcrossing of [a,b] results in a
profit of at least b — a and the term (X,, — a)~ overestimates the eventual loss due to the
possible incomplete upcrossing at the end. Formally,

(H - X)n ZHk (Xp — Xp_1)

Il
M: i

Z ]1{Tj+l<k<o } (Xk - Xk*l)

j>1

Z {TJ+1<I€<O'J} Xk Xk—l)

B
Il
—

Il
WM

g;jAn
= ey 22 (Xi = Xo)
j>1 k=7;+1
- ; (XUj B XTj) ﬂ{ajgn} + ; (Xn o XTJ') 1{0j71§n<0j}]l{‘rj<n}
I= J>

5
<o

(XUJ‘ a XT;‘) + H{TUz,b+ <n}(Xn — Xr pad )

+1

<
Il
—

Il

since {o; <n} ={U" > j} and {o;_1 <n < o;} = {U» = j —1}. Thus,
(H-X)n 2 U'(b—a) = (X, —a)",
since X,; — Xr; > b —a, and on {7e0,, <n}, X, — X; Jb >X,—a>—(X,—a)".

Since H - X is a supermartingale, we have E ((H - X), ) E((H-X)o) =0, so we get
the inequality. O

5.2.2. Almost sure convergence.

THEOREM 5.2. Let X = (X,)n>0 be a supermartingale with sup,~,E(X;) < oo.
There ezists a random variable X, with E(|Xs|) < 0o such that

X, — Xo a.s.

n—oo

PROOF. Let a < b and U2 the number of upcrossings over [a,b] of X up to time n.
By Doob’s upcrossing inequality, and using that (z — a)~ < |a| + =™, we have

(b= a)B(U3") < B((Xn —a)7) < la] + E(X;) < | +sup E(X,) < o0,

by assumption. Define
U = sup U»®.

By monotone convergence theorem, one gets that E(U%®) < oo, hence U%* < oo a.s. Now
define,
cob = {limninf X, <a<b<limsup Xn} )
Then,
0 [U% = oo}
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hence C*? is a null set. But,

C = {limiann < lim sup Xn} = U cob,
" n a,bEliQ
a<

hence P(C) = 0, and (X,,),, converges in R a.s. It remains to prove that the limit X, is
in L' which will imply that X is finite a.s. By Fatou’s lemma, one has

E(|Xx]) < limnianE(|Xn|) < supE(| X,]).
Writing
|1 X=X+ X, =X, +2X,
and since (X,), is a supermartingale E(X,,) < E(X,), we get that
supE(|X,|) < E(Xo) +2supE(X,)) < o0

by assumption. Hence X, € L', and in particular X, < 0o a.s. O

REMARK 5.2. If (X,,), is a non-negative supermartingale, then the assumption of the
theorem is automatically verified, hence a non-negative supermartingale converges almost
surely!

If (X,), is a submartingale, (—X,), is a supermartingale, so one deduces:

COROLLARY 5.1. Let X = (Xp)n>o be a submartingale with sup, -, E(X;") < ooc.
There exists a random variable X, with E(|X|) < 0o such that

X, — Xo a.s.

n—oo

The analogous statement for martingales is:

COROLLARY 5.2. Let X = (X,,)n>0 be a martingale which is non-negative or bounded
in L', i.e. sup,~oE(|X,|) < oo. There exists a random variable X, with E(|X|) < oo
such that -
X, — X& a.s.

n—oo
5.3. L? convergence, p > 1.
5.3.1. Maximal Inequalities.

LEMMA 5.2 (Doob’s maximal inequality). Let X = (X, )n>0 be a non-negative sub-
martingale and denote

X, = sup Xi, n>0.
0<k<n

For alln >0, and all X > 0, one has
AP(X; > \) <E (X, Iixgsn) < E(X).
PROOF. The second inequality is obvious (since X is non-negative). We introduce the
stopping time 7, = inf{n > 0| X,, > A}. Note that
{m <np ={X, > AL

Introduce also the bounded stopping time 7 = 7, An. Using the optional stopping theorem
applied to 7 < n, one has

E(X,) > E(X,)
=E (X, Lixion) +E (X Lixson)
> AP(X: > A) +E (X, Lixsen) -
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since on { X} > A}, 7 = 7, and thus X, > A, and on {X* < A}, 7 = n. Therefore,
AP(X; > \) SE(X,) — E (Xalxgan) = B (Xalxsy) 0

COROLLARY 5.3. Let X = (X,)n>0 be a martingale. Then, for all n > 0 and all
A>0,

A]P( sup | X,| > >\> <E (|X | L {supo<an M»}) < E[X,].

0<k<n

ProoFr. This follows immediately using Doob’s maximal inequality since if (X,),>0
is a martingale, then (|X,|)n>0 is a non-negative submartingale. O

ExAMPLE 5.1 (Kolmogorov’s inequality). The following inequality, due to Kolmogorov,
can be proved directly, but the proof becomes immediate using martingale theory. Let
(Xn)n>0 be a sequence of square-integrable independent random variables such that
E(X;) =0. Put S,, = >}_; Xi. Then, for all n > 0, and all A > 0,

P( sup |Sk| > )\) < —Var(S ).

0<k<n A2
Indeed, it suffices to apply Doob’s maximal inequality to the submartingale (S52),,>0.

PROPOSITION 5.2 (Doob LP maximal inequality). Let p > 1. Let X = (X,,)n>0 be a
non-negative submartingale such that X, € LP for all n > 0. Denote

X = sup Xi, n>0.
0<k<n

Then for alln >0, X € L?, and
% p
||Xn||p < ﬁ”Xan

PROOF. Since X is non-negative,

p<<ZXk> <(n+1 ”IZX

k=0

hence X is in L? since X,, € L? for all n > 0.
Writing #? = [ pAP~'d\ and using Fubini’s theorem, one has

E((Gr) = [ s BG 2 )

<p/ p 2E X ]1{X*<)\}> d)\

using Doob’s maximal inequality. Hence,

E((X!)) < pE [ X, / 2y ) = Lo (X, (x5
0 p—1
p * -
S (B(XD)"P (B ((X;5)7) P07
by Holder’s inequality (with conjugates p and ¢ = ]%). Dividing by (E ((X;)p))(pfl)/p
gives the result. 0
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5.3.2. LP convergence, p > 1.

THEOREM 5.3. Let p > 1. Let X = (X,,)n>0 be a martingale which is bounded in L?,
i.e. sup,soE(|X,|?) < co. Then, X converges a.s. and in LP towards a random variable
X such that

E(|Xoof") = sup E(| X, [").
n>0

PROOF. Since the martingale X is bounded in L', we already know that X converges
a.s. to some X,,. By Doob’s LP maximal inequality, we have

E (X)) < (]j’l)psupzauxm

n>0

where X = supg<;<, |Xx|. By monotone convergence, we get

p
E (X)) < <p> sup E(|X,,|?) < oo.
1) w>o0
Since | X,| < XZ for all n, by the dominated convergence theorem, we get that (X,,),
converges to X, in LP. Since z — |z|P is a convex function, by Jensen’s inequality for
conditional expectations, we have that the sequence (E(|X,[?)), is non-decreasing, hence
by monotone convergence,
E(| Xw|?) = sup E(| X, |P). O
n>0

REMARK 5.3. Note that the theorem does not hold for p = 1, and we will need the
notion of uniform integrability to obtain L! convergence. For instance, if (Xpn)n>1 is a
sequence of i.i.d. random variables with Gaussian distribution N(0, 1), define Sy = 0, and
S,=X1+---+X,, for n > 1. Hence,

M, = e* 2,

n
is non-negative (and in particular bounded in L') martingale which converges to 0 a.s.
but the convergence does not hold in L' (exercise).

>0,

6. Uniformly integrable martingales

6.1. Definition, examples. We start with the definition of uniform integrability of
a family of random variables.

DEFINITION 6.1. A family of random variables X = (X;)ier is said to be uniformly
integrable if
Aim sup E (11,201 ) = 0.

EXAMPLE 6.1. (i) A random variable X € L! is uniformly integrable by the
dominated convergence theorem. Likewise, a finite family {Xo, Xi,..., Xy} is
uniformly integrable.

(ii) If (X, )n>0 is uniformly integrable, then it is bounded in L'. Indeed, choose a > 0
large enough such that

supE (an|:H-{|Xn|2a}) S 17
and write
E(|1Xa|) = E (IXalLgx,za)) + E (| Xl Lxaicay) < 1+ 0,

Then sup,, E(]X,|) < oo. The converse is wrong as shown by the following
example.
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(iii) A non uniformly integrable example: let X, defined on the probability space
([0,1], B([0,1]), A), where A denotes Lebesgue measure, by

n ifwe(0,4)

0 else,

Xp(w) = {

that is, Xy, = nl 1). Then, for all n, E(|X,]) =1, and E(|X,|1{x,|>a}) = 1 for

n > a, so (X ) is not uniformly integrable. Moreover, it is easy to see that (X,)
converges in probability to 0, but does not converges in L.

(iv) A dominated family of random variables is easily seen to be uniformly integrable:
let (X,), such that there exists an integrable random variable Z > 0 such that
| X,| < Z for all n. Then,

sup E (1%l Lxaizay) < B (ZLiz20)) =2 0,

by the dominated convergence theorem.

(v) If (X,)n>0 is bounded in L? for some p > 1, that is sup,, E(|X,,|’) < oo, then it is
uniformly integrable. Indeed, using Holder’s inequality, and Markov inequality,
one has

E (| X Lx,2a)) < E(Xa )PP (X0 > a)' 77

< L ®(XP)M E(X)

- alfl/P

Hence, since (X,,),>0 is bounded in LP, there exists a constant M > 0, such that

sup E (IXn!]l{\Xn\za}) <

alfl/p a—00

PROPOSITION 6.1. A family of random variables (X, )n>0 s uniformly integrable if
and only if it is bounded in L' and equicontinuous: for all € > 0, there exists § > 0 such
that

P(A) < = SlipE<|Xn|1A) <e
PROOF. The "only if” part. Writing
E(|1X,/14) = E (1XalLaLx, <o) + E (1Xal LaLyx, a))
<aP(A)+E (|Xn|]1{\xn\za}) ;

for A =€), we get
supE(|X,|) <a+supE (|Xn|l{|Xn\Za}>

hence, (X,,)n>0 is bounded in L' since it is uniformly integrable. Now, let ¢ > 0. By
uniform integrability, for a large enough, one has

supE (‘Xn|]1{\Xn\2a}) <eg/2.
Choose § = £/2a. Then if P(A) < ¢, by the above inequality, we get
S
E(|X,|14) <a—+ ==
sup E(|Xa[1a) Sag- +5 =€

hence (X, ),>0 is equicontinuous.
The "if” part. Put M = sup, E(|X,,|) < co. By Markov inequality, for all n > 0,

P(|X,| > a) < —
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For ¢ > 0, let § > 0 such that P(A) < § implies sup,, E(|X,|La) < €. Then for a large
enough such that a > M/§, one has for all n > 0,

P(|X,| > a) <4,
hence, for all n > 0,
E (|Xn’]1{|Xn|Za}) <e&,

hence (X, ), is uniformly integrable. O

We have the following refinement of the dominated convergence theorem.

THEOREM 6.1. A family of random variables X = (X,)n>0 converges in L' if and
only if X is uniformly integrable and converges in probability.

PROOF. If (X,),>0 converges in L' then it converges in probability (by Markov in-
equality). Let € > 0. Choose N large enough such that for all n > N,

€

E (X, — Xn|) < 3

Since Xy, Xi,..., Xy is a finite family of random variables, it is uniformly integrable.

Hence, by equicontinuity, we can choose > 0 such that for all measurable set A such
that P(A) < n,

sup E(|Xk|ﬂ,4) <

0<k<N

DO ™

Moreover, for all n > N,
E(|X,|14) <E(|Xy|1a)+E (X, — Xn|) <e.

This proves the equicontinuity of the family (X,),>0, hence the uniform integrability.

Conversely, suppose that (X,),>o converges in probability to say X and that it is
uniformly integrable. The family (X, — X,,)n.m>0 is also uniformly integrable (this follows
easily from the equicontinuity of (X,,),). Hence, for € > 0, we can choose a large enough
such that

sup]E (|Xn — Xmlﬂ{an—XmIZa}> S E.
Hence, for all m,n > 0,

E (X, = Xol) < E (1X0 = X[ Lgx, - xi<e)) + E (X0 = Xon|Lieei 0 xoni<a})
+E (| X0 = Xon| 11X Xnla})
<e+aP(|X,— Xn| >¢)+e

The convergence in probability of (X,,), implies that it is a Cauchy sequence for the
convergence in probability:

]P’(|Xn—Xm\>5)§IP’(\Xn—X\>;)+P(|X—Xm|>;) —

7,1 —+00

Hence, we have that
lim E(|X, — X,,|) =0,

n,Mm—00

so (X,), is a Cauchy sequence in L' which is complete, hence converges in L. [l
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6.2. L' convergence. We recall the definition of a closed martingale.

DEFINITION 6.2. A martingale X = (X,,)n>0 @s said to be a closed martingale if there
exists an integrable random variable Y such that

X, =EY|F,), foralln>D0.
We now have all the ingredients to prove the following theorem.

THEOREM 6.2. Let X = (X,,)n>0 be a martingale. The following assertions are equiv-
alent:

(i) X is a closed martingale;
(ii) X is uniformly integrable;
(iii) X converges almost surely and in L.

PROOF. (i) = (i1). Let (X,), be a closed martingale: there exists Y € L', such that
X, = E(Y | F,), for all n > 0. Let € > 0. Since Y is uniformly integrable, there exists
0 > 0 such that

P(A) <0 = E([Y|1a) <e.

Now by Markov inequality,

—_

B(X,| > a) < ~ E(1X,]) < ~ E(|Y]) <.

IS

a
for a large enough. Hence, for all n > 0,

E (|XalLix,2a) < E (B(Y] Fo)Lgxza)

<E
) (E(|Y|ll{\xn\2a} !fn))
= E

(Y12 gx,201)

where we use the fact that {|X,| > a} is F,-measurable. Since P(|X,| > a) < 6, we
conclude using the uniform integrability of Y.
(i1) = (i74). Since (X,,), is uniformly integrable, it is bounded in L'. Hence, we have
already seen that (X,,) converges a.s. The convergence in L' follows by Theorem 6.1.
(ii1) = (i). Suppose that X, — X a.s. and in L'. Let n > 0 be fixed and let
A € F,. By the martingale property, for m > n, we have

E(X,,14) =E(X,14).
Since X, converges in L! to X, letting m — oo in the above equality gives,
E(Xooly) =E(X,14).
Since X, is F,-measurable, we deduce that X,, = E(X | Fp)- O

REMARK 6.1. By the previous theorem, a closed martingale X,, = E(Y | F,,) converges
a.s. and in L' to some X. Denote by

foo:U(U ]:n)

the o-algebra limit of the filtration (F,)n,>0. Then X, = E(Y|Fy). Indeed, X is
Fs-measurable as the limit of (X,,),, so it suffices to prove that for all A € F,

E(Y14) =E(X14).
But, since X, converges in L' to X, we have seen that for all n > 0, and all A € F,,,
E(X,14) =E(X,14),
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hence for all n > 0, and all A € F,,,
E(Y14) =E(X14).
But it is easy to see that
M={AcF|IEY1s) =E(X14)}
is a A-system” which contains the m-system? Un>o Fn- By Dynkin’s 7-A theorem, M
contains o (UnZO Fn) and the conclusion follows.

REMARK 6.2. Consider the symmetric random walk (X,,),>¢. Since, limsup,, X, =
+oo and lim inf,, X, = —o0, the martingale (X, ),>0 does not converge, which is consistent
with the fact that it is not uniformly integrable.

EXAMPLE 6.2 (Kolmogorov’s 0—1 law). Let (X,,),>1 be a sequence of random variables.
Define, for all n > 1,

the o-algebra generated by X,..., X,. Define also, for all n > 0,
gn - (T()(n_;'_]_7 Xn+27 .. )
The tail o-algebra T is defined as
n>0
Intuitively, the o-algebra of tail events consists of events which do not depend on the
first finitely many times of the process (X,),>1. For instance, the random variables
lim sup,, X,, and lim inf,, X,, are 7-measurable. The classical Kolmogorov’s 0—1 law states
that if (X,,),>1 is a sequence of independent random variables, then the tail o-algebra T
is trivial: for all A € T, P(A) € {0,1}. We can give an alternative proof using martingale
theory (exercise: prove it directly!).
Let A € T, and consider the closed martingale defined by

X, =E(14|F.),
for all n > 1. By the previous theorem, (X,,),>1 converges a.s. and in L' to E (14| Fx),

where Foo = 0(Up>1F,). But since obviously 7 C Fu, one has E (14 | Foo) = L4.
But A € G, for all n, so A is independent of F,, for all n, hence,

E(lalFn) =E(1La),
so we get P(A) = 14, so P(A) € {0,1}.

6.3. Optional stopping theorem for uniformly integrable martingales. We
now generalize the Doob’s optional theorem to non-necessarily bounded stopping times,
but for uniformly integrable martingale.

PROPOSITION 6.2. Let X = (X,,)n>0 be a uniformly integrable submartingale and T a
finite stopping time. Then XT = (X,ua7)n>0 08 a uniformly integrable submartingale.

PRroOF. By the optional stopping theorem applied to the bounded stopping time n AT
and to the submartingale (X7, +),, one has that E(X ! ;) < E(X,). Hence,

n

sup E(X,57) < sup (X)) < oo,

2Recall that a A-system is a collection of subsets which contains {2 and is closed under complements
of subsets in supersets and under countable increasing unions.
3Recall that a m-system is a collection of subsets closed under finite intersections.
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since (X,,) is uniformly integrable, so it is bounded in L!. Hence, by the martingale
convergence theorem (Theorem 5.2), X,,r — X7 a.s. and E(| X7|) < co. Now, write

E(|Xnnr| T x,rlza}) = E(X7|1x, 0 r2a) Lirzny) + E(Xn|1gx,150) Lirsny)
< E(|1 X7 Lireny) + E(| Xl L{x,>a})-

But one has sup, E(|X7|1{r>n3) = 0 by the dominated convergence theorem. Hence the
uniform integrability of (X, 7), follows from the uniform integrability of (X,),. O

THEOREM 6.3 (Optional stopping theorem for uniformly integrable martingales). Let
X = (Xy)n>0 be a uniformly integrable submartingale. Let S < T be two finite stopping
time. Then, we have
X <E(Xr|Fs).

Proor. Consider the two bounded stopping times S An < T A n. By the optional
stopping theorem, one has
E(XS/\TL) < E(XT/\n)

Since X7 (resp. X?) is a uniformly integrable submartingale by the previous proposition,
it converges a.s. and in L' to Xp (resp. Xg). Hence, letting n — oo in the above equality,
we get
E(Xs) < E(Xr).
Now, let A € Fs. We have to prove that
E(Xsla) <E(Xrla).

Consider the stopping time
R=S1,+4T14e.
It is indeed a stopping time since
{R=n}=({S=n}nA)U{T =n}nA%eF,
since A € Fg C Fr. Hence,
E(Xs14) = E(Xgla) =E(Xg) — E(Xglac) = E(Xg) — E(X714c),
and since R < T, we have E(Xg) < E(Xr), hence,
E(Xsla) <E(Xr) —E(X7lae) =E(Xrly),
proving that Xg¢ < E(Xr | Fs). O

7. Backwards martingales

DEFINITION 7.1. A backwards filtration is a family of o-algebras F_,, indexed by
non-positive integers —n € —N such that

i CFp CFopr1 C--CF1CFy
that is for alln € N, F_, C F_,+1. We aslo define:

Fw = m T,

ne—N
which is again a o-algebra.

Note that here, the o-algebra F,, becomes smaller and smaller as n — —oo.

DEFINITION 7.2. The stochastic process X = (X,)ne_n 1S called a backwards mar-

tingale (resp. supermartingale, submartingale), if for all n € =N, X,, is F,-measurable,
E(|X,|) < o0, and for alln < m <0,

X, =E(X, | F)  (resp. X, > E(X,, | Fn), resp. X,y <E(X,, | Fn).)
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Convergence is particularly simple for backwards martingales:

THEOREM 7.1. Let (X,,)ne_n be a backwards martingale. Then, (X,,)ne_n @s uniformly
integrable and converges a.s. and in L' as n — —oo to some X_o.. Moreover, for all
n € —N,

E(X,|F o) =X_w

PrOOF. The proof parallels that of the "forward” case. Fixed K > 0, and define, for
all0 <n< K,

Y, = X—K+n and gn = «F—K-l—na

and for n > K, we put Y,, = Xy and G,, = Fo.
Then, (Y,,)n>o is a "forward” martingale with respect to the filtration (G,),>0. By
Doob’s upcrossing inequality, we have

(b—a)E (UR") <E((Yx —a)7) < |a] + E(| Xo)),

where U2’ denotes the number of upcrossing across [a, b] of Y,,. Letting K — oo, we
find, by monotone convergence theorem, that the number U%® of upcrossing across [a, b]
of (X, )ne_n satisfies

E (U “’b) < 00,
hence is finite a.s. As in the "forward” case, this implies that (X, ),c_n converges a.s. and

Fatou’s inequality implies that X ., € L' (the details are left as an exercise). Moreover,
by the backwards martingale property, one has that for all n > 0,

X =E(Xo|F_p).

Hence, one proves that (X,,)ne_n is uniformly integrable exactly as in the proof of Thm 6.2.
The convergence in L' follows by Theorem 6.1.

Now let A € F_,. Since F_,, C JF,, for all n <0, A is also F,,-measurable, and the
martingale property gives, that for all m < n <0,

E(X,14) =E(X,14).
Hence, letting m — —oo, and using the L!-convergence, we obtain that
E(X_oola) =E(X,14),
that is, since X, is F_-measurable, X . =E(X, | F_). d

COROLLARY 7.1. Let Y € L' and (G,)n>0 a non-increasing sequence of o-algebras.
Let Goo = Np>0 Gn- Then we have,

E(Y |Gn) — E(Y|Gs), a.s. and in L'

PRrROOF. For all n > 0, define X_,, = E(Y |G,) and F_,, = G,,. Then (X_,)n>0 is a
backwards martingale relative to the backwards filtration (F_,),>0 and we can apply the
previous theorem. 0

EXAMPLE 7.1 (The strong law of large numbers). Let (X,,),>1 be a sequence of in-
dependent and identically distributed random variables, such that E(|X;|) < co. Define
So =0, and

Sy = X1+ + X,
The strong law of large numbers states that

Sn — E(X;) as.

n n—oo
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We give a new proof of the law of large numbers using backwards martingale. Define, for
allmn >0,

and
Fon= U(Sna Xn—i—la Xn+27 .- )
Then the family (F_,,),>0 is a backwards filtration, and (Y_,),>0 a backwards martingale:
We first remark that, for all 1 < k < n,
E(Xg|Fon) =E(Xi|Sn) =E(X,|Sn)-

Indeed, the first equality uses the fact that X} is independent of o(X,, 11, X;,41,...), and
the second one the fact that (Xj,S,) has the same distribution that (X, S,), for all
1 < k <n. Then, writing S,,_; = 5, — X,,, one has

1 1 1 1
E(Y—n-i-l |"r—n) = m (Sn—l | Sn) = m(sn - E(Xn | Sn)) = m (Sn - nSn)
_Oh_y
n

Hence, (Y_,)n>0 is a backwards martingale, so it is uniformly integrable, and converges
almost surely to

Y oo =E(X;|F ).
Since Y_ ., is measurable relative to the tail o-algebra

T = ﬂ 0<Xn7Xn+17 e ')7
n>0

which is trivial by Kolmogorov’s zero-one law, we have that Y_., is constant a.s., so we
deduce that

E (X | F.) = E(X7).
Thus,

Sn — E(X;) as.

n mn—oo

8. Examples and applications

8.1. Pélya urns. We consider an urn containing initially 1 red ball and 1 black ball.
We draw a ball uniformly at random, put it back in the urn with an additional ball of
same color. We repeat the procedure and denotes by X,, the number of red balls at time
n. Initially, Xg = 1. At each time n, the total number of balls is n + 2. It is easy to see
that the process (X,,),>0 is a (inhomogeneous) Markov chain with transition probabilities:

k
n+2

P(Xpr = k| Xp=k)=1—
k

n+2

Hence, the conditional distribution of X, ,; given X, is given by the Markov kernel
v(Xy, dy):

X X
X, dy)=(1-— L ) —r5 )
d v) ( n+2> X"+n+2 Kntl

Thus, computing the conditional expectation of X, given F, gives

X, X, n+3
E(X, n) =E(Xp | Xn) =11— Xn X,+1)= X
(s | Fa) = B | X0) = (1= =255 ) X+ 225 + 1) = 2
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Xn

Hence, if we denote by M, the proportion of red balls at time n, i.e. M, = 5

we get
E(Mpi1 | Fn) = M,

that is (M,,),>0 is a martingale. Since it is positive and bounded by 1, (M,,),>0 converges
a.s. and in every LP p > 1, to some M, € [0, 1] a.s. We now compute the distribution of
M. First, the distribution of X, is uniform on {1,...,n+ 1}: this is done by induction.
It is obvious for n = 0. Suppose it is true at time n. Then, forall k =1,...,n+ 1,

P(Xpi1 = k) =P(Xps1 = k| Xp =k)P(Xp = k) + P(Xpp1 = k| Xp =k — D)P(X, =k — 1)

k 1 k—1 1
— 1= =+
n+2/n+1 n+2n+1

B 1
Cn+2
and
1
P(X,i1=n+2)=P(X,s1=n+2|X,=n+1)P(X,=n+1) = —a
n

Thus, X, 41 is uniformly distributed on {1,...,n + 2}. One easily deduces that M, is
uniformly distributed on [0, 1] (exercise).

8.2. Galton-Watson branching process. Let (X, ;),>0,>1 be independent and
identically distributed random variables with discrete distribution P(X;; = k) = py, for
k > 0. We assume that pg > 0 and pg+ p; < 1 to avoid trivialities. We also suppose that
X1 € L? and put m = E(X;;) and 0? = Var(X; ;). We define the branching process
(Zyn)n>0 by Zp =1, and for n > 0,

Zn
ZnJrl = Z Xn,i-
i=1

We interpret X, ; as the number of children of the i-th individual of the n-th generation,
and Z,, as the size of the population at time n. It is easy to see (exercise) that (Z,),>0 is
a Markov chain with transition kernel Q(x,y) = u**(y), where 1 denotes the distribution
of X ; and p** the z-times convolution of ;1 with itself.

Now, define, for all n > 0, W,, = m™"Z,. Then, (W,), is a martingale relative to the
filtration defined by F,, = o0( Xy, k < n,i > 1):

E(Wn+1 |fn) = m—(n+1) ]E(Zn—H |fn)
Zn
= m_(n+1) E (Z Xn,i | Fn>
=1
k
— (0 +1D) Z E <1{an} ZXn,i | ]:n>
=1

k>1 =

k
_ m—(n+1) Z ]]-{Zn=k} E (Z Xn,i | fn)

k>1 =1
k

— (1) Z liz,-n E (Z Xn,i) ’
k>1 i=1

where we use the fact that Z, is JF,-measurable in the penultimate equality, and the
independence of X, ; and F,, in the last one. Hence, since the random variables X, ; have
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the same distribution, £ ( le Xm-) = km, hence

E(WH_H |./—"n> =m" Z H{Zn:k}k: =m "Z,=W,,
k>1
proving that (W,,), is a martingale. Since (W,), is non-negative, it converges almost
surely to some finite random variable W. Moreover, by Fatou’s inequality, we have
E(Wa) < E(Wo) = 1.
A central question in branching process theory is to establish when extinction of the
population occurs. The probability of extinction is defined by

7 =limP(Z, = 0).

Observe that since Z,, is integer valued, Z,, goes to zero if and only if there exists n such
that Z,, = 0, and thus for all k£ > n, Z, = 0. Moreover, one can see that if Z,, converges,
then it is to 0 or +00. Indeed, let 5 > 1. Then, using the Markov property, one has

P <Ok{Xn = J}> =PXn=7|Xn1 =) PXnor = | Xna =J) - - P(Xi = J)

= (Q(j, /) P(X, = j).

Since by assumption pg > 0, we have p*/(0) > 0 and thus Q(j,7) < 1. Hence,
N
P {X.=3}| = lim ]P(ﬂ{Xn:j}) =0,
n>k N—ro0 n==k

and we deduce that P(liminf, X,, = j) = 0. Hence, all states j > 1 are visited only a
finite number of times, so Z,, can not converge to j # 0. We thus have:

e (Subcritical case). Let m < 1. then Z, = m"W,, converges a.s. to 0. We have
extinction of the population with probability one.

e (Critical case) Let m = 1. Then Z, = W,, converges a.s. to W, which is finite
a.s. and E(W,) < 1. Again, we must have W, = 0 and we have extinction of
the population with probability one. Note that since E(Z,) = 1 for all n > 1,
the convergence does not hold in L.

e (Supercritical case) Let m > 1. We prove that W,, is bounded in L?. Indeed,

B (12 1) = E 1B (S 00) )

k>0
— Z IL{Zn_lzk} (k}0'2 + kag)
k>0

- n—la2 + (Zn—1)2m27

hence
E((Z0)?) = E(Zu-1)0” + E ((Za-1)?) m?

n

and thus, since E(Z,_1) = m"! since W, is a martingale, we get

B () = s + B (Wo)?).

Hence,
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So sup, E ((W,)?) < oo, and (WW,), converges in L? and also in L' to W.
In particular, E (W) = E (Wy) = 1. Hence, P(W, > 0) > 0, and thus the
population has an exponential growth with positive probability.

8.3. Martingale proof of the Radon-Nikodym theorem. Recall that the Radon-
Nikodym theorem states that if (F, ) is a measurable space and A and v are two o-finite
measures on (£, ) such that v < A (i.e. forall A € & AA) =0 = v(A) = 0), there
exists a measurable function f: E — [0, 400 such that for all A € &,

V(A) = /A fdA.

The function f is unique A-almost everywhere, and is called the Radon-Nikodym deriva-
tive, and is usually denoted by %\.

We give below a proof of this theorem, using martingales, in the special case of the
probability space ([0, 1[, B([0, 1]), A), where A denotes Lebesgue measure, but the argument
can be generalized in a straightforward way to probability spaces (€2, F,P) where F is
generated by a countable collection of sets.

Recall that the dyadic filtration on B([0, 1[) is defined by,

1
fnza<[;,k2—:[,k:071,...,2”—1>, n > 0.

Let v be another probability measure on ([0, 1[, B([0, 1[) which is absolutely continuous
with respect to A. Define (f,,)n>0 by

2= [k k+1
fulw) = 3 2 ([2 QD Lk s ((@).
Then, (fn)n>0 is a (Fp)n>o-martingale: we have to prove that for all A € F,,
[ fuatadd = [ fu1adn

Since F, is finitely generated, it suffices to prove the above equality for A of the form

{2%, Z;—nl [, for some 7+ = 0,1,...,2" — 1. Hence, writing A = [ﬁil, giﬂ [ U [giﬂ, g;ﬁ [, we
have,
antl_q
ko k+1
o n+1
/f"“]lf‘dA - ,;) S ([2%1’ on+1 D /1[2&725#1 [Lad
2t 2i+1

204+1 20+ 2
on+1 ’ on+1 |:)

= U <
([ 1 o1+1
= U —,
2n’ 2
_ / £ 4dN.
Eventually, we get that for all A € F,,,

[ funtadh = () = [ fuladr

Thus, (fn)n>0 is a martingale and is non-negative, hence it converges a.s. to some fu..
Moreover, we show that (f,)n,>o is uniformly integrable. First, since v is absolutely
continuous with respect to A, then for all € > 0, there exist 6 > 0 such that \(A) < § =
v(A) < e. Indeed, if it were not the case, there exists A, such that A(4,) < ;; and
v(A,) > e. By Borel-Cantelli lemma, we get A(limsup,, A,) = 0, and since

)+

on+1 ’ on+1

)

v(limsup A,,) > limsuprv(A,) > ¢ >0,
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this contradicts the fact that v < A\. Now, we have, {f, > a} being in F,,

/fnﬂ{fnza}d/\ = V(fn > a)a
and Markov inequality gives

Ay > a)< I L
a a

Hence, choosing a large enough, we get sup,, [ fr1{f,>01d\ < €, hence (f,,)n>0 is uniformly
integrable. Therefore, (f,)n>0 is a closed martingale such that

fn = E(foo ’fn)a
where E denotes expectation with respect to A\. As such, we get that for all A € F,,,

V(A) = / Folad) = / fooTad.

Since B(]0, 1[) is generated by the filtration (F,),>0, Dynkin’s 7-\ theorem implies that
for all A € B(]0, 1]),

v(A) = /foo]lAd)\,
giving that the Radon-Nikodym derivative is f,, = g—;.

8.4. Classical convergence theorems. Martingales allow us to relax the indepen-
dence assumption in classical theorems such as the law of large numbers and the central
limit theorem by considering them in place of sums of independent random variables.

8.4.1. The law of large numbers.

THEOREM 8.1. Let X = (X, )n>0 be a square integrable martingale. On the set
{{(X) e = 00}, we have

n

0
<X>n7§>o )

a.s.

REMARK 8.1. If S,, = &1+ ---¢, is a sum of n i.i.d. random variables, centered with
variance equal to 1, the square variation process of S,, is (S),, = n. Hence, from the above
theorem, one recovers the strong law of large numbers under the condition of a finite
second moment.

PrROOF. Assume without loss of generality that Xy = 0. Define the process H by
1
Hn I
1+ (X)n

for n > 0. Then, H is predictable (since (X) is predictable) and bounded by 1 on
{{X)oo = +00}. Now define Y by the martingale transform Y = H - X. We are going to
show that Y is bounded in L?. We have, by definition of Y, (AY})? = H?(AX})?, hence

E ((AY:)?) = E (HPE ((AXi)?| Fin))
since Hj, is Fi_1-measurable. Now, recall the formula
(XD = Y E (X = X;m1)° | Fja)
j=1

Hence,

A(X), =E ((AXk)2 | -kal) ;
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so we get

I;]E(AYk ?) = ZE(H2 i) = ZE<<(1>:<)<(>>)’“ )
Since (X) is non-decreasing, (X)x—1 < (X)y, thus
(X = (Xr o X =(Xen 1 1

I+ X2~ A+ X))+ (X)e1) T+ (X) 1T+ (Xt

Taking the sum over k, one gets

" 1
E((AY;)?) <E (1 - ) <1.
() 0,
Recall that the increments of a square integrable martingale are orthogonal in L?. Thus,
E(Y;?) =Y E((AY)?) < 1.
k=1

Hence, Y is bounded in L?, and thus converges a.s. and in L? by the martingale conver-
gence theorem. We conclude using Kronecker’s lemma: if (z,), is a real sequence such

that
>z, < o0,

then for all positive and non-decreasing sequence (by,),, such that b, — oo,

lim 7Zbkxk =0.

n—00
n k=1

We apply Kronecker’s lemma to x, = —2%2— and b = 1 4 (X),,, giving that on {(X)s =

T+ (X )
+oo},

P ——— AX, — 0 as.

which proves the theorem. 0
8.4.2. The central limit theorem.
THEOREM 8.2 (Central limit theorem). Let (X,,),>1 be a sequence of random variables

such that: for all k > 1,
[ ] E(Xk | -Fk:—l) = 0,’
L] E(X]3|fk_1) == 1,‘
o E(|Xi|?| Fio1) < K for some constant K > 0.
Define, (Sn)n>0 by So =0, and S,, = X1+ -+ X,,, forn > 1. Then, we have

Shn d)
\/ﬁ n—0o N(O 1>

Proor. Let u € R. By Taylor-Lagrange formula, we have

1 2
_1+ZU\/—Xk 2nX13+Rk(U)7

where the remainder term satisfies ]Rk(u)] < 6n3 75 \Xk|3 Now, we write,
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since Si_1 is Fr_1-measurable. By assumption, we have

2

iu—— u
E (6 L X, |]_-k_1) —1- > + E (Ri(u) | Fi-1)

hence,

-

2 3 ’
iu-L S, u u—=Sk_1 |'LL| 3 F ‘U|
‘E <e T <1 N 271) o >| < G BUXAFim) < s K-

For n large enough, we have 0 <1 — % <1, hence

u2 n—=k g U2 n—p+1 g |U,|3
- ) R “‘wﬂ)- I E(’“ﬁ“>< K.
( 2n> (e < 2n> ¢ ~ 6n3/2

and using the triangle inequality, we get

. 1 2 n 3
E(ewﬁs”> A N U

Hence,
oy 2\ "
2n n—00
and since (1 — %)n — e7**/2_ we conclude using Levy’s theorem. 0

8.5. Martingales and Markov chains. Let A be a finite subset of Z¢. The bound-
ary of A is defined by

8A:{x€Zd\A|EIy€A,|y—x|:1},

where | - | denotes the usual L'-norm. The closure of A is defined as A = AUJA, and A
is said to be the interior of A.
The discrete Laplacian A on Z is defined by

Af(x) =

S > (fla+e) + fla—e) = f(x).

2d ¢

i=1

4 is the canonical basis. A function h on A is said to be harmonic on A if

Ah(z) =0, forxe A,

where (€;);=1

.....

that is to say that h has the discrete mean-value property:

h(z)=— > h(y), forze A,
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i.e. for all x in the interior A of the domain, h(z) is the average of the function values on
the boundary of A. Now, let g be a bounded function on 0A. Then, h is a solution of the
Dirichlet problem on A if
Ah =0 on A,
h=g on JA.
Now if (X,,)n>0 is the simple random walk on Z%, its transition kernel is given by
1 d
= ﬁZ(f(iC‘i‘ei)*'f(x—@i))-

i=1

Qf(x)

Hence, the discrete Laplacian A corresponds to the operator A = I — (). This motivates
the following.

Let E be a countable state space and let (X,,),>0 be the canonical Markov chain on
E with transition probability @, starting from = € E. Recall that for a non-negative
function on FE, one has

Qf(z) = f(y)Q(z,y) = E; (f(X1)).

yer

DEFINITION 8.1. A non-negative function f: E — Ry is called harmonic if

Qf =1,
that is, for all x € F,

S fW)Q(z,y) = f(x).

yeE
A non-negative function f: E — R, is called superharmonic if

Qf =1
More generally, for a non-empty subset A C E, the function f is said to be harmonic

(resp. superharmonic) on A if for all x € A, Qf(x) = f(x) (resp. Qf(z) > f(z)).

A link between martingales and Markov chains can be made through harmonic func-
tions:

PROPOSITION 8.1. Let f: E — Ry. The function f is harmonic (resp. superhar-
monic) if and only if for all x € E, the stochastic process (f(Xy,))n>o0 @s a martingale
(resp. supermartingale) under P, relative to its natural filtration.

PRroOOF. Let f be harmonic. Hence, Qf = f, and by induction Q" f = f. Hence, since
E. (f(X,) = Q"f(x) < oo, f(X,) is integrable for all n > 0. Moreover, by the Markov
property, the conditional distribution of X, given F,, is given by the kernel (), that is

]P)x(Xn+1 S dy ’ Fn) = Q(Xm dy)a

hence:

Es (f(Xns1) [ Fa) = D FH)Q(Xn,y) = QF(Xa) = f(Xa),

yeE

since f is harmonic. Hence, (f(X,))n>0 is a martingale.
Conversely, for all x € E, the martingale property implies that

E, (f(X1)) = E, (f(Xo)),
that is, Qf(z) = f(x), for all z € E. d

In the same way, we have:
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PROPOSITION 8.2. Let A C E be a non-empty subset and let
T4 = inf{n > 0] X, € A}

be the first hitting time of A. Let f: E — Ry. If the function [ is harmonic (resp.
superharmonic) on A°, then for all x € A°, the stopped process X™ = (Xpary)n>0 S @
martingale (resp. a supermartingale) under P,.

Proor. We have
E, (f(Xinnra) | Fn) = Bo (f(Xns1) Loy | Fn) + B (f(Xr) Lirycny | Fa) -

Since T4 is a stopping time, we have {T4 > n} € F,, hence,

Eoc (f(X(nJrl)/\TA)IL{TA>n} ’Fn> = ]l{‘rA>n} E:c (f(Xn-i-l) |‘Fn)
= ]l{‘rA>n}Qf(Xn)
- ]]-{TA>7’l}f(XTL>7

since f is harmonic on A¢ and on {74 > n}, X,, € A° For the second term, we just
remark that f(X;, )1 <ny = [(Xnara)Liri<ny is F, measurable. Hence,

Ea: (f(X(n-I—l)/\TA) |-Fn) = f(Xn)l{TA>TL} + f(XnATA)H{TASn} - f(XTL/\TA)7
50 (Xpary)n>0 is a martingale. O
The following theorem now gives a solution of the discrete Dirichlet problem.

THEOREM 8.3. Let A C E be a non-empty subset. Let g: A — R, be a bounded
function. Suppose that the hitting time of A is finite a.s. Define the function h on E by:
h(z) =E,(9(X.,)), =€kFE.

Then, h is the unique bounded function on E such that h is harmonic on A° and coincides
with g on A.

PrOOF. If x € A, then 74 = 0 P,-a.s., hence h(z)
coincide on A. If x € A°, 74 = 1 4+ 74 0 07 a.s., where
hence

E.(9(Xo)) = g(x), so h and g
0,,)n denotes the shift operator,

.

h(z) = Eo(g(X7,)) = B (Ba(g(Xr,) 0 01| F1)) = Eo(Ex, (9(X7,))),
by the Markov property. Hence,

h(z) = E,(h(X1)) = Qh(x),
so h is harmonic on A°. It remains to prove the unicity. Let f be another bounded function
which is harmonic on A¢ and coincide with g on A. For = € A, f(z) = g(x) = h(z), so
f and h coincide on A. For x € A°, define Y,, = f(Xunr,), for all n > 0. By the
previous proposition, Y is a martingale under PP,. Since it is bounded, by the martingale
convergence theorem Y, converges P,-a.s. and in L! to f(X,,) = g(X,,), since X,, € A.
Hence,
f(x) = E.(Yo) = Eo(Vy,) = Ea(9(X7,)),

by the L'-convergence. Hence, f = h on A°. O
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