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1. Introduction

It is natural to want to estimate a random variable on which we only have partial
information. The concept of conditional expectation will formalize this idea. We start
by looking at examples of discrete conditioning and conditional density before formally
introducing the notion of conditional expectation.

1.1. Conditioning by an event. Recall the well known definition of conditioning
given some event of positive probability.

Definition 1.1. Let (Ω, F ,P) be a probability space. Let B be an event with P(B) > 0.
The conditional probability of A given B is defined by

P(A | B) = P(A ∩ B)
P(B) .
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2 CONDITIONAL EXPECTATION

The map
P(· | B) : A 7→ P(A | B)

is thus a probability measure on (Ω, F). The conditional expectation given B of a non-
negative or integrable random variable X, is then defined using this conditional probability
measure:

E(X | B) =
∫

Ω
X(ω)P(dω | B) = E(X1B)

P(B) .

This is the expectation of X under the distribution P(· | B), corresponding to the average
value of X when the event B has occurred.

We want to generalize this notion by conditioning given another random variable and
even given a σ-algebra. Let us start with the example of discrete random variables.

1.2. Discrete conditioning. Let X be a discrete random variable with values in
E, i.e. E is countable. Define E ′ = {x ∈ E | P(X = x) > 0}. Let Y be another
discrete random variable. As above, define the conditional expectation of Y given the
event {X = x} by

E(Y | X = x) = E(Y 1{X=x})
P(X = x) ,

for x ∈ E ′. We now define the conditional expectation of Y given X as the random
variable defined by

E(Y | X) = φ(X),

where φ is the function defined by

φ(x) =

E(Y | X = x) if x ∈ E ′,
0 if x ∈ E \ E ′.

In other words, one has

E(Y | X) =
∑
x∈E

1{X=x} E(Y | X = x).

Note that the value 0 of φ on E \ E ′ is arbitrary since P(E \ E ′) = 0. Changing
the definition of φ on E \ E ′ would give another ”version” of the conditional expectation
which would be equal to E(Y | X) almost surely.

Example 1.1. We roll a 6 sided dice. Consider Ω = {1, . . . , 6} equipped with the
uniform distribution. Let X be the random variable defined by

X =

1, if the outcome of the dice is even,
0, if the outcome of the dice is odd.

Let Y be the random variable given by the outcome of the dice. Then

E(Y | X)(ω) =

4, if ω ∈ {2, 4, 6},
3, if ω ∈ {1, 3, 5}.

Hence, the random variable E(Y | X) takes the values 3 or 4, each with probability 1
2 .
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1.3. Conditional density. Consider a random couple (X, Y ) with joint distribution
given by the density f(X,Y ), that is for all bounded measurable function f ,

E(f(X, Y )) =
∫
R2

f(x, y)f(X,Y )(x, y)dxdy.

Let h be a bounded Borel function, we want to compute the conditional expectation of
h(Y ) given X, denoted by E(h(Y ) | X).

The marginal distribution of X is given by the density

fX(x) =
∫
R

f(X,Y )(x, y)dy.

Let g be a bounded measurable function. We write

E(h(Y )g(X)) =
∫
R2

h(y)g(x)f(X,Y )(x, y)dxdy =
∫
R

(∫
R

h(y)f(X,Y )(x, y)dy
)

g(x)dx

=
∫
R

(∫
R

h(y)f(X,Y )(x, y)
fX(x) dy

)
g(x)fX(x)1{fX>0}dx

=
∫
R

φ(x)g(x)fX(x)dx,

where the function φ is defined by

φ(x) =
∫
R

h(y)f(X,Y )(x, y)
fX(x) dy1{fX>0}.

Thus, we have
E(g(X)h(Y )) = E(g(X)φ(X)).

Now define the conditional density of Y given X = x by

fY |X=x(y) = f(X,Y )(x, y)
fX(x) 1{fX>0}(x).

Beware that it is an abuse of notation since {X = x} has measure 0. Now, we can defined
the conditional expectation of h(Y ) given X = x by

E(h(Y ) | X = x) = φ(x) =
∫
R

h(y)fY |X=x(y)dy.

The conditional expectation of h(Y ) given X is then defined as the random variable

E(h(Y ) | X) = φ(X).

Example 1.2. Let (X, Y ) be a point uniformly drawn on the square [0, 1]2, that is
(X, Y ) has uniform distribution on [0, 1]2, so X and Y are independent with uniform
distribution on [0, 1]. Let S = X + Y . We want to compute the conditional distribution
of X given S. Consider the C1-diffeomorphism Ψ defined by Ψ(x, y) = (x, x + y). Then
the change of variables formula gives that the density of (X, S) is

f(X,S)(x, s) = 1[0,1](x)1[0,1](s − x),
and the density of S is the triangular distribution given by

fS(s) =
∫
1[0,1](x)1[0,1](s − x)dx = s1[0,1](s) + (2 − s)1[1,2](s).

The conditional density of X given S = s is thus

fX|S=s(x) =


1
s
1[0,s](x) if s ∈ [0, 1],
1

2−s
1[s−1,1](x) if s ∈ [1, 2].
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Eventually, we find that the conditional distribution of the random variable X given
S = s is thus the uniform distribution on [0, s] if s ∈ [0, 1], and the uniform distribution
on [s − 1, 1] if s ∈ [1, 2].

We will give a general notion of conditional distribution at the end of this chapter,
after having introduced the notion of conditional expectation.

2. Conditional expectation

In the following, (Ω, A,P) is a probability space, and B denotes a sub-σ-algebra of A.
All random variables defined on (Ω, A,P) will take values in R, but everything can be
generalized to Rd. We say that a random variable X is B-measurable, if X is measurable
from (Ω, B) to (R, B(R)), where B(R) is the Borel σ-algebra.

2.1. Definition for L2 random variables. Let (Ω, A,P) be a probability space.
Recall that L2(Ω, A,P) is an Hilbert space for the inner product

⟨X, Y ⟩ = E(XY ) =
∫

Ω
X(ω)Y (ω)P(dω).

Let B be a sub-σ-algebra of A. The subspace L2(Ω, B,P) is also complete, hence closed
in L2(Ω, A,P). Recall the following theorem from Hilbert space theory.

Theorem 2.1 (Hilbert projection theorem). Let (H, ⟨·, ·⟩) be an Hilbert space. Let S
be a closed subspace of H. For any y ∈ H, there exists a unique p(y) ∈ S such that

||y − p(y)|| = inf
u∈S

||y − u||.

Moreover, p(y) is characterized as the unique element in S such that y−p(y) is orthogonal
to S, that is: for all u ∈ S,

⟨y − p(y), u⟩ = 0.

The map p : H → S is called the orthogonal projection onto S.
Using this theorem in our context of the Hilbert space L2(Ω, A,P), we make the

following definition.
Definition 2.1. Let Y ∈ L2(Ω, A,P). Let B be a sub-σ-algebra of A. The conditional

expectation of Y given B, denoted by
E(Y | B),

is defined as the orthogonal projection of Y onto the subspace L2(Ω, B,P). It is charac-
terized by

(i) E(Y | B) ∈ L2(Ω, B,P);
(ii) For all Z in L2(Ω, B,P), we have

E(ZY ) = E(Z E (Y | B)) .

Condition (ii) will be called the characteristic property of the conditional expectation.
Remark 2.1. The conditional expectation E(Y | B) is thus a random variable which

is B-measurable and uniquely defined modulo the equivalent relation ”almost surely”
(as an element of L2(Ω, B,P)). The random variable E(Y | B) is called a ”version” of
the conditional expectation, and any other random variable defined by the two above
conditions will be equal to E(Y | B) almost surely. As an ease of notation, we will not
always write the a.s. in properties involving the conditional expectation.

Remark 2.2. The condition expectation has thus the following interpretation: if Y
is square integrable, then E(Y | B) is the best approximation of Y (for the L2 norm) by a
B-measurable random variable.
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Remark 2.3. By a classical density argument of simple functions into L2(Ω, A,P),
the characteristic property of the conditional expectation may also be written: for all
B ∈ B,

E(1BY ) = E (1B E(Y | B)) ,

that is to say: ∫
B

Y dP =
∫

B
E(Y | B)dP .

Remark 2.4. When B = σ(X), we will write
E(Y | X)

for the conditional expectation of Y given σ(X), i.e. E(Y | σ(X)). It is thus a measurable
function of X. Indeed, any random variable Z which is σ(X)-measurable, is of the form
Z = h(X) where h is a measurable function. This is true if Z = 1A, since then A ∈ σ(X),
so by definition there exists a measurable set B such that A = X−1(B), giving that

Z = 1A = 1X−1(B) = 1B(X).
For general Z, the assertion follows using the density of simple functions into Borel func-
tions.

Proposition 2.1. Let Y ∈ L2(Ω, A,P). Then,
(i) if Y is B-measurable, then

E(Y | B) = Y ;
(ii) E (E(Y | B)) = E(Y );

(iii) E(· | B) is a linear map;
(iv) if Y ≥ 0, then E(Y | B) ≥ 0. In particular, E(· | B) is a non-decreasing map.

Proof. The first three items follow immediately from the fact the conditional expec-
tation is an orthogonal projection.

For the last item, consider the random variable Z = 1{E(Y | B)<0} (which is clearly
B-measurable). From the definition, one has

0 ≤ E(ZY ) = E (Z E(Y | B)) ≤ 0,

where the last inequality follows from the definition of Z. Hence, E
(
1{E(Y | B)<0} E(Y | B)

)
=

0. Since E(Y | B)1{E(Y | B)<0} ≤ 0, we get
E(Y | B)1{E(Y | B)<0} = 0 a.s.

which implies that E(Y | B) ≥ 0 a.s. □

2.2. Extension to non-negative random variables. We start by extending the
definition of the conditional expectation to non-negative random variables, using the
monotone convergence theorem.

Theorem-Definition 2.1. Let Y be a non-negative random variable. There exists
an almost surely unique non-negative random variable E(Y | B) such that:

(i) E(Y | B) is B-measurable;
(ii) for any B-measurable random variable Z which is non-negative,

E(ZY ) = E (Z E(Y | B)) .

The random variable E(Y | B) is called (a version of) the conditional expectation of Y
given B.
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Proof. If Y is non-negative and in L2(Ω, A,P), we define E(Y | B) using the definition
of the conditional expectation in the L2-case. Let Z be a non-negative B-measurable
random variable. We have to verify that the characteristic property of E(Y | B) still
holds for Z which is only non-negative. We introduce, for every n, the truncated random
variable

Zn = Z ∧ n = inf(Z, n).
Hence, the sequence (Zn)n is non-negative and in L2(Ω, B,P), and Zn ↗ Z a.s. Using the
monotone convergence theorem twice, one has:

E(ZY ) = lim
n

E(ZnY ) = lim
n

E (Zn E(Y | B)) = E
(

lim
n

Zn E(Y | B)
)

= E (Z E(Y | B)) .

Now assume that Y is only non-negative. We introduce for every n, Yn = Y ∧n, which
is in L2(Ω, A,P). Thus, define:

E(Y | B) = lim
n→∞

E(Yn | B),

which is well defined a.s. (possibly +∞) since (E(Y ∧ n | B))n is non-decreasing. Note
that E(Y | B) is then B-measurable as a limit of B-measurable random variables. Let Z
be a non-negative B-measurable random variable. By the monotone convergence theorem
(again twice) and the fact that the characteristic property of the conditional expectation
holds for Z non-negative, we have:

E(ZY ) = lim
n

E(ZYn) = lim
n

E (Z E(Yn | B)) = E
(

Z lim
n

E(Yn | B)
)

= E (Z E(Y | B)) .

This proves the existence. Moreover, if 0 ≤ Y ≤ Y ′ a.s., then 0 ≤ Y ∧ n ≤ Y ′ ∧ n, hence
0 ≤ E(Y ∧ n | B) ≤ E(Y ′ ∧ n | B),

as a positive operator in L2(Ω, A,P), and taking the limit we get that
0 ≤ E(Y | B) ≤ E(Y ′ | B).

Now we show the unicity a.s. Let U and V be two versions of E(Y | B). Introduce the
B-measurable set B = {U ≤ a < b ≤ V }. By the characteristic property of E(Y | B), one
has

E(1BY ) = E(1BU) = E(1BV ).
Since E(1BU) ≤ aP(B) and E(1BV ) ≥ bP(B), we get

aP(B) ≥ bP(B),
hence P(B) = 0 since a < b. By considering the union over positive rationals a and b, we
get

P(U < V ) = P

 ⋃
a,b∈Q+

{U ≤ a < b ≤ V }

 = 0.

Hence U ≥ V a.s., and by swapping the roles of U and V , we eventually get that U = V
a.s. □

2.3. Extension to L1 random variables. We now extend the definition to L1

random variables.

Theorem-Definition 2.2. Let Y ∈ L1(Ω, A,P). There exists an almost surely
unique random variable E(Y | B) such that:

(i) E(Y | B) ∈ L1(Ω, B,P);
(ii) for any B-measurable set B,

E(1BY ) = E (1B E(Y | B)) .
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More generally, for any bounded random variable Z which is B-measurable,

E(ZY ) = E (Z E(Y | B)) .

The random variable E(Y | B) is called (a version of) the conditional expectation of Y
given B.

Proof. Let Y ∈ L1(Ω, A,P) and suppose that Y ≥ 0 a.s. Then, E(Y | B) ≥ 0 a.s.
and using the characteristic property of E(Y | B) with Z = 1, one has

E (E(Y | B)) = E(Y ) < ∞

since Y ∈ L1(Ω, A,P). Hence, E(Y | B) is integrable and a.s. finite. Now if Y is not
non-negative, let Y+ and Y− be the positive and negative part of Y respectively (that is,
Y+ = max(0, Y ) and Y− = max(0, −Y )), and define

E(Y | B) = E(Y+ | B) − E(Y− | B),

which is well defined since E(Y+ | B) and E(Y− | B) are a.s. finite. Using the triangular
inequality and taking the expectation, one also gets that

E (|E(Y | B)|) ≤ E (E(Y+ | B)) + E (E(Y− | B)) = E(Y+) + E(Y−) = E (|Y |) < ∞,

hence E(Y | B) ∈ L1(Ω, B,P). Hence, for any B-measurable set B,

E(1BY ) = E(1BY+) − E(1BY−) = E(1B E(Y+ | B)) − E(1B E(Y− | B))
= E (1B E(Y+ | B) − 1B E(Y− | B))
= E (1B E(Y | B)) .

This proves the existence. For the unicity, suppose that there exists two B-measurable
random variables U and V such that

E(1BY ) = E(1BU) = E(1BV ),

for all B ∈ B. Choosing B = {U > V } which is B-measurable, one gets

E((U − V )1{U>V }) = 0,

hence U ≤ V a.s., and by symmetry U = V a.s. The last claim follows from a classical
density argument of simple functions into L∞. □

3. Properties of conditional expectations

3.1. Main properties.

Proposition 3.1. Let Y ∈ L1(Ω, A,P). Then, one has:
(i) the map E(· | B) is linear;

(ii) E (E(Y | B)) = E(Y );
(iii) |E(Y | B)| ≤ E (|Y | | B) ;
(iv) if Y is B-measurable, E(Y | B) = Y a.s.;
(v) (”pulling out what is known”) if X is a bounded B-measurable random variable,

one has
E(XY | B) = X E(Y | B), a.s.

Remark 3.1. By the first three items, the map E(· | B) is thus a bounded operator
on L1(Ω, A,P) with norm 1. Moreover, it is positive in the sense that Y ≥ 0 a.s. implies
that E(Y | B) ≥ 0 a.s.
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Proof. (i) Let Y ′ be another random variable in L1(Ω, A,P) and α some con-
stant. If Z is a bounded B-measurable random variable,

E (Z (αY + Y ′)) = αE(ZY ) + E(ZY ′)
= αE (Z E(Y | B)) + E (Z E(Y ′ | B))
= E (Z (αE(Y | B) + E(Y ′ | B))) ,

hence, since αE(Y | B) + E(Y ′ | B) is B-measurable, it is a version of the condi-
tional expectation E(αY + Y ′ | B).

(ii) Take Z = 1 is the characteristic property of E(Y | B).
(iii) As seen in the proof of the existence of E(Y | B) in the L1 case, one has

|E(Y | B)| = |E(Y+ | B) − E(Y− | B)| ≤ E(Y+ | B) + E(Y− | B) = E(|Y | | B).
(iv) If Y is B-measurable, Y is obviously a version of E(Y | B) by definition.
(v) Let Z be a bounded B-measurable random variable. Then, ZX is bounded and

B-measurable, hence
E(ZXY ) = E (ZX E(Y | B)) ,

by the characteristic property of E(Y | B). Hence, X E(Y | B) is a version of
E(XY | B), since it is obviously B-measurable.

□

The following proposition is called the tower property of conditional expectation.

Proposition 3.2 (Tower property). Let Y ∈ L1(Ω, A,P) or non-negative. Let B1
and B2 two sub-σ-algebras of A, such that B1 ⊂ B2. Then, one has:

E(Y | B1) = E (E(Y | B2) | B1) .(1)

Remark 3.2. When Y ∈ L2(Ω, A,P), this is a direct consequence of a property of
orthogonal projections: projecting onto L2(Ω, B2,P) then onto L2(Ω, B1,P) is indeed the
same that projecting directly onto L2(Ω, B1,P), since L2(Ω, B1,P) is a closed subset of
L2(Ω, B2,P). From a probabilistic point of view, it says that if we know B1 the surplus of
information provided by B2 is of no use.

P
D

A

B C

Figure 1. Three perpendicular theorem: if AB is perpendicular to a plane
P , and a straight line BC is drawn perpendicular to any straight line D in
the plane, then AC is also perpendicular to D.

Proof. Let Z be a bounded B1-measurable random variable. Then Z is also B2-
measurable since B1 ⊂ B2. Hence,

E(ZY ) = E (Z E(Y | B2)) .

Using now the definition of the conditional expectation given B1, one has
E (Z E(Y | B2)) = E (Z E (E(Y | B2) | B1)) ,
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hence
E(ZY ) = E (Z E (E(Y | B2) | B1)) ,

so by characteristic property of the conditional expectation given B1, one has E(Y | B1) =
E (E(Y | B2) | B1) a.s. □

Remark 3.3. Trivially, if B1 ⊂ B2, then E(Y | B1) is B2-measurable, hence
E (E(Y | B1) | B2) = E(Y | B1).

The next proposition asserts that independent information is irrelevant.
Proposition 3.3. Let Y ∈ L1(Ω, A,P). If Y is independent of B, then

E(Y | B) = E(Y ) a.s.
Proof. Since E(Y ) is a constant, it is B-measurable. Let B ∈ B. Then Y and 1B

are independent, hence
E(1BY ) = E(1B)E(Y ) = E (1B E(Y )) ,

which proves that E(Y ) is almost surely equal to E(Y | B). □

A more general statement is the following. For F and G two σ-algebras, we denote by
σ(F , G) the σ-algebra generated by F ∪ G, that is the smallest σ-algebra which contains
F and G1.

Proposition 3.4. Let Y be a non-negative or integrable random variable. Let F and
G two σ-algebras such that G is independent of σ(σ(Y ), F). Then

E(Y | σ(F , G)) = E(Y | F).
Proof. Note that E(Y | F) is clearly σ(F , G)-measurable. Let A be of the form

A = F ∩ G with F ∈ F and G ∈ G. Then
E(E(Y | F)1F ∩G) = E (E(Y 1F | F)1G) (since F ∈ F)

= E (E(Y 1F | F))E(1G) (since G is independent of F)
= E(Y 1F )E(1G)
= E(Y 1F ∩G) (since G is independent of σ(σ(Y ), F)).

Since σ(F , G) is generated by the π-system2

C = {F ∩ G | F ∈ F , G ∈ G},

the proposition follows by Dynkin’s π-λ theorem: the class
M = {A ∈ A | E (E(Y | σ(F , G))1A) = E (E(Y | F)1A)}

is a λ-system3 which contains the π-system C, hence contains σ(C). □

Remark 3.4. The condition of Proposition 3.3 is not sufficient for Y to be independent
of B. For instance, let Y be a standard Gaussian random variable. Let X = |Y |, and
let B = σ(X). Any σ(X)-measurable bounded random variable can be written h(X) for
some bounded measurable function h. Hence,

E(h(X)Y ) = E(h(|Y |)Y ) =
∫ +∞

−∞
h(|x|)x 1√

2π
e−x2/2dx = 0,

by symmetry. Hence, E(Y | X) = 0 = E(Y ), but X and Y are clearly not independent.
1Also denoted by F ∨ G.
2Recall that a π-system is a collection of subsets closed under finite intersection.
3Recall that a λ-system is a collection of subsets which contains Ω and is closed under complements

of subsets in supersets and under countable increasing unions.
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But we have:

Proposition 3.5. Let B1 and B2 be two sub-σ-algebras. Then, B1 and B2 are inde-
pendent if and only if

E(Y | B1) = E(Y ),
for all B2-measurable bounded random variable Y .

Proof. The ”only if” condition is just the previous proposition. To prove the suffi-
cient condition, we have to prove that for all bounded B1-measurable Z and all bounded
B2 -measurable Y , we have

E(ZY ) = E(Z)E(Y ).
But, by definition

E(ZY ) = E(Z E(Y | B1)) = E(Z)E(Y ),
by assumption. □

The following proposition is often useful for explicit computations of conditional ex-
pectations.

Proposition 3.6. Let X and Y be two random variables. Suppose that X is inde-
pendent of B and Y is B-measurable. Then, for any measurable positive function f , one
has

E(f(X, Y ) | B) = φ(Y ),
where the function φ is defined by

φ(y) = E(f(X, y)) =
∫

f(x, y)PX(dx).

Proof. Since Y is B-measurable, φ(Y ) is obviously B-measurable. We have to prove
that for any B-measurable positive Z, one has

E(Zf(X, Y )) = E(Zφ(Y )).
Since X is independent of B, it is independent of (Y, Z). The distribution of (X, Y, Z) is
thus

P(X,Y,Z) = PX ⊗P(Y,Z) .

Hence, using Fubini’s theorem,

E(Zf(X, Y )) =
∫

zf(x, y)P(X,Y,Z)(dx, dy, dz)

=
∫

zf(x, y)PX(dx)P(Y,Z)(dy, dz)

=
∫

z E (f(X, y))P(Y,Z)(dy, dz)

=
∫

zφ(y)P(Y,Z)(dy, dz)

= E(Zφ(Y )),
giving the result. □

Example 3.1. Recall that a random vector X = (X1, . . . , Xd) in Rd is called a Gauss-
ian random vector if every linear combination of its coefficients has a Gaussian distribu-
tion.

Let (X1, . . . , Xd, Y ) be a centered Gaussian random vector in Rd+1. The conditional
expectation

E(Y | X1, . . . , Xd)
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coincides with the orthogonal projection of Y onto Vect(X1, . . . , Xd). Note that in general
L2(Ω, σ(X1, . . . , Xd),P) is an infinite dimensional space while Vect(X1, . . . , Xd) is finite
dimensional, thus apart from the Gaussian case, there is no reason for this projection to
coincide with the conditional expectation. So, let

Ŷ =
d∑

i=1
λiXi

be the orthogonal projection of Y onto Vect(X1, . . . , Xd), where the λi’s are real coeffi-
cients. Then, for all i = 1, . . . , d,

Cov
(
Y − Ŷ , Xi

)
= E

(
(Y − Ŷ )Xi

)
= 0

by definition of the orthogonal projection PY . Hence, since (X1, . . . , Xd, Y − Ŷ ) is a
Gaussian vector, one has that Y − Ŷ is independent of (X1, . . . , Xd) (recall that for
Gaussian vectors, pairwise independence implies independence).

Hence,

E(Y | X1, . . . , Xd) = E(Y − Ŷ | X1, . . . , Xd) + Ŷ = E(Y − Ŷ ) + Ŷ = Ŷ ,

since Ŷ is σ(X1, . . . , Xd)-measurable, Y − Ŷ is independent of σ(X1, . . . , Xd) and the
variables are centered.

Let h be a bounded Borel function. Write
E (h(Y ) | X1, . . . , Xd) = E

(
h(Y − Ŷ + Ŷ ) | X1, . . . , Xd

)
.

Since Y − Ŷ is independent of (X1, . . . , Xd) and Ŷ is σ(X1, . . . , Xd)-measurable, we find,
using the previous proposition, that

E (h(Y ) | X1, . . . , Xd) = φ(Ŷ ),
where

φ(z) = E
(
h(Y − Ŷ + z)

)
.

Since Y − Ŷ has distribution N (0, σ2), where σ2 = E((Y − Ŷ )2), we have

φ(z) =
∫
R

h(y) 1√
2π

e−(y−z)2/2σ2
dy.

3.2. Convergence theorems. We start with a monotone convergence theorem for
conditional expectations:

Theorem 3.1 (Conditional monotone theorem). Let (Yn)n be a non-decreasing se-
quence of non-negative random variables. Then,

sup
n

E(Yn | B) = E
(

sup
n

Yn | B
)

a.s.

Proof. Since E(· | B) is a monotone map, the sequence (E(Yn | B))n is non-decreasing,
hence converges a.s. (in R). Put Y = supn Yn. Then, for any random variable Z which is
B-measurable and non-negative,

E(ZY ) = lim
n

E(ZYn) = lim
n

E (Z E(Yn | B)) = E
(

Z lim
n

E(Yn | B)
)

,

using twice the monotone convergence theorem. This gives the result as limn E(Yn | B) is
B-measurable. □

We now state a version of Fatou’s lemma for conditional expectations.
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Lemma 3.1 (Conditional Fatou’s lemma). Let (Yn)n be a sequence of non-negative
random variables. Then,

E(lim inf
n

Yn | B) ≤ lim inf
n

E(Yn | B) a.s.

Proof. The proof follows the same lines as in the classical Fatou’s lemma, and
is based on the monotone theorem for conditional expectations. Define the sequence
(Xn)n by Xn = infk≥n Yk. Then Xn is non-decreasing and goes towards supn infk≥n Yk =
lim infn Yn. By the conditional monotone theorem, one deduces that

sup
n

E(Xn | B) = E(lim inf
n

Yn | B).

On the other hand, since Xn ≤ Yk, for all k ≥ n, one has, since E(· | B) is non-decreasing,
that for all k ≥ n, E(Xn | B) ≤ E(Yk | B), hence

E(Xn | B) ≤ inf
k≥n

E(Yk | B)

Taking the supremum over n gives the lemma. □

Now we pass to the dominated convergence theorem for conditional expectations.
Theorem 3.2 (Conditional dominated convergence theorem). Let (Xn)n be a sequence

of random variables such that
(i) (Xn)n converges a.s. to some random variable X;

(ii) there exists Y ∈ L1(Ω, A,P), such that, for all n ≥ 0, |Xn| ≤ Y a.s.
Then, one has

lim
n

E(Xn | B) = E(X | B) a.s.

Proof. Its suffices to apply the conditional Fatou lemma to Zn = 2Y −|X −Xn|. □

3.3. Inequalities.
Proposition 3.7 (Conditional Jensen inequality). Let X ∈ L1(Ω, A,P) with values

in an interval I and let φ : I → R be a convex function such that φ(X) ∈ L1(Ω, A,P).
Then,

φ (E(X | B)) ≤ E(φ(X) | B).
Proof. We need the following fact from convex function theory. Let

L(φ) = {g : I → R is affine linear and g ≤ φ}.

Then L(φ) is nonempty and φ = supL(φ) g. Indeed, consider the subderivative of φ

D+φ(x) = lim
y↘ x

φ(y) − φ(x)
y − x

.

By convexity, D+φ(x) is well defined and finite for all x ∈ I̊ (D+φ(x) is the maximal
slope of a tangent at x). Hence, for all x0 ∈ R, the map

x 7→ φ(x0) + (x − x0)D+φ(x0)
is in L(φ). So let g ∈ L(φ). By linearity,

g(E(X | B) = E(g(X) | B) ≤ E(φ(X) | B).
Taking the supremum over L(φ) gives the inequality. □

Proposition 3.8 (Conditional Markov inequality). Let Y ∈ L1(Ω, A,P). Then, for
all a > 0,

P(|Y | > a | B) ≤ E(|Y | | B)
a

,

where P(|Y | > a | B) = E(1{|Y |>a} | B).
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Proof. Exercise. □

4. Conditional distributions

We have seen how to define a conditional distribution in the case of discrete random
variables and in the case of random variables having a density. We now give a general
definition of the notion of conditional distribution.

Definition 4.1. Let (E, E) and (F, F) two measurable spaces. A transition kernel,
or Markov kernel, from (E, E) to (F, F) is a map ν : E × F → [0, 1] such that:

(i) for all x ∈ E, the map ν(x, ·) is a probability measure on (F, F);
(ii) for all A ∈ F , the map ν(·, A) is E-measurable.

Proposition 4.1. Let ν be a transition kernel on E × F .
(i) If h is a positive (or bounded) measurable function on (F, F), then

x 7→
∫

F
h(y)ν(x, dy)

is a positive (or bounded) measurable function on (E, E).
(ii) If λ is a probability measure on (E, E), then

A 7→
∫

E
λ(dx)ν(x, A)

is a probability measure on (F, F).

Proof. (i) This is clear for simple functions. The statement follows by the
monotone convergence theorem.

(ii) It is easy to verify the axioms of a probability measure (exercise).
□

Definition 4.2. Let X and Y be two random variables. We define (a version of ) the
conditional distribution of Y given X as any transition kernel ν such that for any bounded
Borel function h,

E (h(Y ) | X) =
∫

h(y)ν(X, dy) a.s.

For any Borel set A, we define the conditional probability of Y ∈ A given X as
P (Y ∈ A | X) = E(1A(Y ) | X) = ν(X, A) a.s.

As seen in the introduction section, we have the following two examples:

Example 4.1. If X is a discrete random variable with values in E, such that P(X =
x) > 0 for all x ∈ E, then the transition kernel ν is

ν(x, dy) = P(Y ∈ dy | X = x) = P(Y ∈ dy, X = x)
P(X = x) .

Example 4.2. If (X, Y ) has density f(X,Y ) the conditional distribution of Y given X
is given by ν(X, dy) where the kernel ν is

ν(x, dy) = fY |X=x(y)dy.

Example 4.3. We return to the Gaussian conditioning of example 3.1. Let (X1, . . . , Xd, Y )
be a centered Gaussian random vector, and Ŷ = E(Y | X1, . . . , Xd). Recall that there ex-
ists λ1, . . . , λd ∈ R such that Ŷ = ∑d

i=1 λiXi. We have seen that, for all bounded Borel
function h,

E(h(Y ) | X1, . . . , Xd) = φ(Ŷ )



14 CONDITIONAL EXPECTATION

where
φ(z) =

∫
R

h(y) 1√
2π

e−(y−z)2/2σ2
dy,

where σ2 = E((Y − Ŷ )2). In terms of conditional distribution, it says that the conditional
distribution of Y given X1, . . . , Xd is given by the kernel ν(Ŷ , dy) where

ν(z, dy) = 1√
2πσ

e−(y−z)2/2σ2
dy.

Example 4.4. Let (Xn)n≥0 be a Markov chain on a countable state space E with
Markov kernel Q, that is for all n ≥ 0, and all x0, x1, . . . , xn+1 in E, such that P(X0 =
x0, . . . , Xn = xn) > 0,

P(Xn+1 = xn+1 | Xn = xn, . . . , X1 = x1, X0 = x0) = Q(xn, xn+1).

In other terms, one has that the conditional distribution of Xn+1 given Fn = σ(X0, X1, . . . , Xn)
is given by the Markov kernel Q(Xn, dy), that is:

E (f(Xn+1) | Fn) = E(f(Xn+1) | Xn) =
∫

f(y)Q(Xn, dy) = Qf(Xn).

The distribution of X0 is called the initial distribution of the chain. If X0 = x a.s.,
we denote by Px the conditional probability measure P(· | X0 = x). For ν a probability
measure on E, the formula Pν = ∑

x∈E ν(x)Px defines another probability measure on Ω,
which corresponds to the distribution of the chain when X0 ∼ ν.

The Markov property can now be stated as follows.

Theorem 4.1 (Markov property). Let (Xn)n≥0 be a Markov chain on E. Then, for
all non-negative or bounded measurable function f on EN, we have for all x ∈ E and all
n ≥ 0,

Ex [f(Xn, Xn+1, . . .) | Fn] = EXn [f(X0, X1, . . .)] .

Here, EXn [f(X0, X1, . . .)] denotes the function x 7→ Ex[f(X0, X1, . . .)] applied to Xn.
Thus, the Markov property says that given the past Fn, the conditional expectation of
all the future depends only on Xn. Furthermore, given {Xn = y}, (Xn+k)k≥0 is a Markov
chain with transition kernel Q starting from y.

Proof. We have to prove that for all A ∈ Fn,

Ex (f ((Xn+k)k≥0)1A) = Ex (EXn(f ((Xk)k≥0))1A) ,

and it suffices to take A of the form A = {X0 = x0, X1 = x1 . . . , Xn = xn} and the
function f of the form f = 1{y0}×{y1}×···×{yp}×E×··· for all p ≥ 0. On the one hand, we
have,

Ex(f ((Xk)k≥0)) = Ex(1{X0=y0,...,Xp=yp})
= Px(X0 = y0, . . . , Xp = yp)
= 1{y0=x}Q(y0, y1) · · · Q(yp−1, yp),

by definition of a Markov chain, which gives that

Ex (EXn(f ((Xk)k≥0))1A) = Ex

(
1{Xn=y0}1{X0=x0,X1=x1...,Xn=xn}

)
Q(y0, y1) · · · Q(yp−1, yp)

= 1{y0=xn} Px (X0 = x0, X1 = x1 . . . , Xn = xn) Q(y0, y1) · · · Q(yp−1, yp)
= 1{y0=xn}1{x0=x}Q(x0, x1) · · · Q(xn−1, xn)Q(xn, y1) · · · Q(yp−1, yp).
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On the other hand, we have
Ex (f ((Xn+k)k≥0)1A) = Ex

(
1{Xn=y0,Xn+1=y1,...,Xn+p=yp}1{X0=x0,X1=x1...,Xn=xn}

)
= 1{y0=x} Px (X0 = x0, X1 = x1 . . . , Xn = xn, Xn+1 = y1, . . . , Xn+p = yp)
= 1{y0=x}1{x0=x}Q(x0, x1) · · · Q(xn−1, xn)Q(xn, y1) · · · Q(yp−1, yp),

and the theorem follows. □

As a corollary, the Markov property implies conditional independence of (Xn+k)k≥0
and Fn given Xn:

Corollary 4.1. For all non-negative or bounded measurable function f , and for all
random variable Z which is Fn-measurable, we have

Ex (f(Xn, Xn+1, . . .)Z | Xn) = Ex(f(Xn, Xn+1, . . .) | Xn)Ex(Z | Xn).

Proof. To ease notation, denote F = f(Xn, Xn+1, . . .). Then, by the tower property
of conditional expectation and the Markov property,

Ex(FZ | Xn) = Ex(Ex(FZ | Fn) | Xn) = Ex(Ex(F | Fn)Z | Xn)
= Ex(EXn(f(X0, X1, . . .))Z | Xn)
= EXn(f(X0, X1, . . .))Ex(Z | Xn). □

In fact, one sees that the Markov property is equivalent to conditional independence
of (Xn+k)k≥0 and Fn given Xn and homogeneity:

Proposition 4.2. The process (Xn)n≥0 satisfies the Markov property if and only if
for all x ∈ E, for all random variable Z which is Fn-measurable,

Ex(f(Xn, Xn+1, . . .)Z | Xn) = EXn(f(X0, X1, . . .))Ex(Z | Xn),
for all bounded measurable function f .
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