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1. Introduction and definition

Brownian motion is a fundamental object in Probability theory. It is named after
the botanist Robert Brown, who described the following phenomenon in 1827: looking
through a microscope of pollen immersed in water, he observed that particles moved
erratically and completely at random. The stochastic process now known as Brownian
motion was formally modeled by Louis Bachelier in 1900 and by Albert Einstein in 1905.
One way to introduce it, is to consider the diffusive limit of a random walk.

So consider a random walk on Z: let (εk)k≥1 be a sequence of i.i.d. random variables
distributed according to the Bernoulli distribution 1

2δ−1 + 1
2δ+1, and define S0 = 0 a.s.

and for all n ≥ 1,
Sn = ε1 + · · · + εn.

The central limit theorem (CLT) gives us the asymptotic position of the random walk at
time n: roughly speaking, one has in distribution for large n,

Sn ≈
√

nN,

where N is a N (0, 1) random variable. We want a more precise information on the
trajectory of the walk, i.e. on the whole process (Sn ; n ≥ 0). It is thus natural to
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2 INTRODUCTION TO BROWNIAN MOTION

consider different times 0 = t0 < t1 < · · · < tk and to consider the walk at these different
times. Define

ni = ⌊nti⌋,

so that ni

n
−→
n→∞

ti. The increments

Sni
− Sni−1 = εni−1+1 + · · · + εni

for 1 ≤ i ≤ k, are thus independent. Using now the multidimensional central limit
theorem, one has (

Sni
− Sni−1√

n
; 1 ≤ i ≤ k

)
(d)−→

n→∞
(N1, . . . , Nk),

where N1, . . . , Nk are independent random variables such that
Ni ∼ N (0, ti − ti−1).

Equivalently, this can be stated as(
Sni√

n
; 1 ≤ i ≤ k

)
(d)−→

n→∞
(N1, N1 + N2, . . . , N1 + · · · + Nk).

This gives the asymptotic position of the walk for a finite number of times. It is thus
natural to consider the walk as a function of time: define

S
(n)
t := S⌊nt⌋√

n
, t ≥ 0

(or better: a linear interpolation of the above). The previous convergence is thus the
convergence of the ”finite dimensional” distribution of the (continuous time) stochastic
process (S(n)

t ; t ≥ 0): for all k, and all t1 < · · · < tk,

(S(n)
t1 , . . . , Stk

) (d)−→
n→∞

(Bt1 , . . . Btk
),

where the stochastic process (Bt ; t ≥ 0) satisfies:
• B0 = 0 a.s. ;
• for all k, for all 0 = t0 < t1 < · · · < tk, the random variables(

Bti
− Bti−1 ; 1 ≤ i ≤ k

)
are independent and such that

Bti
− Bti−1 ∼ N (0, ti − ti−1);

• t 7→ Bt is almost surely continuous (from R+ to R).
We now put the following definition:

Definition 1.1. The above process B = (Bt ; t ≥ 0) is called a standard Brownian
motion (BM for short).

Remark 1.1. • The Brownian motion is thus a stochastic process with inde-
pendent and stationary increments (like the Poisson process) and with a.s. con-
tinuous paths (unlike the Poisson process!). It can be understood as a random
walk in continuous time and is nothing more than a very long random walk.

• The a.s. continuity of paths is not obvious, and it is a non trivial fact that this
process exists! We will admit its existence in this course, a proof will be seen
next year in the stochastic program of the M2RI.

• The term standard refers to the fact that the Brownian motion starts from 0.
We can start the Brownian motion from any x ∈ R by putting Bx

t = Bt + x.
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Figure 1. A Brownian trajectory.

• The above convergence of ”finite dimensional” distributions is not sufficient in
general. One wants to consider function of the whole trajectory (S(n)

t ; t ≥ 0), so
that for instance supt∈[0,1] S

(n)
t should converge towards supt∈[0,1] Bt. One thus

needs a ”good notion” of convergence in distribution for the the whole pro-
cess (S(n)

t ; t ≥ 0), which again will be seen in the M2RI: this is the content
of Donsker’s invariance principle which states that

(S(n)
t ; t ≥ 0) −→

n→∞
(Bt ; t ≥ 0)

in distribution (to be made precise!). Note that as in the CLT, the limit object
is universal and does not depend on the law of the random variables εk.

• Thus in this course, we assume that BM exists and that no problem of measur-
ability occurs, and we are going to play a bit with this process.

Remark 1.2. Another characterization of the finite dimensional distributions of the
Brownian motion is the following. For any k, and any t1, . . . , tk, the vector (Bt1 , . . . , Btk

)
is a centered Gaussian vector with covariance given by

E(BtBs) = s ∧ t.

Indeed, assume t > s. Then
E(BtBs) = E [(Bt − Bs + Bs)Bs] = E [(Bt − Bs)Bs] + E

[
B2

s

]
= E [(Bt − Bs)]E [Bs] + E

[
B2

s

]
,

since the increments Bt − Bs and Bs are independent. Since E [(Bt − Bs)] = 0 and
E [B2

s ] = s, the claim follows.

2. Properties of the Brownian motion

In the following, B = (Bt ; t ≥ 0) denotes a standard Brownian motion. We also use
the notation (B(t) ; t ≥ 0) or (Bt)t≥0.

2.1. Markov property. First, it is easy to see that BM enjoys the Markov property:

Theorem 2.1 (Time homogeneity). For all s > 0, the process (Bt+s − Bs ; t ≥ 0) is
a Brownian motion independent of σ(Bu ; u ≤ s).

In fact, we also have the strong Markov property:

Theorem 2.2 (Strong Markov property). For any a.s. finite stopping time T , the
process (Bt+T − BT ; t ≥ 0) is a Brownian motion independent of the σ-algebra FT of
T -past events.
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Proof. In both cases, this is just a reformulation of the independence and the sta-
tionarity of the increments and for the strong Markov property that BM is a.s. continuous
(right continuity suffices as we have seen for the Poisson process). □

Proposition 2.1 (Symmetry). The process (−Bt ; t ≥ 0) is a BM.

Proof. Trivial. □

Proposition 2.2 (Scaling invariance). Let a > 0. Then the process X defined by
Xt = 1

a
Ba2t is a BM.

Proof. It is clear that X0 = 0, that the increments of X are independent and that
Xt+s − Xs = 1

a
(Ba2(t+s) − Ba2s) ∼ N (0, t − s). Moreover, the continuity of X follows from

that of B. □

Proposition 2.3 (Time inversion). Let X defined by

Xt =

0, if t = 0,
tB 1

t
, if t > 0.

Then X = (Xt ; t ≥ 0) is a Brownian motion.

Proof. Clearly, for any t1, . . . , tk, the vector (Xt1 , . . . , Xtk
) is a centered Gaussian

vector. Let us compute its covariance: assume t > s, then

E(XtXs) = tsE(B1/tB1/s) = ts
1
t

= s.

It remains to prove the continuity of the paths. For t > 0, X is clearly continuous at t by
the continuity of B, so we only have to prove the continuity at t = 0. We have that{

lim
t→0

Xt = 0
}

=
⋂

n≥1

⋃
m≥1

⋂
q∈(0, 1

m
)∩Q

{
|Xq| ≤ 1

n

}
where we use continuity of X at positive times. Since the distributions of X and B agree
at positive times (so in particular at positive rational times), one has (why?)

P

 ⋂
q∈(0, 1

m
)∩Q

{
|Xq| ≤ 1

n

} = P

 ⋂
q∈(0, 1

m
)∩Q

{
|Bq| ≤ 1

n

}  ,

hence
P
(

lim
t→0

Xt = 0
)

= P
(

lim
t→0

Bt = 0
)

= 1,

by the a.s. continuity of B.
□

Time inversion is a useful property to relate properties at infinity to properties in a
neigborhood of the origin. For instance, one has:

Proposition 2.4 (Law of large numbers).

lim
t→∞

Bt

t
= 0 a.s.

Proof. Consider the BM X defined by time inversion: Xt =

0, if t = 0,
tB 1

t
, if t > 0 . Then,

a.s.
lim
t→∞

Bt

t
= lim

t→∞

Xt

t
= lim

t→∞
B1/t = 0,

by continuity. □
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2.2. Path properties. The paths of Brownian motion are very erratic. First, we
have:

Theorem 2.3. Almost surely, Brownian motion is not monotone on any interval.

Proof. Let [a, b] be an interval, with a < b. Suppose that a.s., B is monotone on
[a, b]. Let a = a0 < a1 < · · · < an < an+1 = b be a subdivision of [a, b]. The increments
Bai+1 − Bai

, i = 0, . . . , n have thus the same sign. By independence of the increments,
and the fact that they are normally distributed, one has

P(Ba1 − Ba0 , . . . , Ban+1 − Ba0 have the same sign)
= 2P(Ba1 − Ba0 ≥ 0, . . . , Ban+1 − Ba0 ≥ 0)

= 2
n∏

i=0
P(Bai+1 − Bai

≥ 0)

= 2 1
2n+1 .

Hence,

P(B is monotone on [a, b])
= P(for all subdivision a = a0 < a1 < · · · < an < an+1 = b,

Bai+1 − Bai
, i = 0, . . . , n have the same sign)

= lim
n→∞

P(Ba1 − Ba0 , . . . , Ban+1 − Ba0 have the same sign)
= 0

Hence, taking a countable union over intervals with rational endpoints, we get that

P (∃ [a, b], with a, b ∈ Q such that B is monotone on [a, b]) = 0.

Now if there were a real interval [a, b] such that B is monotone on [a, b], it will contain
an interval with rational endpoints such that B is monotone on it, hence

P (∃ [a, b], with a, b ∈ R such that B is monotone on [a, b]) = 0,

that is, a.s., Brownian motion is not monotone on any interval. □

Hence, Brownian motion is an example of a (random) function that is continuous but
nowhere monotone. We will see that it is also nowhere differentiable, but first:

Proposition 2.5. Almost surely,

lim sup
n

Bn√
n

= +∞ and lim inf
n

Bn√
n

= −∞.

Proof. Let c > 0. By (reverse) Fatou’s lemma,

P(Bn > c
√

n infinitely often) = P(lim sup
n

{Bn > c
√

n})

≥ lim sup
n

P(Bn > c
√

n).

By the scaling property, P(Bn > c
√

n) = P(B1 > c) > 0. Now, let Xn = Bn −Bn−1. Then
the Xn’s are independent and Bn = ∑n

k=1 Xk. Thus,

lim sup
n

{Bn > c
√

n} = lim sup
n

{
n∑

k=1
Xk > c

√
n

}
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belongs to the exchangeable σ-algebra generated by (Xk)k which is trivial by Hewitt-
Savage 0–1 law (see the appendix). Thus, since

P(lim sup
n

{Bn > c
√

n}) > 0,

it must be equal to 1. Since,{
lim sup

n

Bn√
n

= +∞
}

=
⋂
c>0

{
lim sup

n

Bn√
n

> c

}
,

we get that lim supn
Bn√

n
= +∞ a.s. The analogous statement for the lim inf follows using

the fact that (−Bs)s is a BM. □

Proposition 2.6. For all t ≥ 0, almost surely, BM is not differentiable at t.

Proof. Let X be the BM defined by time inversion. Then,

lim sup
n→∞

X1/n − X0

1/n
= lim sup

n→∞
nX1/n ≥ lim sup

n→∞

√
nX1/n = lim sup

n→∞

Bn√
n

= +∞.

Hence, BM is not differentiable at t = 0. Now, for t > 0, consider the Brownian motion
W defined by Ws = Bs+t − Bt. Then, W being differentiable at s = 0 is the same that B
being differentiable at t!. Hence, for all t ≥ 0, a.s. BM is not differentiable at t. □

With more work, we can in fact exchange the ∀ t and the a.s. in the previous propo-
sition:

Theorem 2.4 (Paley, Wiener, Zygmud (1933)). Almost surely, BM is nowhere dif-
ferentiable.

Proof. Using time homogeneity, it suffices to prove that BM is not differentiable at
any t ∈ [0, 1]. Suppose that it is not the case. Hence, there exists t0 ∈ [0, 1] such that

lim sup
h→0

∣∣∣∣∣B(t0 + h) − B(t0)
h

∣∣∣∣∣ < ∞,

that is, there exists M > 0, there exists δ ∈ (0, 1) such that for all h ∈ (0, δ),

|B(t0 + h) − B(t0)| ≤ Mh

Moreover, since BM is bounded on [0, 2] by continuity, this implies that there exists M > 0
such that for all h ∈ [0, 1]

|B(t0 + h) − B(t0)| ≤ Mh.

Indeed, say that for all t ∈ [0, 2], |B(t)| ≤ M ′. Then, |B(t0 + h) − B(t0)| ≤ 2M ′. Hence,
let h ∈ [0, 1]. If h ∈ (0, δ),

|B(t0 + h) − B(t0)| ≤ Mh

and if h ∈ [δ, 1],

|B(t0 + h) − B(t0)| ≤ 2M ′

δ
δ ≤ 2M ′

δ
h

since δ ≤ h. Letting M ′′ = max(M, 2M ′

δ
), one gets that for all h ∈ [0, 1],

|B(t0 + h) − B(t0)| ≤ M ′′h.

We want to show that this event has probability 0. To that end, we are going to show
that there are no three consecutive increments that belong to that event.
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If t0 ∈
[

k−1
2n , k

2n

]
, then∣∣∣∣∣B

(
k + 1

2n

)
− B

(
k

2n

)∣∣∣∣∣ ≤
∣∣∣∣∣B
(

k + 1
2n

)
− B (t0)

∣∣∣∣∣+
∣∣∣∣∣B (t0) − B

(
k

2n

)∣∣∣∣∣
=
∣∣∣∣∣B
(

t0 + k + 1
2n

− t0

)
− B (t0)

∣∣∣∣∣+
∣∣∣∣∣B (t0) − B

(
t0 + k

2n
− t0

)∣∣∣∣∣
≤ M

(
k + 1

2n
− t0

)
+ M

(
k

2n
− t0

)

≤ 3M

2n
,

using that k
2n − t0 ≤ 1

2n . Likewise, one has∣∣∣∣∣B
(

k + 2
2n

)
− B

(
k + 1

2n

)∣∣∣∣∣ ≤ 5M

2n
and

∣∣∣∣∣B
(

k + 3
2n

)
− B

(
k + 2

2n

)∣∣∣∣∣ ≤ 7M

2n
.

Let, for all n and all k,

Ak =
⋂

j=1,2,3

{∣∣∣∣∣B
(

k + j

2n

)
− B

(
k + j − 1

2n

)∣∣∣∣∣ ≤ (2j + 1)M
2n

}
.

By independence of the increments, we have

P(Ak) =
∏

j=1,2,3
P
(∣∣∣∣∣B

(
k + j

2n

)
− B

(
k + j − 1

2n

)∣∣∣∣∣ ≤ (2j + 1)M
2n

)

≤
∏

j=1,2,3
P
(∣∣∣∣∣B

(
k + j

2n

)
− B

(
k + j − 1

2n

)∣∣∣∣∣ ≤ 7M

2n

)
.

The trick now is to used Brownian scaling: for all k and all j, B
(

k+j
2n

)
− B

(
k+j−1

2n

)
∼

N (0, 1
2n ). Hence, we get that

P(Ak) ≤
(∫ 7M/2n

−7M/2n

1√
2π

2n/2e−2nx2/2dx

)3

≤
(

14M√
2π

)3 ( 1
2n/2

)3
.

This holds for any k = 1, . . . , 2n − 3. Define

A(n) =
2n−3⋃
k=1

Ak.

Hence,

P
(
A(n)

)
≤

2n−3∑
k=1

P(Ak)

≤
(

14M√
2π

)3

2n
( 1

2n/2

)3

=
(

14M√
2π

)3 1
2n/2 ,
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which is sommable over n. (One can remark that it would not have worked if we had
considered only two increments!). Hence, by Borel-Cantelli lemma, we get that

P
(

lim sup
n

A(n)
)

= 0.

But since {
∃ t0 ∈ [0, 1] s.t. sup

h∈[0,1]

∣∣∣∣∣B(t0 + h) − B(t0)
h

∣∣∣∣∣ ≤ M

}
⊂ lim sup

n
A(n),

it concludes the proof. □

2.3. Reflection principle. First recall the reflection principle for the simple random
walk on Z, i.e. S0 = 0, and for n ≥ 1, Sn = ε1 + · · · + εn, where (εk)k≥1 are i.i.d. with
distribution 1

2δ−1 + 1
2δ+1.

Proposition 2.7. Define, for all n ≥ 1, Mn = sup0≤k≤n Sk. Let a ∈ N∗. Then, we
have

P(Mn ≥ a) = 2P(Sn ≥ a + 1) + P(Sn = a).

Proof. We claim that for all v ∈ Z, we have

P(Mn ≥ a, Sn = v) =

P(Sn = v) if v ≥ a,

P(Sn = 2a − v) if v < a.

Indeed, if v ≥ a, then if the end point of the walk is v, it must have reach level a, hence
{Sn = v} ⊂ {Mn ≥ a}. The v < a case is where the reflection principle enters. Reflecting

0

a

v

2a − v

Ta

Figure 2. The reflection principle for the random walk.

the walk with respect to the line y = a at the first hitting time of a gives a one-to-one
correspondance between paths from (0, 0) to (n, v) reaching a and paths from (0, 0) to
(n, 2a − v) (since v < a, one has 2a − v > a), see Fig. 2. Hence, we have, by independence
of the increments and the fact that they are uniformly distributed on {−1, 1},

P(Mn ≥ a, Sn = v) =
(1

2

)n

× #{paths (0, 0) → (n, v) reaching a}

=
(1

2

)n

× #{paths (0, 0) → (n, 2a − v)}

= P(Sn = 2a − v).



INTRODUCTION TO BROWNIAN MOTION 9

Thus, we have
P(Mn ≥ a) =

∑
v∈Z

P(Mn ≥ a, Sn = v)

=
∑
v≥a

P(Sn = v) +
∑
v<a

P(Sn = 2a − v)

= P(Sn ≥ a) +
∑
u>a

P(Sn = u)

= P(Sn ≥ a) + P(Sn > a)
= 2P(Sn ≥ a + 1) + P(Sn = a),

which proves the proposition. □

A similar result holds for the Brownian motion. Define the running maximum process
M by

Mt = sup
s∈[0,t]

Bs, for all t ≥ 0.

Denote by Ta the first hitting time of a by the Brownian motion, that is Ta = inf{t ≥
0 | Bt = a}. This is a stopping time relative to the natural filtration of the Brownian
motion.

Theorem 2.5 (Reflection principle). Let a > 0. Then,
P(Ta ≤ t) = P(Mt ≥ a) = 2P(Bt ≥ a) = P(|Bt| ≥ a).

Remark 2.1. Hence, for all t ≥ 0, we have that Mt
(d)= |Bt|. This is not true for the

whole process as M is non-decreasing while |B| is not.

Proof. It is clear that
{Ta ≤ t} = {Mt ≥ a}

by continuity. The last equality is also clear by symmetry. Now, for the middle equality,
write

P(Mt ≥ a) = P(Mt ≥ a, Bt < a) + P(Mt ≥ a, Bt ≥ a)
= P(Mt ≥ a, Bt < a) + P(Bt ≥ a),

since {Bt ≥ a} ⊂ {Mt ≥ a}. Now, conditioning by FTa ,

P(Mt ≥ a, Bt < a) = P(Ta ≤ t, Bt < a) = E
[
1{Ta≤t} P(Bt < a | FTa)

]
we get, since BTa = a,

P(Mt ≥ a, Bt < a) = E
[
1{Ta≤t} P(Bt − BTa < 0 | FTa)

]
= 1

2 P(Ta ≤ t)

since by the strong Markov inequality, (BTa+s − BTa ; s ≥ 0) is a Brownian motion inde-
pendent of FTa and thus, on {Ta ≤ t}, one has

P(Bt − BTa < 0 | FTa) = 1
2 .

Eventually, we get
P(Mt ≥ a) = 1

2 P(Mt ≥ a) + P(Bt ≥ a),
giving the result. □

A more general version of the reflection principle can be stated as follows:
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Theorem 2.6 (Reflection principle). Let T be a finite stopping time (with respect to
the natural filtration of the Brownian motion). Then, the process (B∗

t ; t ≥ 0) defined by

B∗
t =

Bt if 0 ≤ t ≤ T ,
2BT − Bt if t > T ,

is a Brownian motion, called the reflected Brownian motion at T .

Proof. By the strong Markov property and symmetry, the process Y = (−(Bt+T −
BT ) ; t ≥ 0) is a Brownian motion, independent of FT , and in particular of (Bt ; t ∈ [0, T ]).
By concatenating the two, that is by considering the processBt t ∈ [0, T ]

Yt−T + BT t > T

we get exactly the process B∗ which is thus a Brownian motion, see Fig. 3. □

Ta

a

0 t

Figure 3. The reflected Brownian motion.

As a corollary of the reflection principle, we can compute the distribution of Ta.

Corollary 2.1. The random variable Ta has density with respect to Lebesgue measure
given by

fa(t) = a
e− a2

2t

√
2πt3

1]0,+∞[(t).

Proof. By the previous theorem, we have

P(Ta ≤ t) = 2P(Bt ≥ a) = 2
∫ ∞

a

1√
2πt

e−x2/2tdx.

By differentiating with respect to t (and using Lebesgue theorem), the density of Ta is on
]0, +∞[ equal to

fa(t) = 1√
2π

2
∫ ∞

a

(
−1

2

) 1
t3/2 e−x2/2tdx + 1√

2π
2
∫ ∞

a

1√
t

x2

2t2 e−x2/2tdx

= 1√
2π

(
− 1

t3/2

∫ ∞

a
e−x2/2tdx + 1

t5/2

∫ ∞

a
x2e−x2/2tdx

)
.

Using integration by parts to compute the second integral, one gets∫ ∞

a
x2e−x2/2tdx = ate−a2/2t + t

∫ ∞

a
e−x2/2tdx.

Hence, the two remaining integrals cancel out, and we get

fa(t) = a√
2πt3

e−a2/2t. □
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2.4. Zero-one laws. The natural filtration of BM is defined by Ft = σ(Bu ; 0 ≤ u ≤
t). Define now

F+
t =

⋂
s>t

Fs.

Then, (F+
t )t≥0 is again a filtration and Ft ⊂ F+

t , but F+
t is a bit larger and ”allows an

additional infinitesimal glance into the future”. Note that

F+
0 =

⋂
s>0

Fs

is the σ-algebra of all events on an infinitesimal small interval to the right of the origin.
We have the following slightly improved Markov property:

Theorem 2.7. For all s ≥ 0, the process (Bt+s − Bs ; t ≥ 0) is a Brownian motion
independent of F+

s .

Proof. By continuity, one has

B(t + s) − B(s) = lim
n→∞

B(t + sn) − B(sn),

where (sn)n ↘ s. By the Markov property (i.e. time homogeneity), we have that

B(t + sn) − B(sn)

is independent of Fsn , hence its limit is independent of F+
s = ⋂

u>s Fu. □

Theorem 2.8 (Blumenthal’s 0–1 law). For all A ∈ F+
0 , one has P(A) = 0 or 1.

Proof. By the above Markov property, (Bt+s − Bs ; t ≥ 0) is independent of F+
s .

In particular, for s = 0, one has (Bt ; t ≥ 0) is independent of F+
0 . But since F+

0 ⊂
σ(Bt ; t ≥ 0), we have that F+

0 is independent of itself. □

Remark 2.2. The following strong Markov property also holds. Let T be a stopping
time with respect to the filtration (F+

t )t≥0. Define

F+
T = {A ∈ F | A ∩ {T ≤ t} ∈ F+

t , for all t ≥ 0}.

the σ-algebra of T past events. Then, if T < ∞ a.s., the process (BT +t − BT ; t ≥ 0) is a
Brownian motion independent of F+

T (exercise).

Now consider the tail σ-algebra of Brownian motion: let

Gt = σ(Bu ; u ≥ t),

and let
T =

⋂
t≥0

Gt

be the σ-algebra of tail events. Then:

Theorem 2.9 (0–1 law for tail events). For all A ∈ T , one has P(A) = 0 or 1.

Proof. Using time inversion of Brownian motion, T is mapped onto F+
0 , hence the

result follows from Blumenthal’s 0–1 law. □
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2.5. Zeroes of Brownian motion. Consider the random set of the zeroes of Brow-
nian motion:

Z = {t ≥ 0 | Bt = 0} .

Note that it is the section of the set
{(t, ω) ∈ R+ × Ω | Bt(ω) = 0} ,

and thus is a measurable set.

Proposition 2.8. We have that λ(Z) = 0 a.s. (where λ denotes Lebesgue measure).

Proof. Indeed,

E [λ(Z)] = E
[∫ ∞

0
1Bt=0dt

]
=
∫ ∞

0
P(Bt = 0)dt,

by Fubini’s theorem. Since P(Bt = 0) = 0, one gets λ(Z) = 0 a.s. □

Proposition 2.9. We have that Z is closed a.s.

Proof. This is clear since t 7→ Bt is continuous a.s. □

Lemma 2.1. Let τ = inf{t > 0 | Bt > 0} and σ = inf{t > 0 | Bt = 0}. Then,
P(τ = 0) = P(σ = 0) = 1.

Proof. We have
{τ = 0} = {∀η > 0, ∃ 0 < ε < η, Bε > 0}

=
⋂
n

⋃
ε∈(0, 1

n
)∩Q

{Bε > 0}

∈ F+
0 .

Hence, by Blumenthal’s 0-1 law, P(τ = 0) ∈ {0, 1}, so we have to prove that it has positive
probability. Since {Bt > 0} ⊂ {τ ≤ t}, one has

P(τ ≤ t) ≥ P(Bt > 0) = 1
2 .

Hence,
P(τ = 0) = lim

t→0
P(τ ≤ t) ≥ 1

2 > 0,

so P(τ = 0) = 1. The same holds replacing B by −B. Hence, by continuity and the
intermediate value theorem, we have

P(σ = 0) = 1. □

Proposition 2.10. Almost surely, for all ε > 0, BM has infinitely many zeroes in
(0, ε). In particular, Z is infinite a.s.

Proof. By the previous lemma, a.s. for all ε > 0, there exists t ∈ (0, ε) such that
Bt = 0. Suppose that the set of zeroes in (0, ε) is finite and denote

t0 = min{t ∈ (0, ε) | Bt = 0}.

But B must have a zero on (0, t0) which contradicts the minimality of t0. Hence, B has
infinitely many zeroes in (0, ε). □

Proposition 2.11. Almost surely, Z has no isolated point.
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Proof. Recall that a point x is isolated if the singleton {x} is open. Equivalently,
there exists ε > 0 such that ]x − ε, x + ε[\{x} = ∅.

Let q ∈ Q and consider
τq = inf{t ≥ q | Bt = 0}.

Then τq is a stopping time, and is a.s. finite (since BM crosses 0 for arbitrarily large time
t). Moreover the infimum is a minimum, since Z is a closed set. Hence, τq ∈ Z. Now,
by the strong Markov property, (Bτq+t ; t ≥ 0) is a Brownian motion. Since BM crosses 0
for any small interval to the right of the origin, τq is not isolated (from the right). Hence,
a.s., for all q ∈ Q, τq is not an isolated point.

It remains to prove that any other point is not isolated either. Let z ∈ Z \{τq | q ∈ Q}.
Consider an increasing sequence of rationals qn such that qn ↗ z. Then, qn ≤ τqn < z
(since qn < z and z ̸= τqn). Letting n → ∞, one has that τqn → z, so z is not isolated
(from the left). □

Proposition 2.12. Almost surely, Z is uncountable.

Proof. This is a classical consequence of Baire’s theorem: in a non-empty (separable)
complete metric space X, every countable union of closed sets with empty interior has
empty interior. Thus if moreover X has no isolated point, X is uncountable: since it has no
isolated point, the singletons have empty interior, hence if it were countable X = ⋃

x∈X{x}
would have empty interior, which is not possible since it is open and non-empty.

Thus, since Z is closed in R, it is complete as a metric space and is not empty, so by
the above Z is uncountable. □

3. Law of iterated logarithm

Lemma 3.1. Let X ∼ N (0, 1). For all x > 0, one has
x

x2 + 1
1√
2π

e−x2/2 ≤ P(X > x) ≤ 1
x

1√
2π

e−x2/2.

Proof. Exercise.
For the right inequality,

P(X > x) =
∫ ∞

x
e−u2/2 1√

2π
du ≤

↑
u
x

≥1

1
x

1√
2π

∫ ∞

x
ue−u2/2du = 1

x

1√
2π

e−x2/2.

For the left inequality, put

f(x) = xe−x2/2 − (x2 + 1)
∫ ∞

x
e−u2/2du.

Then,
f ′(x) = 2e−x2/2 − 2x

∫ ∞

x
e−u2/2du,

which is non-negative by the right inequality. Hence, f is non-decreasing, f(0) < 0 and
limx→∞ f(x) = 0, so f(x) ≤ 0 for all x > 0. □

Theorem 3.1 (Law of iterated logarithm). Almost surely,

lim sup
t→∞

Bt√
2t log log t

= 1 and lim inf
t→∞

Bt√
2t log log t

= −1.

Proof. Put Ψ(t) =
√

2t log log t. The statement for the liminf is obtained using the
statement for the limsup applied to the Brownian motion −B.

We first prove the upper bound: a.s. lim supt→∞
Bt

Ψ(t) ≤ 1.
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t

Ψ(t)

−Ψ(t)

Figure 4. The law of iterated logarithm.

Let ε > 0 and q > 1. Define

An =
{

max
0≤t≤qn

Bt ≥ (1 + ε)Ψ(qn)
}

.

By the reflection principle, max0≤s≤t Bs
(d)= |Bt|. Therefore,

P(An) = P (|Bqn| ≥ (1 + ε)Ψ(qn))

≤ 2 exp(−(1 + ε)2 log log qn) = 2
(n log q)(1+ε)2 ,

where we used the fact that if Z ∼ N (0, 1), P(Z > x) ≤ e−x2/2, for all x > 0. Hence, we
get that ∑

n

P(An) < ∞,

so by Borel-Cantelli lemma, P(lim supn An) = 0. Hence, a.s., there exists n0 such that for
all n ≥ n0, for all 0 ≤ t ≤ qn,

Bt ≤ (1 + ε)Ψ(qn).
For large t, choose n large enough such that qn−1 ≤ t ≤ qn. Then we have,

Bt

Ψ(t) = Bt

Ψ(qn)
Ψ(qn)

qn

t

Ψ(t)
qn

t

≤ (1 + ε)q,

since qn

t
≤ q and Ψ(t)

t
is decreasing (for t large enough). Hence, a.s.

lim sup
t→∞

Bt

Ψ(t) ≤ (1 + ε)q,

which holds for all ε > 0, and all q > 1, proving the upper bound.
We now pass to the lower bound: a.s. lim supt→∞

Bt

Ψ(t) ≤ 1.
We want to use the reverse Borel-Cantelli lemma. Let q > 1 and let

Dn =
{

B(qn) − B(qn−1) ≥ Ψ(qn − qn−1)
}

.
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Hence, using the lower bound estimate of the normal distribution given in the previous
lemma, one has, for some constant C,

P(Dn) ≥ C
e− log log(qn−qn−1)√

2 log log(qn − qn−1)

≤ C ′

n log n
,

for another constant C ′, where we use that log(qn − qn−1) < n log q. Hence,∑
n

P(Dn) = ∞

and since the Dn’s are independent by the independence of the increments of the Brownian
motion, one has, by the second Borel-Cantelli lemma, that

P(lim sup
n

Dn) = 1.

Hence, a.s., infinitely often,
B(qn) ≥ B(qn−1) + Ψ(qn − qn−1)

≥ −2Ψ(qn−1) + Ψ(qn − qn−1),
using the upper bound applied to the Brownian motion −B. Hence,

B(qn)
Ψ(qn) ≥ −2Ψ(qn−1) + Ψ(qn − qn−1)

Ψ(qn)

≥ −2
√

q
+ qn − qn−1

qn
= 1 − 2

√
q

− 1
q

,

using that
Ψ(qn−1)
Ψ(qn) = Ψ(qn−1)√

qn−1

√
qn

Ψ(qn)
1

√
q

≤ 1
√

q

since Ψ(t)√
t

is increasing, and using that Ψ(t)
t

is decreasing for large t. Hence, a.s.,

lim sup
t→∞

Bt

Ψ(t) ≥ 1 − 2
√

q
− 1

q
,

so letting q → ∞ gives the lower bound. □

Appendix A. Classical 0–1 laws

Let (Xn)n≥1 be a sequence of random variables. Define, for all n ≥ 1,
Fn = σ(Xk, 1 ≤ k ≤ n)

the σ-algebra generated by X1, . . . , Xn. Define also, for all n ≥ 0,
Gn = σ(Xn+1, Xn+2, . . .).

The tail σ-algebra T is defined as
T =

⋂
n≥0

Gn.

Intuitively, the σ-algebra of tail events consists of events which do not depend on the first
finitely many times of the process (Xn)n≥1. For instance, the random variables lim supn Xn

and lim infn Xn are T -measurable.

Theorem A.1 (Kolomogorov’s 0–1 law). Let (Xn)n≥1 be a sequence of independent
random variables. The tail σ-algebra T is trivial: for all A ∈ T , P(A) = 0 or 1.
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Proof. We have that ⋃
n≥1

Fn

is a π-system that generates σ(X1, X2, . . .) (= G0). Since (Xn)n≥0 are independent random
variables, Fn is independent of Gn. Since T ⊂ Gn, for all n ≥ 0, T is independent of Fn,
for all n, hence T is independent of σ(X1, X2, . . .). But obviously, T ⊂ σ(X1, X2, . . .), so
T is independent of itself. Hence, for all A ∈ T ,

P(A) = P(A ∩ A) = P(A)P(A)
that is, P(A) ∈ {0, 1}. □

As a corollary, we get that if (Xn)n≥0 is a sequence of independent random variables,
then lim supn Xn and lim infn Xn are almost surely constant.

Consider the random walk Sn = X1 + · · · + Xn. Consider the event
{Sn = 0 i.o.} = lim sup

n
{Sn = 0} =

⋂
k

⋃
n≥k

{Sn = 0}.

This is NOT a tail event in general (note that this different than {lim supn Sn = 0}! Take
Sn > 0 and Sn → 0 a.s. for example). But it is an exchangeable event:

Loosely speaking, an event A ⊂ R∞ is exchangeable if it is invariant under finite
permutations, that is for all n, for all permutation σ ∈ Sn,

(ω1, . . . , ωn, ωn+1, . . .) ∈ A ⇔ (ωσ(1), . . . , ωσ(n), ωn+1, . . .) ∈ A

The exchangeable σ-algebra E is the class of all such events. If (Xn)n is a sequence of
random variables,

E =
⋂
n

En,

where En is the σ-algebra generated by Xn+1, Xn+1, . . . and symmetric functions of (X1, . . . , Xn).
Compared to the tail σ-algebra T which consists of events that do not depend on

the first coordinates, the exchangeable σ-algebra consists of events that are invariant by
permutations of the first coordinates. For instance, in the case of the random walk Sn,

lim sup
n

{Sn = 0} ∈ E ,

but not in T . Indeed,
ω ∈ lim sup

n
{Sn = 0}

is equivalent to: for all k, there exists n ≥ k such that ∑n
j=1 Xj(ω) = 0. Hence, changing

the values of the first coordinates X1, . . . , Xn will affect the value of the sum. On the
other hand, permuting finitely many indices will not affect the value of Sn.

Note that it is clear that
T ⊂ E .

Theorem A.2 (Hewitt-Savage’s 0–1 law). Let (Xn)n≥1 be a sequence of independent
and identically distributed random variables. The exchangeable σ-algebra E is trivial: for
all A ∈ E, P(A) = 0 or 1.

Proof using backwards martingales. Let F be a bounded symmetric function
on RN, that is F is invariant under any permutation with finite support. Let

Z = F (X1, X2, . . .),
so Z is measurable with respect to the exchangeable σ-algebra E . We are going to prove
that Z is a.s. constant.

Define,
Zn = E(Z | Fn) and Yn = E(Z | Gn).
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Hence (Zn)n is a closed martingale, thus by the martingale convergence theorem, it con-
verges a.s. and in L1:

Zn → E(Z | F∞) = Z

since Z is F∞-measurable. Indeed,
F∞ = σ(X1, X2, . . .)

and obviously E ⊂ F∞.
On the other hand, (Yn)n is a backwards martingale, so by the convergence theorem

for backwards martingales, a.s. and in L1, one has
Yn → E(Z | T ).

But since T is trivial by Kolmogorov’s 0–1 law, E(Z | T ) is constant a.s., hence E(Z | T ) =
E(Z). Hence, for all ε > 0, and for n large enough,

E(|Zn − Z|) < ε and E(|Yn − E(Z)|) < ε,

Now, since Zn is Fn-measurable, one can write
Zn = g(X1, . . . , Xn),

for some bounded function g : Rn → R. The above first inequality writes then
E
[

|F (X1, X2, . . .) − g(X1, . . . , Xn)|
]

< ε.

Since (Xn)n≥1 are i.i.d. random variables, (X1, . . . , Xn, Xn+1, . . . , X2n, X2n+1, . . .) has the
same distribution than (Xn+1, . . . , X2n, X1, . . . , Xn, X2n+1, . . .). Hence, the above bound
is also

E
[

|F (Xn+1, . . . , X2n, X1, . . . , Xn, X2n+1, . . .) − g(Xn+1, . . . , X2n)|
]

< ε.

But since F is invariant under finite permutation, this gives
E
[

|Z − g(Xn+1, . . . , X2n)|
]

< ε.

Hence, we have, since g(Xn+1, . . . , X2n) is Gn-measurable,
E
[
|Yn − g(Xn+1, . . . , X2n)|

]
= E

[
|E(Z − g(Xn+1, . . . , X2n) | Gn)|

]
≤ E

[
|Z − g(Xn+1, . . . , X2n)|

]
< ε.

Finally, we get
E
[
|Z − E(Z)|

]
≤ E

[
|Z − g(Xn+1, . . . , X2n)|

]
+ E

[
|g(Xn+1, . . . , X2n) − Yn|

]
+ E

[
|Yn − E(Z)|

]
< 3ε.

Letting ε goes to zero, we get that Z = E(Z) almost surely. □
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