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1. Introduction

Random matrix theory (RMT) is a branch of mathematics that studies matrices whose entries
are random variables. It has become an essential tool in various fields, such as physics, statistics,
and computer science, especially in situations where data sets are high-dimensional. The theory
provides deep insights into the spectral properties of large random matrices and has direct impli-
cations for data analysis, particularly when the number of data samples and the dimensionality of
data points both become large.

Given an i.i.d. sample X1, . . . , Xn of random vectors in Rp, then the classical estimators of the
mean (which is vector in Rp) and of the covariance (which is a matrix in Mp(R)) are respectively
given by:

µ̂ = 1
n

n∑
k=1

Xk,

and
Σ̂ = 1

n

n∑
k=1

(Xk − µ̂)(Xk − µ̂)⊺,

where A⊺ denotes the transpose of a matrix A. To simplify, assume that the data Xi’s are i.i.d.
with zero mean and variance one, so that µ̂ = 0. The estimator of the covariance can be taken as

Σ̂ = 1
n

n∑
k=1

XkX⊺
k = 1

n
Y Y ⊺,

1
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where Y is the p × n matrix whose columns are X1, . . . , Xn. Because of the law of large numbers,
for fixed p, Σ̂ → Ip almost surely, as n → ∞, so Σ̂ is a consistent estimator of the true covariance
matrix, corresponding to the identity matrix Ip in this case.

Now suppose that p is comparable to n, so that p
n

→ c > 0. Naively, one would think that the
empirical spectral distribution of 1

n
Y Y ⊺,

µn = 1
n

∑
λ∈Sp( 1

n
Y Y ⊺)

δλ,

would converge, as n → ∞, to the Dirac mass δ1. However, this is not the case, and a plot of the
histogram of the eigenvalues of 1

n
Y Y ⊺ gives the following pictures:
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Figure 1. Histogram of the eigenvalues of 1
n
Y Y ⊺ for different values of p and n.

Note that when p > n, the matrix 1
n
Y Y ⊺ is singular with p − n eigenvalues equal to

0.

This is the content of the Marchenko-Pastur theorem, as we will see in Section 4. This phe-
nomenon is sometimes referred as the ”curse of dimensionality” and random matrix theory has
developed a broad spectrum of tools to understand this phenomenon.

Random matrix theory was first introduced in multivariate statistics in the thirties by Wishart
[22] and in theoretical physics in the fifties by Wigner in his fundamental article [21].

The aim of this lectures is thus to give an introduction to the most standard results in random
matrix theory, but also to present different techniques commonly used in the field, such as the
combinatorics of the moment method, and Stieltjes transform and resolvent method.

We will first focus on the Wigner theorem as it is more easily proved, but the techniques involved
are quite similar in the case of other models.
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Let Xn be a n × n Hermitian matrix with independent coefficients (these matrix models are
known as Wigner matrices). The spectral distribution of Xn is defined by

µXn = 1
n

n∑
i=1

δλi
,

where λi, 1 ≤ i ≤ n are the (random) eigenvalues of Xn. Then, the Wigner theorem asserts
that the measure µXn converges, as the size n of the matrix goes to infinity, towards the Wigner
semicircular distribution 1

2π

√
4 − x21[−2,2](x)dx. This is the macroscopic regime, that is, we look at

the convergence of µXn(B), for a Borel set B of fixed size, and holds on some minimal assumptions
on the coefficients.

This lecture is organized as follows. Chapter 2 presents Wigner theorem, that is the convergence
of the spectral distribution of Wigner matrices towards the semicircular distribution. The proof
is achieved by the computation of the moments of the spectral distribution of Wigner matrices
via combinatorics methods. In Chapter 3, we present a second proof of Wigner theorem, only
in the case of the Gaussian Unitary Ensemble, using the Stieltjes transform, which is, as the
more commonly used characteristic function, a functional of the measure which characterizes the
weak convergence of measures. Some standard complex analysis tools will be also used and will
be recalled. In chapter 4, we will state the main results concerning sample covariance matrices
and the Marchenko-Pastur theorem and chapter 5 will present a few results concerning random
perturbations of finite rank matrices. At last, Chapter 6 is an appendix where we recall some
complex analysis tools, and some useful matrix inequalities.

Here are some notations that we are going to use in the sequel.
• Hn is the space of Hermitian n × n matrices.
• The coefficients of a matrix A ∈ Mn(C) are denoted A(i, j) or Aij, for 1 ≤ i, j ≤ n.
• To simplify notation, we frequently omit the dependence on the matrix dimension.
• The cardinal of a set A is denoted either #A or |A|.

2. The Wigner theorem

Random matrix theory has been widely developed since Wigner’s work in the fifties [21]. In
quantum theory, energy levels are given by the eigenvalues of a Hermitian operator on some
Hilbert space, the so-called system Hamiltonian. The study of such systems can become very
tricky when the dimension becomes large. Wigner’s idea was then to modelize such systems by
random Hermitian matrices of large dimension. We first describe the matrix models that we are
going to study.

Definition 2.1. Let Xn ∈ Hn be a random n×n Hermitian matrix such that (Xn(i, j))1≤i≤j≤n are
independent random variables defined on some probability space (Ω, F ,P), and E(Xn(i, j)) = 0.
Such matrix models with independent coefficients are called Wigner matrices.

One of the most important model of Wigner matrices is the following.

Definition 2.2. A Wigner matrix Xn is said to be from the Gaussian Unitary Ensemble
(GUE) if

Xii, i = 1, . . . , n,
√

2ℜXij,
√

2ℑXij, 1 ≤ i < j ≤ n

are independent random variables, distributed according to the standard normal distribution N (0, 1).
The GUE(n, σ2) distribution is defined as the Gaussian distribution on Hn defined by

(2πσ2)−n2/2 exp
(

− 1
2σ2 Tr(M2)

)
dM
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Figure 2. Histogram (blue) of the eigenvalues of a 1000 × 1000 GUE matrix and
the semicircular distribution (red).

where dM is Lebesgue measure on Hn defined by

dM =
n∏

i=1
dMii

∏
1≤i<j≤n

d
√

2ℜMijd
√

2ℑMij.

We will abbreviate GUE(n, σ2) by GUE when σ2 = 1 and when the dimension n is clear from the
context.

Note that in the above, we have identify the inner product space Hn with Rn2 , the identification
being:

X ∈ Hn ↔ (Xii, 1 ≤ i ≤ n,
√

2ℜXij,
√

2ℑXi,j, 1 ≤ i < j ≤ n) ∈ Rn2

the inner product on Hn being:

⟨A, B⟩ = Tr(AB∗) =
n∑

i,j=1
AijBji

=
n∑

i=1
AiiBii +

∑
1≤i<j≤n

(√
2ℜAij

√
2ℜBij +

√
2ℑAij

√
2ℑBij

)

It is easy to see, using Tr(M2) = Tr(MM∗) = ∑n
i=1 M2

ii + 2∑1≤i<j≤n |Mij|2, that a Wigner
matrix from the GUE is distributed according to the GUE distribution.

Remark 2.3. The GUE distribution is invariant by unitary conjugation, that is if X is distributed
according to the GUE then UXU∗ (d)= X for all unitary matrix U . Indeed, we have

Tr(UXU∗UX∗U∗) = Tr(XX∗),

and one can easily see that the determinant of the change of variables X 7→ UXU∗ is equal to 1,
since it is an isometry.

Figure 2 shows a simulation of the eigenvalues of a large GUE matrix, where one can see the
relationship with the semicircular distribution, which is the following probability measure.
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Definition 2.4. The semicircular distribution µsc,σ2 is the probability measure on R given by

µsc,σ2(dx) = 1
2πσ2

√
4σ2 − x21[−2σ,2σ](x)dx,

where σ > 0. When σ2 = 1, we will abbreviate µsc,σ2 by µsc.

In the global regime, we are interested in the convergence of the spectral measure of Wigner
matrices which is the following.

Definition 2.5. Let A ∈ Hn, with eigenvalues λ1(A), . . . , λn(A). The spectral mesure of A,
denoted µA, is the probability measure defined by

µA = 1
n

n∑
i=1

δλi(A),

that is, for a Borel set B ⊂ R,

µA(B) = 1
n

#{1 ≤ i ≤ n | λi(A) ∈ B}.

We can now state Wigner theorem.

Wigner theorem. Let Hn = 1√
n
Xn, where Xn is a Wigner matrix such that such that (Xn(i, j))1≤i≤j≤n

are independent and identically distributed centered random variables with variance σ2. Then, the
spectral measure of Hn, µHn, converges weakly, as n goes to infinity, towards µsc,σ2, almost surely.

In this section, the proof of Wigner theorem, under some additional assumptions on the moments
of the coefficients will be achieved by some combinatorial interpretation of the Catalan numbers,
which are, as we will see, the moments of the semicircular distribution.

2.1. Combinatorics of Catalan numbers.

Definition 2.6. The Catalan numbers Cn are the numbers defined by C0 = 1 and for n ≥ 1,

Cn = 1
n + 1

(
2n

n

)
= (2n)!

n!(n + 1)! .

The sequence of Catalan numbers is 1, 1, 2, 5, 14, 42, 132, 429, . . .. It is sequence A000108 in OEIS
(the On-Line Encyclopedia of Integer Sequences: oeis.org). The Catalan numbers are ubiquitous
in combinatorics. The sequence has the bigger entry in OEIS, and for instance Stanley in his book
Enumerative Combinatorics vol. 2 lists 66 different combinatorial interpretations of the Catalan
numbers!

First we will see in the next lemma, that the Catalan numbers are the moments of the semicir-
cular distribution.

Lemma 2.7. Let µsc,σ2 be the semicircular distribution, i.e.

µsc,σ2 = 1
2πσ2

√
4σ2 − x21[−2σ,2σ](x)dx.

The moments of µsc,σ2 are given by∫
R

x2n+1µsc(dx) = 0,
∫
R

x2nµsc(dx) = σ2nCn.

Proof. By parity, odd moments are clearly zero. Suppose without loss of generality that σ2 = 1.
Now,

m2n :=
∫ 2

−2
x2n 1

2π

√
4 − x2dx = 4

π
22n

∫ 1

0
x2n 1

π

√
1 − x2dx.
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Using the change of variables x = cos(θ), we obtain∫ 1

0
x2n 1

π

√
1 − x2dx =

∫ π/2

0
cos2n θ sin2 θdθ =

∫ π/2

0
cos2n θdθ −

∫ π/2

0
cos2n+2 θdθ

This is now a classic calculation of Wallis integrals: Define

W2n :=
∫ π/2

0
cos2n(θ)dθ.

Using integration by parts with U = − cos2n+1(θ)
2n+1 , U ′ = cos2n(θ) sin(θ), V = sin(θ), V ′ = cos(θ), we

get ∫ π/2

0
cos2n θ sin2 θdθ = 1

2n + 1W2n+2,

so one obtains the recurrence formula, for n ≥ 2, (W0 = π/2),

W2n = 2n − 1
2n

W2n−2 = 2n − 1
2n

2n − 3
2n − 2 · · · 3

4
π

2

= 2n

2n

2n − 1
2n

2n − 2
2n − 2

2n − 3
2n − 2 · · · 3

4
2
2

π

2 = (2n)!
22n(n!)2

π

2 .

Hence,

m2n = 4
π

22n

(
(2n)!

22n(n!)2 − (2n + 2)!
22n+2((n + 1)!)2

)
π

2 = (2n)!
n!(n + 1)! . □

We are now going to give some well-known combinatorial interpretations of the Catalan numbers.

Definition 2.8. A Dyck path with 2n steps is a nonnegative path in N2 starting from the origin
(0, 0), ending at (2n, 0), with steps (1, 1) or (1, −1) (also coded as UP and DOWN steps or just
+1 and −1).

Definition 2.9. A graph G = (V, E) is a set of vertices V and a set of edges E where an edge
”links” two vertices. A tree is a connected graph with no cycles, where a cycle is a path connecting
the same vertex. A root is a marked vertex. A tree is oriented if it is embedded in the plane, it
inherits the orientation of the plane.

(a) (b)

Figure 3. Fig. (a): a Dyck path with 10 steps. Fig. (b): the corresponding rooted
plane tree. The dashed line corresponds to the walk that surrounds the tree.

Lemma 2.10. The set of Dyck paths with 2n steps is in bijection with the set of rooted oriented
trees with n edges.

Proof. It is worth to take a look at Figure 3 while reading the proof. We start by replacing the
tree by a ”fat tree”, that is every edge is replaced by a double edge. The union of these double
edges define a path that surrounds the tree. To define a Dyck path, we start from the root, add
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Figure 4. The 5 Dyck paths with 6 steps.

a ”+1” when we meet an edge that has not been visited yet, and a ”−1” otherwise. Since to add
a −1, we must have already added a +1 corresponding to the first visit of the edge, the path is
nonnegative, that is above the real axis, and since all edges are visited exactly twice, the path
comes back at 0 after 2n steps. This defines a Dyck path.

Given a Dyck path, we can recover the rooted oriented tree by first gluing the couples of steps
where one step +1 is followed by a step −1, and representing each couple of glued steps by one
edge. We obtain a path ”decorated” with edges. Continuing the same procedure until all steps
have been glued two by two provides a rooted oriented tree. □

Figures 4 and 5 show respectively the examples of the 5 Dyck paths of length 6 and the corre-
sponding 5 ordered trees.

Figure 5. The 5 rooted plane trees with 3 edges (the root being the most bottom
node).

Lemma 2.11. The number of Dyck paths with 2n steps is equal to the Catalan number Cn.
Proof. The number of Dyck paths is easily counted using the reflection principle. We have that

# {all paths from (0, 0) to (2n, 0) with steps ±1} = # {”good” paths} + # {”bad” paths} ,

where the ”good” paths are the Dyck paths with 2n steps, and the ”bad” paths are ±1 paths from
(0, 0) to (2n, 0) that are not Dyck paths. A ”bad” path must cross the x-axis, hence must hit the
line y = −1. That’s where we use the reflection principle, see Fig. 6 for an example: we reflect the
path after the first hitting time of −1. We obtain a path from (0, 0) to (2n, −2), and this gives
a bijection between ”bad” paths and paths from (0, 0) to (2n, −2). Since the number of all paths
from (0, 0) to (2n, 0) is given by

(
2n
n

)
(since there is

(
2n
n

)
choices for the +1 steps), and the number

of paths from (0, 0) to (2n, −2) is
(

2n
n−1

)
, we get:

# {Dyck paths with 2n steps} =
(

2n

n

)
−
(

2n

n − 1

)
= 1

n + 1

(
2n

n

)
. □

Proposition 2.12. The generating function of the Catalan numbers (Cn)n≥0 is given by

S(x) :=
∑
n≥0

Cnxn = 1 −
√

1 − 4x

2x
.
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−1

Figure 6. The reflection principle. A ”bad” path and its reflection (dashed line)
after the first hitting time of −1.

Moreover, the Catalan numbers satisfy the recurrence relation

Cn =
n∑

l=1
Cl−1Cn−l, for all n ≥ 1,

with C0 = 1, and this characterizes the Catalan numbers.

Proof. The usual Taylor series (for |x| < 1)

(1 + x)α = 1 +
∑
k≥1

α(α − 1) · · · (α − k + 1)
k! xk

yields that
1 −

√
1 − 4x

2x
=
∑
k≥0

(2k)!
k!(k + 1)!x

k.

Let Cn,l be the number of Dyck paths with 2n steps hitting the real axis for the first time after 2l
steps. Then obviously we have Cn = ∑n

l=1 Cn,l. But it is easy to see that

Cn,l = #{Dyck paths from (0, 0) to (2l, 0) strictly above the real axis (except at both endpoints)}
× #{Dyck paths from (2l, 0) to (2n, 0)}.

By shifting 2l to 0, we have that #{Dyck paths from (2l, 0) to (2n, 0)} = Cn−l. Now let a Dyck
path from (0, 0) to (2l, 0) strictly above the real axis. Since the first and last steps are prescribed
and equal respectively to +1 and −1, by shifting the real axis by (1, 1), we get that

#{Dyck paths from (0, 0) to (2l, 0) strictly above the real axis} = Cl−1.

Hence,

Cn =
n∑

l=1
Cl−1Cn−l.

We now show that this recurrence relation characterizes the Catalan numbers. Indeed, suppose
that (Dn)n≥0 are numbers such that D0 = 1 and Dn = ∑n

l=1 Dl−1Dn−l. Consider the generating
function of the Dn’s:

G(x) =
∑
k≥0

Dkxk.
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Then the recurrence relation gives

G(x) = 1 +
∑
k≥1

k∑
l=1

Dl−1Dk−lx
k

= 1 +
∑
l≥1

(
Dl−1x

l−1∑
k≥l

Dk−lx
k−l+1

)
= 1 + x(G(x))2.

Thus, we get that G(x) = 1−
√

1−4x
2x

, the minus branch being determined by the fact that G(0) = 1.
Hence, we obtain that G(x) = S(x), hence Dn = Cn, for all n ≥ 0. □

The following lemma will be used later in the proof of Wigner theorem.
Lemma 2.13. Let G = (V, E) a connected graph. Then,

|V | ≤ |E| + 1,

and equality holds if and only if G is a tree.
Proof. Suppose first that G = (V, E) is a tree. Then it is easy to see that |E| = |V |−1 by induction
on |V |.

Now let G = (V, E) be a connected graph. A spanning tree is a subgraph of G which is a tree
and has the same set of vertices V than G (see Fig. 7). Note that it exists (but is non-unique),
as a maximal element of the finite partially ordered set (for the inclusion) of subgraphs of G that
are trees. So denote by T = (V, E ′) a spanning tree of G. Then one has |E ′| = |V | − 1, and since
|E| ≥ |E ′|, we get |E| ≥ |V | − 1.

Now, if |E| = |V | − 1, then |E| = |E ′| so E = E ′ and G = T , hence a G is a tree. □

(a) (b)

Figure 7. A graph (a) and one of its spanning tree (b).

2.2. Wigner theorem. Let Xn be a Wigner matrix, that is Xn = (Xn(i, j))1≤i,j≤n is a n × n
Hermitian random matrix defined on some probability space (Ω, F ,P) such that the coefficients
(Xn(i, j))1≤i≤j≤n are independent random variables with

E(Xij) = 0, and E(|Xij|2) = σ2.

We will prove Wigner theorem, under the additional assumption that the coefficients have
bounded moments of all order.
Theorem 2.14. Assume that for all k ≥ 0

sup
n

sup
1≤i≤j≤n

E(|Xn(i, j)|k) < ∞.

Let Hn = 1√
n
Xn. Then we have,

lim
n→∞

1
n

Tr(Hk
n) =

0, if k is odd,
σkCk/2, if k is even,
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where the convergence holds in expectation and almost surely, and where the Ck’s are the Catalan
numbers.

Proof. Without loss of generality we can suppose that σ2 = 1. We first prove the convergence in
expectation. We drop the dependance in n in all matrix notations to simplify the readability. We
have that,

E
( 1

n
Tr(Hk)

)
= 1

n
E(

n∑
i1,...,ik=1

Hi1i2Hi2i3 · · · Hiki1)

= 1
nk/2+1

n∑
i1,...,ik=1

E(Xi1i2Xi2i3 · · · Xiki1). (1)

Let I = (i1, . . . , ik), and put P (I) = E(Xi1i2Xi2i3 · · · Xiki1). Then, since by assumption

sup
n

sup
i,j

E(|Xij|k) < ∞,

we have by Hölder’s inequality that
|P (I)| ≤ ak,

where ak is a constant independent of n.
The sum is indexed by k indices varying from 1 to n, but most of them give a zero contribution

in the limit n → ∞. Instead of indexing the sum by k-tuples, we will index the sum by walks on
graphs as follows.

To I we associate the graph G(I) = (V (I), E(I)), where the vertices V (I) are distincts elements
of i1, . . . , ik, and the edges are distincts pairs among (i1, i2), . . . , (ik, i1). We thus have |V (I)| ≤ k
and |E(I)| ≤ k. The set I is seen as a walk on G(I) given by i1 → i2 → · · · → ik → i1.

First, remark that G(I) is connected since G(I) is explored by the walk I. Moreover, from the
independence and centering of the entries, we have

P (I) = 0,

unless to any edge (ip, ip+1) (with the convention that ik+1 = i1) there exists l ̸= p such that
(ip, ip+1) = (il, il+1) or (il+1, il), since a single edge gives a zero contribution. We next show that
the set of indices I giving a non zero contribution is described by trees.

Let I such that P (I) > 0. Then each edge must be visited by the walk at least twice. Hence,
we get that |E(I)| ≤ ⌊k/2⌋ and by lemma 2.13, we have |V (I)| ≤ ⌊k/2⌋ + 1. We may write

E
( 1

n
Tr(Hk)

)
= 1

nk/2+1

∑
I

P (I)

Since indices vary from 1 to n, there are at most n⌊k/2⌋+1 indices contributing to the sum (1),
so we have, for some constant ck > 0,

E
( 1

n
Tr(Hk)

)
≤ ckn⌊k/2⌋−k/2.

In particular, if k is odd, we have

lim
n→∞

E
( 1

n
Tr(Hk)

)
= 0.

Suppose now k is even. Since the only indices I that contribute to the limit of the above sum
are those for which |V (I)| is exactly equal to k

2 + 1, Lemma 2.13 implies that G(I) is a tree and
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|E(I)| = k
2 . We then get that each edge in G(I) is visited by the walk I exactly twice, once in

each direction, so for such I, we have, by independence, that
P (I) =

∏
e∈E(I)

E
(
|Xe|2

)
= 1.

Moreover, the walk induces an unique ordering of the vertices V (I), thus G(I) is a rooted plane
tree (the root being given by i1). Since there are n(n − 1) · · · (n − k/2) choices for the distinct
k/2 + 1 vertices for the same geometry of the rooted plane tree, we get that

E
( 1

n
Tr(Hk)

)
= n(n − 1) · · · (n − k/2)

nk/2+1 × #{rooted oriented trees with k/2 edges}.

Hence, since n(n − 1) · · · (n − k/2) ∼ nk/2+1, we deduce that

lim
n→∞

E
( 1

n
Tr(Hk)

)
= #{rooted oriented trees with k/2 edges} = Ck/2,

which proves the convergence in expectation.
To prove the almost sure convergence, we prove that the variance of 1

n
Tr(Hk) is of order n−2,

the Borel-Cantelli lemma will thus give the result.
We have,

Var
( 1

n
Tr(Hk)

)
= E

(( 1
n

Tr(Hk)
)2
)

−
(
E
( 1

n
Tr(Hk)

))2

= 1
nk+2

∑
I,I′

(
P (I, I ′) − P (I)P (I ′)

)
,

where as before I = {i1, . . . , ik}, I ′ = {i′
1, . . . , i′

k}, and
P (I, I ′) = E(Xi1i2 · · · Xiki1Xi′

1i′
2
· · · Xi′

k
i′
1
).

We now have two walks I and I ′, and we denote as before by G(I) and G(I ′) the corresponding
graphs. We also denote by G(I, I ′) = (V (I, I ′), E(I, I ′)) the union of this two graphs, that is the
vertex set V (I, I ′) is the union of the two vertex sets V (I) and V (I ′), and the set of edges is the
union of E(I) and E(I ′). Note that G(I, I ′) may contain multiple edges.

To give a non zero contribution, the graphs G(I) and G(I ′) must share a common edge, other-
wise, P (I, I ′) = P (I)P (I ′) by independence. We may thus restrict to graphs G(I, I ′) which are
connected.

Now, P (I, I ′) = 0 unless each edge is visited at least twice by either of the two walks. Thus if
P (I, I ′) > 0, one has |E(I, I ′)| ≤ k, so |V (I, I ′)| ≤ k + 1 by Lemma 2.13.

This first shows that the variance is at least of order n−1, since (P (I, I ′)−P (I)P (I ′)) is bounded
by Holder’s inequality. Note that this already implies convergence in probability by Bienaymé-
Tchebychev inequality.

To obtain almost sure convergence, we want to improve this bound to the order n−2. We must
then show that the case where |V (I, I ′)| = k + 1 cannot occur. In this case, by Lemma 2.13,
G(I, I ′) is a tree, so |E(I, I ′)| = k and each edge must be visited exactly twice, by either of the
two walks. Denotes by nI(e) (resp. nI′(e)), the number of visits of the edge e by the walk I (resp.
I ′). Let e ∈ E(I, I ′) be the common edge of G(I) and G(I ′). Then we have (nI(e), nI′(e)) = (2, 0),
(0, 2) or (1, 1). The first two cases are impossible since this edge is visited by I and I ′. The
third one is also impossible, since in that case, there is a loop in G(I) and G(I ′), which is not
possible since they are trees as subgraphs of G(I, I ′). This leads to a contradiction, hence the case
|V (I, I ′)| = k + 1 cannot occur.

Therefore, for all contributing indices we have |V (I, I ′)| ≤ k, which implies that Var( 1
n

Tr(Hk
n)) =

O(n−2).
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Thus, Chebyshev’s inequality implies that

P
(∣∣∣ 1

n
Tr(Hk

n) − E
( 1

n
Tr(Hk

n)
)∣∣∣ > ε

)
≤ C

ε2n2 ,

for some constant C > 0, so Borel-Cantelli lemma implies that∣∣∣ 1
n

Tr(Hk
n) − E

( 1
n

Tr(Hk
n)
)∣∣∣ −→

n→∞
0, almost surely.

This yields the result using the previous convergence in expectation. □

Theorem 2.15 (Wigner theorem). Let Xn be a Wigner matrix such that for all k ≥ 0,
sup

n
sup

1≤i≤i≤n
E(|Xn(i, j)|k) < ∞,

and let Hn = 1√
n
Xn. Then, the spectral distribution of Hn, µHn, converges weakly almost surely, as

n goes to infinity, towards the semicircular distribution µsc,σ2, that is, for all bounded continuous
function f , we have

lim
n→∞

∫
R

f(x)µHn(dx) =
∫
R

f(x)µsc,σ2(dx) a.s. (2)

Proof. We use a standard Weierstrass polynomial approximation argument to pass from the con-
vergence in moments of Theorem 2.14 to the convergence (2).

Let B > 2σ and δ > 0. By Weierstrass approximation theorem, we can find a polynomial P
such that

sup
x∈[−B,B]

|f(x) − P (x)| ≤ δ.

Then, ∣∣∣∣ ∫
R

f(x)µHn(dx) −
∫
R

f(x)µsc,σ2(dx)
∣∣∣∣

≤
∣∣∣∣ ∫

R
f(x)µHn(dx) −

∫
R

P (x)µHn(dx)
∣∣∣∣

+
∣∣∣∣ ∫

R
P (x)µHn(dx) −

∫
R

P (x)µsc,σ2(dx)
∣∣∣∣

+
∣∣∣∣ ∫

R
P (x)µsc,σ2(dx) −

∫
R

f(x)µsc,σ2(dx)
∣∣∣∣

≤ 2δ +
∣∣∣∣ ∫

R
P (x)µHn(dx) −

∫
R

P (x)µsc,σ2(dx)
∣∣∣∣

+
∣∣∣∣ ∫

|x|>B
f(x)µHn(dx) −

∫
|x|>B

P (x)µHn(dx)
∣∣∣∣

where we use the fact that µsc,σ2 has support [−2σ, 2σ] and B > 2σ. By the convergence in
moments of Theorem 2.14, we have

lim
n→∞

∣∣∣∣ ∫
R

P (x)µHn(dx) −
∫
R

P (x)µsc,σ2(dx)
∣∣∣∣ = 0

Moreover, since f is bounded, if we denote by p the degree of P , we can find a constant K such
that ∣∣∣∣ ∫

|x|>B
f(x)µHn(dx) −

∫
|x|>B

P (x)µHn(dx)
∣∣∣∣ ≤ K

∫
|x|>B

|x|pµHn(dx)

≤ KB−p−2q
∫
R

|x|2(p+q)µHn(dx),
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writing p = 2(p+q)−(p+2q), for all q ≥ 0. Hence, since
∫
R |x|2(p+q)µHn(dx) →n→∞

∫
R |x|2(p+q)µsc,σ2(dx)

using again Theorem 2.14, we have that

lim sup
n

∣∣∣∣ ∫
|x|>B

f(x)µHn(dx) −
∫

|x|>B
P (x)µHn(dx)

∣∣∣∣ ≤ KB−p−2q(2σ)2(p+q).

Since B > 2σ, letting q goes to infinity gives that

lim sup
n

∣∣∣∣ ∫
|x|>B

f(x)µHn(dx) −
∫

|x|>B
P (x)µHn(dx)

∣∣∣∣ = 0.

Finally, since δ is arbitrary, we have that

lim sup
n

∣∣∣∣ ∫
R

f(x)µHn(dx) −
∫
R

f(x)µsc,σ2(dx)
∣∣∣∣ = 0,

which proves the theorem. □

The condition of boundedness of the moments in Wigner’s theorem can be weakened, as stated
in the beginning of this section, and we refer to [1] for the proof. It relies on an approximation of
the Wigner matrix Hn by a matrix with bounded coefficients.

2.3. Noncrossing partitions. We give in this section the following comment. A standard proof
of Wigner’s theorem, using the moment approach, can be done via the combinatorics of noncrossing
partitions instead of that of Dyck paths and trees. We refer to [11] for a detailed proof, and only
present below the definition of noncrossing partitions.

Definition 2.16. A partition π of the set {1, . . . , n} is called crossing if there exists (a, b, c, d) with
1 ≤ a < b < c < d ≤ n such that a, c belong to one block of π while b, d belong to another block. A
partition which is not crossing is called a noncrossing partition.

Figure 8 shows an example which enlightens the terminology of noncrossing. We put the points
1, . . . , n on the circle and draw for each block of the partition the convex polygon whose vertices
are the points of the block. The partition is noncrossing if and only if the polygons do not intersect.

2

1

8

7

6

5

4

3

Figure 8. The noncrossing partition {1, 4, 5} ∪ {2} ∪ {3} ∪ {6, 8} ∪ {7}.

Proposition 2.17. The number of noncrossing partitions of the set {1, . . . , n} is equal to the
Catalan number Cn.
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Proof. Denote by NCn the set of noncrossing partition of {1, . . . , n} and let π ∈ NCn. Let j
the largest element of the block of π containing 1. Then, since π is noncrossing, it induces a
noncrossing partition of the set {1, . . . , j −1}, and a noncrossing partition of the set {j +1, . . . , n}.
Therefore, we have

#NCn =
n∑

j=1
#NCj−1 × #NCn−j,

which characterizes, as we have already seen in the proof of Lemma 2.12, the Catalan numbers. □

3. The Stieltjes transform approach

We present in this section a second proof of Wigner theorem in the case of the Gaussian Unitary
Ensemble, following the presentation of [14]. We start by recalling properties of the Stieltjes
transform of a measure.

Definition 3.1. Let m be a probability measure on R. The Stieltjes transform of m is the function

gm(z) =
∫
R

1
x − z

m(dx),

defined for z ∈ C \ R (in fact for z ∈ C \ supp(m)).

Note that the Stieltjes transform is well defined on C \ R since
1

|x − z|
≤ 1

|ℑz|
,

so that |gm(z)| ≤ 1
|ℑz| , for z ∈ C \ R.

Proposition 3.2. Let gm be the Stieltjes transform of a probability measure m. Then the following
holds.

(i) The function gm is analytic on C \ R, and gm(z̄) = gm(z).
(ii) ℑ(z)ℑ(gm(z)) > 0 for ℑ(z) ̸= 0.
(iii) limy→∞ −iygm(iy) = 1.
(iv) If g is a function satisfying (i)-(iii), then there exists a probability measure µ such that g

is the Stieltjes transform of µ.
(v) Inversion formula: If I is an interval such that m does not charge both endpoints, then,

m(I) = lim
ε→0

1
π

∫
I

ℑ(gm(x + iε))dx.

Proof. Parts (i)-(iii) are easy and left as an exercise.
Part (iv): Since g is analytic from C+ to C+, where C+ is the positive half-plane, we have using

Nevanlinna’s representation theorem (see Appendix Corollary 6.4),

g(z) = az + b +
∫
R

1 + uz

u − z
σ(du),

for some constants a, b ∈ R, a ≥ 0, and σ a finite measure. Hence, for z = iy, one has

−iyg(iy) = ay2 +
∫ y2(1 + u2)

u2 + y2 σ(du) − iby − iy
∫ u(1 − y2)

u2 + y2 σ(du).

By hypothesis (iii), letting y goes to infinity yields a = 0 and
∫
R(1 + u2)σ(du) = 1, and b =∫

R uσ(du). Hence,

g(z) =
∫
R

uσ(du) +
∫
R

1 + uz

u − z
σ(du) =

∫
R

1 + u2

u − z
σ(du),

which yields the result setting µ(du) = (1 + u2)σ(du).
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Part (v): Observe that
1
π

∫
I

ℑ(gm(x + iε))dx =
∫

I

∫
R

1
π

ε

(x − t)2 + ε2 m(dt)dx = E(1{εY +T ∈I}),

where Y has Cauchy distribution 1
π

1
1+y2 dy, T is distributed according to m and Y and T are

independent. The dominated convergence theorem then gives the result. □

The last item in the above proposition allows one to reconstruct a measure from its Stieltjes
transform. Moreover, we have the following characterization of convergence.

Proposition 3.3. Let (µn)n≥1 be a sequence of probability measures. One has,
(i) If (µn)n≥1 converges weakly to a probability measure µ, then gµn(z) converges to gµ(z) for

each z ∈ C \ R.
(ii) If gµn(z) converges for each z ∈ C \R to some limit g(z), then g is the Stieltjes transform

of a sub-probability measure µ, and (µn)n≥1 converges vaguely to µ.

Recall that a sequence (µn)n≥1 of bounded measure converges vaguely to µ if for all continuous
function f that goes to zero at infinity, one has

∫
fdµn →

∫
fdµ. Vague convergence is slightly

weaker than weak convergence, e.g. the sequence of probability measures (δn)n converges vaguely
to the zero measure, but does not converge weakly. For vague convergence, constants are not
allowed to be test functions, hence vague convergence does not in general preserves total mass
(the mass can escape at infinity). When the µn and µ are probability measures, the two notion
coincide. Moreover, the set of bounded measures (not probability measures!) is compact for the
vague topology.

Proof. Item (i) follows from the definition of the weak convergence of measure and the fact that
x 7→ 1

x−z
is continuous and bounded since

∣∣∣ 1
x−z

∣∣∣ ≤ 1
|ℑz| .

For item (ii), let (nk)k≥1 be a subsequence on which µnk
converges vaguely to some sub-

probability measure, say µ (recall that the set of bounded measures is compact for the vague
topology). Then, since x 7→ 1

x−z
is continuous and decays to zero at infinity, one has gnk

(z) → gµ(z).
Hence by hypothesis, it follows that g(z) = gµ(z) for all z ∈ C \R. Applying the inversion formula
of Proposition 3.2, one has that every subsequence that converges vaguely converges to the same
µ, hence µn converges vaguely to µ. □

Remark 3.4. Suppose that m has compact support. Then its Stieltjes transform gm writes, using
the series development of 1/(x − z), for z ∈ C \ supp(m),

gm(z) = −1
z

∫
R

1
1 − x/z

m(dx) = −1
z

∑
k≥0

z−k
∫
R

xkm(dx) = −1
z

∑
k≥0

mkz−k,

where mk is the kth moment of m. For the semicircular distribution µsc, one gets, recalling that
odd moments are zero and even moments are given by the Catalan’s numbers Ck,

gµsc(z) = −1
z

∑
k≥0

Ckz−2k = −1
z

S(1/z2),

where S is the generating function for the Catalan numbers, as defined in the proof of Lemma 2.12.
Hence, we have, for z ∈ C \ [−2, 2],

gµsc(z) = 1
2
(

− z +
√

z2 − 4
)
.

Definition 3.5. Let M ∈ Hn. The resolvent of M is defined as the matrix GM(z) = (M − zI)−1

for z ∈ C \ R.
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Note that if µM = 1
n

∑n
i=1 δλi(M) is the spectral distribution of the matrix M , then for z ∈ C \R,

gµM
(z) =

∫
R

1
x − z

µM(dx) = 1
n

n∑
i=1

1
λi(M) − z

= 1
n

Tr GM(z).

The above remark informally explains why the Stieltjes transform appears naturally in the context
of random matrix theory.

The next proposition gives the usual properties of the resolvent. We denote by || · || the operator
norm, that is

||M || = sup{|Mv| ; v ∈ Cn, |v| = 1},

where | · | denotes the Euclidean norm on Cn.

Proposition 3.6. Let M ∈ Hn with resolvent GM(z). Then, for z ∈ C \ R,
(i) ||GM(z)|| ≤ 1

|ℑz| ,
(ii) |GM(i, j)(z)| ≤ 1

|ℑz| , for all i, j = 1, . . . , n,
(iii) dGM(z) · H = −GM(z)HGM(z), for all H ∈ Hn, where d is the differential with respect

to M .

Proof. (i) This follows from the bound
∣∣∣ 1

x−z

∣∣∣ ≤ 1
|ℑz| .

(ii) Follows from (i).
(iii) Using (M + H − z)−1(M + H − z) = I, we have

(M + H − z)−1H + (M + H − z)−1(M − z) = I,

hence multiplying on the right by (M − z)−1, we obtain

GM+H(z) = −GM+H(z)HGM(z) + GM(z).

Thus,

GM+H(z) = −GM(z)HGM(z) + GM(z) + GM+H(z)HGM(z)HGM(z),

and using (i), we obtain

GM+H(z) − GM(z) = −GM(z)HGM(z) + O(||H||2). □

We now establish an integration by parts formula for the GUE (Stein’s lemma), which generalizes
the well known formula for the Gaussian distribution,

E(f ′(X)) = 1
σ2E(f(X)X), where X ∼ N (0, σ2).

Proposition 3.7. Let Xn be a matrix distributed according to the GUE distribution, and let
Hn = 1√

n
Xn. Let Φ be a C1 function on Hn with bounded differential. Then for all A ∈ Hn,

E(dΦ(Hn)·A) = nE(Φ(Hn) Tr(HnA)).

Proof. Since the Lebesgue measure on Hn is invariant by translation, we have

I =
∫

Hn

Φ(M) exp
(

− n

2 Tr(M2)
)

dM

=
∫

Hn

Φ(M + εA) exp
(

− n

2 Tr((M + εA)2)
)

dM.
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Hence, d
dε

∣∣∣
ε=0

I = 0, and since d
dε

∣∣∣
ε=0

Tr((M + εA)2) = 2 Tr(MA), we have

d

dε

∣∣∣
ε=0

I =
∫

Hn

dΦ(M) exp
(

− n

2 Tr(M2)
)

dM

+
∫

Hn

Φ(M) exp
(

− n

2 Tr(M2)
)

(−n Tr(MA))dM,

which yields the result. □

Proposition 3.8. Let Hn = 1√
n
Xn, where Xn is distributed according to the GUE, and define for

z ∈ C \ R,
gn(z) = 1

n
Tr(GHn(z)),

the Stieltjes transform of the spectral distribution of Hn. Then, we have
E(gn(z)2) + zE(gn(z)) + 1 = 0.

Proof. We apply the integration by parts formula of Proposition 3.7 to the function Φ(M) =
(GM(z))ij. Put G = GHn for simplicity. Then, using dG(z) ·A = −G(z)AG(z), Proposition 3.7
writes

−E((GAG)ij) = nE(Gij Tr(HnA))
for all A ∈ Mn(C) by linearity. Take A = ekl the matrix with only 1 at coefficient (k, l), and 0
elsewhere. We get

E(GikGlj + nE(Gij(Hn)lk) = 0.

Now taking k = i, l = j, and summing over i, j, we obtain, dividing by n2,
1
n2E((Tr(G))2) + 1

n
E(Tr(GHn)) = 0.

But, GHn = (Hn − zI)−1Hn = (Hn − zI)−1(Hn − zI + zI) = I + zG, thus

E
(( 1

n
Tr(G)

)2
)

+ 1 + zE
( 1

n
Tr(G)

)
= 0,

that is
E(gn(z)2) + zE(gn(z)) + 1 = 0. □

The next proposition shows that the Gaussian measure on Rn satisfies a concentration inequality.
Informally, this means that ”a random variable which depends in a smooth way on many indepen-
dent random variables (but not too much on any of them) is concentrated around its mean, and
therefore is essentially constant” (quote by Talagrand). We refer to the book by Ledoux [13] for a
complete treatment of the concentration of measure phenomenon.

Proposition 3.9. Let γd,σ2 be the Gaussian measure on Rd, centered, with covariance σ2I and let
X be distributed according to γd,σ2. Let f a Lipschitz function on Rd with constant c. Then, there
exists a positive constant κ independent of d such that for all δ > 0,

P (|f(X) − Ef(X)| ≥ δ) ≤ 2 exp
(

− κδ2

c2σ2

)
.

Note that the above inequality is dimension free.
Proof. Without loss of generality, we can suppose that σ2 = 1, and that f is Lipschitz with constant
1. Also, by subtracting a constant from f , we can suppose that

∫
fdγd = 0, denoting γd = γd,1.

By symmetry, it suffices to prove that
P(f(X) ≥ δ) ≤ Ce−κδ2

,
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where X is distributed according to γn. Moreover, it suffices to prove that

E
(

exp(tf(X))
)

≤ exp(Ct2),

since using Markov’s inequality and optimizing in t will yield the result. Using some regularization
argument, we can also suppose that f is smooth. Now, the Lipschitz bound on f implies the
gradient estimate

|∇f(x)| ≤ 1, for all x ∈ Rd,

where | · | denotes the Euclidean norm. We use the ”duplication trick”, following Maurey and
Pisier. Let Y be an independent copy of X. Since Ef(Y ) = 0, by Jensen’s inequality, we get that

E
(

exp(−tf(Y ))
)

≥ 1,

and since X and Y are independent,

E
(

exp(tf(X))
)

≤ E
(

exp(t(f(X) − f(Y )))
)
.

Now, write

f(X) − f(Y ) =
∫ π/2

0

d

dθ
f(Y cos θ + X sin θ)dθ.

Define G(θ) = Y cos θ + X sin θ and consider its derivative G′(θ) = −Y sin θ + X cos θ. It is easy
to see that

(
G(θ), G′(θ)

)
is a Gaussian vector in R2d with covariance matrix the identity matrix.

Hence, G(θ) and G′(θ) are independent Gaussian vectors in Rd.
Using again Jensen’s inequality, we get

exp
(
t(f(X) − f(Y ))

)
≤ 2

π

∫ π/2

0
exp

(
πt

2
d

dθ
f(G(θ))

)
dθ,

and Fubini’s theorem gives

E exp
(
t(f(X) − f(Y ))

)
≤ 2

π

∫ π/2

0
E exp

(
πt

2 ⟨∇f(G(θ)), G′(θ)⟩
)

dθ,

since by the chain rule, d
dθ

f(G(θ)) = ⟨∇f(G(θ)), G′(θ)⟩. Since G(θ) and G′(θ) are independent,
conditioning by G(θ) gives that πt

2 ⟨∇f(G(θ)), G′(θ)⟩ is a Gaussian variable with variance bounded
by π2t2

4 since |∇f(x)| ≤ 1. Thus one obtains

E
(

exp
(

πt

2 ⟨∇f(G(θ)), G′(θ)⟩
))

≤ exp(Ct2),

for some absolute constant C, and the proposition follows. □

For a function F : R → R, we define its extension to Hn, still denoted F , by
F (M) = U Diag(F (λ1), . . . , F (λn))U∗,

if M = U Diag(λ1, . . . , λn)U∗. We have the following property.

Lemma 3.10. Let F : R → R be a Lipschitz function with constant c. Then its extension to Hn is
Lipschitz with constant c, for the Frobenius norm ||M ||2 =

√
Tr(M2). In particular, the function

M 7→ 1
n

Tr(F (M)) is c√
n
-Lipschitz.

Proof. Let A, B ∈ Hn with eigenvalues λ1(A), . . . , λn(A) and λ1(B), · · · , λn(B) respectively and
consider the spectral decompositions

A = U Diag(λ1(A), . . . , λn(A))U∗

B = V Diag(λ1(B), . . . , λn(B))V ∗,
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with U, V unitary matrices. Then, we have

||A − B||22 = Tr
(
(A − B)2

)
= Tr(A2) + Tr(B2) − 2 Tr(AB),

with Tr(A2) = ∑n
i=1 λi(A)2, Tr(B2) = ∑n

i=1 λi(B)2, and

Tr(AB) =
n∑

i,j=1
λi(A)λj(B)|Wij|2,

with W = U∗V , which is still a unitary matrix. Using ∑n
j=1 |Wij|2 = ∑n

i=1 |Wij|2 = 1, since W is
unitary, we obtain

||A − B||22 =
n∑

i,j=1
(λi(A) − λj(B))2 |Wij|2,

and since by definition F (A) and F (B) have spectral decompositions
A = U Diag(F (λ1(A)), . . . , F (λn(A)))U∗

B = V Diag(F (λ1(B)), . . . , F (λn(B)))V ∗,

respectively, we get

||F (A) − F (B)||22 =
n∑

i,j=1
(F (λi(A)) − F (λj(B)))2 |Wij|2.

Hence, since F : R → R is c-Lipschitz, we obtain

||F (A) − F (B)||22 ≤ c2
n∑

i,j=1
(λi(A) − λj(B))2 |Wij|2 = c2||A − B||22,

so F is c-Lipschitz. This yields for M 7→ 1
n

Tr(F (M)), using Cauchy-Schwarz inequality,

| 1
n

Tr(F (A)) − 1
n

Tr(F (B))| ≤ 1
n

√
n||F (A) − F (B)||2 ≤ c√

n
||A − B||2,

which proves the second assertion of the lemma. □

We can now prove an estimate on the variance of the Stieltjes transform of the spectral measure
of Hn.

Proposition 3.11. Let Hn = 1√
n
Xn, where Xn is distributed according to the GUE. Let gn denote

the Stieltjes transform of the spectral measure of Hn. Then, there exists a constant K independent
of n and z, such that for all z ∈ C \ R,

Var(gn(z)) ≤ K

n2|ℑz|4
.

Proof. Using the fact that x 7→ 1
x−z

is Lipschitz with constant 1
|ℑz|2 , Lemma 3.10 and the concen-

tration inequality of the Gaussian measure of Proposition 3.9 (identifying Hn with Rn2 and the
distribution of Hn with γn2, 1

n
), we have

P
(
|gn(z) − E(gn(z))| ≥

√
δ
)

≤ 2 exp
(

− κδ|ℑz|4n
2/n

)
= 2 exp

(
− κδ|ℑz|4n2

2

)
,

for all δ > 0. Using the formula Var(Y ) =
∫+∞

0 P(|Y − E(Y )|2 ≥ δ)dδ (exercice), integrating the
above inequality over δ gives the result. □

We can now give an alternative proof of the Wigner theorem for the Gaussian Unitary Ensemble.
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Theorem 3.12 (Wigner theorem). Let Xn be a GUE random matrix, and Hn = 1√
n
Xn. Then,

the spectral measure µHn of Hn converges weakly almost surely, as n goes to infinity, towards the
semicircular distribution.

Proof of Wigner theorem: Put fn(z) = E(gn(z)). We have, since E(gn(z)2) + zE(gn(z)) + 1 = 0 by
proposition 3.8,∣∣∣E(gn(z)2) − (E(gn(z)))2

∣∣∣ =
∣∣∣zE(gn(z)) + 1 + (E(gn(z)))2

∣∣∣ =
∣∣∣fn(z)2 + zfn(z) + 1

∣∣∣
hence, ∣∣∣fn(z)2 + zfn(z) + 1

∣∣∣ ≤ E
(
|gn(z) − E(gn(z))|2

)
= Var (gn(z)) .

Hence, by the above estimate on the variance of gn(z), we get

|fn(z)2 + zfn(z) + 1| ≤ K

n2|ℑz|4
.

Furthermore, we have |fn(z)| ≤ 1
|ℑz| , thus the sequence (fn(z))n≥1 is analytic and uniformly

bounded on compact sets of C+ = {z ∈ C | ℑz > 0}. Hence by the classical Montel’s theo-
rem, see Theorem 6.1 in the Appendix, the sequence (fn(z))n≥1 is normal: for each subsequence
of (fn(z))n≥1, there exists a sub-subsequence which converges uniformly on compact sets of C+
to some analytic function f . Passing to the limit in the above bound, we get that f satisfies the
equation

f(z)2 + zf(z) + 1 = 0,

which is the equation satisfied by the Stieltjes transform of the semicircular distribution. Hence, we
get f(z) = 1

2(−z +
√

z2 − 4), the sign before the square root being determined by the fact that for
ℑz > 0, we have ℑfn(z) > 0. Hence f is the Stieltjes transform of the semicircular distribution, so
is uniquely determined, that is does not depend on the choice of the sub-subsequence of (fn(z))n≥1.
Thus, it implies that (fn(z))n≥1 converges to f uniformly on compact sets of C+. Now, using
Bienaymé-Tchebychev inequality and Proposition 3.11, we have

P(|gn(z) − fn(z)| ≥ ε) ≤ 1
ε2 Var(gn(z)) ≤ K

n2ε2|ℑz|4
.

Hence, Borel-Cantelli lemma implies that for all z ∈ C+, a.s.,

fn(z) − gn(z) →n→∞ 0,

so, a.s., gn(z) → f(z) as n goes to infinity.
It remains to show that we have that a.s., for all z ∈ C+, gn(z) → f(z) as n → ∞, that is

we need to exchange the ”for all z” and the ”a.s.” in the previous convergence. Let (zp)p≥0 be a
sequence in C+ that admits an accumulation point in C+. For all p ≥ 0, there exists a measurable
set Np such that P(Np) = 0, and such that gn(zp) converges to f(zp) on N c

p . Put N = ⋃
p≥0 Np.

Then N is a negligible set, and on N c, gn(zp) converges to f(zp), as n → ∞, for all p ≥ 0.
By Vitali’s theorem (see Appendix Theorem 6.2), we get that on N c, gn converges to f uniformly

on compacts of C+ as n → ∞, and this ends the proof of the theorem using Proposition 3.3. □

Remark 3.13. The Stieltjes transform approach can be used to prove Wigner theorem for the so-
called Gaussian Orthogonal Ensemble (GOE), which are Wigner symmetric (instead of Hermitian)
matrices with independent real Gaussian coefficients. The term orthogonal comes from the fact
that the distribution of such matrices are invariant by conjugation by orthogonal matrices.
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This proof of Wigner theorem using Stieltjes transform can also be adapted to more general
Wigner matrices. Indeed, the intregration by parts formula can be generalized using a cumulant
development for a random variable X,

E(XΦ(X)) =
p∑

l=0

κl+1

l! E(Φ(l)(X)) + εp,

where κl are the cumulants of X, defined using the moment-generating function of X as logE(et·X) =∑
l≥1 κl

tl

l! , and where |εp| ≤ supx Φ(p+1)(x)E|X|p+2 (see for instance [12]). Note also that concen-
tration of measure phenomenon can also be used for Wigner matrices such that the entries are
i.i.d. and satisfy a log-Sobolev inequality, using Herbst argument (see [1]).

3.1. Extremal eigenvalues. In light of Wigner’s theorem, it is natural to inquire about the
convergence properties of, for instance, the largest eigenvalue. We have the following:

Theorem 3.14 ([3]). Let Hn = 1√
n
Xn where Xn is a Wigner matrix such that E(|Xn(i, j)|4) < ∞.

Then, the largest eigenvalue λmax(Hn) converges to 2σ almost surely.

Let 0 < ε′ < ε and consider a continuous bounded non-negative function fε supported on
[2 − ε′, 2], such that fε ≤ 1[2−ε,2]. Using Wigner theorem, and the fact that

∫
fεdµsc > 0, one has

that a.s., for all ε > 0, there exists n0 such that for all n ≥ n0,

1
n

n∑
k=1

fε(λk(Hn)) > 0.

Hence, since fε ≤ 1[2−ε,2], we get that for n large enough, #{k | λk(Hn) ∈ [2 − ε, 2]} > 0. Hence,
one has that

lim inf
n≥0

λmax(Hn) ≥ 2, almost surely.

The corresponding upper bound on lim supn λmax does not follow directly from Wigner theorem,
and requires sharp combinatorial techniques. Indeed, Wigner’s does not prevent single eigenvalue
to detach from the limiting spectrum (such eigenvalues are called outliers). In case where the
coefficients of the Wigner matrix have a finite moment of order 4, Bai and Yin proved the above
result, see [3].

We can give a proof in case of the GUE, which is more easy. As in the proof of the inversion
formula for the Stieltjes transform, one has, for any function f which is continuous and bounded,∫

f(x)dµ(x) = lim
y→0+

∫
f(x) 1

π
ℑgµ(x + iy)dx.

This implies that∣∣∣∣E(∫ f(x)dµn(x)
)

−
∫

f(x)dµsc(x)
∣∣∣∣ ≤ lim sup

y→0

1
π

∣∣∣∣∫ f(x)εn(x + iy)dx

∣∣∣∣ ,
where εn(z) = fn(z) − gµsc(z), where we recall that fn(z) = Egn(z). But, using the equation
satisfied by the Stieltjes transform of the semicircular distribution, one has:

fn(z)2 + zfn(z) + 1 = fn(z)2 + zfn(z) + 1 − (gµsc(z)2 + zgµsc(z) + 1)
= fn(z)2 − gµsc(z)2 + z(fn(z) − gµsc(z))
= (fn(z) − gµsc(z))(fn(z) + gµsc(z) + z).
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Hence, we get that

|fn(z) − gµsc(z)| = 1
|fn(z) + gµsc(z) + z|

∣∣∣fn(z)2 + zfn(z) + 1
∣∣∣

≤ K

n2|ℑz|5
,

since |ℑ(fn(z) + gµsc(z) + z)| > |ℑz| for all z ∈ C \R (since all the terms have the same sign), and
from the concentration inequality of Proposition 3.11.

Now we use the following lemma due to Haagerup and Thorbjornsen, [10].

Lemma 3.15. Let h be an analytic function on C\R such that |h(z)| ≤ P ( 1
|ℑz| , for some polynomial

P with nonnegative coefficients and deg P = k. Then, there exists a polynomial Q such that for
any φ a C∞ function with compact support,

lim sup
y→0

∣∣∣∣∫
R

φ(x)h(x + iy)dx

∣∣∣∣ ≤
∫
R

∫ ∞

0
|(1 + d)k+1φ(x)|Q(t)e−tdtdx.

Applying this lemma to h(z) = n2εn(z), we obtain that for any C∞ function φ with compact
support, for n large enough,

lim sup
y→0

∣∣∣∣∫ φ(x)εn(x + iy)dx
∣∣∣∣ ≤ K

n2 ,

for some constant K. Hence, one has∣∣∣∣E(∫ φ(x)dµn(x)
)

−
∫

φ(x)dµsc(x)
∣∣∣∣ = O

( 1
n2

)
.

Now, consider a smooth function φ : R → [0, 1] which is equal to 1 on [−2 − ε, 2 + ε] and positive
on [−2 − 2ε, 2 + 2ε], and 0 elsewhere. Let Ψ = 1 − φ. By the previous bound applied to φ, and
the fact that Ψ = 0 on [−2 − ε, 2 + ε] (which contained the support of µsc), one obtains that

E
(

1
n

Ψ
(

1√
n

Xn

))
= O

( 1
n2

)
,

so,

E
( 1

n
Ψ(λmax)

)
≤ E

(
1
n

Ψ
(

1√
n

Xn

))
= O

( 1
n2

)
.

Hence, we get that

E (Ψ(λmax)) = O
( 1

n

)
−→
n→∞

0.

Moreover, λmax is a Lipschitz function by the Hoffman-Wielandt inequality, so one can again use
the concentration inequality for the Gaussian measure. Thus, by Borel-Cantelli lemma, we get
that

Ψ(λmax) − EΨ(λmax) −→
n→∞

0 a.s.,
so

Ψ(λmax) −→
n→∞

0 a.s.

But note that Ψ ≥ 1{|x|≥2+2ε}, hence, 1{|λmax|≥2+2ε} → 0 a.s., that is for all ε > 0, a.s.

lim sup
n

λmax ≤ 2 + 2ε,

which gives the upper bound.
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4. Sample Covariance Matrices

We first introduce the Marchenko-Pastur distribution.

Definition 4.1. The Marchenko-Pastur distribution with shape parameter c > 0 is the probability
measure defined by

µMP,c(dx) =
(

1 − 1
c

)
+

δ0 + 1
2π

√
(x − c−)(c+ − x)

cx
1[c−,c+](x)dx,

where (x)+ = max{x, 0}, and c± = (1 ±
√

c)2.

The Marchenko-Pastur distribution has thus a density part supported on [c−, c+], and an atom
at 0 when c > 1. As an exercice, one can easily show that if X is a random variable distributed
according to the semi-circular distribution µsc, then X2 is distributed according to the Marchenko-
Pastur distribution with parameter c = 1.

The moments of the Marchenko-Pastur distribution can be computed in a straightforward way:

Proposition 4.2. For all n ≥ 1, we have∫
xnµMP,c(dx) =

n−1∑
k=0

ck

k + 1

(
n

k

)(
n − 1

k

)
.

Proof. Since c− + c+ = 2(1 + c) and c−c+ = (1 − c)2, we have√
(x − c−)(c+ − x) =

√
4c − (x − (1 + x))2,

hence the change of variable y = (x − (1 + c))/
√

c gives∫
xnµMP,c(dx) =

∫
[−2,2]

(
√

cy + 1 + c)n−1 1
4π

√
4 − y2dy

=
n−1∑
k=0

(
n − 1

k

)
(1 + c)n−1−kck/2

∫
[−2,2]

yk 1
4π

√
4 − y2dy.

Since odd moments of the semicircular distribution are zero and even moments are given by the
Catalan numbers, we get∫

xnµMP,c(dx) =
⌊(n−1)/2⌋∑

k=0

(
n − 1

2k

)
(1 + c)n−1−2kck 1

k + 1

(
2k

k

)

=
⌊(n−1)/2⌋∑

k=0

n−1−2k∑
j=0

ck+j

(
n − 1 − 2k

j

)(
n − 1

2k

)
1

k + 1

(
2k

k

)

=
⌊(n−1)/2⌋∑

k=0

n−1−k∑
l=k

cl

(
n − 1 − 2k

l − k

)(
n − 1

2k

)
1

k + 1

(
2k

k

)

=
n−1∑
l=0

cl
min(l,n−1−l)∑

k=0

(n − 1 − 2k)!
(l − k)!(n − 1 − k − l)!

(n − 1)!
(2k)!(n − 1 − 2k)!

(2k)!
(k + 1)!k!

=
n−1∑
l=0

cl 1
n

(
n

l

)min(l,n−1−l)∑
k=0

(
l

k

)(
n − l

k + 1

)

=
n−1∑
l=0

cl 1
n

(
n

l

)(
n

l + 1

)
,
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using the Vandermonde’s identity. Eventually, we get∫
xnµMP,c(dx) =

n−1∑
l=0

cl 1
l + 1

(
n

l

)(
n − 1

l

)
. □

The Stieltjes transform of the Marchenko-Pastur distribution can also be computed:

Proposition 4.3. Let g be the Stieltjes transform of the Marchenko-Pastur distribution µMP,c,
with c > 1. Then, for all z ∈ C+, we have

g(z) =
1 − c − z +

√
(z − c−)(z − c+)
2cz

.

Moreover, g satisfies the fixed point equation on C+:

g(z) = 1
1 − c − z − czg(z) .

Proof. We have,

g(z) =
∫

[c−,c+]

√
(c+ − t)(t − c−)

2πc(t − z) dt.

We perform the change of variable t = 1 + 2
√

c cos θ + c2, for θ ∈ (0, π). This gives:

g(z) = 1
π

∫ 2π

0

sin2 θ

(1 + 2
√

c cos θ + c)(1 + 2
√

c cos θ + c − z)dt.

Now, we compute this integral using contour integration and residue calculus. We have,

g(z) = 1
πi

∮
Γ

(w2 − 1)2

w(w2 + aw + 1)(w2 − bw + 1)dw

where Γ is the unit circle {|w| = 1}, and a = (1+c)/
√

c and b = (z−(1+c))/
√

c. The integrand has
5 poles, and residue calculus gives the result. The fixed point equation can be easily verified. □

In 1967, Marchenko and Pastur proved the following fundamental result:

Theorem 4.4. Let p, n, with p depending on n in such a way that:

lim
n→∞

p

n
= c ∈ (0, +∞).

Let Yn be a p × n rectangular random matrix with i.i.d. centered Gaussian coefficients, with mean
0 and variance 1. Denote by µn the empirical spectral distribution of the eigenvalues of 1

n
YnY ⊺

n .
Then, almost surely, one has

µn −→
n→∞

µMP,c, weakly.

Figure 9 shows a simulation of the eigenvalues of a large random Gaussian matrix of the form
1
n
Y Y ⊺ and the density of the Marchenko-Pastur distribution. Note that the eigenvalues of 1

n
Y Y ⊺

and 1
n
Y ⊺Y only differs by |n − p| zeroes, hence their empirical spectral distributions converge to

the same limit (according to the cases c > 1 or c ≥ 1).

Hence, if X1, . . . , Xn are independent and identically distributed random (column) vectors of
Rp, with Gaussian distribution with zero mean and covariance matrix the identity Ip, then the
empirical eigenvalue distribution of the empirical covariance matrix

1
n

Y Y ⊺ = 1
n

n∑
i=1

XiX
⊺
i ,
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Figure 9. Histogram (blue) of the eigenvalues of the sample covariance matrix of
a 500×1000 Gaussian random matrix and the Marchenko-Pastur distribution (red).

where Y is the rectangular matrix whose columns are (X1, . . . , Xn), converges weakly to the
Marchenko-Pastur distribution.

The fundamental result of Marchenko-Pastur have been generalized to other distribution with
finite second moment, and we have:
Theorem 4.5 ([4]). Let p, n, with p depending on n in such a way that:

lim
n→∞

p

n
= c ∈ (0, +∞).

Let Yn be a p × n rectangular random matrix with i.i.d. coefficients, with zero mean and variance
1. Denote by µn the empirical spectral distribution of the eigenvalues of 1

n
YnY ⊺

n . Then, almost
surely, one has

µn −→
n→∞

µMP,c, weakly.

The above result also holds in the complex case, that is when Yn has complex i.i.d. coefficients.
Both the method of moments or the Stieltjes resolvent method can be used to prove the

Marchenko-Pastur theorem, but in both cases it is more complicated than in the case of Wigner’s
theorem. We refer to [4] for the details. Moreover, as for the case of Wigner matrices, under the
additional assumption that the entries have finite fourth moment, the largest eigenvalue converges
to the edge of the bulk:
Theorem 4.6 ([4]). Let p, n, with p depending on n in such a way that:

lim
n→∞

p

n
= c ∈ (0, +∞).

Let Yn be a p × n rectangular random matrix with i.i.d. coefficients, with zero mean and variance
1, and such that E|Y (i, j)|4 < ∞. Then, the largest eigenvalue λmax of 1

n
Y Y ⊺ satisfies:

λmax −→
n→∞

(1 +
√

c)2, a.s.

In real world data analysis, it is expected that the vectors X1, . . . , Xn exhibit a correlation
structure instead of being i.i.d. The following result takes care of this generalization:
Theorem 4.7 ([4]). Let p, n, with p depending on n in such a way that:

lim
n→∞

p

n
= c ∈ (0, +∞).



26 INTRODUCTION TO LARGE RANDOM MATRICES

Let Σ be a p×p deterministic symmetric nonnegative definite matrix, with bounded operator norm.
Let Xn be a p×n rectangular random matrix with i.i.d. coefficients, with zero mean and variance 1,
and let Yn = Σ1/2Xn. Suppose that the empirical eigenvalue distribution of Σ converges weakly, as
p → ∞, to some probability measure ν. Then, almost surely, the empirical eigenvalue distribution

µ 1
n

Y Y ⊺ −→
n→∞

µ, µ 1
n

Y ⊺Y −→
n→∞

µ̃,

where µ and µ̃ are the unique probability measures having Stieltjes transform m and m̃ on C+
respectively, given by

m(z) = 1
c
m̃(z) + 1 − c

cz
, m̃(z) =

(
−z + c

∫
R

t

1 + m̃(z)tν(dt)
)−1

.

Note that when ν = δ1, we recover the fixed point equation of the Marchenko-Pastur distribution.

5. Spiked models

When considering finite rank deformation, Lemma 6.6 implies immediately that finite rank
perturbation of a Wigner matrix does not change the limiting distribution. The same holds for
sample covariance matrix when considering finite rank perturbation of the idenity. Moreover, we
have seen that the convergence of the empirical spectral distribution does not prevent in general
some eigenvalues to detach from the support of the limiting distribution. Nevertheless, under a
finite fourth moment condition, this does not happen in both cases of the Wigner’s theorem and the
Marchenko-Pastur’s theorem, as the largest eigenvalue converges to the edge of the ”bulk”. When
considering additive perturbation or general sample covariance matrices, if the deformation matrix
is structured, then outliers may appear. This was first observed for sample covariance matrices, and
is referred now to the BBP phase transition, because of the seminal work of Baik-Ben Arous-Péché
[2]. We have, in the rank one case, to simplify:

Theorem 5.1 ([2]). Let An = diag(θ, 1, . . . , 1) for some fixed θ > 0 independent of n. Let Xn be
a p × n rectangular random matrix with i.i.d. complex coefficients, with zero mean and variance
1. Consider the model:

Mn = 1
n

A1/2
n XnX∗

nA1/2
n .

Let ωc = 1 +
√

c. Then, we have,
(i) If θ ≤ ωc,

λmax(Mn) −→
n→∞

(1 +
√

c)2 a.s.

(ii) If θ > ωc,
λmax(Mn) −→

n→∞
θ
(

1 + c

θ − 1

)
a.s.

Hence, when the ”spike” θ of the matrix An is less than the threshold ωc = 1 +
√

c, the largest
eigenvalue of the sample covariance matrix Mn converges to the edge of the bulk of the Marchenko-
Pastur distribution. On the other hand, when θ > ωc, the largest eigenvalue of Mn converges to
θ
(
1 + c

θ−1

)
> (1 +

√
c)2, hence λmax is an ”outlier” eigenvalue: it converges outside the support of

the limiting spectral distribution and does not stick to the bulk.
An analogue of this phase transition was proved for GUE matrices by Péché [15]. Again, to

simplify, we state the theorem for rank one perturbation.

Theorem 5.2. Let Hn = 1√
n
Xn, where Xn is a GUE(n, σ2) random matrix. Consider a rank one

matrix An = diag(θ, 0, . . . , 0) for some fixed θ independent of n, and let Mn = Hn + An. Then,
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(i) If θ ≤ σ,
λmax(Mn) −→

n→∞
2σ a.s.

(ii) If θ > σ,

λmax(Mn) −→
n→∞

θ + σ2

θ
a.s.

Note that θ + σ2

θ
> 2σ, hence again, this exhibits a phase transition: when the value of the

”spike” θ of the matrix An is strictly greater than σ, the largest eigenvalue detaches from the
limiting support of the semicircular distribution, thus one observes an ”outlier”.

In applications, another model of interest is the so-called ”information plus noise” matrix model,
defined as:

Mn =
(

σ√
n

Xn + An

)(
σ√
n

Xn + An

)∗

,

where Xn is a rectangular p × n random matrix with i.i.d. complex Gaussian coefficients with zero
mean and variance 1, and An = diag(θ, 0, . . . , 0). Then one has,

Theorem 5.3. Consider the above information plus noise model, such that p
n

→ c ∈ (0, 1].
(i) If θ ≤ σ2√c,

λmax(Mn) −→
n→∞

σ2(1 +
√

c)2 a.s.

(ii) If θ > σ2√c,

λmax(Mn) −→
n→∞

(σ2 + θ)(σ2c + θ)
θ

a.s.

6. Appendix

6.1. Complex analysis tools. In what follows, we denote by C+ the half-plane C+ = {z ∈
C | ℑ(z) > 0}, and by D(0, ρ) the disk centered at 0 with radius ρ.

Theorem 6.1 (Montel’s theorem). Let U ⊂ C be an open set. Let F be a family of holomorphic
functions on U . Suppose that F is uniformly bounded on every compact sets of U . Then every
sequence of F admits a subsequence which converges uniformly on compact sets of U .

Sketch of the Proof (see [16]): F uniformly bounded on every compact sets of U says that for all
K ⊂ U compact, there exists M(K) > 0 such that ∀f ∈ F , ∀z ∈ K, |f(z)| ≤ M(K). Let (Kn)n a
sequence of compact sets in U such that U = ⋃

n Kn, and Kn is included in the interior of Kn+1,
for all n. From this last property, we can find a sequence (δn)n such that

D(z, 2δn) ⊂ Kn+1, for z ∈ Kn.

Let x, y ∈ Kn such that |x − y| < δn. Denote γ the circle, with positive orientation, centered at x
of radius 2δn. Then, Cauchy’s formula gives

f(x) − f(y) = 1
2iπ

∫
γ

f(ξ)
( 1

ξ − x
− 1

ξ − y

)
dξ = x − y

2iπ

∫
γ

f(ξ)
(ξ − x)(ξ − y)dξ.

For ξ in the image of the contour γ, we have |ξ − x| = 2δn, and |ξ − y| > δn, hence

|f(x) − f(y)| ≤ M(Kn+1)
δn

|x − y|,

for all f ∈ F , and all x, y ∈ Kn such that |x − y| < δn. Thus, for all Kn the restrictions of
elements of F to Kn are an uniformly bounded equicontinuous family, and by Ascoli’s theorem a
pre-compact family in C(Kn). A classical diagonal extraction procedure gives the result. □
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Theorem 6.2 (Vitali’s theorem). Let U ∈ C be a connected open set. Let (zp)p≥0 be a sequence
in U which admits an accumulation point in U . Let (fn)n≥0 be a bounded sequence of the set of
analytic functions endowed with the topology of uniform convergence on compact sets and suppose
that (fn(zp))n≥0 converges for every p ≥ 0. Then (fn)n≥0 converges uniformly on compact sets of
U .

Proof. Suppose, to the contrary, that there is a compact set K ⊂ U such that (fn) is not uniformly
Cauchy on K. Then for some ε > 0, we can find subsequences mj and nj such that m1 < n1 <
m2 < n2 < · · · and for each j, |fmj

− fnj
| ≥ ε. Put gj = fmj

and hj = fnj
. By Montel’s theorem

applied to gj, one obtains a subsequence gjr converging uniformly on compact subsets of U to
some analytic function g, and the same holds for hjr denoting the limit by h. Hence we have
|h − g| ≥ ε. But since (fn(zp))n≥0 converges for every p ≥ 0, we have g(zp) = h(zp), and since
(zp)p≥0 has an accumulation point in U and U is open and connected, g = h on U which yields a
contradiction. □

Theorem 6.3 (Herglotz formula). Let f be an holomorphic function on the unit disk such that
ℜ(f) ≥ 0. Then, there exists a positive measure σ with

∫
R dσ = ℜ(f(0)) such that, for |z| < 1,

f(z) = iℑ(f(0)) + 1
2π

∫ π

−π

eiθ + z

eiθ − z
σ(dθ).

Proof. Let 0 < R < 1. Then, one has, for |z| < R,
Reiθ + z

Reiθ − z
= 1 + 2

∞∑
n=1

zn

Rneinθ
.

Since f is holomorphic in the disk with radius R, f admits a Taylor series development

f(z) =
∞∑

n=0
anzn.

Hence,
Reiθ + z

Reiθ − z
ℜ(f(Reiθ)) =

(
1 + 2

∞∑
n=1

R−ne−inθzn
)(

ℜ(a0) +
∑
m≥1

1
2(amRmeimθ + amRme−imθ)

)
.

Integrating the last expression over θ, using the fact that
∫ π

−π eikθdθ = 2πδk,0, gives

f(z) = iℑ(f(0)) + 1
2π

∫ π

−π

Reiθ + z

Reiθ − z
ℜ(f(Reiθ))dθ.

Letting R going to 1 yields the result. □

Corollary 6.4 (Nevanlinna’s representation theorem). Let f be a holomorphic function on C+

such that ℑ(f) ≥ 0. There exists a positive finite measure µ and constants a ≥ 0, b ∈ R such that,

f(z) = az + b +
∫
R

1 + uz

u − z
µ(du).

Proof. We consider the conformal mappping (that is holomorphic and bijective)
C+ → D(0, 1)

z 7→ z − i

z + i
.

By Herglotz theorem, we have

−if
(

z − i

z + i

)
= ℑ(f(0)) + −i

2π

∫ π

−π

z(eiθ + 1) + i(eiθ − 1)
z(eiθ − 1) + i(eiθ + 1)σ(dθ).



INTRODUCTION TO LARGE RANDOM MATRICES 29

Let µ be the pushforward by the map [−π, π] \ {0} ∋ θ 7→ u = i1+eiθ

1−eiθ = −i cot θ
2 ∈ R, of the

restriction to [−π, π] \ {0} of σ. Then we get,

−if
(

z − i

z + i

)
= ℑ(f(0)) + σ({0})z + 1

2π

∫
R

1 + uz

u − z
µ(du),

which gives the result letting a = σ({0}) and b = ℑ(f(0)). □

6.2. Matrix inequalities.

Lemma 6.5 (Hoffman-Wielandt inequality). Let A, B be two n×n normal matrices, with eigenval-
ues λ1(A) ≤ · · · ≤ λn(A) and λ1(B) ≤ · · · ≤ λn(B) respectively. Denote by ||·|| the Hilbert-Schmidt
norm. Then,

n∑
i=1

|λi(A) − λi(B)|2 ≤ ||A − B||2.

Proof. Since A and B are nomal matrices, there are diagonalizable, so one can write:

A = U∗DAU B = V ∗DBV,

where U, V are unitary matrices, and DA = diag(λ1(A), . . . , λn(A)) and DB = diag(λ1(B), . . . , λn(B)).
Now,

||A − B|| = ||U∗DAU − V ∗DBV || = ||U∗(DAUV ∗ − UV ∗DB)V ||.

Put W = UV ∗. Then W is unitary, and by the trace property the norm || · || is unitary invariant,
hence

||A − B||2 = ||DAW − WDB)||2 =
n∑

i,j=1
|Wij|2|λi(A) − λj(B)|2.

Let P = (|Wij|2)1≤i,j≤n. Since W is unitary, P is doubly stochastic, that is, Pij ≥ 0 and,
n∑

i=1
|Wij|2 = 1, for all j = 1, . . . , n,

n∑
j=1

|Wij|2 = 1, for all i = 1, . . . , n.

Define Φ(P ) = ∑n
i,j=1 Pi,j|λi(A) − λj(B)|2, for all P ∈ P , where P is the set of doubly stochastic

n × n matrices. Then, we have
inf

P ∈P
Φ(P ) ≤ ||A − B||2.

But Φ is linear in P , and since P is compact and convex, the minimum of Φ is attained at the
extremal points of P . By the Birkhoff-Von Neumann theorem, the extremal points of P are given
by permutation matrices P , that is P has only 0 or 1 entries, with exactly one 1 on each row
and on each column. Now one can see that this minimum is attained at the permutation matrix
corresponding to the identity. □

Lemma 6.6 (Rank inequalities). Denote by F A the cumulative distribution function of the em-
pirical eigenvalue distribution µA of a matrix A. Denote also by || · ||∞ the supremum norm (that
is ||f ||∞ = supx∈R |f(x)|). Then we have:

(i) Let A, B be two n × n Hermitian matrices. Then,

||F A − F B||∞ ≤ 1
n

rank(A − B).
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(ii) Let A, B be two p × n complex matrices. Then,

||F AA∗ − F BB∗||∞ ≤ 1
p

rank(A − B).

We refer to [4] for a proof.

References
[1] Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni, An introduction to random matrices, Cambridge Stud-

ies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010, draft available at
http://www.math.umn.edu/˜zeitouni/technion/index.html.

[2] J. Baik, G. Ben Arous and S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample
covariance matrices, Ann. Probab. 33 (2005), no. 5, 1643–1697; MR2165575

[3] Z. D. Bai and Y. Q. Yin, necessary and sufficient conditions for almost sure convergence of the largest eigenvalue
of a Wigner matrix, Ann. Probab. 16 (1988), no. 4, 1729–1741.

[4] Zhidong Bai and Jack W. Silverstein, Spectral analysis of large dimensional random matrices, second ed.,
Springer Series in Statistics, Springer, new York, 2010.

[5] F. Benaych-Georges and R. R. nadakuditi, The singular values and vectors of low rank perturbations of large
rectangular random matrices, ArXiv e-prints, 2011.

[6] P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture notes
in Mathematics, vol. 3, new York University Courant Institute of Mathematical Sciences, new York, 1999.

[7] Catherine Donati-Martin, Large random matrices, Lectures notes, Tsinghua University, available at
http://www.proba.jussieu.fr/dw/doku.php?id=users:donati:index.

[8] Patrick L. Ferrari, Dimers and orthogonal polynomials: connections with random matrices, Lectures notes,
IHP, available at http://www-wt.iam.uni-bonn.de/˜ferrari/.

[9] W. Hachem, P. Loubaton, and J. najim, Deterministic equivalents for certain functionals of large random
matrices, Ann. Appl. Probab. 17 (2007), no. 3, 875–930.

[10] U. Haagerup and S. Thorbjørnsen, A new application of random matrices: Ext(C∗
red(F2)) is not a group, Ann.

of Math. (2) 162 (2005), no. 2, 711–775; MR2183281
[11] Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, Mathematical Surveys and

Monographs, vol. 77, American Mathematical Society, Providence, RI, 2000.
[12] Alexei M. Khorunzhy, Boris A. Khoruzhenko, and Leonid A. Pastur, Asymptotic properties of large random

matrices with independent entries, J. Math. Phys. 37 (1996), no. 10, 5033–5060.
[13] Michel Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89,

American Mathematical Society, Providence, RI, 2001.
[14] Leonid Pastur and Antoine Lejay, Matrices aléatoires: statistique asymptotique des valeurs propres, Séminaire

de Probabilités, XXXVI, Lecture notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 135–164.
[15] S. Péché, The largest eigenvalue of small rank perturbations of Hermitian random matrices, Probab. Theory

Related Fields 134 (2006), no. 1, 127–173; MR2221787
[16] Walter Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., new York, 1987.
[17] Gábor Szegő, Orthogonal polynomials, fourth ed., American Mathematical Society, Providence, R.I., 1975,

American Mathematical Society, Colloquium Publications, Vol. XXIII.
[18] Terence Tao, Topics in random matrix theory, Graduate Studies in Mathematics, vol. 132, American Mathe-

matical Society, Providence, RI, 2012, draft available at http://www.math.ucla.edu/˜tao/.
[19] Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159

(1994), no. 1, 151–174.
[20] A.M. Tulino, S. Verdú, Random matrix theory and wireless communications, in Foundations and Trends in

Communications and Information theory, vol. 1, Hanover, MA, Now Publishers, 2004.
[21] Eugene P. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67 (1958),

325–327.
[22] J. Wishart, The generalized product moment distribution in samples from a normal multivariate population,

Biometrika 20 (1928), 35–52.

Université de Toulouse, Institut de Mathématiques de Toulouse, 118 route de narbonne, F-
31062 Toulouse Cedex 9

Email address: francois.chapon@math.univ-toulouse.fr


	1. Introduction
	2. The Wigner theorem
	2.1. Combinatorics of Catalan numbers
	2.2. Wigner theorem
	2.3. Noncrossing partitions

	3. The Stieltjes transform approach
	3.1. Extremal eigenvalues

	4. Sample Covariance Matrices
	5. Spiked models
	6. Appendix
	6.1. Complex analysis tools
	6.2. Matrix inequalities

	References

