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Abstract. The aim of this paper is to describe some numerical aspects linked to incompressible

three-phase flow simulations, thanks to Cahn-Hilliard type model. The numerical capture of transfer

phenomenon in the neighborhood of the interface require a mesh thickness which become crippling

in the case where it is applied to the whole computational domain. This suggests the use of a local

refinement method which allows to dynamically focus on problematic areas. The notion of refinement

pattern, introduced for Lagrange finite elements, allows to build a conceptual hierarchy of nested con-

formal approximation spaces which is then used to implement the so-called CHARMS local refinement

methods. Properties of these methods are proved ensuring in particular the conformity of approxi-

mation spaces at every time of simulations. Furthermore, the multilevel structure obtained by this

method, is used to construct multigrid preconditioners. Finally, after a validation on a model problem,

the performance of the whole method is illustrated on an example of a liquid lens spreading between

two stratified fluids.

Résumé. L’objectif de l’article est de décrire certains aspects numériques liés à la simulation d’écou-

lements incompressibles à trois phases non miscibles, à l’aide de modèles à interfaces diffuses de type

Cahn-Hilliard. La capture numérique des phénomènes de transfert au voisinage des interfaces requiert

une finesse de maillage qui devient rédhibitoire si elle est appliquée à l’ensemble du domaine de calcul.

Ceci suggère l’utilisation de méthodes de raffinement local adaptatif qui permettent de se focaliser dy-

namiquement sur les zones sensibles. La notion de motif de raffinement, introduite pour des éléments

finis de Lagrange, permet de construire une hiérarchie conceptuelle d’espaces d’approximation con-

formes embôıtés qui est alors utilisée pour mettre en oeuvre les techniques de raffinement local dites

CHARMS. Les propriétés de la méthode sont prouvées assurant en particulier la conformité de l’espace

d’approximation à tout instant des simulations. En outre, la structure multiniveaux obtenue par cette

méthode est exploitée pour construire des préconditionneurs multigrilles. Enfin, après une validation

sur un problème modèle, les performances de l’ensemble sont illustrées sur un exemple d’étalement

d’une lentille piégée entre deux phases stratifiées.
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Université Paul Cézanne, Avenue Escadrille Normandie-Niemen, 13397 MARSEILLE Cedex 20, France.
e-mail: fboyer@cmi.univ-mrs.fr
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Introduction

During a hypothetical major accident in a nuclear reactor, the degradation of the core may produce multiphase
flows where interfaces undergo extreme topological changes, e.g. break-up and coalescence. Because of their
ability to capture interfaces implicitly, phase field models are attractive for the numerical simulation of such
phenomena [5]. They replace sharp interfaces by thin but nonzero thickness transition regions where capillary
effects and changes in fluid properties are smoothed. The implied burden on the numerical method lies in the
required resolution of very thin moving internal layers. We present here a general adaptive local refinement
strategy and an associated multigrid solver in order to tackle such issues. We illustrate the method on the
ternary Cahn-Hilliard model taken from [5].

The challenge of local refinement can be expressed in that way: increase the spatial resolution of some part of
the domain which are dynamically selected at each time step. Of course, the choice of these parts is not obvious,
nevertheless, for the description of the general method, we assume that a refinement criterion is available so
that we know the area to refine. We will give, in Section 3.3.3, the precise criterion we used for the resolution
of the Cahn-Hilliard model.

To increase the spatial resolution in these selected areas, a solution is to use elements with smaller diameters,
i.e. to split some cells into smaller ones. The main difficulty is to preserve, at the same time, the geometric
conformity of the mesh and then its “good” geometric quality. The geometric conformity prevents the so-called
hanging nodes which for different reasons are undesired in many applications. For instance, hanging nodes do
not represent degree of freedom and are somewhat difficult to handle, because the local correlation pattern
of the stiffness matrix is disturbed. When they exist, their taking into account may be carried out by many
ways, for instance, by direct elimination of these “false” unknowns, or by adding constraint and using penalty
methods or Lagrange multiplier methods. In these cases, numerical methods and schemes are modified.

Another method consists in eliminating non-conformity of the mesh by splitting cells until there is no non-
conformal edge left. In two dimensions, for triangular meshes, we may for instance cite the red-green refinement
method [2]. This technique consists in first using a “regular” splitting (called red refinement) of triangles in
four congruent ones by connecting the midpoints of its edges. This refinement preserves geometric properties of
triangles but creates non-conformal edges when a refined triangle and an unrefined one are adjacent. Therefore,
a second type of refinement (called green refinement) is first used connecting one edge midpoint and the opposite
corner. This yields a simple bisection which is “irregular” but only used for solving conformity issues. Bey [4] and
Zhang [24] proposed a generalisation of this method to three dimensions. Other methods based only on bisection
have been introduced by Rivara [21, 22] or Mitchell [18] in two dimension and Bänsch [3] or Maubach [17] in
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three dimensions. All these methods depend on the choice of the element and on the dimension. Moreover,
their implementation tends to be quite complex, notably in three dimensions.

A possible alternative considered in this paper is to adopt the point of view of basis functions refinement
instead of cells refinement. In this approach [15], a stock of basis functions with increasing spatial resolution
is assumed to be given through a nested sequence of approximation spaces X0 ⊂ · · · ⊂ XJ , J > 1. Local
refinement is then performed by using multilevel approximation spaces containing few basis functions suitably
selected in each approximation spaces Xj , j ∈ J0, JK. In this framework, Krysl, Grinspun and Schröder in [15]
(see also [10, 13, 16]) proposed procedures called CHARMS (Conforming Hierarchical Adaptive Refinement
MethodS) which enable to (un)refine multilevel approximation spaces. We give here a precise construction of
the nested sequence X0 ⊂ · · · ⊂ XJ for suitable Lagrange finite element (e.g. Pk,Qk, k > 1) using a unique
refinement pattern and we study a slightly modified version of the quasi-hierarchical CHARMS adaptation
technique (the “one-level-difference refinement rule” is used as a separate criterion, and is not involved in the
proof of the properties of the procedure). Finally, we incorporate multigrid preconditioners [1, 8, 12, 23, 24] in
the method. Attractive features follow from this methodology:

• there is no modification of the discrete problem due to the mesh adaptation,
• the cells are divided into cells of the same type, uniformly applying the same subdivision pattern,
• the possible geometric non-conformity of the adapted meshes are implicitly handled,
• there is no specific treatment due to particular Lagrange finite elements, e.g. Pk,Qk, k > 1,
• all the procedure is independent of the space dimension,
• transfer operators between the different grids are not needed for time evolution problems provided that

a suitable definition of elementary integration domains is used when assembling the system.

The detailed outline of the paper is the following. In Section 1, we introduce the notion of refinement pattern
for suitable Lagrange elements (e.g. Pk and Qk) and we show how a hierarchy of nested conforming meshes can
be built recursively by applying a unique refinement pattern to each cell of a given initial mesh. We investigate
in details the parent-child relationship between basis functions of successive refinement levels. In particular, we
show that all the coefficients in this linear relationship can be simply computed by considering the refinement
pattern on the reference element. Consequently, the meshes hierarchy is never explicitly created since every
necessary information is available on the reference element.

In Section 2, we describe the local adaptation procedure in the above framework and we establish its main
properties. In particular, we give precise sufficient conditions ensuring that:

• the selected basis functions on the various levels are always linearly independent.
• no information is lost when refining a basis function: the refinement algorithm produces increasing

approximation spaces sequences.
• the approximation space obtained by refining (resp. unrefining) a set of basis functions is independent

of the order in which successive refinements (resp. unrefinements) are performed.

Some counterexamples illustrate the fact that these properties are not satisfied in the general case.
In the second part of Section 2, we show that the multilevel structure of the approximation spaces built

following the above methodology can be exploited to derive efficient multigrid preconditioners. All the results
in this section are illustrated by numerical results on a model problem.

Section 3 is devoted to illustrations to more complicated partial differential equations. We concentrate on
the simulation of three-phase systems thanks to a diffuse-interface model of Cahn-Hilliard type. The model is
a non-linear parabolic problem describing the evolution of thin interfaces. This is the reason why such a local
adaptive approach is particularly fruitful. Interestingly enough, we focus on the fact that, even though the
approximation spaces may vary from a time step to another, it is not needed to make use of transfer operators
between the different grids when assembling the matrix of the system. In the conclusion of the paper, we give
even more complex simulation results we obtained by solving the complete three-phase flows model constituted
by a coupling between the Cahn-Hilliard system and the Navier-Stokes equations, which is the main motivation
of this study.
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1. Multilevel Finite Element Spaces

1.1. Preliminary notation and definitions

This subsection introduces some classical notation, definitions and properties, following [9] and [20], about
meshes and Lagrange finite elements. These would be useful in Sections 1.2 and 1.3.

Definition 1.1 (Lagrange Finite Element [20, §4.1]). A Lagrange finite element is a triple (K,Σ, P ) where

• K is a compact, connected, Lipschitz subset of Rd (d = 1, 2 or 3),
• Σ = {ak ∈ K; 1 6 k 6 N} is a set of N distinct points belonging to K, called the Lagrange nodes,
• P is a vector space of functions p : K → R such that Σ is P -unisolvent [20, Def 4.1-1], i.e.

∀(α1, . . . , αN ) ∈ RN , ∃!p ∈ P, ∀k ∈ J1, NK, p(ak) = αk.

The element (K,Σ, P ) is called a polygonal Lagrange finite element iff K is a polygon.

Definition 1.2 (Mesh [9, Def 1.49]). Let ω ⊂ Rd (d = 1, 2 or 3) be a domain [9, Def 1.46]. A mesh T of ω is a
set {Ke ⊂ ω; 1 6 e 6 Ne} of compact, connected, Lipschitz subsets of ω with non-empty interior (called cells),
such that

• ω =

Ne⋃

e=1

Ke and,

• K̊e ∩ K̊f = ∅ for any pair of distinct cells (Ke,Kf).

Definition 1.3 (Finite element mesh generated by a reference element [9, §1.3.2] ). Let T = {Ke; 1 6 e 6 Ne}

be a mesh of a domain ω. Let (K̂, Σ̂, P̂ ) be a polygonal Lagrange finite element, hereafter called reference

element. We say that the mesh T is generated using the reference element (K̂, Σ̂, P̂ ) iff:

For all e ∈ J1, NeK, there exists a C1-diffeomorphism Te from K̂ to Ke.

When the transformations Te, 1 6 e 6 Ne, are affine, the mesh is said to be affine.
For all e ∈ J1, NeK, we can define a Lagrange finite element (Ke,Σe, Pe) by setting:

• Σe = Te(Σ̂) and

• Pe = {p ◦ T−1
e ; p ∈ P̂}.

Remark 1.4. We always assume that the reference element is polygonal. However, depending on the mapping
Te, a cell Ke may be non polygonal [9, Figure 1.13].

The following definitions are commonly used in order to build H1(ω)-conformal finite element approximation
spaces X , i.e. such that X ⊂ H1(ω), see Proposition 1.10.

Definition 1.5 (C0-class element [20, Def 5.1-2]). The polygonal Lagrange finite element (K̂, Σ̂, P̂ ) is a C0-class
element iff

• P̂ ⊂ C0(K̂) and

• for any face F̂ of K̂, Σ̂ ∩ F̂ is P̂| bF
-unisolvent where P̂| bF

= {ϕ̂| bF
; ϕ̂ ∈ P̂}.

Definition 1.6 (Compatibility requirements [20, Def 5.1-3]). The compatibility requirements for the Lagrange

reference element (K̂, Σ̂, P̂ ) hold iff for all faces F̂1 and F̂2 of K̂, for all affine invertible function Â such that

F̂2 = Â(F̂1), we have,

• Σ̂ ∩ F̂2 = Â(Σ̂ ∩ F̂1) and

• {ϕ̂| bF1
; ϕ̂ ∈ P̂1} = {ϕ̂ ◦ Â| bF1

; ϕ̂ ∈ P̂2}.
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Definition 1.7 (Geometrically conformal mesh [9, Def 1.55]). A mesh T = {Ke; 1 6 e 6 Ne} of a domain ω is
said to be geometrically conformal iff for all cells Ke and Kf having a non-empty (d-1)-dimensional intersection,

say F = Ke ∩ Kf , T
−1
e (F ) and T−1

f (F ) are faces of K̂, and there exists a bijective affine transformation

Â : T−1
e (F ) → T−1

f (F ) such that Â ◦ T−1
e = T−1

f on F .

Remark 1.8. Definition 1.7 implies, in particular, that for any pair of distinct cells (Ke,Kf ), the intersection
Ke ∩Kf is:

• either empty or a common vertex in dimension 1,
• either empty, or a common vertex, or a common face in dimension 2,
• either empty, or a common vertex, or a common edge, or a common face in dimension 3.

An example of a geometrically non-conformal mesh is shown in Figure 1.

Figure 1. Example of a geometrically non-conformal mesh.

Remark 1.9. In case that the mesh is geometrically conformal, Definition 1.6 implies, in particular, that the
Lagrange nodes on a common face belong to each element sharing the face. An example of incompatible node
positions is given in Figure 2.

Tf

Ke

Te

Σe = { }

Σf = { }
KfK̂

Figure 2. Example of incompatible node positions.

Let T = {Ke; 1 6 e 6 Ne} be a mesh generated using a Lagrange reference finite element (K̂, Σ̂, P̂ ). Owing
to Definition 1.3, we can associate to this mesh:

• a set of geometric mappings {Te : K̂ → Ke; 1 6 e 6 Ne}.
• a set of Lagrange finite elements {(Ke,Σe, Pe); 1 6 e 6 Ne}.

• a set of Lagrange nodes Σ =

Ne⋃

e=1

Σe. Let us denote by Ndof = #Σ the number of Lagrange nodes, so

that we can write Σ = {ai; 1 6 i 6 Ndof}.

• a set of basis functions {ϕi; 1 6 i 6 Ndof} defined as follows. First, for e ∈ J1, NeK and k ∈ J1, N̂K where

N̂ = # Σ̂, we denote by I(e, k) ∈ {1, . . . , Ndof} the corresponding index, in the global numerotation, of
the k-th local Lagrange node in the e-th cell of T . That is

∀e ∈ J1, NeK, ∀k ∈ J1, N̂K, aI(e,k) = Te(âk).
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Furthermore, since Σ̂ is P̂ -unisolvent, we have:

∀k ∈ J1, N̂K, ∃ϕ̂k ∈ P̂ , ∀ℓ ∈ J1, N̂K, ϕ̂k(âℓ) = δkℓ.

We can then associate to each node ai, 1 6 i 6 Ndof, a basis function ϕi defined elementwise by

ϕi|Ke
=

{
ϕ̂k ◦ T−1

e if there exists k ∈ J1, N̂K such that I(e, k) = i
0 otherwise.

Owing to this definition, we denote by supp[ϕi] the following subset of ω:

supp[ϕi] =
⋃

e∈E

Ke where E =
{
e ∈ J1, NeK; ∃k ∈ J1, N̂K, i = I(e, k)

}
.

• a H1(ω)-conformal approximation space [9, Prop 1.74]

X =
{
v ∈ C0(ω); ∀e ∈ J1, NeK, v|Ke

∈ Pe
}
.

The advantage of this construction is not only to produce a H1(ω)-conformal approximation space but most
important to provide an explicit basis of this space. Indeed, we have the following result:

Proposition 1.10. Let (K̂, Σ̂, P̂ ) be a C0-class polygonal Lagrange reference element satisfying the compatibility
requirements 1.6. Let T = {Ke; 1 6 e 6 Ne} be a geometrically conformal mesh of ω generated using the

reference element (K̂, Σ̂, P̂ ). Then, we have ϕk(aℓ) = δkℓ, and

{
ϕ1, . . . , ϕNdof

}
is a basis of X.

Proof. See [9, Prop 1.78] �

1.2. Refinement pattern

Let us now define the notion of refinement pattern and the associated compatibility requirements that will
be useful to generate geometric conformal uniformly refined meshes in Section 1.3.1.

Definition 1.11 (Refinement pattern). Let

• (K̂, Σ̂, P̂ ) be a C0-class polygonal Lagrange reference finite element satisfying the compatibility require-
ments 1.6,

• T̂ = {K̂
[1]
e ; 1 6 e 6 N̂

[1]
e } be a geometrically conformal affine mesh of the interior of K̂ generated using

the reference element (K̂, Σ̂, P̂ ) itself.

Then, we say that (K̂, Σ̂, P̂ , T̂ ) is a refinement pattern.

Owing to the previous subsection let us denote by

• {T̂e : K̂ → K̂
[1]
e ; 1 6 e 6 N̂

[1]
e } the set of geometric mappings,

• {(K̂
[1]
e , Σ̂

[1]
e , P̂

[1]
e ); 1 6 e 6 N̂

[1]
e } the set of Lagrange finite elements,

• Σ̂[1] = {â
[1]
k ; 1 6 k 6 N̂ [1]} the set of Lagrange nodes,

• {ϕ̂
[1]
k ; 1 6 k 6 N̂ [1]} the set of basis functions,

associated to the mesh T̂ .

Definition 1.12 (Compatibility requirements). We say that a refinement pattern (K̂, Σ̂, P̂ , T̂ ) satisfies the
compatility requirements iff

• for all e ∈ J1, N̂
[1]
e K, {ϕ

| bK
[1]
e

;ϕ ∈ P̂} ⊂ P̂
[1]
e ,
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• for all faces F̂1, F̂2 of K̂, for all affine invertible function Â such that F̂2 = Â(F̂1), for all faces F̂
[1]
1 ⊂ F̂1

of an element K̂
[1]
e , Â(F̂

[1]
1 ) ⊂ F̂2 is exactly a face of an other element K̂

[1]
f ,

• any node of Σ̂ is also a node of Σ̂[1], that is Σ̂ ⊂ Σ̂[1].

Remark 1.13. The Definition 1.12 is used to avoid refinement patterns which would lead in the sequel to
non-conformal meshes. An example is given with Figure 3.

K̂

K̂
[1]
4 K̂

[1]
3

K̂
[1]
1

K̂
[1]
2

Ke

Kf

Figure 3. Example of an incompatible refinement pattern.

The compatibility requirements of refinement patterns 1.12 are also used to etablish the so-called refinement
equation on the reference element which is the cornerstone of CHARMS method [15].

Proposition 1.14 (Refinement equation for the refinement pattern). Let (K̂, Σ̂, P̂ , T̂ ) be a refinement pattern
satisfying the compatibility requirements 1.12. We have the following relationship

∀k ∈ J1, N̂K, ϕ̂k =

bN [1]∑

ℓ=1

β̂kℓϕ̂
[1]
ℓ where β̂kℓ = ϕ̂k(â

[1]
ℓ ).

Proof. Owing to Proposition 1.10, {ϕ̂
[1]
1 , . . . , ϕ̂

[1]
bN [1]

} is a basis of {v ∈ C0(K̂); ∀e ∈ J1, N̂
[1]
e K, v

| bK
[1]
e

∈ P̂
[1]
e }.

However, for all k ∈ {1, . . . , N̂}, the basis function ϕ̂k is in C0(K̂) and using compatibility requirements 1.12,

we have ∀e ∈ J1, N̂
[1]
e K, ϕ̂k| bK

[1]
e

∈ P̂
[1]
e . Hence, there exist coefficients β̂kℓ such that

ϕ̂k =

bN [1]∑

ℓ=1

β̂kℓϕ̂
[1]
ℓ .

Finally, the coefficients β̂kt can be obtained thanks to the relationship ϕ̂
[1]
ℓ (â

[1]
t ) = δℓt. �

Notations of this section are illustrated by Figures 4 and 5 which show the complete refinement patterns and
all the refinement equations of .Q1-square and P1-triangle elements.

Since the geometrical configuration is more complicated for the Q2-square element, we only give in Figure 6
the non-zero coefficients in the refinement equation associated to three coarse basis functions. More precisely,
on each picture, the coarse basis function represented by a black bullet is the linear combination of the finer
basis functions represented by circles with the coefficients mentionned nearby. The other refinement equations
can be readily obtained by symmetry.
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â
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K̂
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0 â
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1 â

[1]
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â
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3 â
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4 â
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6 â
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7 â
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1 K̂
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4

T̂2
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2

â
[0]
0

ϕ̂0 = ϕ̂
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[1]
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[1]
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Figure 4. Q1-square refinement pattern and refinement equations.
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Figure 5. P1-triangle refinement pattern and refinement equations.
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Figure 6. Q2-square refinement coefficients.

1.3. Multilevel finite element approximation spaces

Let Ω be a bounded domain of Rd, d = 1, 2 or 3. The purpose of this section is to give an automatic
way to construct H1(Ω)-conformal multilevel finite element approximation spaces from an initial geometrically
conformal mesh T0 and a given refinement pattern. Let J ∈ N∗. First, we construct a hierarchy of nested
meshes T0, T1, . . . , TJ from T0 by applying uniformly and recursively the refinement pattern. Then, a multilevel
approximation space is obtained by selecting some basis functions associated to each mesh Tj , 0 6 j 6 J in a
way that guarantees linear independence of the selected basis functions.
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1.3.1. Hierarchy of nested H1(Ω)-conformal approximation spaces. Parent-child relationship

Let (K̂, Σ̂, P̂ , T̂ ) be a refinement pattern and j ∈ J0, J−1K. In this subsection, we assume that a geometrically

conformal mesh Tj = {K [j]
e ; 1 6 e 6 N [j]

e } of Ω is given, that this mesh Tj is generated using the reference

element (K̂, Σ̂, P̂ ), and then we explain how we can build the mesh Tj+1.
In the sequel, all mathematical objects associated to the mesh Tj will be marked with the sign j as follows:

• T
[j]
e is the geometric mapping used to generate K

[j]
e , i.e. K

[j]
e = T

[j]
e (K̂),

• {a
[j]
1 , . . . ,a

[j]

N
[j]
dof

} is the set of the Lagrange nodes of the mesh Tj , called level-[j] nodes,

• Bj = {ϕ
[j]
1 , . . . , ϕ

[j]

N
[j]
dof

} is the set of basis functions of the mesh Tj , called level-[j] basis functions,

• Xj = {v ∈ C0(Ω); ∀e ∈ J1, N
[j]
e K, v

|K
[j]
e

∈ P
[j]
e } is the H1(Ω)-conformal approximation space associated

to Tj .

Owing to Proposition 1.10, the following result holds:

Bj is a basis of the H1(Ω)-conformal approximation space Xj .

Definition 1.15. We define the set Tj+1 as follows:

Tj+1 =
{
K

[j+1]
ef = T [j]

e (K̂
[1]
f ); 1 6 e 6 N [j]

e , 1 6 f 6 N̂ [1]
e

}
.

Proposition 1.16. The set Tj+1 is a geometrically conformal mesh of Ω generated by the reference element K̂.

Sketch of the proof. For the sake of simplicity, we only give here a sketch of the proof. It is straightforward to

see that Tj+1 is a mesh of Ω. Hence, we only have to prove that it is geometrically conformal. Let K
[j+1]
ef and

K
[j+1]
e′f ′ be two cells which have a non empty (d − 1)-dimensional intersection, say F = K

[j+1]
ef ∩ K

[j+1]
e′f ′ . The

proof is based on different arguments depending on whether e = e′ or e 6= e′. In the first case, we use the

geometric conformity of T̂ whereas in the second case the result is deduced from the geometrical conformity of
Tj and compatibility requirements 1.12. �

The last point of the compatibility requirements 1.12 obviously ensures that a level-[j] node is also a level-
[j + 1] node. That is

∀k ∈ J1, N
[j]
dofK, ∃ℓ ∈ J1, N

[j+1]
dof K, a

[j]
k = a

[j+1]
ℓ . (1)

We can now prove that our construction leads to embedded approximation spaces:

Proposition 1.17. It holds that Xj ⊂ Xj+1.

Proof. Let v ∈ Xj, e ∈ {1, . . . , N
[j]
dof} and f ∈ {1, . . . , N̂

[1]
e }. By definition, v

|K
[j]
e

∈ P
[j]
e . This is equivalent to

v◦T
[j]
e ∈ P̂ . Using the compatibility requirements 1.12, we have v◦T

[j]
e | bK

[1]
f

∈ P̂
[1]
f . Hence, we get v◦T

[j]
e ◦T̂f ∈ P̂ ,

which exactly means that v
|K

[j+1]
ef

∈ P
[j+1]
ef , and the claim is proved. �

For the following result, we have to introduce relevant indexation of level-[j] and level-[j+1] nodes. Note that

level-[j] and level-[j + 1] nodes belonging to K
[j]
e are, by definition, image of nodes of Σ̂ and Σ̂[1] respectively

under the mapping T
[j]
e . Hence, we denote by:

• I [j](e, k) the index of the level-[j] node which is the image of âk under the mapping T
[j]
e . That is

∀(e, k) ∈ J1, N [j]
e K × J1, N̂K, a

[j]

I[j](e,k)
= T [j]

e (âk).
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• I [j,1](e, ℓ) the index of the level-[j + 1] node which is the image of â
[1]
ℓ under the mapping T

[j]
e . That is

∀(e, ℓ) ∈ J1, N [j]
e K × J1, N̂ [1]K, a

[j+1]

I[j,1](e,ℓ)
= T [j]

e (â
[1]
ℓ ).

Proposition 1.18 (Refinement equation). The following relationship holds:

∀i ∈ J1, N
[j]
dofK, ϕ

[j]
i =

N
[j+1]
dof∑

t=1

β
[j]
it ϕ

[j+1]
t (RE)

where the coefficients β
[j]
it are given by: ∀(i, t) ∈ J1, N

[j]
dofK × J1, N

[j+1]
dof K,

β
[j]
it =

{
β̂kℓ if ∃(e, k, ℓ) ∈ J1, N

[j]
e K × J1, N̂K × J1, N̂ [1]K s.t. i = I [j](e, k) and t = I [j,1](e, ℓ),

0 otherwise.

Remark 1.19. Note that the coefficients β̂kℓ only depend on the refinement pattern. Hence, these coefficients
can be computed beforehand. They are in small number and therefore, requiring a low memory cost, they can
be stored. Thus, the above refinement equations can be deduced without computation of any coefficient. In

practice, coefficients β
[j]
it are obtained thanks to a loop on level-[j] cells included in supp[ϕ

[j]
i ] by setting: for all

e ∈ J1, N
[j]
e K such that K

[j]
e ⊂ supp[ϕ

[j]
i ], for all (k, ℓ) ∈ J1, N̂K × J1, N̂ [1]K,

β
[j]

I[j](e,k)I[j,1](e,ℓ)
= β̂kℓ,

and other coefficients are zero. Remark that, such a loop may lead to consider several times the same pair of

indices (I [j](e, k), I [j,1](e, ℓ)) for distinct e, k, ℓ. Proposition 1.18 ensures that corresponding coefficients β̂kℓ are
the same.

Proof of Proposition 1.18. Let i ∈ J1, N
[j]
dofK. The basis function ϕ

[j]
i belongs to Xj . Since Xj ⊂ Xj+1 and Bj+1

is a basis of Xj+1, the existence of the coefficients β
[j]
it is straightforward.

Let (i, t) ∈ J1, N
[j]
dofK × J1, N

[j+1]
dof K. We have:

ϕ
[j]
i =

N
[j+1]
dof∑

t=1

β
[j]
it ϕ

[j+1]
t . (2)

• Case 1 : there exists (e, k, ℓ) ∈ J1, N
[j]
e K × J1, N̂K × J1, N̂ [1]K such that i = I [j](e, k) and t = I [j,1](e, ℓ).

The restriction of (2) to K
[j]
e yields:

ϕ̂k ◦
(
T [j]
e

)−1

=

bN [1]∑

l=1

β
[j]

iI[j,1](e,l)
ϕ

[j+1]

I[j,1](e,l)
.

Owing to Proposition 1.14, we have:

bN [1]∑

l=1

β̂klϕ̂
[1]
l ◦

(
T [j]
e

)−1

=

bN [1]∑

l=1

β
[j]

iI[j,1](e,l)
ϕ̂

[1]
l ◦

(
T [j]
e

)−1

.

Evaluating this equality at T
[j]
e (â

[1]
ℓ ), it follows that β

[j]

iI[j,1](e,ℓ)
= β̂kℓ. This is exactly β

[j]
it = β̂kℓ.
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• Case 2: ∀(e, k, ℓ) ∈ J1, N
[j]
e K × J1, N̂K × J1, N̂ [1]K, i 6= I [j](e, k) or t 6= I [j,1](e, ℓ).

Let e ∈ J1, N
[j]
e K and ℓ ∈ J1, N̂ [1]K such that t = I [j,1](e, ℓ). We necessarily have, by assumption,

∀k ∈ J1, N̂K, i 6= I [j](e, k). Hence, we get:

0 =

N
[j+1]
dof∑

s=1

β
[j]
is ϕ

[j+1]
s |K

[j]
e

=

bN [1]∑

v=1

β
[j]

iI[j,1](e,v)
ϕ̂[1]
v ◦ (T [j]

e )−1.

Evaluating this equality at T [j](â
[1]
ℓ ) yields β

[j]

iI[j,1](e,ℓ)
= 0. This is exactly, β

[j]
it = 0.

�

The refinement equation (RE) introduces a relationship between a level-[j] basis function and some level-[j+1]
basis functions which are called its children.

Definition 1.20 (Parent-child relationship for basis functions). In the case where β
[j]
it 6= 0, we say that:

• the level-[j] basis function ϕ
[j]
i is a parent of the level-[j + 1] basis function ϕ

[j+1]
t ,

• the level-[j + 1] basis function ϕ
[j+1]
t is a child of the level-[j] basis function ϕ

[j]
i .

For this reason, the refinement equation (RE) is also called the parent-child relationship. Along the same
lines, we can define a parent-child relationship for cells.

Definition 1.21 (Parent-child relationship for cells). Let e ∈ J1, N
[j]
e K.

• For all f ∈ {1, . . . , N̂
[1]
e }, we say that the level-[j + 1] cell K

[j+1]
ef is a child cell of the level-[j] cell K

[j]
e .

• Conversely, we say that the level-[j] cell K
[j]
e is the parent cell of each level-[j + 1] cell K

[j+1]
ef , for

f ∈ {1, . . . , N̂
[1]
e }.

Remark 1.22. A cell has at most one parent cell whereas a basis function may have several parents. Never-
theless, let us identify some basis functions which have only one parent.

Proposition 1.23 (Private Child). Let (k, ℓ) ∈ J1, N
[j]
dofK × J1, N

[j+1]
dof K such that a

[j]
k = a

[j+1]
ℓ Then,

ϕ
[j]
k is the unique parent of ϕ

[j+1]
ℓ .

Proof. For 1 6 i 6 N
[j]
dof, the parent-child relationship yields:

ϕ
[j]
i (a

[j]
k ) =

N
[j+1]
dof∑

t=1

β
[j]
it ϕ

[j+1]
t (a

[j+1]
ℓ ).

This is exactly:

δik = β
[j]
iℓ .

Thus, the basis function ϕ
[j+1]
ℓ has a unique parent which is ϕ

[j]
k . �

Summary 1.24. Let (K̂, Σ̂, P̂ , T̂ ) be a refinement pattern. Let T0 be a geometrically conformal mesh of Ω

generated using the reference element (K̂, Σ̂, P̂ ). By applying uniformly the refinement pattern as described in
this section, we are able to construct:

• a hierarchy of nested meshes, T0, T1, . . . , TJ (Figures 7, 8, 9),
• a hierarchy of nested H1(Ω)-conformal finite element approximation spaces X0 ⊂ X1 ⊂ · · · ⊂ XJ ,
• basis function sets B0, B1, . . . , BJ , spanning the above approximation spaces such that two consecutive

sets are linked by refinement equations,
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Mesh Basis Function Set Approximation Space

Level 0 T0 B0 = {ϕ
[0]
k ; k = 1, . . . , N

[0]
dof} X0 = span B0

Level 1 T1 B1 = {ϕ
[1]
k ; k = 1, . . . , N

[1]
dof} X1 = span B1

...
...

...
...

...

Level J TJ BJ = {ϕ
[J]
k ; k = 1, . . . , N

[J]
dof} XJ = span BJ

Table 1. Conceptual hierarchy of nested conformal FE spaces.

level 0 level 1 level 2 level 3

Figure 7. Square-Q1. Nested meshes Tj .

level 0 level 1 level 2 level 3

Figure 8. Tri/Quadr-angle-P1/Q1. Nested meshes Tj .

Table 1 gives a summary of notations used in the sequel.

Note that the hierarchy of nested meshes is never explicitly created. This conceptual structure is introduced
in order to explain the refinement method but in practice, the refinement pattern can be applied only locally
where basis functions have to be effectively refined.

1.3.2. Multilevel basis and multilevel approximation spaces

We assume that a structure as presented in Summary 1.24 is given and we use the same notation (Table 1).

The aim of this subsection is to explain how we can select some basis functions in

J⋃

j=0

Bj in order to ensure the

linear independence of the selected family.
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level 0 level 1 level 2 level 3

Figure 9. Quadrangle-Q1. Nested meshes Tj .

Proposition 1.25. Let B be a subset of
⋃J

j=0 Bj. In the case where two nodes associated to distinct basis
functions of B do not have the same location, i.e.



 ∀(j, j′) ∈ J0, JK2, ∀(k, k′) ∈ J1, N
[j]
dofK × J1, N

[j′]
dof K such that a

[j]
k = a

[j′]
k′ ,

(ϕ
[j]
k ∈ B, ϕ

[j′ ]
k′ ∈ B) =⇒ (j = j′, k = k′),



 (PLI)

then B is linearly independent.

Remark 1.26. Note that (a
[j]
k = a

[j′]
k′ and j = j′) =⇒ k = k′.

Proof. The property (PLI) implies that


∀(j, j′) ∈ J0, JK2, ∀(k, k′) ∈ J1, N

[j]
dofK × J1, N

[j′]
dof K such that j′ > j,

(ϕ
[j]
k ∈ B, ϕ

[j′]
k′ ∈ B) =⇒ ϕ

[j′ ]
k′ (a

[j]
k ) = 0,


 (3)

because, owing to (1), a
[j]
k is also a level-[j′] node and, by (PLI), this node is certainly different from a

[j′]
k′

(otherwise j′ = j ). Consider a linear combination of basis functions ϕ belonging to B such that

∑

ϕ∈B

λϕϕ = 0, (4)

and assume that E = {ϕ ∈ B;λϕ 6= 0} is not empty. We can then define

jm = min{j ∈ J0, JK; ∃k ∈ J1, N
[j]
dofK such that ϕ

[j]
k ∈ E},

and select a km ∈ J1, N
[jm]
dof K such that ϕ

[jm]
km

∈ E . Let j ∈ J0, JK and k ∈ J1, N
[j]
dofK such that ϕ

[j]
k ∈ E and

(j, k) 6= (jm, km). Owing to (3), we have ϕ
[j]
k (a

[jm]
km

) = 0. Hence, evaluating the linear combination (4) at a
[jm]
km

yields λ
ϕ

[jm ]
km

= 0. This is a contradiction and the claim is proved. �

Owing to Proposition 1.25, we give the following definition of a multilevel basis.

Definition 1.27 (Multilevel basis and multilevel approximation space). We call a multilevel level basis a subset

B of

J⋃

j=0

Bj satisfying the property (PLI). By Proposition 1.25, this set is actually independent. A space spanned

by a multilevel basis is called multilevel approximation space.
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Remark 1.28. Let V = span B be a multilevel approximation space and u ∈ V . The coordinates of the
expansion of u in the multilevel basis B are not necessarily the values of u at the nodes associated to the
corresponding basis function, since two basis functions of different levels may have overlapping supports.

2. Adaptation procedure and multigrid preconditioners

The adaptation consists in adding or removing some basis functions of a given multilevel basis B⋆ in order
to produce a new multilevel basis B whose spatial resolution will be better suited to the problem. The main
points are to ensure that the Un/Refinement algorithm will actually produce a linearly independent family of
basis functions, and that no information is loss during the refinement process. Section 2.1 is devoted to the
proofs of such properties. Then, in Section 2.2, we show how to also use the multilevel structure obtained by
the adaptation algorithm in order to build a multigrid preconditioning algorithm which let us solve a multilevel
linear system with a moderate computational cost.

2.1. Adaptation

2.1.1. Refinement/Unrefinement procedures

Given a multilevel basis B, let us first introduce the notion of B-refined basis functions.

Definition 2.1 (B-refined basis functions). Let B a multilevel basis. Let j ∈ J0, JK and k ∈ J1, N
[j]
dofK. The

basis function ϕ
[j]
k is said to be B-refined iff:

∃j′ ∈ Jj + 1, JK, ∃k′ ∈ J1, N
[j′]
dof K, such that ϕ

[j′ ]
k′ ∈ B and a

[j]
k = a

[j′]
k′ .

Moreover, if the above condition holds for j′ = j + 1 then we say that the basis function ϕ
[j]
k is B-refined only

once.

Remark 2.2. Owing to Property (PLI), notice that:

• the indices j′ and k′ are necessarily unique.
• a B-refined basis function does not belong to B.

Remark also that, by Proposition 1.23, if ϕ
[j]
k is only once B-refined then ϕ

[j]
k is the unique parent of ϕ

[j′]
k′ .

Let us give the following lemma which will be useful in the following proofs.

Lemma 2.3. Let j ∈ J0, JK and j′ ∈ J0, J−1K such that j′ 6 j. Let (k, ℓ, ℓ′) ∈ J1, N
[j]
dofK×J1, N

[j+1]
dof K×J1, N

[j′]
dof K.

If a
[j+1]
ℓ = a

[j′ ]
ℓ′ and ϕ

[j]
k is a parent of ϕ

[j+1]
ℓ then the node a

[j]
k is necessarily at the same position that the nodes

a
[j′ ]
ℓ′ and a

[j+1]
ℓ .

Proof. Since j′ 6 j, owing to (1) and a straightforward recurrence, there exists t ∈ J1, N
[j]
dofK such that a

[j]
t =

a
[j+1]
ℓ . We can apply Proposition 1.23 which proves that ϕ

[j]
t is the unique parent of ϕ

[j+1]
ℓ . Hence, ϕ

[j]
k = ϕ

[j]
t

and then, k = t. �

We can now describe the refinement and unrefinement procedure.

Algorithm 2.4 (Quasi-Hierarchical Un/Refinement). Let B⋆ be a multilevel basis.

• Refinement: Let ϕ
[j]
k be a basis function belonging to B⋆.

Refining the given basis function ϕ
[j]
k ∈ B⋆ consists in producing a new multilevel basis B by

– removing this basis function ϕ
[j]
k , and

– adding all its children ϕ
[j+1]
ℓ which are not B⋆-refined.
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This can be written in a compact way as follows:

B = B⋆\{ϕ
[j]
k } ∪ {children of ϕ

[j]
k not B⋆-refined}.

• Unrefinement: Let ϕ
[j]
k be an only once B⋆-refined basis function without B⋆-refined children.

Unrefining the given basis function ϕ
[j]
k 6∈ B⋆ consists in producing a new multilevel basis B by

– adding this basis function ϕ
[j]
k , and

– removing those children of ϕ
[j]
k which have no other B⋆-refined parent .

This can be written in a compact way as follows:

B = B⋆\{children of ϕ
[j]
k without other B⋆-refined parent} ∪ {ϕ

[j]
k }.

Proof. As claimed in the above algorithm, we have to prove that refinement and unrefinement procedures

produce actually a multilevel basis. That is to say that B satisfies the property (PLI). Indeed, let ϕ
[j]
k , ϕ

[j′]
k′ two

basis functions belonging to B such that a
[j]
k = a

[j′]
k′ . We have to show that j = j′.

• Refinement: Assume that B is obtained from B⋆ by the refinement of a basis function belonging to B⋆,

say ϕ
[j0]
k0

∈ B⋆, so that we have

B = B⋆\{ϕ
[j0]
k0

} ∪ {children of ϕ
[j0]
k0

not B⋆-refined}.

– If ϕ
[j]
k and ϕ

[j′]
k′ belong both to B⋆ then, since B⋆ satisfies the property (PLI), we readily find j = j′.

– Otherwise, assume for instance that ϕ
[j]
k does not belong to B⋆. By definition of B, ϕ

[j]
k is then a

child of ϕ
[j0]
k0

which is not B⋆-refined, say ϕ
[j0+1]
ℓ0

, i.e. k = ℓ0, j = j0 + 1.

∗ If ϕ
[j′ ]
k′ ∈ B⋆ then, since ϕ

[j0+1]
ℓ0

is not B⋆-refined, we have j0+1 > j′. Assume that j0+1 > j′.

Lemma 2.3 yields a
[j0]
k0

= a
[j′]
k′ . Since B⋆ satisfies the property (PLI), we obtain j0 = j′ and

k0 = k′, but ϕ
[j0]
k0

6∈ B and ϕ
[j′]
k′ ∈ B. This is a contradiction and we get j = j0 + 1 = j′.

∗ Otherwise, ϕ
[j′]
k′ is a child of ϕ

[j0]
k0

, say ϕ
[j0+1]
ℓ0

′ , i.e. k′ = ℓ0
′ and j = j0 + 1. Hence, we have

j = j′.
• Unrefinement: Assume that B is obtained from B⋆ by the unrefinement of a only once B⋆-refined basis

function, say ϕ
[j0]
k0

, so that we have

B = B⋆\{children of ϕ
[j0]
k0

without other B⋆-refined parent} ∪ {ϕ
[j0]
k0

}.

– If ϕ
[j]
k and ϕ

[j′]
k′ belong to B⋆ then, since B⋆ satisfies the property (PLI), we get j = j′.

– Otherwise, assume for instance that ϕ
[j]
k does not belong to B⋆. By definition of B, we have

ϕ
[j]
k = ϕ

[j0]
k0

, i.e. k = k0, j = j0. Arguing by contradiction, we assume that j′ 6= j. We have

j′ 6= j0 and so, ϕ
[j′]
k′ ∈ B⋆. However, ϕ

[j0]
k0

is an only once B⋆-refined basis function, so there exists

ℓ0 ∈ J1, N
[j0]
dof K such that ϕ

[j0+1]
ℓ0

∈ B⋆ and a
[j0+1]
ℓ0

= a
[j0]
k0

. Owing to Proposition 1.23, a
[j0+1]
ℓ0

= a
[j0]
k0

implies that ϕ
[j0]
k0

is the unique parent of ϕ
[j0+1]
ℓ0

. Therefore, since ϕ
[j0+1]
ℓ0

is a child of ϕ
[j0]
k0

without

other B⋆-refined parent, we get ϕ
[j0+1]
ℓ0

6∈ B. However, since B⋆ satisfies the property (PLI) and since

a
[j0+1]
ℓ0

= a
[j′]
k′ , we have j′ = j0 + 1 and k′ = ℓ0. Finally, we get ϕ

[j′]
k′ 6∈ B. This is a contradiction

and we obtain j = j′.

�
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Remark 2.5. This algorithm is consistent with Definition 2.1. Indeed, owing to Proposition 1.23,

• if B is obtained from B⋆ by the refinement of the basis function ϕ
[j]
k , then ϕ

[j]
k is a B-refined basis

function in sense of Definition 2.1 ;

• if B is obtained from B⋆ by the unrefinement of the only once B⋆-refined basis function ϕ
[j]
k , then ϕ

[j]
k

is no longer a B-refined basis function in the sense of Definition 2.1.

ϕ
[1]
6

ϕ
[0]
2B⋆

of

ϕ
[0]
1

ϕ
[0]
2

ϕ
[1]
3

B

ϕ
[1]
4 ϕ

[1]
5

ϕ
[1]
2ϕ

[1]
1ϕ

[1]
3

ϕ
[0]
1

Level-[0]

ϕ
[1]
6 Level-[1]Refinement

ϕ
[0]
2 = ϕ

[1]
3 + 1

2
ϕ

[1]
2 + 1

2
ϕ

[1]
6 + 1

4
ϕ

[1]
5

Figure 10. Refinement do not preserve the linear independence of multilevel set not satifying (PLI).

Remark 2.6. Refinement and unrefinement procedure described in Algorithm 2.4 do not preserve in general

the linear independence of multilevel basis function set

J⋃

j=0

B̃j (with B̃j ⊂ Bj) which do not satisfy the property

(PLI). An example is given in Figure 10. The family B⋆ represented on the left hand-side is linearly independent

(but do no satisfy (PLI)) whereas the family B, on the right hand-side, obtained from B⋆ by refinement of ϕ
[0]
1 ,

is not a linear independent family.

2.1.2. Conservation of information

A desirable property of a refinement procedure is that it does not involve a loss of information. It means
that, if B is obtained from B⋆ by refinement of a basis function, then span B⋆ ⊂ span B, i.e. the refined basis
B allows for any function in the original basis B⋆ to be reproduced exactly. However, the refinement procedure
described in Algorithm 2.4 is not lossless. An example is given in Figure 11. Nevertheless, we can prove the
following results.

Proposition 2.7. Let B be a multilevel basis satisfying the following property:

A child of a B-refined basis function either belongs to B or is itself B-refined. (PLO)

Then, all B-refined basis functions belong to span B.

Proof. By a recurrence on the level j of basis functions, we prove the following statement (Hj) for all j ∈ J0, JK:

All level-[j] B-refined basis functions belong to span B. (Hj)

A level-[J ] basis function cannot be B-refined. Hence, the statement (HJ ) is straightforward.

Let j ∈ J0, J−1K. Assume that the statement (Hj+1) holds and let ϕ
[j]
k be a level-[j] B-refined basis function.

Owing to Proposition 1.18, we have

ϕ
[j]
k =

∑

ℓ|ϕ
[j+1]
ℓ

is

a child of ϕ
[j]
k

β
[j]
kℓϕ

[j+1]
ℓ .
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Level-[2]

Level-[0]

ϕ
[1]
4 ϕ

[1]
5

ϕ
[1]
1 ϕ

[2]
3ϕ

[0]
1

Refinement

ϕ
[0]
1

of

Level-[1]

ϕ
[2]
3

ϕ
[0]
1 6∈ span {ϕ

[1]
1 , ϕ

[1]
4 , ϕ

[1]
5 , ϕ

[2]
3 }

Figure 11. Refinement of multilevel basis is not lossless.

Moreover, property (PLO) implies that all basis functions ϕ
[j+1]
ℓ involving in the above sum are either in B or

B-refined. In the last case, the recurrence assumption (Hj+1) yields ϕ
[j+1]
ℓ ∈ span B. Hence, ϕ

[j]
k ∈ span B and

the recurrence is established. �

Theorem 2.8. Let B be a multilevel basis satisfying property (PLO) and obtained from the multilevel basis B⋆

by the refinement procedure (Algorithm 2.4), then

span B⋆ ⊂ span B.

Proof. Assume that B is obtained from B⋆ by the refinement of the basis function ϕ
[j0]
k0

∈ B⋆. Let ϕ
[j]
k ∈ B⋆.

• If ϕ
[j]
k 6= ϕ

[j0]
k0

then ϕ
[j]
k ∈ B,

• else ϕ
[j]
k = ϕ

[j0]
k0

which is B-refined. Proposition 2.7 ensure that ϕ
[j]
k ∈ span B.

Then span B⋆ ⊂ span B. �

Moreover, the refinement and unrefinement procedures preserve the property (PLO). Let us begin with the
following lemma.

Lemma 2.9. Let B⋆ and B be two multilevel basis. Let ϕ
[j⋆]
k⋆ be a B⋆-refined basis function and ϕ

[j]
k be a

B-refined basis function.

1) If B is obtained from B⋆ by the refinement of a basis function ϕ
[j0]
k0

∈ B⋆ then

(i) ϕ
[j⋆]
k⋆ is also B-refined,

(ii) ϕ
[j]
k is either B⋆-refined or equal to ϕ

[j0]
k0

.

2) If B is obtained from B⋆ by the unrefinement of an only once B⋆-refined basis function ϕ
[j0]
k0

then

(i) ϕ
[j⋆]
k⋆ is either B-refined or is equal to ϕ

[j0]
k0

,

(ii) ϕ
[j]
k is also B⋆-refined.

(iii) Moreover, if we assume that ϕ
[j⋆]
k⋆ is only once B⋆-refined then ϕ

[j⋆]
k⋆ is either also only once B-refined

or is equal to ϕ
[j0]
k0

.

Proof. Since ϕ
[j⋆]
k⋆ is B⋆-refined, there exists j⋆′ > j⋆ and k⋆′ ∈ J1, N

[j⋆′]
dof K such that ϕ

[j⋆′]
k⋆′ ∈ B⋆ and a

[j⋆]
k⋆ = a

[j⋆′]
k⋆′ .

Along the same lines, since ϕ
[j]
k is B-refined, there exists j′ > j and k′ ∈ J1, N

[j′]
dof K such that ϕ

[j′]
k′ ∈ B and

a
[j]
k = a

[j′]
k′ .
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1) Refinement of ϕ
[j0]
k0

.

(i) If ϕ
[j⋆′]
k⋆′ ∈ B then ϕ

[j⋆]
k⋆ is B-refined; else ϕ

[j⋆′]
k⋆′ = ϕ

[j0]
k0

and since ϕ
[j0]
k0

is B-refined, a fortiori ϕ
[j⋆]
k⋆ is

B-refined.
(ii) If ϕ

[j′]
k′ ∈ B⋆ then ϕ

[j]
k is B⋆-refined and the claim is proved. Otherwise, ϕ

[j′]
k′ is a child of ϕ

[j0]
k0

, say

ϕ
[j0+1]
ℓ0

, i.e. j′ = j0 + 1, k′ = ℓ0. We have a
[j]
k = a

[j0+1]
ℓ0

and j0 + 1 > j, then owing to Lemma 2.3,

a
[j]
k = a

[j0]
k0

. If j0 = j then ϕ
[j]
k = ϕ

[j0]
k0

; else j0 > j, since ϕ
[j0]
k0

∈ B⋆, ϕ
[j]
k is B⋆-refined.

2) Unrefinement of ϕ
[j0]
k0

.

(i) If ϕ
[j⋆′]
k⋆′ ∈ B then ϕ

[j⋆]
k⋆ is B-refined and the claim is proved. Otherwise, ϕ

[j⋆′]
k⋆′ is a child of ϕ

[j0]
k0

, say

ϕ
[j0+1]
ℓ0

, i.e. j⋆′ = j0 + 1, k⋆′ = ℓ0. We have a
[j⋆]
k⋆ = a

[j0+1]
ℓ0

and j0 + 1 > j⋆, then owing to Lemma

2.3, a
[j⋆]
k⋆ = a

[j0]
k0

. If j0 = j⋆ then ϕ
[j⋆]
k⋆ = ϕ

[j0]
k0

; else j0 > j⋆, since ϕ
[j0]
k0

∈ B, ϕ
[j⋆]
k⋆ is B-refined.

(ii) If ϕ
[j′]
k′ ∈ B⋆ then ϕ

[j]
k is B⋆-refined; else ϕ

[j′]
k′ = ϕ

[j0]
k0

and since ϕ
[j0]
k0

is B⋆-refined, a fortiori ϕ
[j]
k is

B⋆-refined.
(iii) Here, we assume that j⋆′ = j⋆ + 1. If ϕ

[j⋆′]
k⋆′ ∈ B then ϕ

[j⋆]
k⋆ is only once B-refined and the claim

is proved. Otherwise, ϕ
[j⋆′]
k⋆′ is a child of ϕ

[j0]
k0

. However,owing to Remark 2.2, ϕ
[j⋆]
k⋆ is the unique

parent of ϕ
[j⋆′]
k⋆′ . Hence, we get ϕ

[j⋆]
k⋆ = ϕ

[j0]
k0

.

�

Proposition 2.10. The refinement and unrefinement procedures of multilevel basis (in the sense of Algorithm
2.4) preserves the property (PLO).

Proof. Assume that the multilevel basis B⋆ satisfies the property (PLO). Let ϕ
[j]
k be a B-refined basis function

and ϕ
[j+1]
ℓ be a child of ϕ

[j]
k . We have to show that ϕ

[j+1]
ℓ either belong to B or is B-refined.

• Refinement: Assume that the multilevel basis B is obtained from B⋆ by the refinement of a basis function

ϕ
[j0]
k0

∈ B⋆. By Lemma 2.9 property 1) (ii), ϕ
[j]
k is either B⋆-refined or equal to ϕ

[j0]
k0

. Consider the two
cases:

– If ϕ
[j]
k is B⋆-refined. Since B⋆ satisfies the property (PLO), only the two following cases are possible:

∗ ϕ
[j+1]
ℓ is B⋆-refined. Owing to Lemma 2.9 property 1)(i), this implies that ϕ

[j+1]
ℓ is B-refined.

∗ ϕ
[j+1]
ℓ ∈ B⋆. And then, ϕ

[j+1]
ℓ ∈ B or ϕ

[j+1]
ℓ = ϕ

[j0]
k0

which is B-refined.

– If ϕ
[j]
k = ϕ

[j0]
k0

, all its children are either in B or are B⋆-refined. Owing to Lemma 2.9 property 1)(i),
they are either in B or B-refined.

• Unrefinement: Assume that B is obtained from B⋆ by the unrefinement of an only once refined basis

function ϕ
[j0]
k0

of B⋆. By Lemma 2.9 property 2) (ii), ϕ
[j]
k is B⋆-refined. Since B⋆ satisfies the property

(PLO), only the two following cases are possible:

– ϕ
[j+1]
ℓ is B⋆-refined. Owing to Lemma 2.9 property 2)(i), this implies that ϕ

[j+1]
ℓ is B-refined or

ϕ
[j+1]
ℓ = ϕ

[j0]
k0

∈ B.

– ϕ
[j+1]
ℓ ∈ B⋆. And then, we have ϕ

[j+1]
ℓ ∈ B or ϕ

[j+1]
ℓ is a child of ϕ

[j0]
k0

with no other B⋆-refined

parent. The last case is impossible. Indeed, ϕ
[j]
k is B⋆-refined and then, by unicity, we would

have ϕ
[j]
k = ϕ

[j0]
k0

. However, ϕ
[j0]
k0

is not a B-refined function. This is a contradiction and we get

ϕ
[j+1]
ℓ ∈ B.

�

Remark 2.11. Note that the properties (PLI) or (PLO) are not so restrictive since they are preserved by
Un/Refinement procedures and since it is straightforward to see that they are satisfied by the coarse basis B0

which is used, in practice, for starting the adaptation algorithm.
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2.1.3. Adaptation procedure

Proposition 2.12. Let B⋆ be a multilevel basis.

1) Let E⋆ ⊂ B⋆. It is possible to refine successively all basis functions belonging to E⋆, hence producing a
multilevel basis B which is independent of the order in which the basis functions were refined.

We say that B is obtained from B⋆ by the refinement of the set of basis functions E⋆.
2) Let F⋆ be a set of only once B⋆-refined basis functions which have no B⋆-refined child. It is possible to

unrefine successively all basis functions belonging to F⋆, hence producing a multilevel basis B which is
independent of the order in which the basis functions were unrefined.

We say that B is obtained from B⋆ by the unrefinement of the set of basis functions F⋆.

Proof. In the two cases, we first have to prove that successive (un)refinements are possible and then that the
obtained multilevel basis B is independent of the order in which the basis functions are (un)refined.

1) – Let ϕ ∈ E⋆. The set E⋆\{ϕ} is included in the multilevel basis produced by the refinement of ϕ
since, in this procedure, only ϕ is removed from B⋆. Hence, all basis functions in E⋆\{ϕ} can be
then refined.

– It is sufficient to prove that B is independent of the order in which the basis functions are refined
in the case where # E⋆ = 2, say E⋆ = {ϕ, ψ}. Denote by B the multilevel basis obtained by the
refinement of ϕ in B⋆ and then by B the multilevel basis obtained by the refinement of ψ in B. By
definition, we have

B = B⋆\{ϕ} ∪ {children of ϕ not B⋆-refined} (5)

and
B = B\{ψ} ∪ {children of ψ not B-refined} (6)

Applying Lemma 2.9 property 1) (i) and (ii), we get

{B-refined basis functions} = {B⋆-refined basis functions} ∪ {ϕ} (7)

Hence, combining (6) and (7), we obtain

B = B\{ψ} ∪ {children of ψ not B⋆-refined and different from ϕ} (8)

Combining (5) and (8), we get

B =
(
B⋆ ∪ {children of ϕ and ψ which are not B⋆-refined}

)
\{ϕ, ψ}.

This expression shows that B do not depend of the order in which the basis functions ϕ and ψ were
refined.

2) – Let ϕ ∈ F⋆. Denote by B the multilevel basis obtained by the unrefinement of ϕ in B⋆. We have
to prove that all basis functions of F⋆\{ϕ} can be unrefined in B,i.e. that any basis function of
F⋆\{ϕ} is only once B-refined and has no B-refined children. Let ψ ∈ F⋆\{ϕ}. Owing to Lemma
2.9 property 2) (iii), since ψ is only once B⋆-refined basis function different from ϕ, ψ is only once
B-refined. Furthermore, if ψ has a B-refined child then applying Lemma 2.9 property 2) (i), this
child is also B⋆-refined. This a contradiction and the claim is proved.

– It is sufficient to prove that B is independent of the order in which the basis functions are unrefined
in the case where #F⋆ = 2, say F⋆ = {ϕ, ψ}. Denote by B the multilevel basis obtained from B⋆

by the unrefinement of ϕ and then by B the multilevel basis obtained from B by the unrefinement
of ψ. By definition, we have

B = B⋆\{children of ϕ which have no other B⋆-refined parent} ∪ {ϕ} (9)
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and

B = B\{children of ψ which have no other B-refined parent} ∪ {ψ} (10)

Applying Lemma 2.9 property 2) (i) and (ii), we get

{B⋆-refined basis functions} = {B-refined basis functions} ∪ {ϕ} (11)

Hence, combining (10) and (11), we obtain

B = B\{children of ψ which have no B⋆-refined parent except possibly ϕ} ∪ {ψ} (12)

Combining (9) and (12), we get

B = B⋆\{children of ϕ and ψ which have no B⋆-refined parents except possibly ϕ and ψ} ∪ {ϕ, ψ}.

This expression shows that B do not depend of the order in which the basis functions ϕ and ψ were
refined.

�

With this definition at hand, we can give the refinement algorithm.

Algorithm 2.13 (Adaptation procedure). Let B⋆ a multilevel basis. Assume that, thanks to a refinement
criterion, we are given the set E⋆ ⊂ B⋆ of basis functions to refine and the set F⋆ of only once B⋆-refined basis
functions (without B⋆-refined children) to unrefine. The adaptation procedure consists in the two following steps:

1) Refine the set E⋆, thus producing a new multilevel basis B.
2) Unrefine the set of basis functions of F⋆ which are still only once B-refined basis functions without

B-refined children.

2.1.4. One-level-difference rule

In practice, the following criterion is used to ensure the common rule of “one-level-difference refinement” [15].

Criterion 2.14 (One-level-difference refinement rule). Let B⋆ a multilevel basis. A basis function of B⋆ may
be refined only if all its parents are B⋆-refined.

Typically, this criterion is used to avoid an important difference of refinement level between “neighboring”
basis functions. An example of refinement sequence forbidden by this criterion is given in Figure 12.

Level-[0]

Level-[2]

Figure 12. Refinement sequence forbidden by the One-level-difference rule.

This criterion can be taken into account by adding a recursive step in the refinement procedure: to refine a
basis function, we first refine all its parents which are not B⋆-refined and then we refine the basis function itself.
This is illustrated, for instance, by the spreading of the level-[1] refined area between the first two pictures in
Figure 17.
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2.2. Multigrid preconditioner

In this section, we assume that we have the following genuine variational problem to solve: Find u ∈ Vh such
that

∀v ∈ Vh, a(u, v) = l(v),

where Vh = span B is a multilevel approximation space, a : H1(Ω) × H1(Ω) → R is a bilinear continuous and
coercive form and b : H1(Ω) → R is a linear continuous form. We denote by AJ the stiffness matrix associated
to this problem, that is

AJ = [a(ϕ, ψ)]ϕ,ψ∈B.

The multilevel space Vh is built to achieve a given level of accuracy without increasing too much the number
of degrees of freedom in the discrete problem. In fact, we are going to describe how to naturally take advantage
of the multilevel structure of the approximation space in order to build a sequence of nested multilevel grids
finally leading to a multigrid preconditioner.

2.2.1. Coarsening

From a given “fine” multilevel basis BF , the following algorithm is used to construct a “coarser” multilevel
basis BC .

Algorithm 2.15 (Coarsening). Let BF a multilevel basis. Let jM = max {j ∈ J0, JK;BF ∩ Bj 6= ∅} be the
highest refinement level in BF . A “coarser” multilevel basis BC, denoted by BC = coarsen(BF ), is obtained from
BF by unrefinement (Algorithm 2.4) of the set of BF -refined basis functions of level [jM − 1].

The following proposition gives an equivalent formulation of the above algorithm.

Proposition 2.16. Assume that BF is a multilevel basis satisfying the following property:

Any level-[j] basis function, j > 1, which either belongs to B or is B-refined, has at least one
B-refined parent .

(PHI)

Let jM = max {j ∈ J0, JK;BF ∩ Bj 6= ∅}. The multilevel basis BC = coarsen(BF ) defined in Algorithm 2.15 can
be obtained by the following equivalent algorithm:

• remove all level-[jM ] basis functions of BF ,
• add all BF -refined basis functions of level [jM − 1].

Proof. Note first that any step in Algorithm 2.15 consists in an unrefinement of a level-[jM − 1] basis function,
this implies that added basis functions are certainly on level-[jM − 1] and that removed basis functions are
certainly on level-[jM ]. Hence, the set of added and removed basis functions are disjoint. In Algorithm 2.15,
a basis function which is removed (or added) by an unrefinement procedure can not be added (or respectively
removed) by an other unrefinement procedure. Furthermore, remark that by definition of jM , there is no BF -
refined function on level-[jM ]. Hence, since they have no BF -refined children, all BF -refined basis functions can
actually be unrefined. Unrefinement of a basis functions involved that it is added and then the set of added
basis functions in Algorithm 2.15 is exactly the set of BF -refined basis functions. It remains to show that all
level-[jM ] basis functions of BF are removed. Arguing by contradiction, assume that a level-[jM ] basis function
belongs to coarsen(BF ). Since unrefinement preserves the property (PHI) (Proposition 2.17), this basis function
has at least one coarsen(BF )-refined parent. Owing to Lemma 2.9 property 2) (ii), this is also a BF - refined
basis function (of level-[jM − 1]). This is a contradiction and the claim is proved. �

The property (PHI) ensures the desirable fact that all level-[jM ] basis functions of BF are removed. This
additional property is not so restrictive since it is preserved by the refinement and unrefinement procedures.

Proposition 2.17. The refinement and unrefinement procedures described in Algorithm 2.4 preserve the prop-
erty (PHI).

Proof. Assume that B⋆ is a multilevel basis satisfying the property (PHI) and let j ∈ J1, JK.
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• Consider first a basis function ϕ
[j]
k which belongs to B.

– Refinement: Assume that the multilevel basis B is obtained from B⋆ by the refinement of a basis

function ϕ
[j0]
k0

∈ B⋆.

∗ Case 1: ϕ
[j]
k ∈ B⋆. Since B⋆ satisfies the property (PHI), ϕ

[j]
k has at least one B⋆-refined

parent. Owing Lemma 2.9 property 1), this parent is B-refined.

∗ Case 2: ϕ
[j]
k is a child of ϕ

[j0]
k0

and ϕ
[j0]
k0

is B-refined.
– Unrefinement: Assume that B is obtained from B⋆ by the unrefinement of an only once refined

basis function ϕ
[j0]
k0

of B⋆.

∗ Case 1: ϕ
[j]
k ∈ B⋆\{children of ϕ

[j]
k without other B⋆-refined parent}.

Since B⋆ satisfies the property (PHI), ϕ
[j]
k has at least one B⋆-refined parent. Owing Lemma

2.9 property 2), either this parent is B-refined or this is ϕ
[j0]
k0

.

In the first case, the proof is finished, in the second case ϕ
[j]
k is a child of ϕ

[j0]
k0

which belongs

to B⋆\{children of ϕ
[j]
k without other B⋆-refined parent}. Therefore, ϕ

[j]
k has an other B⋆-

refined parent. This parent is then B-refined because it is not ϕ
[j0]
k0

.

∗ Case 2: ϕ
[j]
k = ϕ

[j0]
k0

, ϕ
[j0]
k0

is B⋆-refined. Since B⋆ satisfies the property (PHI), ϕ
[j0]
k0

has at

least one B⋆ refined parent. Owing Lemma 2.9 property 2), this parent is B-refined because

it can not be ϕ
[j0]
k0

.

• Consider now a basis function ϕ
[j]
k which is B-refined.

– Refinement: Assume that the multilevel basis B is obtained from B⋆ by the refinement of a basis

function ϕ
[j0]
k0

∈ B⋆. By Lemma 2.9 property 1) (ii), ϕ
[j]
k is either B⋆-refined or equal to ϕ

[j0]
k0

∈ B⋆.

Since B⋆ satisfies the property (PHI), in the two cases, ϕ
[j]
k has at least one B⋆-refined parent.

Owing to Lemma 2.9 property 1)(i), this parent is also B-refined.
– Unrefinement: Assume that B is obtained from B⋆ by the unrefinement of an only once refined basis

function ϕ
[j0]
k0

of B⋆ without B⋆-refined children. By Lemma 2.9 property 2) (ii), ϕ
[j]
k is B⋆-refined.

Since B⋆ satisfies the property (PHI), ϕ
[j]
k has at least one B⋆-refined parent. Owing to Lemma

2.9 property 2) (i), either this parent is B-refined or is equal to ϕ
[j0]
k0

. The last case is impossible

because ϕ
[j0]
k0

has no B⋆-refined children.

�

The last main property of the coarsening procedure, is that it produced nested vector spaces.

Proposition 2.18. Let BF be a multilevel basis satisfying the property (PLO) and BC = coarsen(BF ). The
following embedding holds:

span BC ⊂ span BF .

Proof. Let ϕ ∈ BC . If ϕ 6∈ BF then ϕ has been unrefined and so this is a BF -refined basis function of level
[jM − 1]. Owing Proposition 2.7, ϕ ∈ span BF . �

Remark 2.19. Let us notice that, thanks to the refinement equation, it is straightforward to build the matrix
representation in the corresponding basis of the natural embedding from span BC to span BF . Indeed, if ϕ ∈ BC ,
we have

• either ϕ ∈ BF
• or all the children of ϕ belong to BF and then, the refinement equation yields an expression of ϕ as a

linear combination of elements in BF .

Remark 2.20. Note that properties (PLO) and (PHI) used in this section are not so restrictive since they are
preserved by Un/Refinement procedures and since it is straightforward to see that they are satisfied by the
coarse basis B0 which is used, in practice, to start the adaptation algorithm. (see also Remark 2.11)
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2.2.2. Multigrid framework

We recursively define a sequence {V0, . . . , VJ} of nested spaces built upon Vh as follows:

• we first take BJ = B and VJ = span BJ = Vh,
• then, for k = J, . . . , 1, we define a coarser multilevel basis Bk−1 from Bk by:

Bk−1 = coarsen(Bk),

and the corresponding multilevel approximation space:

Vk−1 = span Bk−1.

Owing to Proposition 2.18, we have:

V0 ⊂ V1 ⊂ · · · ⊂ VJ .

Note that the auxiliary sequence V0 ⊂ · · · ⊂ VJ introduced here usually do not reflect the dynamic refinement
process, although a such sequence can always be a posteriori deduced from any multilevel approximation space
VJ . An example with four refinement level is given in Figure 13.

V3

Level-[1] basis functions Level-[3] basis functions

Level-[2] basis functionsLevel-[0] basis functions

V2 V1 V0

Figure 13. Example of coarsening : from V3 to V0.

We do not need to know explicitly any information about the spaces Vk, except the intergrids operators.
Owing to Remark 2.19, it is staightforward to construct the matrix representation, denoted by Ikk−1, of the
natural embedding from Vk−1 to Vk in the basis Bk−1 and Bk. Then, intergrids operators are defined in the
following way, for all k ∈ J0, JK:

Ik = IJJ−1I
J−1
J−2 · · · Ik+1

k

We can also define approximate operators on each space Vk, for all k ∈ J0, JK by:

Ak = ItkAJIk

At last, in the sequel, we used Jacobi and Gauss-Seidel smoothers defined for all k ∈ J0, JK as follows:

• Jacobi: Sk = Dk where Dk is the diagonal part of Ak.
• Gauss-Seidel: Sk = Tk where Tk is the superior triangular part of Ak.

2.2.3. Multigrid Algorithm

We used the two following multigrid preconditioners:
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• Additive version [8]:

Pa =

J∑

k=0

IkSkI
t
k

where Sk, k ∈ J0, JK, is the Jacobi smoother.
• Multiplicative version [12]: This correspond to the classical V -cycle. In this section Sk is the Gauss-

Seidel smoother. We define recursively, for all k ∈ J0, JK, the linear operator MGk : R#Bk → R#Bk .
We first set MG0 = A−1

0 and for all k ∈ J1, JK, we define MGk(fk), fk ∈ R#Bk by the following steps:
(0) vk ֋ 0 Initialisation
(1) vk ֋ vk + Sk(fk −Akvk), Pre-smoothing step
(2) vk ֋ vk + Ik−1MGk−1(I

t
k−1(fk −Akvk)), Coarse Grid Correction

(3) vk ֋ vk + Sk(fk −Akvk), Post-smoothing step
Set MGk(fk) = vk.

The multiplicative preconditioner is then

Pm = MGJ .

2.3. Validation on a stationnary model problem

We first validate the local refinement method and the multigrid preconditioner on the following stationnary
model problem.

The practical implementation has been performed using the software object-oriented component library
PELICANS [19], developed at the “Institut de Radioprotection et de Sûreté Nucléaire (IRSN)” and distributed
under the CeCILL-C license agreement (an adaptation of LGPL to the French law).

2.3.1. Continuous model problem

Let Ω = [0, 1]d. Consider the Laplace problem with homogeneous Dirichlet boundary conditions:

{
−∆u = f in Ω,

u = 0 on ∂Ω.
(13)

The source term f is chosen so that the exact solution u is:

∀x ∈ Rd, u(x) = Hε

(
R− |x − xC |

)
,

where R ∈ R, ε ∈ R∗
+, xC ∈ Rd are parameters and Hε : R −→ R is defined by

∀x ∈ R, Hε(x) =






0 if x < −ε,

1

2

[
1 +

x

ε
+

1

π
sin

(
π
x

ε

)]
if |x| 6 ε,

1 if x > ε.

The function Hε is represented in Figure 14 and the interpretation of parameters R, ε, xC is explained in
Figure 15 which represents the exact solution u when d = 1.

For numerical simulations given in the sequel, we have set:

Ω = [0, 1]d, xC = (0.5, 0.5), R = 0.3 and ε = 0.1
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1.0

0.5

0.0

0 ε−ε

Figure 14. Function Hε.

0.5

0.0

1.0

2ε 2ε

xC

R

Figure 15. Exact solution of Problem 13, d = 1.

Square Tri/Quadr-angle Quadrangle

Figure 16. Initial meshes.

2.3.2. Initial meshes and refinement criterion

In order to show the capability of the local refinement method, we used several types of meshes: square,
triangle, general quadrangle, in two dimension and cube in three dimension. Figure 16 shows the initial meshes,
i.e. before refinement steps, which have been used for the validation in two dimension. In particular, note that
the method allows to combine several kind of geometric elements (triangle P1 and square Q1 in the example
here) provided that the corresponding reference elements, and refinement patterns are compatible. In three
dimension, the initial mesh is a cubic regular mesh obtained by dividing all sides in 15 segments. In this section,
the shape of the exact solution is known. This is the reason why a geometric refinement criterion is used. It
consists in choosing a priori a number of refinement steps and the location of the nodes associated to the basis
functions to refine. Here the following criterion is used:

Criterion 2.21 (Geometric criterion). ϕ
[j]
k will be refined iff

R− ε <
∣∣∣a[j]
k − xC

∣∣∣ < R+ ε

2.3.3. Local refinement and multigrid preconditioner

For each type of initial mesh, we performed six computations increasing the number of refinement steps from
one to six and following the geometric refinement criterion 2.21. In Figures 17, 18, 19 and 20, for smaller number
of refinement steps (one, two and three steps), we represent the refined meshes and the plot of the function
uh(1 − uh) where uh is the computed approximate solution. Hence, the colored zone in the figures represents
the computed “interface”, that is the areas where local refinement takes place. Note that meshes in our method
are obtained as support of basis functions involved in the formulation of the problem (see Section 3.3.2). In
particular, we remark the effect of the “one-level-difference” refinement rule. Indeed, for each type of mesh, the
“one level refinement” areas spreads during the second refinement step. This is due to the fact that during this
refinement step, few parents of level-[1] basis functions are refined to enable the refinement of their childs.
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One Refinement step Two refinement steps Three refinement steps

Figure 17. Square-Q1. Refined meshes.

One Refinement step Two refinement steps Three refinement steps

Figure 18. Tri/Quadr-angle-P1/Q1. Refined meshes.

One Refinement step Two refinement steps Three refinement steps

Figure 19. Quadrangle-Q1. Refined meshes.

Table 2 shows the convergence rates in the L2-norm, computed with respect to the mesh size of the finest
refinement level used in the computation. We obtain a convergence rate in the L2-norm equal to 2 for first order
finite element (P1 and Q1) and equal to 3 for second order finite element (P2 and Q2) as expected.
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Figure 20. Refined mesh in 3D. One refinement step.

Dimension Mesh-Finite Element Convergence rate

2D
Square-Q1 1.99

Quadrangle-Q1 1.99
Tri/Quadr-angle-P1/Q1 1.99

3D Cube-Q1 1.99

2D
Square-Q2 2.99

Quadrangle-Q2 2.90
Tri/Quadr-angle-P2/Q2 2.97

Table 2. Convergence rates in the L2-norm, computed with respect to the mesh size of the
finest refinement level used in the computation.

In order to illustrate the capability of multigrid preconditioners, we represent in Tables 3, 4 and 5 the number
of necessary iterations of the conjugate gradient solver as a function of the number of unknowns. In Table 3, we
show the results for two dimensional first order elements, in Table 4, for two dimensional second order elements
and in Table 5 for three dimensional first order elements. Various preconditioners are compared : the classical
Incomplete LU factorization (ILU0) and the additive (Pa) and multiplicative (Pm) versions of the multigrid
algorithm. Note that in all those computations we say that convergence in the conjugate gradient method is
achieved as soon as the relative L∞-norm of the residual is less than 10−10. We limit the total number of
iterations to 600, and we denote by “–” in Tables 3, 4 and 5 the case where the convergence of the conjugate
gradient method is not achieved before 600 iterations.

Without preconditionning, the number of iterations rapidly exceeds the limit when increasing the number of
unknowns. The use of preconditioners enable to reduce the number of iterations and we observe in particular
that the number of necessary iterations using (Pm) and (Pa) is almost independent of the size of the problem
and is significantly smaller than using, for example, (ILU0) preconditioner.
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Refinement level 1 2 3 4 5 6

Square-Q1

Number of unknowns 893 3053 11021 41757 161233 633629
No preconditioner 53 99 197 372 – –

ILU0 31 61 114 221 457 –
Pa 18 23 27 29 33 34
Pm 8 8 9 9 10 10

Quadrangle-Q1

Number of unknowns 935 3217 11609 43593 168347 660710
No preconditioner 176 357 – – – –

ILU0 45 84 183 388 – –
Pa 46 67 83 97 111 120
Pm 15 16 20 21 23 24

Tri/Quadr-angle-P1/Q1

Number of unknowns 869 2821 9893 37577 144969 569757
No preconditioner 68 131 279 579 – –

ILU0 36 67 131 272 543 –
Pa 21 29 35 40 43 47
Pm 9 10 10 11 12 12

Table 3. Two dimensional test cases. Number of iterations in the conjugate gradient solver
as a function of the number of unknowns.

Refinement level 1 2 3 4

Square-Q2

Number of unknowns 3653 12405 44485 166253
No preconditioner 202 404 – –

ILU0 79 135 259 508
Pa 36 56 69 77
Pm 16 18 20 20

Quadrangle-Q2

Number of unknowns 3827 13129 46881 175126
No preconditioner 595 – – –

ILU0 112 195 389 –
Pa 83 127 158 178
Pm 27 31 33 34

Tri/Quadr-angle-P2/Q2

Number of unknowns 3569 11441 40293 151013
No preconditioner 180 361 – –

ILU0 80 152 309 –
Pa 38 54 73 82
Pm 17 18 20 21

Table 4. Two dimensional test cases. Number of iterations in the conjugate gradient solver
as a function of the number of unknowns.

3. Application to a ternary Cahn-Hilliard system

We are interested in the numerical computation of the solution of a three-phase Cahn-Hilliard model proposed
in [5]. After a brief introduction of this model, we describe the time and space discretization of the problem that
we are using. Then, a numerical example is given using local adaptive refinement and multigrid preconditioner.

3.1. Introduction

The Cahn-Hilliard approach consists in assuming that the interfaces between phases in the system have a
small but positive thickness ε. Each phase i is represented by a smooth function ci called the order parameter
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Refinement level 1 2 3

Cube-Q1

Number of unknowns 9942 63329 459063
No preconditioner 45 224 –

ILU0 28 55 109
Pa 21 31 35
Pm 10 13 14

Table 5. Three dimensional test case. Number of iterations in the conjugate gradient solver
as a function of the number of unknowns.

(which is taken to be the volumic fraction of the component in the mixture). Since the mixture is supposed to
be perfect, the three unknowns c1, c2 and c3 are linked though the relationship

c1 + c2 + c3 = 1. (14)

The model we consider has been fully derived and studied in [5] as a generalization of the two-phase Cahn-
Hilliard model. In the diphasic case, the free energy of the mixture depends on two parameters: the interface
width ε and the surface tension σ. It can be written as follows:

Fdiph
σ,ε (c) =

∫

Ω

12
σ

ε
c2(1 − c)2 +

3

4
σε |∇c|2 dx.

Therefore, in [5], the authors have postulated that the three-phase free energy can be written as follows:

F triph
Σ,ε (c1, c2, c3) =

∫

Ω

12

ε
F (c1, c2, c3) +

3

8
εΣ1|∇c1|

2
+

3

8
εΣ2|∇c2|

2
+

3

8
εΣ3|∇c3|

2
dx. (15)

The triple of constant parameters Σ = (Σ1,Σ2,Σ3) and the bulk energy F have been determined so that the
model fits with the prescribed surface tension σ12, σ13 and σ23 and is “consistent” with the two-component
situation (see below).

The evolution of the system is then driven by the gradient of the total free energy F triph
Σ,ε and the time

evolution of c = (c1, c2, c3) is governed by the following system of equations:






∂ci
∂t

= ∇ ·

(
M0

Σi
∇µi

)
, for i = 1, 2, 3

µi = fFi (c) −
3

4
εΣi∆ci , for i = 1, 2, 3

(16)

where M0 is a constant (it could also depend on c) and

fFi (c) =
4ΣT
ε

∑

j 6=i

(
1

Σj
(∂iF (c) − ∂jF (c))

)
with ΣT defined by

3

ΣT
=

1

Σ1
+

1

Σ2
+

1

Σ3
.

This choice of fFi , obtained by the use of a Lagrange multipliers technique, enforces the condition (14) all along
the time. Thus, one of the unknowns can be arbitrarily eliminated from the system (16) which is then equivalent
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to: 




∂ci
∂t

= ∇ ·

(
M0

Σi
∇µi

)
, for i = 1, 2

c3 = 1 − c1 − c2

µi = fFi (c) −
3

4
εΣi∆ci , for i = 1, 2

µ3 = −

(
Σ3

Σ1
µ1 +

Σ3

Σ2
µ2

)
.

(17)

For simplicity, we will later omit to write the equations giving c3 and µ3 as functions of c1, c2 and µ1, µ2

respectively. The consistency (or algebrical consistency) of the model defined by (15) and (16) with the diphasic
systems corresponding to the given surface tensions σ12, σ13, σ23 respectively means that the following properties
hold:

• When the component i is not present, that is ci ≡ 0, the total free energy F triph
Σ,ε (c1, c2, c3) of the system

has to be exactly equal to the total free energy Fdiph
σjk,ε

(cj) of the diphasic system corresponding to the
two other phases.

• When the component i is not present in the mixture at the initial time, the component i must not
appear during the time evolution of the system.

Finally, it is shown in [5] that the model defined by (15) and (16) is algebraically consistent with the diphasic
systems of surface tensions σ12, σ13, σ23 respectively if and only if we have

∀i ∈ {1, 2, 3}, Σi = σij + σik − σjk, (18)

and there exists a smooth function G such that

∀c ∈ R3 such that c1 + c2 + c3 = 1, F (c) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3)

+ c21c
2
2c

2
3G(c).

In the physical literature, the coefficient Si = −Σi defined by (18) is well known and called the spreading
coefficient of the phase i at the interface between phases j and k. If Si is positive (that is Σi < 0), the spreading
is said to be total and if Si is negative, it is said to be partial.

Notice that, in the following study, the coefficients Σi are not assumed to be positive, so that the model
presented above lets us cope with some total spreading situations. However, in order to have a well-posed
system, we assume that the following condition holds:

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0, (19)

In this paper we will consider Cahn-Hilliard potentials with the following form

F (c) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3)︸ ︷︷ ︸
F0(c)

+ 3Λc21c
2
2c

2
3︸ ︷︷ ︸

P (c)

Under these assumptions, there exists a unique weak solution for the problem (16) (in 2D and with a slightly
modified potential in 3D).

3.2. Discretization procedure

In this section, we present the time and space discretizations of problem (17) that we used. We also state two
results ensuring existence of the discrete solution and convergence of this solution towards the weak solution of
the continuous problem.
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3.2.1. Time discretization

Let N ∈ N∗. The temporal interval [0, tf ] is uniformly discretized with a fixed time step ∆t =
tf
N

. For

n ∈ J0, NK, we define tn = n∆t. We use a semi-implicit discretization in time with a special care for nonlinear
terms. The scheme is written as follows,






cn+1
i − cni

∆t
= ∇ ·

(
M0

Σi
∇µn+1

i

)
, for i = 1, 2,

µn+1
i = DF

i (cn+1, cn) −
3

4
εΣi

[
α∆cni + (1 − α)∆cn+1

i

]
, for i = 1, 2,

where 0 6 α <
1

2
and DF

i (cn+1, cn) =
4ΣT
ε

∑

j 6=i

(
1

Σj

(
dFi (cn+1, cn) − dFj (cn+1, cn)

))
.

The functions dFi represent a semi-implicit discretization of ∂ci
F . Since F = F0+P , we choose a discretization

of the form dFi = dF0

i + dPi where dF0

i and dPi represent the discretization of ∂ci
F0 and ∂ci

P respectively.
We choose a fully implicit discretization of ∂ci

F0. It corresponds to the following definition of dF0 : for
i ∈ {1, 2, 3},

dF0

i (cn+1, cn) = ∂iF0(c
n+1). (20)

For ∂ci
P , we choose a semi-implicit discretization: for i ∈ {1, 2, 3},

dPi (cn+1, cn) = 2Λcn+1
i

[
(cnj )

2(cnk )
2 +

1

2
(cn+1
j )2(cnk )

2 +
1

2
(cnj )

2(cn+1
k )2 + (cn+1

j )2(cn+1
k )2

]
. (21)

We add the following Neumann boundary conditions for each of the unknown which ensures, in particular,
that the volume of each phase is conserved along the time evolution:

∇cn+1
i · n = M0∇µ

n+1
i · n = 0, on ∂Ω.

Other boundary conditions of interest will be presented in [7].

3.2.2. Space discretization of problem (17)

We first give the variational formulation of the semi-discrete problem.

Problem 3.1 (Variational formulation). Given (cn1 , c
n
2 ) ∈ (H1(Ω))2, find (cn+1

1 , cn+1
2 , µn+1

1 , µn+1
2 ) ∈ (H1(Ω))4

so that ∀ν ∈ H1(Ω), we have, for i = 1 and 2,





∫

Ω

cn+1
i − cni

∆t
ν dx = −

∫

Ω

M0

Σi
∇µn+1

i · ∇ν dx,

∫

Ω

µn+1
i ν dx =

∫

Ω

DF
i (cn+1, cn)ν dx+

∫

Ω

3

4
Σiε

[
α∇cni + (1 − α)∇cn+1

i

]
· ∇ν dx.

where cn = (cn1 , c
n
2 , 1 − cn1 − cn2 ).

For the Galerkin approximation in space we introduce Vh a finite element (possibly multilevel) approximation
subspace of H1(Ω).

Problem 3.2 (Galerkin formulation). Given (cn1h, c
n
2h) ∈ (Vh)

2, find (cn+1
1h , cn+1

2h , µn+1
1h , µn+1

2h ) ∈ (Vh)
4 such that

∀νh ∈ Vh, we have, for i = 1, 2,






∫

Ω

cn+1
ih − cnih

∆t
νh dx = −

∫

Ω

M0

Σi
∇µn+1

ih · ∇νh dx,

∫

Ω

µn+1
ih νh dx =

∫

Ω

DF
i (cn+1

h , cnh)νh dx+

∫

Ω

3

4
Σiε

[
α∇cnih + (1 − α)∇cn+1

ih

]
· ∇νh dx.
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where cnh = (cn1h, c
n
2h, 1 − cn1h − cn2h).

Remark 3.3. Note that we use the same approximation space Vh for each of the unknowns cn+1
1h , cn+1

2h , µn+1
1h

and µn+1
2h . Moreover, remark that in the formulation of Problem 3.2 and in Theorems 3.4 and 3.5, we assume

that the approximation space Vh does not depend of n. Because of adaptivity, this is not the case in practice
(see Section 3.3.1).

3.2.3. Existence - Convergence

Theorem 3.4. Let (cn1h, c
n
2h) ∈ (Vh)2. We assume that, for all i ∈ {1, 2, 3}, Σi > 0. There exists a solution

(cn+1
1h , cn+1

2h , µn+1
1h , µn+1

2h ) ∈ (Vh)4 for Problem 3.2.

We define 


cNih(t, ·) =

tn+1 − t

∆t
cnih(·) +

t− tn
∆t

cn+1
ih (·) for t ∈ [tn, tn+1],

µNih(t, ·) = µn+1
ih (·) for t ∈ [tn, tn+1].

The following convergence result holds.

Theorem 3.5. Let (c1, c2, µ1, µ2) be the weak solution of the continuous problem (17). We assume that, for all
i ∈ {1, 2, 3}, Σi > 0 and that the finite element approximation spaces are such that

• inf
νh∈Vh

|ν − νh|H1(Ω) →
h→0

0, for any ν ∈ H1(Ω).

• There exists a constant C such that ∀ν ∈ H1(Ω),
∣∣∣ΠVh

0 ν
∣∣∣
H1(Ω)

6 C|ν|H1(Ω) where ΠVh

0 is the L2(Ω)-

projection on Vh.

Then, for i = 1 and 2,

cNih → ci in C0([0, T ],L2(Ω)) strong,

cNih ⇀ ci in L∞([0, T ],H1(Ω))weak-∗,

µNih ⇀ µi in L2
loc([0, T ],H1(Ω)) weak.

when (∆t, h) → (0, 0).

These two theorems are not proved here; complete proofs will be presented in [7]. The conerstone of these
proofs is a suitable discrete energy estimate. In the case where all Σi are not assumed to be positive, this
estimate is not satisfied for the implicit time discretization (20) of F0. Thus, other semi-implicit discretizations
of this term (of the same kind that the given discretization (21) of P ) are introduced in [7] to ensure the validity
of a such estimate and then to prove the convergence theorem in the case where we only assume that the
condition (19) is fulfilled.

3.3. Practical issues

3.3.1. Newton linearization method

In practice, for the numerical resolution of the problem we choose for Vh a multilevel approximation space
as described in Section 1.3.2. Because of adaptivity, the unknowns are discretized in two different multilevel
spaces at time step n and at time step n + 1, say Vnh = span Bn and Vn+1

h = span Bn+1. Hence, the problem
we have to solve is in fact:

Given (cn1h, c
n
2h) ∈ (Vnh )2, find (cn+1

1h , cn+1
2h , µn+1

1h , µn+1
2h ) ∈ (Vn+1

h )4 such that ∀νh ∈ Vn+1
h , we have, for i = 1, 2,






∫

Ω

cn+1
ih − cnih

∆t
νh dx = −

∫

Ω

M0

Σi
∇µn+1

ih · ∇νh dx,

∫

Ω

µn+1
ih νh dx =

∫

Ω

DF
i (cn+1

h , cnh)νh dx+

∫

Ω

3

4
Σiε

[
α∇cnih + (1 − α)∇cn+1

ih

]
· ∇νh dx.
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This problem is solved by the Newton-Raphson linearization method. The algorithm is initialized by a
L2-projection of (cn1h, c

n
2h, µ

n
1h, µ

n
2h) on Vn+1

h and at each time step we have to solve the following linear system:




Jc1c1 Jc1µ1 Jc1c2 0
Jµ1c1 Jµ1µ1 0 0
Jc2c1 0 Jc2c2 Jc2µ2

0 0 Jµ2c2 Jµ2µ2







c
(k+1)
1h − c

(k)
1h

µ
(k+1)
1h − µ

(k)
1h

c
(k+1)
2h − c

(k)
2h

µ
(k+1)
2h − µ

(k)
2h


 =




−Rc1

−Rµ1

−Rc2

−Rµ2


 , (22)

where (c
(k)
1h , c

(k)
2h ,µ

(k)
1h ,µ

(k)
2h ) is the k-th iterate in the Newton iterative method and the matrix blocks are defined

as follows: ∀(I, J) ∈ J1, Nn+1
dof K2,

[Jcici ]IJ =

∫

Ω

−
3

4
Σiε(1 − α)∇νJ · ∇νI dx −

∫

Ω

∂Di

∂ci
(c

(k)
h , cnh)νJνI dx,

[Jcicj ]IJ =

∫

Ω

−
∂Di

∂cj
(c

(k)
h , cnh)νJνI dx,

[Jciµi ]IJ =

∫

Ω

νJνI dx,

[Jµici ]IJ =

∫

Ω

1

∆t
νJνI dx,

[Jµiµi ]IJ =

∫

Ω

M0

Σi
∇νJ · ∇νI dx,

[Rci ]I =

∫

Ω

µ
(k)
ih νI dx−

∫

Ω

Di(c
(k)
h , cnh)νI dx−

∫

Ω

3

4
Σiε

[
α∇cnih + (1 − α)∇c

(k)
ih

]
· ∇νI dx,

[Rµi ]I =

∫

Ω

c
(k)
ih − cnih

∆t
νI dx +

∫

Ω

M0

Σi
∇µ

(k)
ih · ∇νI dx.

(23)

This linear system (22) is solved by the preconditionned GMRES iterative method. We use a diagonal bloc
preconditioner: 



Pc1c1 0 0 0
0 Pµ1µ1 0 0
0 0 Pc2c2 0
0 0 0 Pµ2µ2




where Pc1c1 ,Pµ1µ1 ,Pc2c2 and Pµ2µ2 are preconditioners built as explain in Section 2.2 (either additive or mul-
tiplicative version) associated respectively to the matrices AJ = Jc1c1 ,Jµ1µ1 ,Jc2c2 and Jµ2µ2 .

3.3.2. Assembly avoiding field tranfers

Among the integrals in (23), some involve discrete unknowns which belong to two distinct approximation
spaces; for example the integral ∫

Ω

cnihνI dx

from [Rµi ]I involves cnih ∈ Vnh and νI ∈ Vn+1
h . Such an integral can be exactly computed avoiding field tranfers

thanks to the following notions. Note that until the end of this section, the time step n+ 1 is fixed.

Definition 3.6 (Active DOF). We say that k ∈ {1, . . . , N
[j]
dof} is an active degree of freedom of level-[j], if and

only if ϕ
[j]
k ∈ Bn ∪ Bn+1. We denote by A

[j]
dof the set of active degrees of freedom of level-[j].
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Definition 3.7. Let j ∈ J0, JK. We say that a level-[j] cell K [j] satisfies the (AK[j]) property iff

∀j′ ∈ Jj + 1, JK, ∀k ∈ A
[j′]
dof,

◦

K [j] ∩

◦

supp[ϕ
[j′]
k ]= ∅. (AK[j])

Remark 3.8. This definition ensures that on an active cell, all basis functions involved in the discretization of
the problem, has a “unique” expression (opposed to an elementwise definition). Thus, in the case of polynomial
finite elements (e.g. Pk,Qk), suitable quadrature rules can be used in order to exactly compute all the integrals.

Definition 3.9 (Active cells). A level-[j] cell K [j] of Tj is called active iff:

• K [j] satisfies the property (AK[j]), and
• in the case of j > 0, its parent cell P (K [j]) (of level [j − 1]) does not satisfy the property AP (K[j]).

With this definition at hand, we can introduce the notion of a multilevel mesh.

Proposition 3.10 (Multilevel mesh). Let T̃j be the set of active cells of Tj. The set T =
J⋃

j=0

T̃j is a mesh of

Ω called multilevel mesh.

Proof. Let K
[j]
e and K

[j′]
e′ be two distinct active cells and let us show that

◦

K
[j]
e ∩

◦

K
[j′]
e′ = ∅.

• Case 1 : j = j′. Necessarily, we have e 6= e′.

In this case, K
[j]
e and K

[j′]
e′ are two distinct cells of the mesh Tj . Then,

◦

K
[j]
e ∩

◦

K
[j′]
e′ = ∅.

• Case 2 : j > j′.

Arguing by contradiction, assume that

◦

K
[j]
e ∩

◦

K
[j′]
e′ 6= ∅. Since j > j′, we have K

[j]
e ⊂ K

[j′]
e′ . But,

the cell K
[j]
e is active and ¬

(
A
P (K

[j]
e )

)
yields that there exits j0 > j and k0 ∈ A

[j0]
dof such that

◦

P (K
[j]
e )

∩

◦

supp[ϕ
[j0]
k0

]6= ∅.

Moreover, we have j0 > j′ and

(
A
K

[j′ ]

e′

)
yields

◦

K
[j′]
e′ ∩

◦

supp[ϕ
[j0]
k0

]= ∅. However, we have

(j > j′ and K [j]
e ⊂ K

[j′]
e′ ) =⇒

◦

P (K [j]
e )⊂

◦

K
[j′]
e′ .

Hence, ∅ 6=




◦

P (K
[j]
e ) ∩

◦

supp[ϕ
[j0]
k0

]



 ⊂




◦

K
[j′]
e′ ∩

◦

supp[ϕ
[j0]
k0

]



 = ∅. This is a contradiction.

Hence, the interiors of two different active cells are disjoint.

Let x ∈ Ω. Since TJ is a mesh of Ω, there exists a level-[J ] cell K
[J]
eJ which contains x. Then, for all

j ∈ J0, J − 1K, we define K
[j]
ej = P (K

[j+1]
ej+1 ). Hence, for all j ∈ J0, JK, x belongs to the cell K

[j]
ej . Consider the

set E =
{
j ∈ J0, JK, ∀ℓ > j, K

[ℓ]
eℓ satisfies (A

K
[ℓ]
eℓ

)
}

. We have J ∈ E, so E 6= ∅. Let jm = min
j∈E

j, then, by

definition, K
[jm]
ejm

is active and contains x.
�

Remark 3.11. Multilevel meshes are not geometrically conformal, but multilevel finite element spaces are
H1(Ω)-conformal by construction since span B ⊂ XJ ⊂ H1(Ω). The non-conformity of multilevel meshes is not
a problem since they are only used as elementary integration domains.
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Since T is a partition of Ω, the integral can be decomposed into a sum over all cells of the multilevel mesh
T on which a quadrature rule is then applied leading to exact computations (see Remark 3.8).

3.3.3. Refinement criterion

For the Cahn-Hilliard model, we want to refine in the interface zone (that is to say where the order parameters
have important variations). For this reason, we need to introduce an indicator measuring whether or not a given
cell (resp. basis function) lies in the interface at a given time step.

Definition 3.12 (Per-cell indicator). At a given time step n, for any active cell K, we define the following
indicator:

ηK = max
( 1

|K|

∫

K

cn1 ,
1

|K|

∫

K

cn2 ,
1

|K|

∫

K

cn3

)

Remark 3.13. This per-cell indicator can be interpreted as follows:

• ηK = 1 means that the cell K is completely filled with one of the bulk phases.
• ηK < 1 means that the cell K contains an interface.

We can deduce a criterion for deciding whether or not a given basis function may be (un-)refined.

Definition 3.14 (Basis function indicator). At a given time step n, for a basis function ϕ, we define the
following indicator:

ηϕ =
1

|supp[ϕ]|

∑

K∈T ,

K∩supp[ϕ] 6=∅

|K|ηK

Criterion 3.15 ((Un)Refinement criterion). Given an anticipated cell size hinterface for the interface neighbor-
hood, the two following criterion let us decide if a basis function ϕ has to be refined or unrefined.

• Refinement criterion:

ηϕ < 0.90 and diam(K) > hinterface for at least one cell K ⊂ supp[ϕ].

• Unrefinement criterion:

ηϕ > 0.95.

3.4. Numerical experiments

Finally, we give an application of the local refinement procedure and the multigrid methods to the resolution
of the above ternary Cahn-Hilliard model in the case of a liquid lens spreading between two stratified fluids.
Figure 21 shows the initial position of the interface and the numbering of phases used to defined the surface
tensions σij between the phases i and j.

Phase 1

Phase 2

Phase 3

Figure 21. Initial position of interface. Numbering of phases.
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Ω ε σ12 σ13 σ23 M0 ∆t tf
[0, 0.1]× [0, 0.1] 2.8 10−3 1 0.6 0.6 10−4 10−4 2 10−3

Table 6. Parameters.

iteration 0 iteration 10 iteration 20
t = 0 t = 1. 10−3 t = 2. 10−3

Figure 22. Square-Q1. Time marching. hinterface = ε

Table 6 gives the parameters we used for numerical simulations. The refinement criterion is given in Section
3.3.3; hinterface is specified for each mesh.

Figures 22, 23, 24 shows three steps of the time marching. In each case, the value of the parameter hinterface

is voluntarily chosen large enough for the ease of visualisation.
As in Section 2.3.3, we represent in these figure the refined mesh and the function (1 − c1)(1 − c2)(c1 + c2).

This let us show the position of the interfaces.

iteration 0 iteration 10 iteration 20
t = 0 t = 1. 10−3 t = 2. 10−3

Figure 23. Quadrangle-Q1. Time marching. hinterface = 0.8ε

Table 7 illustrates that the multigrid process can be used to develop convergent iterative algorithms for the
solution of the Cahn-Hilliard equations on local refined meshes. The simulations have been done during twenty
time steps. For each time step, we calculate an average of the number of iterations required to solve the linear
system by the GMRES method, over all iterations of the Newton algorithm. In Table 7, the numbers which
face the preconditioner name are the minimum, the maximum and the average of this numbers over all the
twenty time steps. For these simulations, we used hinterface = 0.2ε. Note that in these simulations, we say that
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iteration 0 iteration 10 iteration 20
t = 0 t = 1. 10−3 t = 2. 10−3

Figure 24. Tri/Quadr-angle-P1/Q1. Time marching. hinterface = 0.4ε

convergence in the GMRES method is achieved as soon as the relative L2-norm of the residual (and not the
preconditionned residual) is less than 10−10. In particular, this criterion is independent of the preconditioners.

We observe that the number of necessary iterations is the almost the same from a time step to another
and that the number of necessary iterations using (Pm) and (Pa) is significantly smaller than using (ILU0)
preconditioner.

Min Max Average

Square-Q1

Number of unknowns 29020 30844 30032
Number ILU0 188 232 213

of Pa 68 77 72
iterations Pm 18 19 18

Quadrangle-Q1

Number of unknowns 45000 47900 46428
Number ILU0 291 346 308

of Pa 72 80 74
iterations Pm 18 26 18

Tri/Quadr-angle-P1/Q1

Number of unknowns 28780 31204 30266
Number ILU0 265 289 278

of Pa 57 71 63
iterations Pm 16 20 17

Table 7. Number of iterations in the GMRES solver. hinterface = 0.2ε

4. Conclusion

This paper is devoted to the description and the resolution of some numerical issues linked to local adaptive
refinement methods. We show how a hierarchy of nested conforming meshes can be built recursively applying a
same refinement pattern to each cell of an initial mesh possibly unstructured. This hierarchy is then used in a
slightly modified version of the CHARMS method [15] in order to perform local refinement. Furthermore, the
multilevel structure of the approximation spaces built with this method is exploited to derive suitable multigrid
preconditioners for solving the corresponding linear system. We illustrate possibilities of the whole method with
simultations of a lens spreading between two stratified liquid phases thanks to a ternary Cahn-Hilliard model.
We particularly point out the practical way to implement the method for a time dependent problem. More
complex situation have been considered [6] with simulations of three phases flows by solving the coupling of
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the Cahn-Hilliard system and the Navier-Stokes system. As an example, we give in Figure 25 the simulation
of the rise of a gaz bubble across a light/heavy liquids interface. In future works, we will incorporate multigrid
preconditioners in finite element penalty projection method for solving Navier-Stokes system [11,14] in order to
build efficient solver for the complete model.

0 s 0.13 s 0.21 s 0.29 s 0.39 s 0.52 s 0.65 s zoom on the adapted mesh
near the interfaces

Figure 25. Entrainment of an heavy liquid during a bubble rising.

Acknowlegments. The authors would like to thank the referees for their careful reading of the paper and
their valuable remarks.

References

[1] R. E. Bank, T. F. Dupont, and H. Yserentant. The hierarchical basis multigrid method. Numerische Mathematik, 52:427–458,
1988.

[2] R. E. Bank, A. H. Sherman, and A. Weiser. Some refinement algorithms and data structures for regular local mesh refinement.
In Scientific Computing, Applications of Mathematics and Computing to the Physical Sciences, 1983.
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[15] P. Krysl, E. Grinspun, and P. Schröder. Natural hierarchical refinement for finite element methods. Internat. J. Numer.
Methods Engrg., 56(8):1109–1124, 2003.

[16] P. Krysl, A. Trivedi, and B. Zhu. Object-oriented hierarchical mesh refinement with CHARMS. International Journal for
Numerical Methods in Engineering, 60:1401–1424, 2004.



39

[17] J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM Journal on Scientific Comput-
ing, 16(1):210–227, 1995.

[18] W. F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. J. Comput. Appl. Math.,
36(1):65–78, 1991.

[19] PELICANS. Collaborative Development environment: https://gforge.irsn.fr/gf/project/pelicans/.
[20] P.A. Raviart and J.-M. Thomas. Introduction à l’analyse numérique des équations aux dérivées partielles. MASSON, 2e tirage
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