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NUMERICAL SCHEMES FOR A THREE COMPONENT
CAHN-HILLIARD MODEL
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Abstract. In this article, we investigate numerical schemes for solving a three component
Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and
the finite element method. Concerning the time discretization, the main difficulty is to write a scheme
ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method.
We study three different schemes and prove existence and convergence theorems. Theoretical results
are illustrated by various numerical examples showing that the new semi-implicit discretization that
we propose seems to be a good compromise between robustness and accuracy.
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1. Introduction

Multiphase flows are involved in many industrial applications. For instance, in nuclear safety [31], during
a hypothetical major accident in a reactor, the degradation of the core may produce multicomponent flows
where interfaces undergo extreme topological changes, e.g. break-up and coalescence. Because of their ability
to capture interfaces implicitly, diffuse-interface models are attractive for the numerical simulation of such
phenomena. They consist in assuming that the interfaces between phases in the system have a small but positive
thickness. Each phase i is represented by a smooth function ci called the order parameter. The evolution of the
system is then driven by the gradient of the total free energy, which is a sum of two terms: the bulk free energy
term with a “multiple-well” shape and the capillary term depending on the gradients of the order parameters and
accounting for the energy of the interfaces, that is the surface tension. For two phase situations, there has been
much algorithm development and many simulations of the Cahn-Hilliard equations [2,3,5,7,12,13,16,19,20,24].
Generalizations of diffuse-interface models to any number of components have been recently introduced and
studied as well as associated numerical methods and simulations, see for instance [1,4,6,8,14,15,21–23,25,27,28].

In this article we investigate numerical schemes for solving the three component Cahn-Hilliard model fully
derived and studied in [8]. We recall its main properties in Sections 1.1–1.3. One of the key features of this model

Keywords and phrases. Finite element, Cahn-Hilliard model, numerical scheme, energy estimate.
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is a relevant choice of the bulk free energy which enables its exact coincidence with the diphasic Cahn-Hilliard
model when only two phases are present in the mixture.

The space discretization is performed by using the finite element method. Concerning the time discretization,
the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy which is
crucial to establish the existence and the convergence of approximate solutions. In some physical situations, the
implicit Euler time discretization does not satisfy an energy inequality and the corresponding numerical solvers
do not converge. To tackle this issue, various semi-implicit schemes are proposed and studied in Sections 2
and 3.

We state a convergence theorem for these schemes, which enables in particular to get a proof (different from
the one in [8]) of the existence of a weak solution of the Cahn-Hilliard model. Note that more general boundary
conditions are taken into account here since we allow Dirichlet boundary conditions on the order parameters on
some part of the boundary of the domain. Finally, in Section 5, the three schemes are numerically compared
on various test cases.

1.1. Three component Cahn-Hilliard model

The domain Ω is an open bounded, connected, subset of Rd with d = 2 or d = 3. The Cahn-Hilliard approach
consists in assuming that the interfaces between phases in the system have a small but positive thickness ε.
Each phase i is represented by a smooth function ci called the order parameter (which is taken to be the volumic
fraction of the component in the mixture). The three unknowns c1, c2 and c3 are linked though the relationship:

c1 + c2 + c3 = 1. (1.1)

In other words, the vector c = (c1, c2, c3) belongs to the hyperplane S =
{
(c1, c2, c3) ∈ R3; c1 + c2 + c3 = 1

}
of R3.

The model we propose to study has been introduced in [8] (see also [10]) as a generalization of the two-phase
Cahn-Hilliard model. In the diphasic case, the free energy of the mixture depends on two parameters: the
interface width ε and the surface tension σ. It can be written as follows:

Fdiph
σ,ε (c) =

∫
Ω

12
σ

ε
c2(1 − c)2 +

3
4
σε|∇c|2 dx.

Therefore, in [8], the authors have postulated that the three-phase free energy can be written as follows:

F triph
Σ,ε (c1, c2, c3) =

∫
Ω

12
ε

F (c1, c2, c3) +
3
8
εΣ1|∇c1|2 +

3
8
εΣ2|∇c2|2 +

3
8
εΣ3|∇c3|2 dx. (1.2)

The triple of constant parameters Σ = (Σ1, Σ2, Σ3) and the bulk energy F have been determined so that the
model fits with the prescribed surface tension σ12, σ13 and σ23 and is “consistent” with the two-component
situation (Sect. 1.2).

The evolution of the system is then driven by the gradient of the total free energy F triph
Σ,ε and the time

evolution of c = (c1, c2, c3) is governed by the following system of equations:⎧⎪⎪⎨
⎪⎪⎩

∂ci

∂t
= ∇ ·

(
M0(c)

Σi
∇μi

)
, for i = 1, 2, 3

μi = fF
i (c) − 3

4
εΣiΔci, for i = 1, 2, 3

(1.3)

where M0(c) is a diffusion coefficient called mobility which may depend on c and

fF
i (c) =

4ΣT

ε

∑
j �=i

(
1
Σj

(∂iF (c) − ∂jF (c))
)

with ΣT defined by
3

ΣT
=

1
Σ1

+
1

Σ2
+

1
Σ3

·
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This choice of fF
i , obtained by the use of a Lagrange multipliers technique, enforces the condition (1.1) all

along the time. Thus, one of the unknowns can be arbitrarily eliminated from the system (1.3). In Section 2.3,
we will prove that we can only discretize equations satisfied by (c1, c2, μ1, μ2) and use the relationship (1.1) to
deduce c3.

1.2. Algebraic consistency

At this point, it remains to specify the expression of the triple of constant parameters Σ and of the bulk
energy F . These parameters have been determined so that the three phase model (defined by (1.2) and (1.3))
coincide with the diphasic model when one of the order parameters is zero. More precisely, the consistency (or
algebraic consistency) of the three-phase model with the diphasic systems corresponding to one of the given
surface tensions σ12, σ13, σ23 respectively means that the following properties hold:

• When the component i is not present, that is ci ≡ 0, the total free energy F triph
Σ,ε (c1, c2, c3) of the system

has to be exactly equal to the total free energy Fdiph
σjk,ε(cj) of the diphasic system corresponding to the

two other phases.
• When the component i is not present in the mixture at the initial time, the component i must not

appear during the time evolution of the system.
It is shown in [8] that the model defined by (1.2) and (1.3) is algebraically consistent with the diphasic systems
of surface tensions σ12, σ13, σ23 respectively if and only if we have

Σi = σij + σik − σjk , ∀i ∈ {1, 2, 3}, (1.4)

and there exists a smooth function Ψ such that

F (c) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3) + c2

1c
2
2c

2
3 Ψ(c), ∀c ∈ S.

In the physical literature, the coefficient Si = −Σi defined by (1.4) is well known [30] and called the spreading
coefficient of the phase i at the interface between phases j and k. If Si is positive (that is Σi < 0), the spreading
is said to be total and if Si is negative, it is said to be partial.

Notice that, in the following study, the coefficients Σi are not assumed to be positive, so that the model
presented above lets us cope with some total spreading situations (see numerical illustrations in Sects. 5.2.1
and 5.2.2). However, as shown in [8], in order for the system to be well-posed, it is needed to assume that the
following condition holds:

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0. (1.5)
This condition is equivalent to the coercivity of capillary terms and consequently ensures that these terms bring
a positive contribution to the total free energy. This is detailed in the following proposition.

Proposition 1.1. Let Σ = (Σ1, Σ2, Σ3) ∈ R3. There exists Σ > 0 such that, for all n ≥ 1, for all (ξ1, ξ2, ξ3) ∈
(Rn)3 such that ξ1 + ξ2 + ξ3 = 0,

Σ1|ξ1|2 + Σ2|ξ2|2 + Σ3|ξ3|2 � Σ
(
|ξ1|2 + |ξ2|2 + |ξ3|2

)
,

if and only if the two following conditions are satisfied

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0 and Σi + Σj > 0, ∀i �= j. (1.6)

This proposition and the following corollary will be useful in the sequel. In particular, under condition (1.6),
Proposition 1.1 shows that the bilinear form defined by

(
(ξ1, ξ2, ξ3), (η1, η2, η3)

) �→∑3
i=1 Σiξi · ηi is a scalar

product on {(ξ1, ξ2, ξ3) ∈ (Rn)3 such that ξ1 +ξ2 +ξ3 = 0}. The following corollary is then deduced applying
the Cauchy-Schwarz inequality for this scalar product and the Young inequality.
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Corollary 1.2. Let Σ = (Σ1, Σ2, Σ3) ∈ R3 satisfying the condition (1.6). Then, for all (ξ1, ξ2, ξ3) ∈ (Rn)3,
satisfying ξ1 + ξ2 + ξ3 = 0, for all (η1, η2, η3) ∈ (Rn)3, satisfying η1 + η2 + η3 = 0,

∣∣∣∣∣
3∑

i=1

Σiξi · ηi

∣∣∣∣∣ � 1
2

(
3∑

i=1

Σi|ξi|2 +
3∑

i=1

Σi|ηi|2
)

.

1.3. Existence of weak solutions

We denote by Γ the boundary of the domain Ω and we assume that Γ is divided in two distinct parts
Γ = Γc

D ∪ Γc
N . We supplement the previous system with mixed Dirichlet-Neumann boundary conditions for

each order parameter ci and with Neumann boundary conditions for each chemical potential μi. That is, for
i = 1, 2 and 3,

ci = ciD and M0∇μi · n = 0, on Γc
D, (1.7)

∇ci · n = 0 and M0∇μi · n = 0, on Γc
N , (1.8)

where cD = (c1D, c2D, c3D) ∈
(
H

1
2 (Γ)
)3

is given such that cD(x) ∈ S for almost every x ∈ Γ.

Remark 1.3. The Neumann boundary condition for μi ensures in particular the conservation of the volume of
the phase i. Indeed, we have,

d
dt

(∫
Ω

ci dx

)
=
∫

Γ

1
Σi

(−M0∇μi) · n = 0.

The Neumann boundary conditions for ci impose that interfaces are normal to the boundaries of the domain and
the Dirichlet boundary conditions for ci, less classical, are used on inflow boundaries to simulate the injection
of the phase i (when the Cahn-Hilliard model is coupled to the Navier-Stokes equations [10]).

In view of boundary conditions (1.7)–(1.8), we introduce the following functional spaces:

Vc = Vμ = H1(Ω),

Vci

D = {νci ∈ H1(Ω); νci = ciD on Γc
D}, for i = 1, 2 and 3,

Vc
D,0 = {νc ∈ H1(Ω); νc = 0 on Γc

D},
Vc

D,S = {c = (c1, c2, c3) ∈ Vc1
D × Vc2

D × Vc3
D ; c(x) ∈ S for a.e. x ∈ Ω}.

Finally, we assume that at the initial time, we have

ci(t = 0) = c0
i , (1.9)

where c0 = (c0
1, c

0
2, c

0
3) ∈ Vc

D,S is given.
The existence of weak solutions of the problem (1.3) together with the initial condition (1.9) and the Neumann

boundary conditions (1.8) (Γ = Γc
N ) for each unknowns (ci, μi), was proved in [8] under the following general

assumptions in 2D and 3D:

• The mobility M0 is a bounded C1(R3) class function and there exists three positive constants M1, M2

and M3 such that:
∀c ∈ S, 0 < M1 � M0(c) � M2,

|DM0(c)| � M3.
(1.10)
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• The bulk energy F is a non negative C2(R3) class function which satisfies the following polynomial
growth assumptions: there exist B1 > 0 and a real p such that 2 � p < +∞ if d = 2 or 2 � p � 6
if d = 3, and

∀c ∈ S, |F (c)| � B1 (1 + |c|p),
|DF (c)| � B1

(
1 + |c|p−1

)
,∣∣D2F (c)

∣∣ � B1

(
1 + |c|p−2

)
.

(1.11)

Theorem 1.4. Assume that conditions (1.5), (1.10), (1.11) hold. Consider the problem (1.3) together with the
initial condition (1.9) and the Neumann boundary conditions (1.8) (Γ = Γc

N ) for each unknowns (ci, μi). Then,
there exists a weak solution (c, μ) on [0, +∞[ such that

c ∈ L∞(0, +∞; (H1(Ω))3) ∩ C0([0, +∞[; (Lq(Ω))3), for all q < 6,

μ ∈ L2(0, +∞; (H1(Ω))3),
c(t, x) ∈ S, for a.e. (t, x) ∈ [0, +∞[×Ω.

Remark 1.5. In [8], a uniqueness theorem is also available under additional assumptions on the Hessian of
the potential F . Notice that, in three dimensions, the proof requires a constant mobility coefficient and a slight
modification of the potential F that we do not consider here.

In this article we will consider Cahn-Hilliard potentials with the following form

F (c) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3)︸ ︷︷ ︸
F0(c)

+ 3Λc2
1c

2
2c

2
3︸ ︷︷ ︸

P (c)

. (1.12)

It is important to note that in the case of partial spreading situations, i.e. Σi > 0, ∀i = 1, 2, 3, that the
potential F0 satisfies assumptions (1.11) and, consequently, the simplest choice F = F0 is always acceptable.
However, in the case of total spreading situations, i.e. one of Σi is negative, the potential F0 may be unbounded
from below. Nevertheless, the following proposition, from [8], ensures that F = F0 + P satisfies (1.11) provided
that Λ is large enough.

Proposition 1.6. Under condition (1.5), there exists Λ0 > 0 such that for all Λ � Λ0 the potential F defined
by (1.12) is non negative and satisfies properties (1.11).

The outline of the rest of this article is the following. In Section 2, we give the numerical scheme that
we use to approximate the solution of system (1.3). The discretization of the non linear terms is stated in
a general form, and we give sufficient conditions on this discretization to ensure existence of the approximate
solution and its convergence towards a solution of (1.3). In Section 3, we provide several possible choices of
these discretizations and we describe their main properties. In Section 4, we give the proofs of the existence
and convergence theorems stated in Section 2. Note that we do not need to assume the existence of solutions of
the continuous problem: we get it as a by-product of the convergence of the scheme. Hence, we provide a new
proof of Theorem 1.4 considering more general boundary conditions (1.7)–(1.8). Finally, Section 5 is dedicated
to some numerical experiments, in particular for the simulation of a spreading lens between two stratified other
phases. The conclusion of these simulations is that the semi-implicit time discretization method we propose is
a good compromise between accuracy and robustness.

2. Discretization, existence and convergence of approximate solutions

In this section, we present the discretization of the Cahn-Hilliard system (1.3) that we will study. We
first describe a semi-discretization in time in Section 2.1. Time discretization of nonlinear terms is stated in
a general form; several particular possible choices will be given in Section 3. In Section 2.2, we give the space
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discretization which is performed thanks to a Galerkin approximation and the finite element method. The full
discrete problem is first formulated using the three couple of unknowns (cn

ih, μn
ih), i = 1, 2, 3, and then we show

in Section 2.3 that this problem can be formulated using only two chosen couples of unknowns, the third one
being a posteriori deduced. Finally, the rest of this section is devoted to the study of the full discrete problem.
The following approach is used:

• Some a priori estimates follows from the equality of energy given in Section 2.4.
• The nonlinear discrete problem is linked by homotopy to a linear problem. The existence of an ap-

proximate solution is then deduced from the above mentioned a priori estimates and the existence of
a solution of the linear problem (by applying the topological degree theory).

• The convergence of the approximate solution is obtained from the above mentioned a priori estimates
by using compactness results.

Existence and convergence theorems are stated in Section 2.5. Their proofs are postponed to Section 4.

2.1. Time discretization

Let N ∈ N∗ and tf ∈ ]0, +∞[. The time interval [0, tf ] is uniformly discretized with a fixed time step

Δt =
tf
N

. For n ∈ �0, N�, we define tn = nΔt.

Let n ∈ N. We assume that functions (cn
1 , cn

2 , cn
3 ) ∈ Vc

D,S are given. We use a semi-implicit time discretization
with a special care for nonlinear terms. The scheme is written in a general way as follows, for i = 1, 2, 3,⎧⎪⎪⎨

⎪⎪⎩
cn+1
i − cn

i

Δt
= ∇ ·

(
Mn+α

0

Σi
∇μn+1

i

)
,

μn+1
i = DF

i (cn, cn+1) − 3
4
εΣiΔcn+β

i ,

(2.1)

where: • Mn+α
0 = M0

(
(1 − α)cn + αcn+1

)
with α ∈ [0, 1];

• cn+β
i = (1 − β)cn

i + βcn+1
i with β ∈

[
1
2
, 1
]

;

• DF
i (an,an+1) =

4ΣT

ε

∑
j �=i

(
1
Σj

(
dF

i (an, an+1) − dF
j (an, an+1)

))
, ∀(an, an+1) ∈ S2. (2.2)

The functions dF
i represent a semi-implicit discretization of ∂ciF . At this point, in order to ensure consistency,

we only assume that
DF

i (c, c) = fF
i (c), ∀c ∈ S. (2.3)

Various possible choices for these nonlinear terms will be proposed and studied in Section 3.
Following (1.7) and (1.8), the discrete boundary conditions are, for i = 1, 2, 3,

cn+1
i = ciD and M0∇μn+1

i · n = 0, on Γc
D,

∇cn+1
i · n = 0 and M0∇μn+1

i · n = 0, on Γc
N .

2.2. Space discretization

For the space discretization, we use a Galerkin approximation and the finite element method. Let Vc
h and

Vμ
h be two finite element approximation subspaces of Vc and Vμ respectively. Since order parameters verify

non-homogeneous Dirichlet boundary conditions on Γc
D, we use c0

i as a lifting of ciD in Vc and we assume that
functions c0

ih ∈ Vc
h are given for all i ∈ {1, 2, 3}, for all h > 0 such that

c0
h(x) ∈ S, ∀h > 0, a.e. x ∈ Ω and

∣∣c0
h − c0

∣∣
(H1(Ω))3

−→
h→0

0.
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These functions c0
ih can be obtained from c0

i by H1(Ω)-projection or, as this is the case in practice, by finite
element interpolation provided that c0

i is smooth enough. We then define the following spaces:

Vc
Dh,0 = {νc

h ∈ Vc
h; νc

h = 0 on Γc
D},

Vci

Dh = c0
ih + Vc

Dh,0,

Vc
Dh,S = {ch = (c1h, c2h, c3h) ∈ Vc1

Dh × Vc2
Dh × Vc3

Dh; ch(x) ∈ S for a.e. x ∈ Ω}.

The general assumptions concerning the approximation spaces that we need are the following:

• 1 ∈ Vc
h and 1 ∈ Vμ

h ; (2.4)

• ∀νμ ∈ Vμ, inf
νµ

h∈Vµ
h

|νμ − νμ
h |H1(Ω) −→h→0

0 and ∀νc ∈ Vc
D,0, inf

νc
h∈Vc

Dh,0

|νc − νc
h|H1(Ω) −→h→0

0; (2.5)

• there exists a positive constant C independent of h such that:

∀νμ ∈ Vμ,
∣∣∣ΠVµ

h
0 (νμ)

∣∣∣
H1(Ω)

� C|νμ|H1(Ω), (2.6)

where ΠVµ
h

0 denote the L2(Ω)-projection on Vμ
h ;

• Vc
h ⊂ Vμ

h . (2.7)

Remark 2.1. Assumption (2.6) is available, for instance, for a family of quasi-uniform triangulations and the
corresponding conforming Lagrange finite element approximation spaces [17], p. 72, (1.117).

We assume that cn
h ∈ Vc

Dh,S is given and the Galerkin approximation of problem (2.1) at time tn+1 is written
as follows:

Problem 2.2 (formulation with three order parameters). Find (cn+1
h , μn+1

h ) ∈ Vc1
Dh ×Vc2

Dh ×Vc3
Dh × (Vμ

h )3 such
that ∀νc

h ∈ Vc
Dh,0, ∀νμ

h ∈ Vμ
h , we have, for i = 1, 2, 3,

⎧⎪⎪⎨
⎪⎪⎩
∫

Ω

cn+1
ih − cn

ih

Δt
νμ

h dx = −
∫

Ω

Mn+α
0h

Σi
∇μn+1

ih · ∇νμ
h dx,∫

Ω

μn+1
ih νc

h dx =
∫

Ω

DF
i (cn

h , cn+1
h )νc

h dx +
∫

Ω

3
4
Σiε∇cn+β

ih · ∇νc
h dx,

(2.8)

where Mn+α
0h = M0

(
(1 − α)cn

h + αcn+1
h

)
and cn+β

ih = (1 − β)cn
ih + βcn+1

ih .

Note that we do not seek cn+1
h in Vc

Dh,S . The constraint cn+1
1h + cn+1

2h + cn+1
3h = 1 is imposed thanks to the

particular form of DF
i in the model (see Thm. 2.6).

Remark 2.3. Assumption (2.4) allows to take νμ
h ≡ 1 in the first equation of (2.8). This yields the exact

conservation of the volume of the phases at the discrete level:

∫
Ω

cn+1
ih dx =

∫
Ω

cn
ih dx, ∀i ∈ {1, 2, 3}, ∀n ∈ �0, N − 1�. (2.9)
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2.3. Equivalence with a system of two coupled equations

In practice, only the two coupled Cahn-Hilliard equations satisfied by (c1, c2, μ1, μ2) have to be solved. Indeed,
Problem 2.2 is equivalent to the following one:

Problem 2.4 (formulation with two order parameters). Find (cn+1
1h , cn+1

2h , μn+1
1h , μn+1

2h ) ∈ Vc1
Dh × Vc2

Dh × (Vμ
h )2

such that ∀νc
h ∈ Vc

Dh,0, ∀νμ
h ∈ Vμ

h , we have, for i = 1 and 2,

⎧⎪⎪⎨
⎪⎪⎩
∫

Ω

cn+1
ih − cn

ih

Δt
νμ

h dx = −
∫

Ω

Mn+α
0h

Σi
∇μn+1

ih · ∇νμ
h dx,∫

Ω

μn+1
ih νc

h dx =
∫

Ω

DF
i (cn

h , cn+1
h )νc

h dx +
∫

Ω

3
4
Σiε∇cn+β

ih · ∇νc
h dx

(2.10)

with cn+1
h = (cn+1

1h , cn+1
2h , 1 − cn+1

1h − cn+1
2h ).

Then, it remains to define

cn+1
3h = 1 − cn+1

1h − cn+1
2h and μn+1

3h = −
(

Σ3

Σ1
μn+1

1h +
Σ3

Σ2
μn+1

2h

)
. (2.11)

Remark 2.5. Notice that until the end of this article, in the systems where only the unknowns (cn+1
1h , μn+1

1h ,
cn+1
2h , μn+1

2h ) appear, the notation cn+1
h represents the vector (cn+1

1h , cn+1
2h , 1 − cn+1

1h − cn+1
2h ).

Theorem 2.6. Problem (2.8) is equivalent to problem (2.10)–(2.11). In particular, notice that any solution
(cn+1

h , μn+1
h ) of Problem 2.2 satisfies

3∑
i=1

cn+1
ih = 1 and

3∑
i=1

μn+1
ih

Σi
= 0. (2.12)

Proof. First, by using definition (2.2) and after a reordering of terms, we find (j and k are the two indices
different from i):

3∑
i=1

1
Σi

DF
i (cn

h , cn+1
h ) =

4ΣT

ε

3∑
i=1

(
1
Σi

(
1
Σj

+
1

Σk

)
− 1

ΣiΣj
− 1

ΣiΣk

)
dF

i (cn
h , cn+1

h ) = 0. (2.13)

Assume now that problem (2.10)–(2.11) is satisfied. Then, adding equations of (2.10) for i = 1, 2 and using (2.11)
and (2.13) yields to⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
Ω

(
1 − cn+1

3h

)− (1 − cn
3h)

Δt
νμ

h dx = −
∫

Ω

Mn+α
0h ∇

(
−μn+1

3h

Σ3

)
· ∇νμ

h dx,∫
Ω

(
−μn+1

3h

Σ3

)
νc

h dx =
∫

Ω

(
− 1

Σ3
D3(cn

h , cn+1
h )
)

νc
h dx +

3
4
ε

∫
Ω

∇
(
1 − cn+β

3h

)
· ∇νc

h dx.

This proves that cn+1
3h satisfies (2.8) for i = 3.

Conversely, if we assume that (2.8) is satisfied, then by adding the equations for i = 1, 2, 3, thanks to (2.13),
we get ⎧⎪⎪⎨

⎪⎪⎩
∫

Ω

Sn+1
h − Sn

h

Δt
νμ

h dx = −
∫

Ω

Mn+α
0h ∇Θn+1

h · ∇νμ
h dx∫

Ω

Θn+1
h νc

h dx =
3
4
ε

∫
Ω

[
(1 − β)∇Sn

h + β∇Sn+1
h

] · ∇νc
h dx,

(2.14)
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where S�
h =

3∑
i=1

c�
ih and Θ�

h =
3∑

i=1

μ�
ih

Σi
for � = n and � = n + 1. These equations are satisfied for all νμ

h ∈ Vμ
h

and for all νc
h ∈ Vc

Dh,0. In particular, we take νμ
h = Θn+1

h and νc
h =

Sn+1
h − Sn

h

Δt
∈ VDh,0, and get the equality

3
8
ε

∫
Ω

(∣∣∇Sn+1
h

∣∣2 − |∇Sn
h |2 + (2β − 1)

∣∣∇Sn+1
h −∇Sn

h

∣∣2)dx + Δt

∫
Ω

Mn+α
0h

∣∣∇Θn+1
h

∣∣2 dx = 0. (2.15)

Since Sn
h ≡ 1 (cn

h ∈ VDh,S), M0 is positive and β � 1
2
, the left hand side of (2.15) is a sum of non negative terms.

In particular, ∇Sn+1
h ≡ 0 and ∇Θn+1

h ≡ 0. Hence, the functions Sn+1
h and Θn+1

h are constant. By putting
these constants in the equations of (2.14), we get Sn+1

h ≡ 1 and Θn+1
h ≡ 0. Hence, the couple (cn+1

h , μn+1
h )

satisfies (2.12) and then the system (2.10)–(2.11). �

2.4. Discrete energy estimate

The general energy estimate for our problem is obtained by a calculation similar to the one used to prove
the equivalence between Problems 2.2 and 2.4 in the proof of Theorem 2.6 (see [26]).

Proposition 2.7 (discrete energy equality). Let cn
h ∈ Vc

Dh,S. Assume that there exists a solution (cn+1
h , μn+1

h )
of Problem 2.2. Then, the following equality holds:

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h) + Δt

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx +
3
8
(2β − 1)ε

∫
Ω

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx

=
12
ε

∫
Ω

[
F (cn+1

h ) − F (cn
h) − dF (cn

h , cn+1
h ) · (cn+1

h − cn
h

)]
dx, (2.16)

where dF (·, ·) is the vector (dF
i (·, ·))i=1,2,3.

Proof. On the one hand, using definition (1.2), we have

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h) =
∫

Ω

12
ε

(
F (cn+1

h ) − F (cn
h)
)
dx +

∫
Ω

3∑
i=1

3
8
Σiε
(∣∣∇cn+1

ih

∣∣2 − |∇cn
ih|2
)

dx. (2.17)

On the other hand, taking νμ
h = μn+1

ih and νc
h =

cn+1
ih − cn

ih

Δt
in (2.8), we get for i = 1, 2, 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

cn+1
ih − cn

ih

Δt
μn+1

ih dx = −
∫

Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx,∫
Ω

μn+1
ih

cn+1
ih − cn

ih

Δt
dx =

∫
Ω

4ΣT

ε

∑
j �=i

(
1
Σj

(
dF

i (cn
h, cn+1

h ) − dF
j (cn

h , cn+1
h )
)) cn+1

ih − cn
ih

Δt
dx

+
∫

Ω

3
4
Σiε∇cn+β

ih · ∇
(

cn+1
ih − cn

ih

Δt

)
dx.

(2.18)

Recall that cn+β
ih = (1 − β)cn

ih + βcn+1
ih , so that we have

∇cn+β
ih · ∇(cn+1

ih − cn
ih) =

1
2

(∣∣∇cn+1
ih

∣∣2 − |∇cn
ih|2 + (2β − 1)

∣∣∇cn+1
ih −∇cn

ih

∣∣2) .
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By reordering the terms and using
3∑

i=1

(cn+1
ih − cn

ih) = 0 (Thm. 2.6), we also obtain

3∑
i=1

∑
j �=i

(
1
Σj

(
dF

i (cn
h , cn+1

h ) − dF
j (cn

h , cn+1
h )
))(

cn+1
ih − cn

ih

)
=

3
ΣT

3∑
i=1

(
cn+1
ih − cn

ih

)
dF

i (cn
h, cn+1

h ).

Hence, we deduce from (2.18) that

Δt

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx = − 12
ε

∫
Ω

3∑
i=1

dF
i (cn

h , cn+1
h )

(
cn+1
ih − cn

ih

)
dx

− 3
8
ε

∫
Ω

3∑
i=1

Σi

(∣∣∇cn+1
ih

∣∣2 − |∇cn
ih|2
)

dx

− 3
8
(2β − 1)ε

∫
Ω

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx.

(2.19)

The claim follows by adding (2.17) and (2.19). �

Remark 2.8. Even though the Σi are not necessarily positive, the two terms
3∑

i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 and

3∑
i=1

∣∣∇μn+1
ih

∣∣2
Σi

, involved in the left-hand side of equation (2.16), are non negative when condition (1.5) holds.

Indeed, in this case, Proposition 1.1 shows that

3∑
i=1

∣∣∇μn+1
ih

∣∣2
Σi

=
3∑

i=1

Σi

∣∣∇μn+1
ih

∣∣2
Σ2

i

� Σ
3∑

i=1

∣∣∇μn+1
ih

∣∣2
Σ2

i

� 0, since
3∑

i=1

∇μn+1
ih

Σi
= 0 (Thm. 2.6),

and

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 � Σ
3∑

i=1

∣∣∇cn+1
ih −∇cn

ih

∣∣2 � 0, since
3∑

i=1

∇(cn+1
ih − cn

ih) = 0 (Thm. 2.6).

Equality (2.16) is a discrete version of the energy equality satisfied by solutions (c, μ) of the continuous
Cahn-Hilliard system (1.3):

d
dt

[
F triph

Σ,ε (c)
]

= −
∫

Ω

3∑
i=1

M0(c)
Σi

|∇μi|2 dx.

This equality shows in particular that the energy of solutions of system (1.3) decreases in time. At the discrete
level, the energy equality (2.16) may provide not only the decrease of the discrete energy but also the a priori
estimates required to prove existence of approximate solutions and their convergence towards a weak solution
of (1.3). However, two additional terms appear in the discrete counterpart (2.16) and, consequently, the validity
of the discrete free energy decrease and a priori estimates depend on the sign of these terms:

• The last term in the left-hand side of (2.16) is a standard numerical diffusion term due to the time
discretization of “Δci” in the second equation of (1.3). This term has a “good sign” when β ≥ 0.5
(Rem. 2.8) and can be removed by setting β = 0.5.

• The right-hand side of (2.16) involves the time discretization dF of non linear terms and, consequently
its sign depends on particular choices of dF .
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Thus, the discretization of nonlinear terms dF may be chosen thanks to a study of the right-hand side of (2.16).
The simplest situation is when dF is such that this term is zero. In this case, the discrete energy equality
exactly mimics the continuous one. When the right-hand side of (2.16) has a “good sign”, i.e. is negative, it is
still possible to eliminate it in order to obtain an energy inequality. More generally, it is sufficient to be able
to control the right-hand side of (2.16) in order to obtain convenient a priori estimates (see Sect. 3.2). This is
the reason why, in the following section, assumptions on the discretization of nonlinear terms are given under
the form of estimates involving the terms of the energy equality (2.16). In both Theorems 2.9 and 2.10, these
assumptions are used to bound the approximate solution (cn+1

h , μn+1
h ) (in convenient norms). A key point is

that, in existence theorem, bounds may depend on the solution at previous time cn
h , on the time step Δt or on

the mesh size h (all these quantities are fixed here) whereas, in convergence theorem, this is crucial that these
a priori estimates lead to bounds which are independent on the time step Δt and the mesh size h. The different
assumptions will be validated for all the schemes presented in Section 3.

2.5. Existence and convergence theorems

This subsection is devoted to state general existence and convergence theorems whose proofs are given in
Section 4. First of all, we give general assumptions on the discretization of non linear terms dF : R3×R3 → R3.
The function dF belongs to the C1(R3 ×R3) class and satisfies the following assumption of polynomial growth:
there exist a constant B1 � 0 and a real p such that 2 ≤ p < +∞ if d = 2 or p = 6 if d = 3 and

∀i ∈ {1, 2, 3}, ∀(an,an+1) ∈ S2,
∣∣dF

i (an, an+1)
∣∣ � B1

(
1 + |an|p−1 +

∣∣an+1
∣∣p−1
)

,∣∣D (dF
i (an, ·)) (an+1)

∣∣ � B1

(
1 + |an|p−2 +

∣∣an+1
∣∣p−2
)

.
(2.20)

Theorem 2.9 (existence of a discrete solution). Let cn
h ∈ Vc

Dh,S given. Assume that:

• the coefficients (Σ1, Σ2, Σ3) satisfy (1.5), the mobility satisfies (1.10), and the bulk energy F satisfies
(1.11);

• the discretization of the non linear terms dF satisfies (2.20) and the following property: there exists
K

cn
h

1 > 0 (possibly depending on cn
h) such that∫

Ω

[
F (an+1

h ) − F (cn
h) − dF (cn

h,an+1
h ) · (an+1

h − cn
h

)]
dx � K

cn
h

1 , ∀an+1
h ∈ Vc

Dh,S . (2.21)

Then, there exists at least one solution (cn+1
h , μn+1

h ) of Problem 2.2.

For each N ∈ N, we can now introduce piecewise defined functions of time, on [0, tf ], defined as follows:

cN
ih(t, ·) = cn

ih(·), if t ∈ ]tn, tn+1[, (2.22)

cN
ih(t, ·) = cn+1

ih (·), if t ∈ ]tn, tn+1[, (2.23)

cN
ih(t, ·) =

tn+1 − t

Δt
cn
ih(·) +

t − tn
Δt

cn+1
ih (·), if t ∈ ]tn, tn+1[. (2.24)

For the chemical potential, we introduce piecewise-constant functions in time: for each N ∈ N, let

μN
ih(t, ·) = μn+1

ih (·), if t ∈ ]tn, tn+1[. (2.25)

Theorem 2.10 (convergence theorem). Assume that assumptions of Theorem 2.9 are satisfied so that the
approximate solutions (cN

h , μN
h ) of Problem 2.2 exists for all N ∈ N∗ and for all h > 0. Assume that β ∈ ]12 , 1

]
,



12 F. BOYER AND S. MINJEAUD

that the consistency property (2.3) holds and that there exists constants C > 0 and Δt0 > 0 such that for all
Δt � Δt0 and for all n ∈ �0, N − 1�,

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h)

+ C

[
Δt

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx +
3
8
(2β − 1)ε

∫
Ω

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx

]
� 0. (2.26)

Consider the problem (1.3) together with the initial condition (1.9) and boundary conditions (1.8). Then, there
exists a weak solution (c, μ) on [0, tf [ such that

c ∈ L∞(0, tf ; (H1(Ω))3) ∩ C0([0, tf [; (Lq(Ω))3), for all q < 6

μ ∈ L2(0, tf ; (H1(Ω))3),

c(t, x) ∈ S, for a.e. (t, x) ∈ [0, tf [ ×Ω.

and for all sequences (hK)K∈N∗ such that hK −−−−−→
K→+∞

0, the sequences (cN
hK

)(N,K)∈(N∗)2 and (μN
hK

)(N,K)∈(N∗)2 ,

defined by (2.8), satisfy, up to a subsequence, the following convergences, when min(N, K) −→ +∞:

cN
hK

→ c in C0(0, tf , (Lq)3) strong, for all q < 6 (2.27)

μN
hK

⇀ μ in L2(0, tf , (H1)3) weak. (2.28)

Remark 2.11. In Theorem 2.10, we assume that 1
2 < β � 1. Indeed, the last term in the left hand side of

inequality (2.26) (which vanish in the case where β is equal 1
2 ) is crucial in the estimates of remainders (see

Sect. 4.2.2) and in the proof of the energy estimate for the implicit scheme (see Sect. 3.2.2).

Remark 2.12. Under an additional assumption on the Hessian of the Cahn-Hilliard potential F , it is shown
in [8] that the model (1.3) has a unique weak solution. In this case, we can conclude that the convergence in
Theorem 2.10 holds for the entire sequences (cN

hK
, μN

hK
).

3. Different discretizations for non linear terms

In this section, we present different possible choices of the discretization of nonlinear terms dF . Since
definition (1.12) provides a natural splitting of F : F = F0 + P , we will choose a discretization of the form
dF

i = dF0
i + dP

i where dF0
i and dP

i represent a discretization of ∂ciF0 and ∂ciP respectively. We give three
possible choices of the discretization of the contribution of F0 in Sections 3.2, 3.3 and 3.4, and a semi-implicit
discretization of the contribution of P in Section 3.5. In each of these subsection, estimates on the corresponding
contribution in the right-hand side of (2.16) are proven. The results are then gathered in Section 3.6 in order
to get the existence of approximate solutions and their convergence towards a weak solution of (1.3). Finally
in Section 3.7, we show that the algebraic consistency property (see Sect. 1.2) has its discrete counterpart by
identifying schemes that we obtained when only two phases are present.

3.1. Preliminary remark

The relationship c1 + c2 + c3 = 1 allows to find a useful equivalent expression of F0 on the hyperplane S.
This expression involves the diphasic Cahn-Hilliard potential f defined by:

f(x) = x2(1 − x)2, ∀x ∈ R. (3.1)
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Indeed, the function defined by:

F̂0(c) =
3∑

i=1

Σi

2
f(ci), ∀c ∈ R3, (3.2)

is equal to F0 on the hyperplane S:
F̂0(c) = F0(c), ∀c ∈ S.

These two different expressions can be equivalently used since we can readily prove that

∇F0(c) · ξ = ∇F̂0(c) · ξ, ∀(c, ξ) ∈ S2, (3.3)

and consequently,
f F̂0

i (c) = fF0
i (c), ∀c ∈ S.

3.2. Implicit discretization for the contribution of F0

The implicit discretization corresponds to the following definition:

dF0(an,an+1) = ∇F0(an+1), ∀(an, an+1) ∈ S2. (3.4)

In Sections 3.2.1 and 3.2.2, we respectively prove that the contribution of F0 satisfies estimates (2.21) of
Theorem 2.9 and (2.26) of Theorem 2.10 when using the implicit discretization (3.4). Note that we need to
assume here that: Σi > 0, ∀i ∈ {1, 2, 3}, that is the case of partial spreading situations.

In total spreading situations (i.e. when one of the Σi is negative), the proof of existence and convergence
theorems when using the implicit discretization (3.4) is still an open problem. In numerical experiments, we
observe that, in this case, the Newton linearization method may fail to converge in the resolution of Problem 2.4
(see Tab. 4 in Sect. 5).

3.2.1. Existence of discrete solution

We prove here, in the case where all Σi are positive, that assumption (2.21) of Theorem 2.9 holds for the
contribution of F0 when using the implicit discretization (3.4). The proof makes use of the expression (3.2)
of F0 (valid on the hyperplane S) and of the preliminary remark given in Section 3.1.

Proposition 3.1. Let cn
h ∈ Vc

Dh,S . Assume that: ∀i ∈ {1, 2, 3}, Σi > 0. Then, there exists K
cn

h
1 > 0 possibly

depending on cn
h such that:∫
Ω

[
F0(an+1

h ) − F0(cn
h) −∇F0(an+1

h ) · (an+1
h − cn

h

)]
dx � K

cn
h

1 , ∀an+1
h ∈ Vc

Dh,S . (3.5)

Proof. We can readily see that there exists two constants C1 and C2 such that the function f defined in (3.1)
satisfies

f(x) − f(y) − f ′(x)(x − y) � C1 + C2|y| + |f(y)|, ∀x ∈ R, ∀y ∈ R. (3.6)

Then, by combining (3.2) and (3.6), since all Σi are positive, we have, for all an+1
h ∈ Vc

Dh,S ,

∫
Ω

F̂0(an+1
h ) − F̂0(cn

h)−∇F̂0(an+1
h ) · (an+1

h − cn
h

)
dx

� C|Ω|
3∑

i=1

Σi

2
+ C

3∑
i=1

Σi

2

∫
Ω

|cn
ih|dx + C

3∑
i=1

Σi

2

∫
Ω

|f(cn
ih)| dx := K

cn
h

1 .

The conclusion is obtained thanks to equality (3.3). �
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3.2.2. Convergence of approximate solution

The estimate of Proposition 3.1 holds for all time steps but is not sufficient to prove the convergence theorem.
In this section we give here another estimate (which corresponds to assumption (2.26) of Thm. 2.10) only
available for small enough time steps.

Proposition 3.2. Assume that: ∀i ∈ {1, 2, 3}, Σi > 0 and that assumption (1.10) hold. Then, we get

F triph
Σ,ε (cn+1

h )−F triph
Σ,ε (cn

h)+
Δt

2

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx+
3
16

ε(2β−1)
∫

Ω

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx � 0, (3.7)

as soon as Δt � Δt0 =
(2β − 1)ε3

24M2
.

Proof. Considering the function f defined by (3.1) and since infR f ′′ = −1, we readily obtain

f(x) − f(y) − f ′(x)(x − y) � (x − y)2

2
, ∀x ∈ R, ∀y ∈ R.

Since all Σi are positive, we get

F̂0(cn+1
h ) − F̂0(cn

h) −∇F̂0(cn+1
h ) · (cn+1

h − cn
h

)
=

3∑
i=1

Σi

2
(
f(cn+1

ih ) − f(cn
ih) − f ′(cn+1

ih )(cn+1
ih − cn

ih)
)

�
3∑

i=1

Σi

4

∣∣cn+1
ih − cn

ih

∣∣2.
Owing to equalities (2.16) and (3.3), we find the estimate

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h) + Δt

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx

� 3
ε

∫
Ω

3∑
i=1

Σi

∣∣cn+1
ih − cn

ih

∣∣2 dx − 3
8
ε(2β − 1)

∫
Ω

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx.

(3.8)

In order to bound the term
∑3

i=1 Σi

∣∣cn+1
ih − cn

ih

∣∣2, we take νμ
h = Σi

(
cn+1
ih − cn

ih

)
as a test function in the first

equation of (2.8) (remark that νμ
h ∈ Vμ

h since Vc
Dh,0 ⊂ Vμ

h (assumption (2.7))). Hence, we obtain

∫
Ω

Σi
cn+1
ih − cn

ih

Δt

(
cn+1
ih − cn

ih

)
dx = −

∫
Ω

Σi
Mn+α

0h

Σi
∇μn+1

ih · ∇ (cn+1
ih − cn

ih

)
dx.

Adding these equations for i = 1, 2, 3, and applying Corollary 1.2, yield

∫
Ω

3∑
i=1

Σi

∣∣cn+1
ih − cn

ih

∣∣2 dx � Δt

2

∫
Ω

Mn+α
0h

[
ε

3

3∑
i=1

∣∣∇μn+1
ih

∣∣2
Σi

+
3
ε

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2]dx.

Using (1.10), we get

3
ε

∫
Ω

3∑
i=1

Σi

∣∣cn+1
ih − cn

ih

∣∣2 dx � Δt

2

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx +
9M2Δt

2ε2

3∑
i=1

∫
Ω

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx. (3.9)
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Thus, by combining the inequality (3.8) and (3.9), we finally have

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h) + Δt

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx � Δt

2

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx

+
9M2Δt

2ε2

3∑
i=1

∫
Ω

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx

− 3
8
ε(2β − 1)

∫
Ω

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx.

The conclusion is readily obtained by using that Δt � (2β − 1)ε3

24M2
. �

3.3. Convex-concave discretization for the contribution of F0

In Section 3.2, we saw that the implicit scheme (3.4) ensures the decrease of the discrete energy only for small
enough time steps. Moreover, the results hold only in the case of partial spreading situations. To overcome
these difficulties, in this subsection, we look for a discretization dF0 such that:

F0(an+1) − F0(an) − dF0(an,an+1) · (an+1 − an
)

� 0, ∀(an, an+1) ∈ S2. (3.10)

Assume for a moment that dF0 is the implicit discretization (3.4); the inequality (3.10) would hold if the
function F0 was convex on the hyperplane S. In the same manner, when using the explicit discretization, the
inequality (3.10) would hold if the function F0 was concave on the hyperplane S. The potential F0 is neither
convex nor concave, nevertheless these remarks provides a natural way (see the pioneering works [18] for diphasic
Cahn-Hilliard equation) to obtain a discretization dF0 which satisfies (3.10) assuming that the function F0 is
decomposed as the sum of a convex function and a concave one. Indeed, if F0 = F+

0 + F−
0 with F+

0 convex and
F−

0 concave then we can define

dF0(an,an+1) = ∇F+
0 (an+1) + ∇F−

0 (an). (3.11)

In our case, the diphasic Cahn-Hilliard potential is naturally written with a convex-concave decomposition:

f(x) =
(

x − 1
2

)4

︸ ︷︷ ︸
f+(x)

+
1
16
(
1 − 2(2x − 1)2

)
︸ ︷︷ ︸

f−(x)

. (3.12)

This decomposition readily leads to a convex-concave decomposition of F̂0 and to the following definitions:

F+
0 (c) =

3∑
i=1

Σ+
i

2
f+(ci) −

3∑
i=1

Σ−
i

2
f−(ci)

F−
0 (c) =

3∑
i=1

Σ+
i

2
f−(ci) −

3∑
i=1

Σ−
i

2
f+(ci),

where Σ+
i = max(Σi, 0) and Σ−

i = −min(Σi, 0).
Since F0 and F̂0 coincide on the hyperplane S (see (3.3)), the inequality (3.10) holds and thus assump-

tions (2.21) of Theorem 2.9 and (2.26) of Theorem 2.10 hold for the contribution of F0 when using the convex-
concave discretization (3.11) (see Sect. 3.6 for more details). These assumptions are satisfied for all time steps Δt
and even in the case of total spreading situations.
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3.4. Semi-implicit discretization for the contribution of F0

The convex-concave scheme presented in Section 3.3 ensures the decrease of the energy for all time step and
even in total spreading situations. However, it suffers from an important lack of accuracy (see Figs. 3 and 15
in Sect. 5). This is certainly due to the fact that the convex-concave discretization unequally splits the two
parts of the Cahn-Hilliard potential which would act together or rather enter in competition. We propose here
a more specific semi-implicit discretization built in order to obtain

F0(an+1) − F0(an) − dF0(an,an+1) · (an+1 − an) = 0, ∀(an, an+1) ∈ S2. (3.13)

In [24,25], the authors give other semi-implicit discretizations obtained thanks to Taylor expansion of the Cahn-
Hilliard potential.

In order to simplify notation, we denote a := an and b := an+1 in the following calculation. We write
F0(b) − F0(a) as a sum of terms containing δ1, δ2 or δ3 in factor where δi = bi − ai for i = 1, 2, 3. Since
F0(c1, c2, c3) = σ12c

2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3 (Σ1c1 + Σ2c2 + Σ3c3), it is sufficient to separately consider

terms of the form b2
i bjbk − a2

i ajak with (i, j, k) ∈ {1, 2, 3}3. We use the identities a2
i = b2

i − (ai + bi)δi and
aj = bj − δj in order to introduce δi, δj and δk in the formula:

b2
i bjbk − a2

i ajak = b2
i (bjbk − ajak) + (ai + bi)ajakδi

= b2
i (bjδk + akδj) + (ai + bi)ajakδi

= (ai + bi)ajakδi + b2
i akδj + b2

i bjδk.

We now use this expression to build a symmetric formula in order to obtain, at least formally, a second order
convergent discretization. By inverting the roles of j and k, we can readily find

b2
i bjbk − a2

i ajak = (ai + bi)ajakδi +
1
2
b2
i (ak + bk)δj +

1
2
b2
i (aj + bj)δk,

and finally, by inverting the roles of a and b, we get

b2
i bjbk − a2

i ajak =
1
2
(ai + bi)(ajak + bjbk)δi +

1
4
(a2

i + b2
i )(ak + bk)δj +

1
4
(a2

i + b2
i )(aj + bj)δk. (3.14)

We obtain a formula for terms of the form b2
i b

2
j − a2

i a
2
j by taking k = j in (3.14):

b2
i b

2
j − a2

i a
2
j =

1
2
(ai + bi)(a2

j + b2
j)δi +

1
2
(a2

i + b2
i )(aj + bj)δj . (3.15)

Hence, we propose to define, for any i ∈ {1, 2, 3}, the following consistent approximation of the non linear terms:

dF0
i (an,an+1) =

Σi

4
[
an+1

i + an
i

] [
(an+1

j + an+1
k )2 + (an

j + an
k )2
]

+
Σj

4
[
(an+1

j )2 + (an
j )2
] [

an+1
i + an+1

k + an
i + an

k

]
+

Σk

4
[
(an+1

k )2 + (an
k )2
] [

an+1
i + an+1

j + an
i + an

j

]
,

(3.16)

we can readily deduce from the definition of F0 and the formula (3.14) and (3.15) that, for any

F0(an+1) − F0(an) =
3∑

i=1

dF0
i (an, an+1)(an+1

i − an
i ), ∀(an, an+1) ∈ S2,
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and for any c ∈ S,

dF0
i (c, c) =

∂F0

∂ci
(c).

Thus, from equality (3.13), we can deduce that assumptions (2.21) of Theorem 2.9 and (2.26) of Theorem 2.10
hold for the contribution of F0 when using the semi-implicit discretization (3.16) (see Sect. 3.6 for more details).
These assumptions are satisfied for all time steps Δt and even in the case of total spreading situations.

3.5. Semi-implicit discretization for the contribution of P

Recall the definition of P :

P (c) = 3Λc2
1c

2
2c

2
3.

We only consider a semi-implicit discretization of the contribution of P since numerical experiments from [26]
shows the difficulties to use an implicit discretization for this term (non convergence of the Newton linearization
method in the resolution of Problem 2.4). Moreover, we do not have a natural convex-concave decomposition
of P . Hence, in order to obtain an energy estimate, we look for functions dP

1 , dP
2 and dP

3 such that dP
i (c, c) =

∂P

∂ci
(c), ∀c ∈ S and

P (an+1) − P (an) − dP (an,an+1) · (an+1 − an) = 0, ∀(an, an+1) ∈ S2. (3.17)

As in the previous subsection, we define, for i ∈ {1, 2, 3}, δi = bi−ai and we use the identity a2
i = b2

i −(ai +bi)δi

and then the equality (3.15) in order to introduce δi, δj and δk in the term b2
i b

2
jb

2
k, (i, j, k) ∈ {1, 2, 3}3:

b2
i b

2
jb

2
k − a2

i a
2
ja

2
k = b2

i (b
2
jb

2
k − a2

ja
2
k) + (ai + bi)a2

ja
2
kδi

= (ai + bi)a2
ja

2
kδi +

1
2
b2
i (aj + bj)(a2

k + b2
k)δj +

1
2
b2
i (a

2
j + b2

j)(ak + bk)δk. (3.18)

Adding the three formulas given by (3.18) with (i, j, k) = (1, 2, 3), (2, 1, 3) and (3, 1, 2) yields to

b2
1b

2
2b

2
3 − a2

1a
2
2a

2
3 =

1
3

[
a2
2a

2
3 +

1
2
b2
2a

2
3 +

1
2
a2
2b

2
3 + b2

2b
2
3

]
(a1 + b1)δ1

+
1
3

[
a2
1a

2
3 +

1
2
b2
1a

2
3 +

1
2
a2
1b

2
3 + b2

1b
2
3

]
(a2 + b2)δ2

+
1
3

[
a2
1a

2
2 +

1
2
b2
1a

2
2 +

1
2
a2
1b

2
2 + b2

1b
2
2

]
(a3 + b3)δ3.

Thus, by defining

dP
i (an,an+1) = Λ(an

i + an+1
i )

[
(an

j )2(an
k )2 +

1
2
(an+1

j )2(an
k )2 +

1
2
(an

j )2(an+1
k )2 + (an+1

j )2(an+1
k )2

]
(3.19)

we get property (3.17) and for any c ∈ S,

dP
i (c, c) =

∂P

∂ci
(c).

Thus, as in previous subsection, from inequality (3.17), we can deduced that assumptions (2.21) of Theorem 2.9
and (2.26) of Theorem 2.10 hold for the contribution of P when using the semi-implicit discretization (3.19)
(see Sect. 3.6 for more details).
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Table 1. Summary of theoretical results.

Schemes Implicit Convex-concave Semi-implicit

Def.
dP Semi-implicit (3.19)

dF0 Implicit (3.4) Convex-concave (3.11) Semi-implicit (3.16)

∀i, Σi > 0
dF = dF0 + dP

Λ � 0

Decrease of energy Δt � Δt0 Decrease of energy ∀Δt

Existence ∀Δt Existence ∀Δt

Convergence (β > 1/2) Convergence (β > 1/2)

∃i, Σi < 0

s.t. (1.5) holds

dF = dF0 + dP

Λ � Λ0

Decrease of energy ∀Δt

Open problems Existence ∀Δt

Convergence (β > 1/2)

3.6. Summary

In previous Sections 3.2–3.5, we separately presented several discretizations dF0 for the contribution of F0 and
a discretization dP for the contribution of P (recall that the Cahn-Hilliard potential F is defined by F = F0+P ).
For the contribution of P , we only consider the semi-implicit discretization (3.19) which is then combined with
three possible discretizations for the contribution of F0: when we use the discretization (3.4), resp. (3.11),
resp. (3.16), we refer to the scheme we obtained as the implicit, resp. convex-concave, resp. semi-implicit one.

We can now state existence and convergence theorems thanks to general Theorems 2.9 and 2.10 and to
estimates (3.5), (3.7), (3.10) and (3.13) valid for particular discretizations. First of all, recall that the Cahn-
Hilliard potential F = F0+P satisfies assumption (1.11) (in fact only non negativity is not trivial, see Prop. 1.6)
provided that:

• Λ � 0 when Σi > 0 for all i ∈ {1, 2, 3};
• Λ � Λ0 when assumption (1.5) is satisfied (it allows the existence of at most one negative Σi).

In the first case, existence and convergence theorems are proven for the three schemes (implicit, convex-concave
and semi-implicit one) whereas when one of the Σi is negative, existence and convergence theorems are proven
only for convex-concave and semi-implicit schemes, the existence of a solution for the implicit scheme being still
an open problem. Note that in this last case, we observe, in some numerical experiments (see Sect. 5), a non
convergence of the Newton linearization method in the resolution of Problem 2.4. In the case where all Σi are
positive, we can also remark that the implicit scheme ensures the decrease of the energy only for small enough
time step (see Prop. 3.2) whereas convex-concave or semi-implicit scheme guarantees the decrease of energy for
all time step. All these results are stated in Propositions 3.3 and 3.4 and summarized in Table 1.

Proposition 3.3 (partial spreading). Assume that: ∀i ∈ {1, 2, 3}, Σi > 0, that F = F0+P with Λ � 0 and that
the mobility satisfies (1.10) Then, there exists solutions of Problem 2.2 where dF corresponds to the implicit,
convex-concave or semi-implicit scheme. Moreover, these solutions satisfies the conclusions of Theorem 2.10
provided that 1

2 < β � 1.

Proposition 3.4 (total spreading). Assume that the triple of coefficients Σ satisfy (1.5), that F = F0 + P
with Λ � Λ0 (see Prop. 1.6) and that the mobility satisfies (1.10). Then, there exists solutions of Problem 2.2
where dF corresponds to the convex-concave or semi-implicit scheme. Moreover, these solutions satisfies the
conclusions of Theorem 2.10 provided that 1

2 < β � 1.

3.7. Corresponding schemes in the diphasic case

Consider a system with two components (denoted below with underscripts 1 and 2 respectively) and assume
that the evolution of the associated order parameters ci (i = 1, 2), and the associated chemical potentials μ̃i
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(i = 1, 2) of these two phases is governed by the diphasic Cahn-Hilliard model:⎧⎪⎨
⎪⎩

∂ci

∂t
= ∇ · (M(c1, c2)∇μ̃i) , for i = 1, 2,

μ̃i =
12
ε

σ12f
′(ci) − 3

2
εσ12Δci, for i = 1, 2,

(3.20)

where ε stands for the interface thickness, M(c1, c2) is a diffusion coefficient called mobility and σ12 is the
surface tension between the two components. The unknowns are linked by the following relationship c1 + c2 = 1
and μ̃1 + μ̃2 = 0.

The algebraic consistency (see Sect. 1.2) ensures that the triple
(
c1, c2 = 1 − c1, c3 = 0

)
is a particular

solution of the triphasic Cahn-Hilliard model (1.3) (with M0(c) = 2σ12M(c1, c2)) for any choice of the surface
tensions σ13 and σ23 involving the third component. In this case, the ternary chemical potentials are given by

μi =
Σi

2σ12
μ̃i for i = 1, 2 and μ3 = 0.

The same kind of results can be obtained for the full discrete system and we can identify the following
corresponding schemes for the diphasic model (3.20): Given (cn

ih, μn
ih) ∈ Vci

Dh × Vμ
h ,

• Implicit scheme in the diphasic case: for i = 1, 2, find (cn+1
ih , μn+1

ih ) ∈ Vci

Dh × Vμ
h s.t.

⎧⎪⎪⎨
⎪⎪⎩
∫

Ω

cn+1
ih − cn

ih

Δt
νμ

h dx = −
∫

Ω

M(cn+α
1h , cn+α

2h )∇μ̃n+1
ih ∇νμ

h dx, ∀νμ
h ∈ Vμ

h ,∫
Ω

μ̃n+1
ih νc

h dx =
12
ε

σ12

∫
Ω

f ′(cn+1
ih )νc

h dx +
3
2
εσ12

∫
Ω

∇cn+β
ih ∇νc

h dx, ∀νc
h ∈ Vc

Dh,0.

(3.21)

• Convex-concave scheme in the diphasic case: for i = 1, 2, find (cn+1
ih , μn+1

ih ) ∈ Vci

Dh × Vμ
h s.t.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

cn+1
ih − cn

ih

Δt
νμ

h dx = −
∫

Ω

M(cn+α
1h , cn+α

2h )∇μ̃n+1
ih ∇νμ

h dx, ∀νμ
h ∈ Vμ

h ,∫
Ω

μ̃n+1
ih νc

h dx =
12
ε

σ12

∫
Ω

[
(f+)′(cn+1

ih ) + (f−)′(cn
ih)
]
νc

h dx

+
3
2
εσ12

∫
Ω

∇cn+β
ih ∇νc

h dx, ∀νc
h ∈ Vc

Dh,0,

(3.22)

where f = f+ + f− is the convex-concave decomposition of f given in (3.12).
• Semi-implicit scheme in the diphasic case: for i = 1, 2, find (cn+1

ih , μn+1
ih ) ∈ Vci

Dh × Vμ
h s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

cn+1
ih − cn

ih

Δt
νμ

h dx = −
∫

Ω

M(cn+α
1h , cn+α

2h )∇μ̃n+1
ih ∇νμ

h dx, ∀νμ
h ∈ Vμ

h ,∫
Ω

μ̃n+1
ih νc

h dx =
12
ε

σ12

∫
Ω

[
f ′
(

cn
ih + cn+1

ih

2

)
− 1

2
(1 − cn

ih − cn+1
ih )(cn+1

ih − cn
ih)2
]

νc
h dx

+
3
2
εσ12

∫
Ω

∇cn+β
i ∇νc

h dx, ∀νc
h ∈ Vc

Dh,0.

(3.23)

Proposition 3.5. The above diphasic schemes (3.21)–(3.23) have at least one solution. Moreover, defining

M0 = 2σ12M , μn+1
ih =

Σi

2σ12
μ̃n+1

ih for i = 1, 2 and μn+1
3h = 0, we have that if

(
(cn+1

1h , μ̃n+1
1h ), (cn+1

2h , μ̃n+1
2h )
)

is

a solution of (3.21), (3.22) or (3.23) respectively then
(
(cn+1

1h , μn+1
1h ), (cn+1

2h , μn+1
2h ), (0, 0)

)
is a solution of the

corresponding three phase discrete problem (2.2) where dF is given by (3.4), (3.11) or (3.16) respectively.
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Remark 3.6. The expression of the ternary chemical potential μi differs from the two phase chemical po-
tential μ̃i but the quantities of interest in our application are the order parameters which give the position of
phases and the capillary forces fca which are typically used for the coupling with Navier-Stokes equation in
a complete diffuse-interface ternary flows modelling (see [10]). In the triphasic model, we use the expression
fca =

∑3
i=1 μi∇ci. The key point is that in the case where c3 = 0, we have

fca = μ1∇c1 + μ2∇c2

=
Σ1

2σ12
μ̃1∇c1 +

Σ2

2σ12
(−μ̃1)∇(1 − c1)

= μ̃1∇c1,

which is the classical expression of capillary forces in the diphasic case.

Remark 3.7. In [24], the authors propose a semi-implicit scheme for the discretization of the two phase Cahn-
Hilliard model based on a Taylor expansion. It is interesting to note that, when only two phases are present, the
semi-implicit scheme presented in the present work is very close but not identical to the scheme given in [24].
Indeed, we have the following relationship:[

f ′
(

cn
h + cn+1

h

2

)
− 1

2
(1 − cn

h − cn+1
h )(cn+1

h − cn
h)2
]

−
[
f ′(cn+1

h ) − f ′′(cn+1
h )
2

(cn+1
h − cn

h) +
f ′′′(cn+1

h )
6

(cn+1
h − cn

h)2
]

= (cn+1
h − cn

h)3,

where the first term of the left hand side is the discretization of f ′(c) proposed here and the second one is the
discretization proposed in [24].

4. Proofs of existence and convergence of approximate solutions

Let us recall the following Poincaré like result which will be very useful in the sequel. We denote by m(θ)

the mean value of any function θ ∈ L1(Ω) : m(θ) =
1
|Ω|
∫

Ω

θ dx.

Lemma 4.1 (Poincaré inequality). Let θ be a given function in H1(Ω) such that m(θ) �= 0. There exists a
constant Cp,θ > 0 such that

∀ν ∈ H1(Ω), |ν|H1(Ω) � Cp,θ

[
|∇ν|L2(Ω) + |m(νθ)|

]
. (4.1)

4.1. Proof of Theorem 2.9

We are going to prove the existence of the solution of problem (2.8). The key points are the a priori estimates
given by the discrete energy estimate and the topological degree theory [11].

We introduce a parameter δ ∈ [0, 1] and the following problem: Find (cn+1
1h , cn+1

2h , μn+1
1h , μn+1

2h ) ∈ Vc1
Dh×Vc2

Dh×
(Vμ

h )2 such that ∀νc
h ∈ Vc

Dh,0, ∀νμ
h ∈ Vμ

h , we have, for i = 1 and 2,

⎧⎪⎪⎨
⎪⎪⎩
∫

Ω

cn+1
ih − cn

ih

Δt
νμ

h dx = −
∫

Ω

Mn+α
0hδ

Σi
∇μn+1

ih · ∇νμ
h dx,∫

Ω

μn+1
ih νc

h dx =
∫

Ω

δDF
i (cn

h, cn+1
h )νc

h dx +
∫

Ω

3
4
Σiε∇cn+β

ih · ∇νc
h dx,

(4.2)

with Mn+α
0hδ = M0

(
(1 − δα)cn

h + δαcn+1
h

)
.
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The equations (4.2) continuously depend on the parameter δ and reduces to the initial problem (2.10) when
δ = 1. Since the problem is finite dimensional (the spatial approximation spaces are fixed here), it is then
enough to show that the problem is well-posed for δ = 0 and that we have an a priori estimate for the solutions
of (4.2) which is uniform with respect to δ.

• Let us first obtain the a priori estimate. Problem (4.2) is very similar to (2.10) with δF instead of F ,
δdF (cn, cn+1) as a choice of the discretization of non linear terms and a slightly modified mobility. It is
thus possible to apply Theorem 2.7(the modification of the mobility M0h do not change the calculation)
and to obtain the following equality:

F triph
Σ,ε,δ(c

n+1
h ) −F triph

Σ,ε,δ(c
n
h) + Δt

3∑
i=1

∫
Ω

Mn+α
0hδ

Σi

∣∣∇μn+1
ih

∣∣2 dx

+
3
8
(2β − 1)ε

∫
Ω

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx =
12
ε

δ

∫
Ω

[
F (cn+1

h ) − F (cn
h) − dF (cn

h , cn+1
h ) · (cn+1

h − cn
h

)]
dx

with F triph
Σ,ε,δ(c

k
h) =

∫
Ω

δ
12
ε

F (ck
h) +

3∑
i=1

3
8
εΣi

∣∣∇ck
ih

∣∣2 dx. By using the assumption (2.21) and Remark 2.8,

we get

F triph
Σ,ε,δ(c

n+1
h ) + Δt

∫
Ω

Mn+α
0hδ

3∑
i=1

∣∣∇μn+1
ih

∣∣2
Σi

dx � F triph
Σ,ε,δ(c

n
h) + δ

12
ε

K
cn

h
1 . (4.3)

Since the mobility is bounded from below (assumption (1.10)) and thanks to Remark 2.8, the second
term of the left-hand side of (4.3) is bounded from below:

∫
Ω

M1Σ
3∑

i=1

∣∣∇μn+1
ih

∣∣2
Σ2

i

dx �
∫

Ω

Mn+α
0hδ

3∑
i=1

∣∣∇μn+1
ih

∣∣2
Σi

dx. (4.4)

Furthermore, since F � 0 and δ � 1, we have

F triph
Σ,ε,δ(c

k
h) � F triph

Σ,ε (ck
h), (4.5)

and then, owing to (4.3), (4.4), (4.5) and Proposition 1.1, there exists a constant K
cn

h
2 = F triph

Σ,ε (cn
h) +

12
ε

K
cn

h
1 > 0 independent of δ and cn+1

h such that

∫
Ω

δ
12
ε

F (cn+1
h ) +

3
8
εΣ

3∑
i=1

∣∣∇cn+1
ih

∣∣2 dx + Δt

∫
Ω

M1Σ
3∑

i=1

∣∣∇μn+1
ih

∣∣2
Σ2

i

dx � K
cn

h
2 . (4.6)

Since F is positive and δ � 0, we obtained the following bound for the second and third terms of the
left-hand side of (4.6): for i = 1, 2, 3,

∣∣∇cn+1
ih

∣∣
L2 ≤

√
8
3

K
cn

h
2

εΣ
:= K

cn
h

3 and
∣∣∇μn+1

ih

∣∣
L2 ≤ max

i=1,2,3
(|Σi|)

√
K

cn
h

2

M1ΣΔt
:= K

cn
h

4 .
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We now use the discrete form of the volume conservation (2.9): m(cn+1
ih ) = m(cn

ih). Thus, thanks to
the Poincaré inequality (4.1) (with θ ≡ 1), there exists a positive constant Cp such that∣∣cn+1

ih

∣∣
H1(Ω)

� Cp

(∣∣∇cn+1
ih

∣∣
L2 + m(cn+1

ih )
)

= Cp

(∣∣∇cn+1
ih

∣∣
L2 + m(cn

ih)
)
,

and then there exists a positive constant K
cn

h
5 = Cp

(
K

cn
h

3 + m(cn
ih)
)

independent of δ and cn+1
h such

that ∣∣cn+1
ih

∣∣
H1(Ω)

≤ K
cn

h
5 . (4.7)

It remains to bound the average value m(μn+1
ih ). Because of Dirichlet boundary conditions on c,

constants do not belong to Vc
Dh,0. Hence, we take a fixed function θh of Vc

Dh,0 such that m(θh) �= 0.
Since Rci

δ = 0, we have

m(μn+1
ih θh) =

∫
Ω

δDF
i (cn+1

h , cn
h)θh dx +

∫
Ω

3
4
Σiε∇cn+β

ih · ∇θh dx.

This can be controlled by
∣∣cn+1

h

∣∣
H1(Ω)

and |cn
h |H1(Ω) under the assumption (2.20). Indeed, the polyno-

mial growth (2.20) of dF
i implies that there exists a positive constant C1 =

16ΣT

3Σm
B1 such that

∣∣DF
i (cn+1

h , cn
h)
∣∣ � C1

(
1 +
∣∣cn+1

h

∣∣p−1
+ |cn

h |p−1
)

.

Thus, since δ � 1, and by using (4.7),

m(μn+1
ih θh) � C1|θh|L∞(Ω)

(
|Ω| + ∣∣cn+1

h

∣∣p−1

Lp−1
+ |cn

h |p−1
Lp−1

)
+

3
4
ΣMε

(|∇cn
ih|L2 +

∣∣∇cn+1
ih

∣∣
L2

) |∇θh|L2

� C1|θh|L∞(Ω)

(
|Ω| +

(
K

cn
h

5

)p−1

+ |cn
h|p−1

H1

)
+

3
4
ΣMε

(
|cn

ih|H1 + K
cn

h
5

)
|θh|H1 := K

h,cn
h

6 .

Thanks to the Poincaré inequality (4.1), there exists a constant Cp,θh
such that

∣∣μn+1
ih

∣∣
H1(Ω)

� Cp,θh

(∣∣∇μn+1
ih

∣∣
L2 + m(μn+1

ih θh)
)

� Cp,θh

(
K

cn
h

4 + K
h,cn

h
6

)
. (4.8)

Finally, collecting (4.7) and (4.8), we get an a priori estimate which is uniform with respect to δ ∈ [0, 1].
• Let us now show that problem (4.2) is well-posed for δ = 0. In that case, the problem is linear,

and the equations for i = 1, 2, 3 are decoupled. Thus it is enough to show that, for i ∈ {1, ..., 3},
(c̃n+1

ih , μn+1
ih ) = (0, 0) is the unique solution to the homogeneous problem∫

Ω

[
c̃n+1
ih νμ

h +
Mn

0h

Σi
Δt∇μn+1

ih · ∇νμ
h

]
dx +

∫
Ω

[
3
4
Σiεβ∇c̃n+1

ih · ∇νc
h − μn+1

ih νc
h

]
dx, ∀νμ

h ∈ Vμ
h , ∀νc

h ∈ Vc
Dh,0.

(4.9)
To this end, we take (νc

h, νμ
h ) = (c̃n+1

ih , μn+1
ih ) in (4.9) and get:∫

Ω

c̃n+1
ih μn+1

ih dx +
∫

Ω

Mn
0h

Σi
Δt
∣∣∇μn+1

ih

∣∣2 dx +
3
4
Σiεβ

∫
Ω

∣∣∇c̃n+1
ih

∣∣2 dx −
∫

Ω

μn+1
ih c̃n+1

ih dx = 0.

This is equivalent to:∫
Ω

Mn
0hΔt

∣∣∇μn+1
ih

∣∣2 dx +
3
4
Σ2

i εβ

∫
Ω

∣∣∇c̃n+1
ih

∣∣2 dx = 0.
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Since the mobility satisfies (1.10), we get: ∇μn+1
ih = ∇c̃n+1

ih = 0. Hence, c̃n+1
ih and μn+1

ih are constant.
Putting these constants in (4.9) readily leads to (c̃n+1

ih , μn+1
ih ) = (0, 0) and gives the claim.

4.2. Proof of Theorem 2.10

4.2.1. Bounds on discrete solutions

Inequality (2.26) enables to obtain bounds on the discrete solutions: we can prove a bound in the discrete
L∞(0, tf , H1(Ω)) norm for the order parameter, in the discrete L2(0, tf , H1(Ω)) norm for the chemical potentials
and in the discrete L2

(
0, tf , (H1(Ω))′

)
norm for the discrete time derivative of the order parameters. Moreover,

the presence of numerical diffusion terms in the estimate (2.26) enables to prove that the discrete time derivatives
of the order parameters grow at most as 1√

Δt
in the L2

(
0, tf , H1(Ω)

)
norm.

Proposition 4.2. Assume that assumptions of the existence Theorem 2.9 are satisfied. Then, there exists
h0 > 0 and positive constants K1, K2, independent of Δt and h such that, for all h � h0, we have

(
sup
n�N

|cn
h |(H1(Ω))3

)
+

(
N−1∑
n=0

Δt
3∑

i=1

∣∣μn+1
ih

∣∣2
H1(Ω)

)
� K1,

(
N−1∑
n=0

Δt

3∑
i=1

∣∣∣∣cn+1
ih − cn

ih

Δt

∣∣∣∣
2

(H1(Ω))′

)
+ Δt

(
N−1∑
n=0

Δt

3∑
i=1

∣∣∣∣cn+1
ih − cn

ih

Δt

∣∣∣∣
2

H1(Ω)

)
� K2.

Proof. Let Σm = min
i=1,2,3

|Σi| and ΣM = max
i=1,2,3

|Σi|.

(i) The discrete energy estimate (2.26), gives in particular an uniform bound on the discrete total energy:

∀n ∈ �0, N�, F triph
Σ,ε (cn

h) � F triph
Σ,ε (c0

h). (4.10)

Furthermore, thanks to the polynomial growth assumption (1.11) of F , the initial energy F triph
Σ,ε (c0

h)
can be bounded independently of h:

F triph
Σ,ε (c0

h) � B1

(
|Ω| + ∣∣c0

h

∣∣p
Lp

)
+ ΣM

∣∣c0
h

∣∣2
H1 � B1

(
|Ω| + ∣∣c0

∣∣p
H1

)
+ ΣM

∣∣c0
∣∣2
H1 := K0. (4.11)

Since F is non negative and by using Proposition 1.1, the bound (4.10) gives in particular,

∀n ∈ �0, N�,

∫
Ω

3∑
i=1

|∇cn
ih|2 dx � 8

3εΣ
K0. (4.12)

Moreover, the discrete form of the conservation of the volume (2.9) leads to

∀n ∈ N, |m(cn
ih)| � |Ω|− 1

2
∣∣c0

ih

∣∣
L2 � |Ω|− 1

2
∣∣c0

i

∣∣
H1 . (4.13)

Hence, using (4.12), (4.13) and the Poincaré inequality (4.1), we find that

∀n ∈ �0, N�, |cn
h |H1(Ω) � Cp

(
16

3εΣm
K0 +

2
|Ω|

3∑
i=1

∣∣c0
i

∣∣2
H1

) 1
2

:= K ′
1. (4.14)
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(ii) Now we add the equations (2.26) for n between 0 and N − 1:

F triph
Σ,ε (cN

h ) −F triph
Σ,ε (c0

h)

+ C

[
N−1∑
n=0

Δt

3∑
i=1

∫
Ω

Mn+α
0h

Σi

∣∣∇μn+1
ih

∣∣2 dx +
3
8
(2β − 1)ε

∫
Ω

N−1∑
n=0

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx

]
� 0. (4.15)

Since F is non negative and the mobility is bounded from below, (4.15) gives in particular

N−1∑
n=0

Δt

3∑
i=1

∫
Ω

∣∣∇μn+1
ih

∣∣2 dx � 2ΣM

M1
K0. (4.16)

Let θ be a non negative given function in H1(Ω) with compact support in Ω. We denote by θh its
H1-projection on Vc

hD,0 and we take νc
h = θh as a test function in the second equation of (2.8). We get

|Ω|m(μn+1
ih θh) =

∫
Ω

DF
i (cn

h , cn+1
h )θh dx +

∫
Ω

3
4
Σiε
[
(1 − β)∇cn

ih + β∇cn+1
ih

] · ∇θh dx.

Hence, we deduce that

|Ω|∣∣m(μn+1
ih θh)

∣∣ � 4ΣT

ε

∑
j �=i

(
1

|Σj |
(∫

Ω

∣∣dF
i (cn

h, cn+1
h )
∣∣|θh| dx +

∫
Ω

∣∣dF
j (cn

h, cn+1
h )
∣∣|θh| dx

))

+
3
4
|Σi|ε

[
(1 − β)

∫
Ω

|∇cn
ih||∇θh| dx + β

∫
Ω

∣∣∇cn+1
ih

∣∣|∇θh| dx

]
.

The first term can be bounded as follows (by using (4.14)):∫
Ω

∣∣dF
k (cn

h , cn+1
h )
∣∣|θh| dx � B1

(
1 +
∣∣cn+1

h

∣∣p−1

L6(Ω)
+ |cn

h |p−1
L6(Ω)

)
|θh|

L
6

7−p (Ω)

� B1C
2
S,6

(
1 +
∣∣cn+1

h

∣∣p−1

H1(Ω)
+ |cn

h|p−1
H1(Ω)

)
|θh|H1(Ω)

� 2B1C
2
S,6(K

′
1)

p−1|θ|H1(Ω),

and we get

∣∣m(μn+1
ih θh)

∣∣ � 1
|Ω|

16ΣT

ε|Σj |
(
2B1C

2
S,6(K

′
1)

p−1|θ|H1(Ω)

)
+

3
4
|Σi|ε

[
(1 − β)|cn

ih|H1(Ω)|θh|H1(Ω) + β
∣∣cn+1

ih

∣∣
H1(Ω)

|θh|H1(Ω)

]
:= Mθ

1 .

Finally, we readily find

∣∣m(μn+1
ih θ)

∣∣ � 1
|Ω|
∫

Ω

∣∣μn+1
ih

∣∣|θ − θh| dx +
∣∣m(μn+1

ih θh)
∣∣ � 1

|Ω|
∣∣μn+1

ih

∣∣
H1(Ω)

|θ − θh|L2(Ω) + Mθ
1 ,

and the Poincaré inequality (4.1) yields to[
1 − Cp,θ

|Ω| |θ − θh|L2(Ω)

] ∣∣μn+1
ih

∣∣
H1(Ω)

� Cp,θ

[∣∣∇μn+1
ih

∣∣
L2(Ω)

+ Mθ
1

]
.
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Owing to (2.5), we can take h0 such that for all h � h0, we have Cp,θ|θ − θh|L2(Ω) � 1
2
|Ω|. We can

conclude by using (4.16) that, for all h � h0,

N−1∑
n=0

Δt

3∑
i=1

∣∣μn+1
ih

∣∣2
H1(Ω)

� 8C2
p,θ

[
2ΣM

M1
K0 + (Mθ

1 )2
]

:= K ′′
1 .

(iv) From (4.11) and (4.15), we obtain

3
8
(2β − 1)Cε

∫
Ω

N−1∑
n=0

3∑
i=1

Σi

∣∣∇cn+1
ih −∇cn

ih

∣∣2 dx � K0.

Defining K ′
2 =

8C2
p

3(2β − 1)Σε
K0, using Proposition 1.1, the Poincaré inequality and the volume conser-

vation property (4.13), we finally get

N−1∑
n=0

Δt

3∑
i=1

∣∣∣∣cn+1
ih − cn

ih

Δt

∣∣∣∣
2

H1(Ω)

� K ′
2

Δt
·

(v) Let ν ∈ H1(Ω). Denote by νμ
h the L2-projection of ν in Vμ

h . Owing to (2.6), we have |νμ
h |H1(Ω) �

C|ν|H1(Ω). By using the first equation of (2.8), we obtain

∫
Ω

cn+1
ih − cn

ih

Δt
νμ

h dx = −
∫

Ω

Mn+α
0h

Σi
∇μn+1

ih · ∇νμ
h dx.

Hence, we find∣∣∣∣∣
(

cn+1
ih − cn

ih

Δt
, ν

)
L2(Ω)

∣∣∣∣∣ =
∣∣∣∣∣
(

cn+1
ih − cn

ih

Δt
, νμ

h

)
L2(Ω)

∣∣∣∣∣ � M2C

Σm

∣∣∇μn+1
ih

∣∣
L2(Ω)

|ν|H1(Ω).

Since this inequality holds for all ν ∈ H1(Ω), we have

∣∣∣∣cn+1
ih − cn

ih

Δt

∣∣∣∣
(H1(Ω))′

= sup
ν∈H1(Ω)

∣∣∣∣∣
(

cn+1
ih − cn

ih

Δt
, ν

)
L2(Ω)

∣∣∣∣∣
|ν|H1(Ω)

� M2C

Σm

∣∣∇μn+1
ih

∣∣
L2(Ω)

,

and thus,
N−1∑
n=0

Δt
3∑

i=1

∣∣∣∣cn+1
ih − cn

ih

Δt

∣∣∣∣
2

(H1(Ω))′
�
(

M2C

Σm

)2

K ′′
1 := K ′′

2 . �

4.2.2. Estimates of remainders

The bounds established in Proposition 4.2 and compactness arguments enable to extract convergent subse-
quences from a given sequence of approximate solutions. Then, it remains to prove that the limit we obtain is
a weak solution of the three-phase Cahn-Hilliard model (1.3). Thus, the first step is to specify the link between
equations satisfied by the approximate solutions and those satisfied by the weak solution of (1.3).

The following proposition gives estimates on the remainder terms due to the time discretization.
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Proposition 4.3. Let τ ∈ C∞
0 (]0, tf [), νc

h ∈ Vc
Dh,0 and νμ

h ∈ Vμ
h . The sequences (cN

h )N∈N and (μN
h )N∈N satisfy

the following equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ tf

0

(∫
Ω

dcN
ih

dt
(t, x)νμ

h (x) dx

)
τ(t)dt = −

∫ tf

0

(∫
Ω

MN+α
0h

Σi
∇μN

ih(t, x) · ∇νμ
h (x) dx

)
τ(t)dt

∫ tf

0

(∫
Ω

μN
ih(t, x)νc

h(x) dx

)
τ(t)dt =

∫ tf

0

(∫
Ω

fF
i (cN

h (t, x))νc
h(x) dx

)
τ(t)dt

+
∫ tf

0

(∫
Ω

3
4
Σiε∇cN

ih(t, x) · ∇νc
h(x) dx

)
τ(t)dt + Ri1(∇νc

h, Δt) + Ri2(νc
h, Δt)

(4.17)

where MN+α
0h = M0

(
(1 − α)cN

h + αcN
h

)
and the remainder terms Ri1 and Ri2 satisfy the following estimates:

there exists two constants K3 and K4 independent of h and Δt such that, for all i ∈ {1, 2, 3},

|Ri1(νc
h, Δt)| � K3|νc

h|H1(Ω)

√
Δt, (4.18)

|Ri2(∇νc
h, Δt)| � K4|∇νc

h|L2(Ω)Δt. (4.19)

Proof. We extend the function τ on R by 0. The first equation of (4.17) is readily obtained from the first equation
of (2.8) by using Definitions (2.24), (2.23), (2.22), (2.25) of cN

h , cN
h , cN

h and μN
h . Furthermore, multiplying the

second equation of (2.8) by the function τ and integrating on the interval [0, tf ] yields the second equation of
(4.17) with

Ri1 =
N−1∑
n=0

∫ tn+1

tn

(∫
Ω

[
DF

i (cn
h(x), cn+1

h (x)) − DF
i (cN

h (t, x), cN
h (t, x))

]
νc

h(x) dx

)
τ(t)dt,

Ri2 =
N−1∑
n=0

∫ tn+1

tn

(∫
Ω

3
4
Σiε
[
(1 − β)∇cn

ih(x) + β∇cn+1
ih (x) −∇cN

ih(t, x)
] · ∇νc

h(x) dx

)
τ(t)dt.

Notice that we use here the consistency assumption (2.3) which implies that

DF
i (cN

h (t, x), cN
h (t, x)) = fF

i (cN
h (t, x)).

It remains to prove that Ri1 and Ri2 satisfy the bounds (4.18) and (4.19).
(i) The bound for Ri1 is based on the assumptions (2.20) which implies that there exists a constant T1

such that for all (a,b) ∈ S2, for all λ ∈ [0, 1],

|dk(a,b) − ∂kF (λa + (1 − λ)b)| � T1|b − a|
(
1 + |b|p−2 + |a|p−2

)
. (4.20)

Thus, since 2 � p � 6, we have 1 � 6
7−p � 6, 6

p−2 � 0 and 7−p
6 + p−2

6 + 1
6 = 1 and we can apply the

Hölder inequality, to obtain that there exists a constant T2 such that∣∣∣∣
∫

Ω

(
dF

k (cn
h(x), cn+1

h (x)) − ∂kF (cN
h (t, x))

)
νc

h(x)dx

∣∣∣∣ � T2

(
1 + 2Kp−2

1

)
|νc

h|H1(Ω)

∣∣cn+1
h − cn

h

∣∣
H1(Ω)

.

Since Ri1 can be written as follows

Ri1 =
4ΣT

ε

∑
j �=i

1
Σj

N−1∑
n=0

∫ tn+1

tn

∫
Ω

[ (
dF

i (cn
h(x), cn+1

h (x)) − ∂iF (cN
h (t, x))

)
− (dF

j (cn
h(x), cn+1

h (x)) − ∂jF (cN
h (t, x))

) ]
νc

h(x)dx τ(t)dt;
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we have∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

∫
Ω

(
dF

k (cn
h(x), cn+1

h (x)) − ∂kF (cN
h (t, x))

)
νc

h(x)dx τ(t)dt

∣∣∣∣∣
� T2

(
1 + 2Kp−2

1

)
|νc

h|H1(Ω)

(
sup

t∈[0,tf ]

|τ(t)|
)

Δt

(
N−1∑
n=0

Δt

∣∣∣∣cn+1
h − cn

h

Δt

∣∣∣∣
2

H1(Ω)

) 1
2

·

In conclusion, using the third bound of Theorem 4.2, we get

|Ri1| � T2K2

(
1 + 2Kp−2

1

)
|τ |L∞([0,tf ])|νc

h|H1(Ω)Δt
1
2 .

Hence, estimate (4.18) holds with K3 := T2K2

(
1 + 2Kp−2

1

)
|τ |L∞([0,tf ]).

(ii) A renumbering of the terms yields

Ri2 =
N−1∑
n=0

∫ tn+1

tn

(∫
Ω

3
4
Σiε

[(
β − t − tn

Δt

)
(∇cn+1

ih (x) −∇cn
ih(x))

]
· ∇νc

h(x) dx

)
τ(t)dt

=
3
4
Σiε

N−1∑
n=0

∫ 1

0

(∫
Ω

Δt
[
(β − u)(∇cn+1

ih (x) −∇cn
ih(x))

]
· ∇νc

h(x) dx

)
τ((n + u)Δt)du

=
3
4
Σiε

N∑
n=0

Δt

(∫
Ω

∇cn
ih(x) · ∇νc

h(x) dx

)(∫ 1

0

(β − u)
(
τ((n − 1 + u)Δt) − τ((n + u)Δt)

)︸ ︷︷ ︸
� Δt|τ ′|L∞(R)

du

)

and by Theorem 4.2, we obtain

|Ri2| � 3
4
ΣMε(N + 1)ΔtK1|∇νc

h(x)|L2(Ω)Δt|τ ′|L∞(R) � 3
4
ΣMε2tf |∇νc

h(x)|L2(Ω)Δt|τ ′|L∞(R).

Hence, estimate (4.19) holds with K4 =
3
2
K1tfΣMε|τ ′|L∞(R). �

In order to be able to show the convergence when the time step and the mesh size tend to zero, we have also
to estimate the remainders due to the space discretization.

Proposition 4.4. Let τ ∈ C∞
0 (]0, tf [), νc ∈ Vc

D,0 and νμ ∈ Vμ. The sequences (cN
h )N∈N and (μN

h )N∈N satisfy
the following equations,

∫ tf

0

(∫
Ω

dcN
ih

dt
(t, x)νμ(x) dx

)
τ(t)dt = −

∫ tf

0

(∫
Ω

MN+α
0h

Σi
∇μN

ih(t, x) · ∇νμ(x) dx

)
τ(t)dt + Ri3(h, Δt)

∫ tf

0

(∫
Ω

μN
ih(t, x)νc(x) dx

)
τ(t)dt =

∫ tf

0

(∫
Ω

fF
i (cN

h (t, x))νc(x) dx

)
τ(t)dt

+
∫ tf

0

(∫
Ω

3
4
Σiε∇cN

ih(t, x) · ∇νc(x) dx

)
τ(t)dt + Ri1(h, Δt) + Ri2(h, Δt) + Ri4(h, Δt)
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where Ri1, Ri2, Ri3 and Ri4 satisfy the following estimates: there exist four constants K5, K6, K7 and K8

independent of h and Δt such that,

|Ri1(h, Δt)| � K5Δt,

|Ri2(h, Δt)| � K6

√
Δt,

|Ri3(h, Δt)| � K7 inf
νµ

h∈Vµ
h

|νμ − νμ
h |H1(Ω),

|Ri4(h, Δt)| � K8 inf
νc

h∈Vc
Dh,0

|νc − νc
h|H1(Ω).

Proof. Let νc
h (resp. νμ

h ), be the H1-projection of νc (resp. νμ), on Vc
hD,0 (resp. Vμ

h ). By using Theorem 4.3 and
then denoting by Ri1(h, Δt) and Ri2(h, Δt) the terms Ri1(νc

h, Δt) and Ri2(∇νc
h, Δt), we see that the remainder

terms Ri3 and Ri4 are given by

Ri3(h, Δt) =
∫ tf

0

(∫
Ω

dcN
ih

dt
(t, x) (νμ(x) − νμ

h (x)) dx

)
τ(t)dt

+
∫ tf

0

(∫
Ω

MN+α
0h

Σi
∇μN

ih(t, x) · ∇ (νμ(x) − νμ
h (x)) dx

)
τ(t)dt,

and

Ri4(h, Δt) =
∫ tf

0

(∫
Ω

μN
ih(t, x) (νc(x) − νc

h(x)) dx

)
τ(t)dt −

∫ tf

0

(∫
Ω

fF
i (cN

h (t, x)) (νc(x) − νc
h(x)) dx

)
τ(t)dt

−
∫ tf

0

(∫
Ω

3
4
Σiε∇cN

ih(t, x) · ∇ (νc(x) − νc
h(x)) dx

)
τ(t)dt.

The bound for Ri1 and Ri2 readily follows from |νc
h|H1(Ω) � |νc|H1(Ω). The bound for Ri3 is obtained as follows:

|Ri3| �
∣∣∣∣dcN

ih

dt

∣∣∣∣
L2(0,tf ,(H1(Ω))′)

|τ |L2(0,tf )|νμ − νμ
h |H1(Ω) +

M2

Σm

∣∣μN
ih

∣∣
L2(0,tf ,H1(Ω))

|τ |L2(0,tf )|νμ − νμ
h |H1(Ω)

� K7|νμ − νμ
h |H1(Ω),

with K7 :=
(

M2

Σm

√
K1 + K2

)
|τ |L2(0,tf ), and the bound for R4 is deduced from the following inequalities:

|Ri4| �
∣∣μN

ih

∣∣
L2(0,tf ,L2(Ω))

|τ |L2(0,tf )|νc − νc
h|L2(Ω)

+
24ΣT

εΣm

∫ tf

0

B1

(∣∣cN
ih(t, ·)∣∣p−1

L6(Ω)
|νc − νc

h|
L

6
7−p (Ω)

+ |Ω| 12 |νc − νc
h|L2(Ω)

)
τ(t)dt

+
3
4
ΣMεtf

∣∣cN
ih

∣∣
L∞(0,tf ,H1(Ω))

|τ |L∞(0,tf )|νc − νc
h|H1(Ω)

�
[√

K1|τ |L2(0,tf ) +
24ΣT

εΣm
tf |τ |L∞(0,tf )B1

(
Kp−1

1 + |Ω| 12
)

+
3
4
ΣMεK1|τ |L∞(0,tf )tf

]
︸ ︷︷ ︸

:=K8

|νc − νc
h|H1(Ω). �
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4.2.3. Proof of Theorem 2.10

Theorem 4.2 readily yields to the following bounds:

∣∣cN
hK

∣∣
L∞(0,tf ,(H1(Ω))3)

+
∣∣μN

hK

∣∣2
L2(0,tf ,(H1(Ω))3)

+

∣∣∣∣∣∂cN
hK

∂t

∣∣∣∣∣
2

L2(0,tf ,(H1(Ω))′)

� K1 + K2, (4.22a)

∣∣cN
hK

− cN
hK

∣∣
L2(0,tf ,(H1(Ω))3)

+
∣∣cN

hK
− cN

hK

∣∣
L2(0,tf ,(H1(Ω))3)

� 2
√

K2Δt. (4.22b)

By using estimates (4.22a), we can extract subsequences of (cN
hK

)(N,K) and (μN
hK

)(N,K) (still denoted by
(cN

hK
)(N,K) and (μN

hK
)(N,K)) such that

cN
hK

⇀ c in L∞(0, tf , (H1(Ω))3) weak-∗, (4.23)

μN
hK

⇀ μ in L2(0, tf , (H1(Ω))3) weak, (4.24)

∂cN
hK

∂t
⇀

∂c
∂t

in L2
(
0, tf , (H1(Ω))′

)
weak. (4.25)

From estimate (4.22a), we can use the Aubin-Lions-Simon’s compactness theorem [32] to obtain, up to a
subsequence,

cN
hK

→ c in C0(0, tf , (Lq(Ω))3) strong, for all 1 � q < +∞ if d = 2, or 1 � q < 6 if d = 3. (4.26)

In particular, (4.26) implies that

cN
hK

→ c in L2(0, tf , (L2(Ω))3) strong, (4.27)

and then estimate (4.22b) leads to

cN
hK

→ c in L2(0, tf , (L2(Ω))3) strong, (4.28)

cN
hK

→ c in L2(0, tf , (L2(Ω))3) strong. (4.29)

Let τ ∈ C∞
0 (]0, tf [), νc ∈ Vc

D,0 and νμ ∈ Vμ. We can apply Theorem 4.4 and pass to the limit in (4.21):

(i) Convergences (4.25), (4.24) and (4.23) allow to pass to the limit in the linear terms.
(ii) The terms Ri1, Ri2, Ri3 and Ri4 tend to 0 thanks to assumptions (2.5).
(iii) Using the fact that the space C∞(Ω) is dense in Vμ = H1(Ω), that M0(c) ∈ L∞(]0, tf [, L∞(Ω)) and

owing to the convergences (4.24), (4.28) and (4.29), we obtain that for any νμ ∈ Vμ,

∫ tf

0

(∫
Ω

MN+α
0hK

Σi
∇μN

ihK
(t, x) · ∇νμ(x) dx

)
τ(t)dt −→

∫ tf

0

(∫
Ω

M0(c)
Σi

∇μi(t, x) · ∇νμ(x) dx

)
τ(t)dt.

(iv) The convergence (4.27) and the Lebesgue theorem allow to prove that, up to a subsequence,

∫ tf

0

(∫
Ω

fF
i (cN

hK
(t, x))νc(x) dx

)
τ(t)dt →

∫ tf

0

(∫
Ω

fF
i (c(t, x))νc(x) dx

)
τ(t)dt.

This shows the existence of a weak solution (c, μ) to problem (1.3) and the convergences (2.27)
and (2.28).
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5. Numerical experiments

In this section, we present some numerical experiments in one dimension and two dimensions in order to
compare the different time discretizations of the nonlinear terms presented in Section 3. The practical imple-
mentation has been performed using the software object-oriented component library PELICANS [29], developed
at the “Institut de Radioprotection et de Sûreté Nucléaire (IRSN)” and distributed under the CeCILL-C license
agreement (an adaptation of LGPL to the French law).

We use the following notation for the schemes:
• Impl. stands for the implicit discretization (3.4) for the contribution of F0, the semi-implicit discretiza-

tion (3.19) for the contribution of P and β = 1;
• CC. stands for the convex-concave discretization (3.11) for the contribution of F0, the semi-implicit

discretization (3.19) for the contribution of P and β = 1;
• SImpl.(β) stands for the semi-implicit discretization (3.16) for the contribution of F0, the semi-implicit

discretization (3.19) for the contribution of P and the given value of β;
• SImpl. stands for SImpl(1).

In one dimensional test cases, the spatial discretization is performed by using an uniform grid and piecewise linear
finite element functions. In two dimensions, in order to limit the computational cost, we use Q1 Lagrange finite
element on square local adaptive refined meshes. The adaptation procedures are based on conforming multilevel
finite element approximation spaces which are built by refinement or unrefinement of the finite element basis
functions instead of cells. All the details about this method and also various examples (in particular, simulations
using the Cahn-Hilliard model considered in this article) are described in [9].

The refinement criterion used in those (un-)refinement procedures imposes the value of the smaller diame-
ter hmin of a cell and ensures that refined areas are located in the neighborhood of the interfaces (i.e. where
no order parameter is equal to one). In practice, we take hmin = ε

2 to ensure the presence of at least three or
four cells in interfaces. We observe that this criterion enables to obtain a sufficient resolution in the interface
without increasing too much the computational cost: we performed numerical computations with hmin = ε

4 and
we observed very similar results. We do not give more details on spatial discretization issues here since the
main goal of this article is to investigate the properties of various time discretization schemes. However, we give
some comparison elements in Remark 5.1 between the computations with or without the adaptive refinement
algorithm.

In all of the two dimensional test cases, the approximate solutions are visualized through the isolines of the
function:

(c1, c2, c3) �→ (1 − c1)(1 − c2)(1 − c3) (5.1)
which is non zero only in the interface; and figures which represent approximate solutions also show the refined
mesh used for the corresponding computation.

For convergence studies, for each scheme, different approximate solutions cΔtj are computed using several
time steps Δtj . Since non trivial analytic solutions of Cahn-Hilliard system (1.3) are not known, we use
an approximate solution cΔtref obtained with a reference time step Δtref as a reference solution. Obviously,
Δtref is assumed to be small enough compared to Δtj . Although the refinement criterion is the same for all
computations, the refined grids can slightly differ from a computation to another since time steps are different.
However the L2 norm of the error

ej(t) =
∣∣cΔtj (t, ·) − cΔtref (t, ·)∣∣

(L2(Ω))3
,

at a fixed time t, is exactly computed on the uniform grid of size hmin during a post-processing step.

5.1. Two-phase test cases

In this subsection, the schemes are compared on two-phase test cases. In other words, the three-phase
Problem 2.4 is numerically solved but the third order parameter c3 is initialized to zero on the whole domain
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Figure 1. Evolution of the first parameter order c1 using the Impl. scheme with Δt = 10−3.

so that the two phases in presence are described by the order parameters c1 and c2 = 1 − c1. The consistency
property (see Sects. 1.2 and 3.7) ensures that the order parameter c3 will stay at zero all along the simulations
and, consequently, the schemes we actually compare are the ones presented in Section 3.7.

Two test cases are given in order to illustrate the two different behaviors of the Cahn-Hilliard system: the
first one is the stability of the observed interface thickness close to ε and the second one is the motion of the
interface governed by surface tensions.

5.1.1. Dynamics of one interface in 1D

The first experiment is performed on the space domain [−1, 1] with the following parameters: the interface
thickness ε = 0.5, a constant mobility M = 8 and a surface tension between the two present phases σ = 1. We
impose Neumann boundary conditions for both order parameters and chemical potentials. The initial data is
given by:

c0
1(x) =

1
2

(
1 + tanh

(
2x

10ε

))
, and c0

2(x) = 0, ∀x ∈ [−1, 1].

Figure 1 shows the evolution of the order parameter c1 towards the equilibrium shape. We also represent, in
this figure, an approximation of the steady solution:

c0(x) =
1
2

(
1 + tanh

(
2x

ε

))
, ∀x ∈ R,

which is obtained by exactly solving the following interface profile problem on an infinite domain:⎧⎪⎨
⎪⎩

− 3
2
σεc′′0 (x) + 12

σ

ε
f ′(c0(x)) = 0, ∀x ∈ R,

lim
+∞ c0 = 1, lim−∞ c0 = 0, c0(0) =

1
2
,

(5.2)

where f is the function defined in (3.1).
Figure 2 presents the convergence study. The reference solution is computed using the SImpl.(0.5) scheme

with Δtref = 10−8. We perform several computations using the different schemes and for each of the following
time steps Δtj : 2 × 10−4, 5 × 10−4, 10−4, 2 × 10−5, 5 × 10−5, 10−5, 10−6. The L2-norm of the corresponding
errors ej(t) at time t = 0.01 are represented in the picture on the left and the convergence rates of each scheme
are given in the table on the right. We observe a first order convergence for the Impl., CC., SImpl. schemes and
a (almost) second order convergence for the SImpl.(0.5) scheme. Note also that the CC. scheme is less accurate
than the other ones, whereas the SImpl. scheme enables to achieve the same accuracy as the Impl. scheme.
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Figure 2. Errors ej(t) =
∣∣cΔtj (t, ·) − cΔtref (t, ·)∣∣

(L2(Ω))3
at time t = 0.01 as a function of the

time step Δtj (left) and convergence rates (right) obtained for the different schemes.
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Figure 3. First order parameter c1 as a function of the space variable x at time t = 0.01.
Top: x ∈ [−1, 1]; bottom: x ∈ [0.4, 0.6] (zoom).

The influence of the different schemes on the shape of the solution is illustrated in Figure 3. We represent,
for different time steps, the first order parameter c1 as a function of the space variable on the whole domain (at
the top) and on a zoomed part (at the bottom). The Impl., SImpl, SImpl.(0.5) schemes give very close results
whereas the CC. scheme gives a significantly different profile.

5.1.2. Ellipsoidal bubble – Neumann boundary conditions

This experiment is performed on the space domain [−0.2, 0.2]2 with the following parameters: the interface
thickness ε = 0.01, a constant mobility M = 10−4 and a surface tension between the two present phases σ = 1.
We impose Neumann boundary conditions for both order parameters and chemical potentials. The initial data
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phase 1

phase 2

Figure 4. Configuration of test case (left) and initial position of interface (right). (Figure in
color available online at http://www.esaim-m2an.org/.)

t = 0.8 t = 1.8 t = 4.8

Figure 5. Evolution of the interface position using the Impl. scheme with Δt = 5 × 10−4.
(Figure in color available online at http://www.esaim-m2an.org/.)

is given by:

c0
1(x, y) =

1
2

[
1 + tanh

(
2
ε

[(
x2

a2
+ a2y2

) 1
2

− 0.1

])]
, c0

2(x, y) = 0, ∀(x, y) ∈ [−0.2, 0.2]2,

where a = 1.5.
Figure 4 shows the initial configuration on the left and the position of the interfaces and meshes at the initial

time on the right. Recall that the representation of interfaces is performed thanks to the isolines of the function
defined by (5.1).

Figure 5 shows the evolution of the interface position. The system tends to a position which minimizes the
length of the interface while conserving the volume of phases, that is a circular interface. Note that the actual
steady state is not yet achieved at the end of our computation (t = 4.8).

Figure 6 presents the convergence study. The reference solution is computed using the SImpl.(0.5) scheme
with Δtref = 5 × 10−4. Several computations are performed using the different schemes and for each of the
following time steps Δtj : 10−1, 5× 10−2, 10−2, 5 × 10−3, 10−3. The L2-norm of the corresponding errors ej(t)
at time t = 3.8 are represented in the picture on the left and convergence rates are presented in the table on the
right. We essentially obtain the same results as in one dimension, that is a first order convergence for the Impl.,
CC., SImpl. schemes and a (almost) second order convergence for the SImpl.(0.5) scheme. The CC. scheme is
still less accurate than the other ones.

5.1.3. Ellipsoidal bubble – Dirichlet boundary conditions

This experiment is performed on the space domain [−0.1, 0.1] × [0, 0.2] with the following parameters: the
interface thickness ε = 6 × 10−3, a constant mobility M = 10−4 and a surface tension between the two present

http://www.esaim-m2an.org/
http://www.esaim-m2an.org/
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Figure 6. Errors ej(t) =
∣∣cΔtj (t, ·) − cΔtref (t, ·)∣∣

(L2(Ω))3
at time t = 3.8 as a function of the

time step Δtj (left) and convergence rates (right) obtained for the different schemes.
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phase 1

Figure 7. Configuration of test case (left) and initial position of interface (right). (Figure in
color available online at http://www.esaim-m2an.org/.)

phases σ = 1. The initial data is given by:

c0
1(x, y) =

1
2

[
1 + tanh

(
2
ε

(
4x2 +

y2

12.25

) 1
2

− 0.05

)]
, c0

2(x, y) = 0,

for all (x, y) ∈ [−0.1, 0.1]× [0, 0.2].
Figure 7 shows the initial configuration on the left and the position of the interfaces and meshes at the initial

time on the right. We impose Neumann boundary conditions for both order parameters and chemical potentials
except for the bottom part of the domain, that is [−0.1, 0.1]×{0}, where Dirichlet boundary conditions for the
order parameters are imposed. Recall that the representation of interfaces is performed thanks to the isolines
of the function defined by (5.1).

Figure 8 shows the evolution of the interface position. The system tends to a position which minimizes the
length of the interface while conserving the volume of phases, the interface describes an arc of a circle since the
value of the order parameter is imposed on the bottom part of the domain.

Figure 9 presents the convergence study. The reference solution is computed using the SImpl.(0.5) scheme
with Δtref = 10−5. Several computations are performed using the different schemes and for each of the following
time steps Δtj : 5×10−3, 10−3, 5×10−4, 2×10−4, 10−4, 5×10−5. The L2-norm of the corresponding errors ej(t)
at time t = 1.5 are represented in the picture on the left and convergence rates are presented in the table on the
right. We obtain a first order convergence for CC., Impl. and SImpl. schemes and a second order convergence
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t = 0.5 t = 1. t = 1.5 t = 5.

Figure 8. Evolution of the interface position using the Impl. scheme with Δt = 5 × 10−5.
(Figure in color available online at http://www.esaim-m2an.org/.)
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SImpl.

SImpl.(0.5)
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j Δtj

ln(ej+1/ej)
ln(Δtj+1/Δtj)

CC. SImpl. SImpl.(0.5) Impl.

1 5 × 10−3 0.7 1.1 2.3 1.0

2 10−3 1.1 1.1 2.3 1.0

3 5 × 10−4 1.1 1.1 2.0 1.0

4 2 × 10−4 1.1 1.0 1.8 1.0

5 10−4 1.1 1.0 1.9 1.1

6 5 × 10−5 – – – –

Figure 9. Errors ej(t) =
∣∣cΔtj (t, ·) − cΔtref (t, ·)∣∣

(L2(Ω))3
at time t = 1.5 as a function of the

time step Δtj (left) and convergence rates (right) obtained for the different schemes.

Table 2. Parameters values for the three phase test case in partial spreading situation.

Ω ε M0 σ12 σ13 σ23 Σ1 Σ2 Σ3 Λ
[−0.3; 0.3]× [−0.15; 0.15] 10−2 10−4 1 0.8 1.4 0.4 1.6 1.2 0

for the SImpl.(0.5) scheme. Remark that SImpl.(0.5) and Impl. schemes give significantly more accurate results
than the CC. one.

5.2. Three phase test cases

In this section, we illustrate the properties of the different schemes with the spreading of a liquid lens between
two stratified phases in two dimensions. In the following test cases, the initial solution is less smooth than it
was in the previous two-phase test cases. Hence, we avoid to take the value 0.5 for the parameter β, since
this value corresponds to the limit of unconditional stability of the Crank-Nicolson time stepping method for
this problem. Moreover, for the same reason, we use the value β = 1 (that is the implicit discretization of the
diffusion term) for the first iteration even for the SImpl.(β) scheme.

5.2.1. Partial spreading situation

The values of parameters are given in Table 2. Note that in this case, all of the Σi, i = 1, 2, 3, are positive.
Hence, we take Λ = 0 (see Sect. 3.6), so that the Cahn-Hilliard potential is F = F0.
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phase 2

phase 1

phase 3

Figure 10. Configuration of test case (left) and initial position of interface (right). (Figure in
color available online at http://www.esaim-m2an.org/.)

t = 0.2 t = 2. t = 5.

Figure 11. Evolution of the interface position for Δt = 10−4 using the Impl. scheme. (Figure
in color available online at http://www.esaim-m2an.org/.)

sin θ1

σ23
=

sin θ2

σ13
=

sin θ3

σ12

Figure 12. Theoretical shape of the lens at the equilibrium.

The initial data c0 is given by

c0
1(x) =

1
2

[
1 + tanh

(
2
ε

min(|x| − 0.1, y)
)]

,

c0
2(x) =

1
2

[
1 − tanh

(
2
ε

max(−|x| + 0.1, y)
)]

,

c0
3(x) = 1 − c1(x) − c2(x),

where x = (x, y) ∈ Ω. This corresponds (Fig. 10) to an initial spherical captive bubble of phase 3 between the
two stratified phases 1 and 2. Recall that the representation of interfaces is performed thanks to the function
defined by (5.1).

Figure 11 shows the evolution of the interface position. At equilibrium, the expected shape of the lens is the
intersection of two spherical caps whose contact angles depend on the three surface tensions through the Young
relations, as shown in Figure 12.

Figure 13 presents the convergence study. The reference solution is computed using the Impl. scheme with
Δtref = 10−4. Several computations are performed using the different schemes and for each of the following
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j Δtj

ln(ej+1/ej)
ln(Δtj+1/Δtj)

CC. SImpl. SImpl.(0.6) Impl.

1 5 × 10−2 0.1 0.3 0.6 0.7

2 10−2 0.2 0.7 1.0 0.9

3 5 × 10−3 0.5 0.8 1.1 1.0

4 10−3 0.6 1.1 1.0 1.2

5 5 × 10−4 – – – –

Figure 13. Errors ej(t) =
∣∣cΔtj (t, ·) − cΔtref (t, ·)∣∣

(L2(Ω))3
at time t = 2. as a function of the

time step Δtj (left) and convergence rates (right) obtained for the different schemes.
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(c) Δt = 5 × 10−3

Figure 14. Time evolution of energy in a partial spreading situation.

time steps Δtj : 5 × 10−2, 10−2, 5 × 10−3, 10−3, 5 × 10−4. The L2-norm of the corresponding errors ej(t)
at time t = 2. are represented in the picture on the left and the convergence rates are presented in the table
on the right. As expected, we obtain a first order convergence for the four schemes. Nevertheless, the Impl.
scheme is clearly the more accurate. We observe in particular a three order of magnitude ratio in the error
compared to the CC. scheme.

In Figure 14, we show the discrete energy F triph
Σ,ε (cn

h) as a function of time tn ∈ [0, tf ]. For each of the four
schemes, we performed three simulations with Δt = 10−1, 10−2 and 5 × 10−3. Figure 14 shows a comparison
between the four schemes, using the same time step. SImpl. and SImpl.(0.6) schemes give significantly more
accurate results than the CC. one.

Figure 15 shows the influence of the schemes on the bubble shape at the time t = 2. With the Impl.
scheme, the same shape is obtained for the three time steps. For large time steps, the CC. scheme does not
give the bubble shape which is expected. This phenomenon is significantly reduced by the use of the SImpl. or
SImpl.(0.6) schemes.

Remark 5.1. In the computations presented in this section, the total number of degrees of freedom is ∼8500
(the actual value varies a little at each iteration due to the adaptation procedure). To achieve the same accuracy
(that is the same mesh size inside the interfaces) with a uniform grid, we should have used 33 540 degrees of
freedom. This shows the importance of using an adaptive refinement method for such models.

The case β = 1
2 is a limit stability case in the analysis proposed above since most of our results hold only for

β > 1
2 . We illustrate here that instabilities can actually occur for β = 1

2 . In Figure 16, we compare the results
for the same set of physical parameters (σ12 = σ13 = 0.07 and σ23 = 0.05) and the same value of the time step
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CC.

SImpl.

SImpl.(0.6)

Impl.

Δt = 10−1 Δt = 10−2 Δt = 10−3

Figure 15. Influence of schemes on bubble shape at t = 2. (Figure in color available online
at http://www.esaim-m2an.org/.)

Implicit Euler : β = 1 Crank-Nicolson : β = 1
2

Figure 16. Influence of the parameter β. (Figure in color available online at http://www.
esaim-m2an.org/.)

Table 3. Parameters values for the three phase test case in partial spreading situation.

Ω ε M0 σ12 σ13 σ23 Σ1 Σ2 Σ3 Λ
[−0.3; 0.3]× [−0.3; 0.2] 10−2 10−4 1 1 3 −1 3 3 7/3

(Δt = 10−3). We show the position of the interface at the same computational time t = 3 × 10−3. We observe
interface instabilities in the case β = 1

2 which can be also observed in Figure 17 where we show the evolution
of the energy during the computation. As predicted by Proposition 3.2, the energy decreases for β = 1 but
does not remain bounded for β = 1

2 . Indeed, note that in this last case the limit time step Δt0 given in this
proposition vanishes.

5.2.2. Total spreading situation

The values of parameters are given in Table 3.
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Figure 17. Evolution in time of the energy for β = 1
2 and β = 1.

phase 3

phase 2

phase 1

Figure 18. Configuration of test case (left) and initial position of interface (right). (Figure in
color available online at http://www.esaim-m2an.org/.)

The initial data c0 is given by

c0
1(x) =

1
2

[
1 + tanh

(
2
ε

min
(√

x2 + y2 − 0.1, y
))]

,

c0
2(x) =

1
2

[
1 − tanh

(
2
ε
y

)]
,

c0
3(x) = 1 − c1(x) − c2(x),

where x = (x, y) ∈ Ω.
This corresponds (Fig. 18) to an initial bubble of phase 3 put on the interface between the two stratified

phases 1 and 2.
In this case, Σ1 is negative but condition (1.5) holds. It corresponds to the case of the extraction of the

bubble (Fig. 19): at the steady state the bubble is entirely within one of the other phases. We have to take Λ
large enough to ensure the positivity of the Cahn-Hilliard potential F (see Sect. 3.6). We take here Λ = 7/3.

Figure 20 shows that the corresponding potential F has the expected shape: F is non negative and has
only three minima which correspond to pure phases. The potential F is represented on the hyperplane S using
barycentric coordinates.

We perform simulations using the different schemes with time steps Δt: 10−1, 5 × 10−2, 10−2, 5 × 10−3,
10−3, 5× 10−4, 10−4. We observe that the Newton linearization method fails to converge when using the Impl.
scheme unless the time step is smaller than 10−4. Table 4 shows the maximum of the number of iterations in
the Newton linearization method over all the time iterations of the simulation. The CC. scheme appears as the
more robust one because the computation nicely runs for any value of the time step. SImpl. and SImpl.(0.6)
schemes work for a large range of time steps.
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t = 2. t = 30. t = 300.

Figure 19. Evolution of the interface position for Δt = 10−3 using the SImpl. scheme. (Figure
in color available online at http://www.esaim-m2an.org/.)
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Figure 20. Cahn-Hilliard potential F using barycentric coordinates.

Table 4. Number of iterations in the Newton linearization method. The symbol “−” means
that there is no convergence.

��������Scheme
Δt 10−1 5 × 10−2 10−2 5 × 10−3 10−3 5 × 10−4 10−4

CC. 5 5 5 5 5 5 4

SImpl. – – 9 9 6 6 5

SImpl.(0.6) – – 29 – 7 6 5

Impl. – – – – – – 7

CPU time 5 min 9 min 40 min 1 h 10 5 h 45 11 h 53 h

1

−4
10

−3
10

−2
10

−4
10

−3
10

−2
10

−1
10 CC.

SImpl.

SImpl.(0.6)
j Δtj

ln(ej+1/ej)
ln(Δtj+1/Δtj)

CC. SImpl. SImpl.(0.6)

1 10−2 0.7 1.0 0.8

2 10−3 0.9 1.0 1.0

3 5 × 10−4 – – –

Figure 21. Errors ej(t) =
∣∣cΔtj (t, ·) − cΔtref (t, ·)∣∣

(L2(Ω))3
at time t = 3.8 as a function of the

time step Δtj (left) and convergence rates (right) obtained for the different schemes.
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Figure 22. Time evolution of energy in a partial spreading situation.

These results have to be balanced by the convergence rates presented in Figure 21. Indeed, The CC. scheme
appears to be the less accurate compared to the SImpl. and SImpl.(0.6) ones, even though the three schemes are
first order convergent. We can also visualize the difference between schemes thanks to Figure 22 which shows
how the discrete energy decrease when using the different schemes. We performed simulations for Δt = 10−2,
10−3, 10−4 and we observed that SImpl. and SImpl.(0.6) schemes give significantly more accurate results than
the CC. one.

6. Conclusion

We proposed here a full discretization of the ternary Cahn-Hilliard model taken from [8]. Different time
discretizations are compared with the objective to get an accurate and robust algorithm for a wide range of
situations including partial and total spreading situations.

At the theoretical level, for the implicit scheme, we are able to show the convergence of the discrete solution
only in the case of partial spreading situation. Moreover, even in these situations, the Impl. scheme ensures
the decrease of discrete energy only for small enough time steps. Convex-concave and semi-implicit schemes
enable to show the convergence even for total spreading cases (provided that the condition (1.5) holds) and
ensure the decrease of the discrete energy for all time steps. In practice, for partial spreading situation, the
implicit scheme is the more accurate and the semi-implicit one enables to reduce the truncation error compared
with the convex-concave one. For total spreading situations, we observe in some numerical computations that
the implicit scheme can be ill-posed if the time step is not small enough whereas we can prove that the semi-
implicit scheme is well-posed. Using the implicit scheme requires smaller time step, thus leading to a much
higher computational cost.

In summary, we can say that the semi-implicit discretization of the non linear terms we proposed is a good
compromise between robustness and accuracy, compared to the other more classical possible discretizations.
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