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Abstract In this paper, we describe some aspects of the diffuse interface modelling of

incompressible flows, composed of three immiscible components, without phase change.

In the diffuse interface methods, the system evolution is driven by the minimisation of

a free energy. The originality of our approach, derived from the Cahn-Hilliard model,

comes from the particular form of the energy we proposed in [4], which, among other

interesting properties, ensures consistency with the two-phase model.

The modelling of three-phase flows is further completed by coupling the Cahn-

Hilliard system and the Navier-Stokes equations where surface tensions are taken into

account through volumic capillary forces.

These equations are discretized in time and space paying attention to the fact

that most of the main properties of the original model (volume conservation, energy

estimate) have to be maintained at the discrete level. An adaptive refinement method

is finally used to obtain an accurate resolution of very thin moving internal layers,

while limiting the total number of cells in the grids all along the simulation.

Different numerical results are given, from the validation case of the lens spreading

between two phases (contact angles, pressure jumps), to the study of mass transfer

through a liquid/liquid interface crossed by a single rising gaz bubble. The numerical

applications are performed with large ratio between densities and viscosities and three

different surface tensions.
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1 Introduction

Three-phase flows are very important in many applications, within or outside porous

media (nuclear safety, petroleum engineering,...). Direct simulations with diffuse in-

terface models (see for instance the review in [1]) in the case of two-phase flows have

proven to be very useful to answer fundamental questions concerning the different oc-

curring mechanisms (see for examples [2,7,22]). Unfortunately, few numerical models

are available to directly simulate three-phase flows. We can note the works of Kim and

co. which have studied how to generalize the coupling between such multi-component

Cahn-Hilliard models and the Navier-Stokes equations and how to implement efficient

numerical solvers (see [17,15,16]).

In this paper, we propose a diffuse interface modelling based on the Cahn-Hilliard

approach for the study of incompressible flows, composed of three immiscible compo-

nents. The construction of a free energy which has good properties is crucial to obtain

a model able to simulate both two- and three- phase situations. Our approach ensures

that there is no artificial apparition of one phase inside the interface between the other

two. In order to describe the hydrodynamics of the mixture, the Cahn-Hilliard and

the Navier-Stokes equations for incompressible flows are coupled. The interfacial sur-

face tension forces are naturally taken into account through volumic capillary forces.

The details of the construction and the analysis of the three component Cahn-Hilliard

model are given in [4].

A numerical difficulty for the Cahn-Hilliard approach is to have an accurate res-

olution of very thin moving internal layers. To address this question, we choose to

use a refinement method called CHARMS (Conforming Hierarchical Adaptive Refine-

ment MethodS), initially developed by Krysl, Grinspun, Schröder in [18]. The key

feature of the method is to perform basis functions (un-)refinement instead of cells

(un-)refinement.

The outline of the paper is the following. In Section 2, after a brief introduction

to the usual binary Cahn-Hilliard model, we present the general construction of a

ternary model. The next section is devoted to the numerical schemes for the Cahn-

Hilliard/Navier-Stokes system using the local adaptive refinement method. Finally, in

the last section, two applications are presented: the partial and total spreading of the

lens between two liquids and the gaz bubble rising through two stratified fluid layers.

2 Three component Cahn-Hilliard/Navier-Stokes model

In this section, we propose a general description of the ternary Cahn-Hilliard/Navier-

Stokes model. The complete derivation and the analysis of the model are given in

[4].

2.1 Introduction: Cahn-Hilliard model

The Cahn-Hilliard approach consists in assuming that the interface thickness between

two phases in the system is small but greater than the real physical one. One phase

is described geometrically by a smooth function ci, called ”order parameter”, which is

equal to 1 in the phase i and 0 outside, and which varies continuously in the interfaces

between the phase i and the others (Figure 1).
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The system evolution is driven by the minimisation of a free energy. The two-

component Cahn-Hilliard free energy is defined by

Fdiph
σ,ε (c) =

Z

Ω

»

12

ε
F (c) +

3

4
σε|∇c|2

–

, (1)

with F (c) = σc2(1 − c)2. The first term is called “bulk energy” and the function

F , called the Cahn-Hilliard potential, has a classical double-well structure with two

minima for c = 0 and c = 1 (Figure 1) corresponding to the two pure phases. This

energy tends to reduce the interfacial zone width whereas the second term |∇c|2, called

capillary term, tends to increase it. In this definition, σ is the surface tension and ε

is the interface thickness. From a numerical point of view, one of the main features of

this model is that ε can be chosen larger than its theoretical value without modifying

the capillary properties of the interfaces.
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Fig. 1 Variation of the order parameter between two phases and double-well structure of the
Cahn-Hilliard potential F

The evolution of the order parameter is driven by the gradient of the functional

derivative µ =
δFdiph

σ,ε

δc , called generalised chemical potential:

8

>

>

<

>

>

:

∂c

∂t
−∇ · (M0∇µ) = 0,

µ =
δFdiph

σ,ε

δc
= −3

2
σε∆c + 24

σ

ε
c(1 − c)(1 − 2c).

(2)

The parameter M0, called the mobility, is a diffusion coefficient which may depend on

c. The boundary conditions are in general the homogeneous Neumann boundary condi-

tions. For the potential µ, this condition ensures that there is no mass diffusion through

the boundary. For the order parameter c, this condition implies that the interfaces are

supposed to be orthogonal to the boundary of the computational domain. One interest-

ing feature of Cahn-Hilliard models is that it is possible to consider non-homogeneous

and non-linear Neumann conditions to model more general contact angles.
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2.2 Construction of a three-component model

Our aim is to generalise the diphasic Cahn-Hilliard models presented above for the

simulation of three immiscible component flows. We introduce three order parameters

c1, c2 and c3, each representing the ”concentration” of one component. Moreover, we

want that the three-phase model satisfies the following physical constraints:

1.
3

X

i=1

ci = 1 for each point and each time (perfect mixture),

2. the equations satisfied by c1, c2 and c3 should be formally identical,

3. the three phase model should coincide with the two phase model when only two

phases are present.

Remark 1 In particular, one of the order parameters c1, c2 or c3 will be eliminated a

posteriori and the solution must not depend on the choice of the eliminated unknown.

Only two coupled Cahn-Hilliard equations will be solved for practical reasons.

2.2.1 Free energy and evolution equations

In view of the diphasic case, we postulate that the free energy can be written as follows

Ftriph
Σ,ε (c1, c2, c3) =

Z

Ω

»

12

ε
F (c1, c2, c3) +

3

8
εΣ1|∇c1|2 +

3

8
εΣ2|∇c2|2 +

3

8
εΣ3|∇c3|2

–

,

(3)

with a bulk energy F and three capillary terms.

The coefficients Σ1, Σ2, Σ3 and the function F will be determined later and we

first concentrate here on the evolution equations associated to this model, taking into

account the constraint
3

X

i=1

ci = 1. (4)

As in the diphasic case, the evolution of the order parameters is driven by the minimi-

sation of the free energy. In order to ensure the constraint (4), a Lagrange multiplier

technique is used. The Cahn-Hilliard equations we finally obtain are

∀i ∈ {1, 2, 3},

8

>

>

>

<

>

>

>

:

∂ci

∂t
= ∇ ·

„

M0

Σi
∇µi

«

,

µi =
4ΣT

ε

X

j 6=i

„

1

Σj

`

∂iF (c) − ∂jF (c)
´

«

− 3

4
εΣi∆ci,

(5)

where the coefficient ΣT is defined by 3
ΣT

= 1
Σ1

+ 1
Σ2

+ 1
Σ3

. The details of the derivation

of these equations are given in [4].

2.2.2 Consistency with the two-phase model

In order to ensure the physical constraints described above, the model must satisfy two

properties :

(1) When a phase i is not present, the three-phase free energy is equal to the one of

the two-phase model,
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(2) When a phase i is not present at initial time, the phase must not appear artificially

during the evolution of the system.

In this case, we say that the model is algebraically consistent with the two-phase models

(see [4]).

Capillary terms: In order to satisfy the property (1), we easily find that the capillary

coefficients have to be taken as follows

Σi = σij + σik − σjk, (6)

where the surface tensions σ12, σ13 and σ23 are given.

The coefficient Si = −Σi is called spreading parameter of the phase i at the

interface between phases j and k [21]. If Si is positive, the spreading is said to be

total and if Si is negative, it is said to be partial (see Section 4.1). It is interesting to

notice here, and this will be enforced by the discussion in the sequel of the paper, that

the spreading coefficient appears as a key parameter in the proposed Cahn-Hilliard

formulation. Indeed, there is an extensive literature that shows the importance of this

parameter in the case of three-phase flow, especially for flow in porous media (see [13,

19]).

Bulk energy: In view of the diphasic case, a natural bulk energy would be

F̄ = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3. (7)

Unfortunately, this function does not ensure the algebraic consistency.

To understand this, we propose to visualise the map of the function F̄ in barycentric

coordinates (see Figure 2). More precisely, we represent the Gibbs triangle where the

vertices correspond to the three pure phases. The points located at the interior of the

triangle represents physically admissible values of the concentration. We observe inside

the triangle a local minimum of F̄ . Since the evolution of the system is driven by the

minimisation of the total energy, the choice of F̄ will lead to non-physical apparition

of one phase in the interface between the other two. Indeed, the least energy path

between two vertices i, j (corresponding two pure phases) goes into the interior of the

triangle since there is a local minimum. In the numerical application in the following

Part 2.2.3, we observe this behaviour.

(a) F̄ , non consistent potential (b) FΛ, consistent potential

Fig. 2 Surfaces defined by F̄ and FΛ in barycentric coordinates
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In [4], we show that, instead of F̄ , using the Cahn-Hilliard potential defined by

FΛ = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3) + Λc

2
1c

2
2c

2
3 (8)

for Λ > 0 large enough, ensures the algebraic consistency property. In Figure 2, we see

that the function has no minimum in the Gibbs triangle and that, the least energy path

between two vertices, is exactly described by the corresponding edge of the triangle.

In practice, we note FΛ = F0 + P where

F0 = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3),

P = Λc
2
1c

2
2c

2
3.

(9)

Properties: The analysis of the consistent model is given in [4]. In particular, we show

that, in order to prove the well-posedness of the system, it is needed to assume that

the following conditions hold

(

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0,

Σi + Σj > 0 for i 6= j.
(10)

Notice that the second condition is always satisfied because, from (6), we deduce that

Σi + Σj = 2σij > 0. (11)

Moreover, the only condition on the sign of the coefficients Σi is the first equation in

(10). In particular, the model is able to take into account total spreading situations

(see Paragraph 4.1) provided that Λ > 0 is chosen large enough. In other situations

(all coefficients Σi > 0), one can take Λ = 0.

2.2.3 Numerical example: consistent/non-consistent model

To compare the consistent and non-consistent models, we used the classical problem

of the simulation of the partial spreading of a liquid lens between two other liquid

phases. At the equilibrium, the shape of the lens and the contact angles are well known

(Young’s relation). This example is studied in details in Section 4.1.

For three different surface tensions

σupper/lens = 0.8,

σlower/lens = 1.4,

σlower/upper = 1,

the numerical solution for the consistent model (F = FΛ) is given in Figure 3.

In Figure 4, we visualise the order parameter associated to the lower liquid phase.

When we use the non-consistent model (F = F̄ ) we observe that the lower phase

appears artificially in the interface between the upper phase and the lens. This unsat-

isfactory behaviour is no more present when we use the potential F = FΛ.
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Fig. 3 Partial spreading of a lens between two stratified liquids

(a) consistent model F = FΛ (b) non-consistent model F = F̄

Fig. 4 Lower phase for consistent/non-consistent model

2.3 Coupling with the hydrodynamics

To complete the modelling of three-phase incompressible flows, the Cahn-Hilliard sys-

tem (5) is then coupled with Navier-Stokes equations (for more details see [3,4,11,

14]).

The velocity jump being zero between two phases, it is possible to define an unique

velocity field which is smooth on the domain. In order to couple the equations, a

convective term is added in the order parameters evolution equations and a capillary

force,

Fca = µ1∇c1 + µ2∇c2 + µ3∇c3, (12)

is considered in the momentum balance. This force is a volumic approximation of the

surface tension force (see [14]). To this end, the Navier-Stokes equations are written as

follows
8

<

:

√
̺

∂

∂t
(
√

̺u) + (̺u · ∇)u +
u

2
∇ · (̺u) −∇ ·

“

η(∇u + ∇ut)
”

+ ∇p = ̺g + Fca,

∇ · u = 0,

(13)

where the density ̺ and the viscosity η are smooth functions which depend on the

order parameters and satisfy, in the i-phase,

̺ = ̺i, η = ηi, (14)

(details are given in Section 3.1).
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Remark 2 In this formulation, the free energy creation by convection is balanced with

the kinetic energy creation by capillarity (see [4,11]).

This Navier-Stokes formulation would be equivalent with the classical form if one

uses the usual mass balance equation ∂
∂tρ + ∇ · (̺u) = 0. However, in the diffuse

interface modelling framework, the mass balance equation has a slightly different form

since ̺ depends on c1, c2, c3 which have their own evolution equation. In practice,

the mass balance equation possesses an additional diffusion term (which comes from

diffusion terms of (5)). Hence, the above formulation of the Navier-Stokes equations is

strictly equivalent neither to the conservative formulation nor to the non-conservative

formulation.

The reason for the choice of this formulation, initially proposed by Guermond and

Quartapelle [10] in the more usual context of variable-density incompressible single

phase flows, is that it guarantees the control of the kinetic energy even if the mass bal-

ance equation has not the classical form. Indeed, multiplying the momentum equation

by u and integrating on the domain, the time derivative form enables to obtain the

time derivative kinetic energy
Z

Ω

∂

∂t
(
√

̺u) · √̺u =
1

2

d

dt

Z

Ω

̺u2
. (15)

Furthermore, the convective contribution is zero

Z

Ω

»

u · (̺u · ∇)u +
u2

2
∇ · (̺u)

–

= 0. (16)

Indeed, assuming that u = 0 on the boundary of the domain, then for any scalar

function f , we have

Z

Ω

f (̺u · ∇) f +

Z

Ω

f2

2
∇ · (̺u) =

1

2

Z

Ω

∇ ·
“

̺uf
2
”

=
1

2

Z

∂Ω

̺f
2u · n = 0. (17)

In the Navier-Stokes equations, we use this calculation for each velocity component.

The other terms in the equations (13) are written under a standard form.

3 Numerical methods

A numerical issue in using the Cahn-Hilliard approach is to ensure accuracy of the

resolution of very thin moving internal layers while limiting the total number of cells

in the grid and thus the computational cost. The solution adopted here is the use

of a local adaptive refinement method (CHARMS) proposed by Krysl, Grinspun and

Schröder [18].

In this section, we give the time and spatial discretizations for the Cahn-Hilliard

and Navier-Stokes (CH/NS) system which ensures that the discrete total energy (the

sum of the Cahn-Hilliard free energy and the kinetic energy) are controlled, at least

for a time step small enough. Then, we propose a brief description of the CHARMS

method and of its use for our applications.

The practical implementation has been performed using the software object-oriented

component library PELICANS [20], developed at the french ”Institut de Radiopro-

tection et de Sûreté Nucléaire” (IRSN) and distributed under the CeCILL-C license

agreement (an adaptation of LGPL to the French law).
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3.1 Time and space discretizations

In order to solve the CH/NS system, we use a Galerkin finite element method. The time

discretization used is semi-implicit in order to split the Cahn-Hilliard and the Navier-

Stokes problems within a time step as explained below. The resolution is performed

using a Newton-Raphson method for the Cahn-Hilliard system and an Augmented

Lagrangian method for Navier-Stokes equations.

Noting Vx the finite element approximation space where we seek the discrete un-

known x, the time marching in a time step is written as follows:

Let cn
i , µn

i , un be known for i = 1, 2,

1. find (cn+1
1 , c

n+1
2 , µ

n+1
1 , µ

n+1
2 ) ∈ (Vc,µ)4 such that ∀ν ∈ Vc,µ, we have for i = 1, 2

Z

Ω

cn+1
i − cn

i

∆t
ν +

Z

Ω

Mn
0

Σi
∇µ

n+1
i · ∇ν +

Z

Ω

un · ∇c
n+1

ν = 0, (18)

Z

Ω

µ
n+1
i ν =

Z

Ω

Di(c
n+1

, cn)ν +

Z

Ω

3

4
Σiε∇c

n+1
i · ∇ν. (19)

with Di(c
n+1

, cn) =
4ΣT

ε

X

j 6=i

„

1

Σj

“

di(c
n+1

, cn) − dj(c
n+1

, cn)
”

«

where di rep-

resents a semi-implicit discretization of ∂ciFΛ defined by

di(c
n+1

, cn) = ∂iF0(c
n+1) +

2

3
Λc

n+1
i

h

(cn
j )2(cn

k )2

+
1

2
(cn+1

j )2(cn
k )2 +

1

2
(cn

j )2(cn+1
k )2 + (cn+1

j )2(cn+1
k )2

–

. (20)

2. Using cn+1
i and µn+1

i (i = 1, 2), compute cn+1
3 , µn+1

3 , Fn+1
ca =

P3
i=1 µn+1

i ∇cn+1
i ,

̺n+1 and ηn+1.

3. Find un+1 ∈ Vu and pn+1 ∈ Vp such that ∀v ∈ Vu and ∀q ∈ Vp

Z

Ω

p

̺n+1

p

̺n+1un+1 −√
̺nun

∆t
· v +

Z

Ω

2η
n+1

D(un+1) : ∇v

+
1

2

Z

Ω

“

̺
n+1(un · ∇)un+1

”

· v − 1

2

Z

Ω

“

̺
n+1(un · ∇)v

”

· un+1

=

Z

Ω

p
n+1∇ · v +

Z

Ω

(F can+1 + ̺
n+1

g) · v, (21)

Z

Ω

∇ · un+1
q = 0. (22)

In (19), the time discretization, Di(c
n+1, cn), of the non-linear terms is semi-

implicit in order to ensure the control of the discrete Cahn-Hilliard free energy. Indeed,

a separate study of the pure Cahn-Hilliard system (18)-(19) (i.e. without convective

terms, un = 0) shows that the discrete free energy control is mandatory to prove

the existence of a discrete solution and its convergence towards the solution of the

initial problem. If this energy is not controlled, we observed cases where the Newton

method does not converge. Different time discretizations for di and the analysis of

corresponding schemes are given in [6].

In practice, the mobility coefficient Mn
0 depends on order parameters at time tn

and is zero outside the interfaces: it is said degenerate. This enables to limit diffusion
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outside the interface due to the pure Cahn-Hilliard equations and to keep the spatial

localization of the interfaces all along the simulations.

In order to ensure the conservation of the total volume of each constituent, we

use the same element for the pressure as for the order parameters and the chemical

potentials. Indeed, we have

Z

Ω

cn+1
i − cn

i

∆t
= −

Z

Ω

un · ∇c
n+1
i =

Z

Ω

c
n+1
i ∇ · un

. (23)

The last integral is zero thanks to the discrete incompressibility constraint (22) if

cn+1
i belongs to the pressure approximation space. In the numerical examples given in

Section 4, the velocity is discretized using the Q2 element and the other fields using

the Q1 element.

In (21), the convective terms,

Z

Ω

“

̺
n+1 `

un · ∇
´

un+1
”

· v +

Z

Ω

un+1 · v
2

∇ · (̺n+1un),

are written under the form

1

2

Z

Ω

“

̺
n+1(un · ∇)un+1

”

· v − 1

2

Z

Ω

“

̺
n+1(un · ∇)v

”

· un+1
.

In this formulation, the contribution of the convective terms in the kinetic energy

balance equation is zero even though the numerical integrations for the finite element

method are not exact.

The functions ̺n+1 and ηn+1 are defined by

̺
n+1 = (̺1 − ̺3)He(c

n+1
1 − 0.5) + (̺2 − ̺3)He(c

n+1
2 − 0.5) + ̺3,

η
n+1 = (η1 − η3)He(c

n+1
1 − 0.5) + (η2 − η3)He(c

n+1
2 − 0.5) + η3,

(24)

where He is a smooth approximation of an Heaviside function. Contrary to the arith-

metic or harmonic averages using in the literature, this relation (24) enables to preserve

the values ̺i and ηi in the phase i even though ci is not exactly 1 due to numerical

errors. Hence, this averaging technique avoids additional numerical errors which appear

to be critical in particular when there are large ratios between densities and viscosities

of the phases.

3.2 Local adaptive refinement

In the finite element method, basis functions have a small support in comparison to

the size of the domain. The idea is to use basis functions with increasingly small

support around the smeared interfaces. The basic principle of the CHARMS method

is to refine/unrefine primarily basis functions and not directly the cells.

The study of this method and its application to Cahn-Hilliard systems are given

in details in [5]. We only recall below the main features of the method.
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3.2.1 Adaptation procedure

Consider an initial conforming grid (possibly unstructured) together with its finite

elements structure. A conceptual hierarchy of nested grids is defined by successive

divisions of cells into cells of the same type obtained by uniformly applying the same

subdivision pattern. We obtain a sequence of Lagrange conformal finite element spaces

Xj , with the property that each basis function at a given level j can be written as a

linear combination of some basis functions of the immediate finer level j + 1:

Xj ⊂ Xj+1 ⇒ ϕ
j
k

=
X

l

β
j+1
k,l

ϕ
j+1
l

,

leading to a Child/Parent relationship:

β
j+1
k,l

6= 0 ⇔ ϕ
j
k

is a parent of ϕ
j+1
l

⇔ ϕ
j+1
l

is a child of ϕ
j
k
.

Since the supports of basis functions are small, most of the coefficients β
j+1
k,l

are zero.

Within a set of basis functions, the refinement (resp. unrefinement) of a parent is then

defined by the addition (resp. removal) of all its children. Cells are accordingly split and

coarsened, leading to nonconforming grids, but their role is limited to be integration

domains and support of the basis functions which, more importantly, span conforming

finite element spaces.

3.2.2 Time marching and grid construction

For the discrete problem CH/NS proposed in Paragraph 3.1, we use the CHARMS

method which involves few modifications in particular for the finite element approxi-

mation spaces.

In a time step, from the solution obtained at the previous time tn, we refine or

unrefine the basis functions which belong to Vn using a given criterion (a criterion for

the Cahn-Hilliard/Navier-Stokes applications is given in the following Paragraph 3.2.3).

This stage enables to define the new finite element approximation space Vn+1 in which

we search the solution at time tn+1. The space Vn+1 differ, in general, from the ap-

proximation space at time tn. These spaces have not necessarily the same dimensions

(the grids are different at each time step).

This method implies that in the variational formulations, some integrals contain

basis functions which belong to two distinct approximation spaces Vn+1 and Vn. For

example we have to cope with the integral

Z

Ω

cn
ih

∆t
ν

n+1
, with c

n
ih ∈ Vn

, and ν
n+1 ∈ Vn+1

.

In order to compute these terms, the grid is built in such a way that each basis function

belonging to either Vn or Vn+1, is expressed as a polynomial function on each cell (the

basis function is not piecewise defined on a cell). Thus, if one uses suitable quadrature

rules, such integrals are computed exactly. This method in particular avoids the use of

intricate transfer operators between the grids.
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3.2.3 Refinement/unrefinement criterion

In order to build Vn+1 from Vn, we need to define a refinement/unrefinement criterion.

For our applications, we want to refine in the interface zone (that is to say where the

order parameters have important variations) and to unrefine away from the interfaces.

For this reason, we need to introduce an indicator measuring whether or not a given

cell (resp. basis function) lies near the interfaces.

The cell indicator is defined at time tn by

ηK = max
“ 1

|K|

Z

K

c
n
1 ,

1

|K|

Z

K

c
n
2 ,

1

|K|

Z

K

c
n
3

”

. (25)

This cell indicator can be interpreted as follows:

– ηK = 1 means that the cell K is completely filled with one of the bulk phases.

– ηK < 1 means that the cell K contains an interface.

Using the cell indicator, we can deduce a criterion for deciding whether or not a

given basis function ϕ ∈ Vn may be (un-)refined. We use a volume weighted average

of ηK over the support of ϕ:

ηϕ =
1

|supp[ϕ]|
X

K∩supp[ϕ] 6=∅

|K|ηK .

Given an anticipated cell size hinterface for the interface neighbourhood, the two fol-

lowing criteria let us decide if a basis function ϕ has to be refined or unrefined:

– Refinement criterion:

ηϕ < 0.90 and diam(K) > hinterface for at least one cell K ⊂ supp[ϕ].

– Unrefinement criterion:

ηϕ > 0.95.

3.2.4 Summary

The CHARMS method presents some advantages:

– there is no modification of the discrete problem due to the mesh adaptation,

– the possible geometric non-conformity of the adapted meshes are implicitly handled,

– there is no specific treatment due to particular Lagrange finite elements (P1, Q1

see Figure 5),

– all the procedure is independent of the space dimension (see Figure 6),

– no need of transfer operators for fields defined on two distinct refined grids.

The use of adaptive local refinement enables us to choose an interface thickness ε

very small while conserving a reasonable number of cells as we can see on Figure 7 in

the case of a rising gaz bubble (this application is studied in Section 4.2)

4 Applications

In this section, we present two applications: the classical lens spreading between two

liquids and the gaz bubble rising in two stratified layers.

The computations are performed in axisymmetric 3D geometry using local adaptive

refinement as described above.
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Fig. 5 Use of different finite elements (P1 and Q1)

Fig. 6 Example of adaptive local refinement in 3D

Fig. 7 Rising bubble using local adaptive refinement

4.1 Spreading lens between two stratified layer

In this part, we show that the Cahn-Hilliard/Navier-Stokes model enables to compute

accurately contact angles and pressure jumps for the partial spreading of a lens and to

simulate the total spreading situation.
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4.1.1 Partial spreading - Laplace’s law

At equilibrium, the positions of the interfaces are known: the shape of the lens is the

intersection of two spherical caps. The contact angles depend on the three surface

tensions as given by the Young’s relation (see Figure 8).

Young’s relation :

sin θ1

σ23

=
sin θ2

σ13

=
sin θ3

σ12

.

θ3

phase 3
θ1

θ2

phase 1

phase 2

Fig. 8 Shape of the lens at equilibrium

In Figure 9, we present numerical solutions for different surface tension values. The

white zone corresponds to the diffuse interface. We obtain a very good agreement with

the theoretical solution (black solid line on the figure).

(a) (1; 1; 1) (b) (1; 0.8; 1.4)

Fig. 9 Equilibrium states obtained numerically for different surface tensions (σ12; σ13; σ23)

At the equilibrium, if there is no external forces, the theoretical velocity is zero

and the pressures are uniform in each phase. The pressure jump between two phases

is given by the Laplace’s law and is written:

pi − pj = 2
σij

rij
(26)

where rij is the radius of the curvature of the interface between the phases i and j. In

this case, the pressures verify:

8

<

:

p1 = p2,

2
σ13

r13
= p3 − p1 = p3 − p2 = 2

σ23

r23
.

(27)
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Table 1 Relative error of the pressure jump for different surface tensions

(σ12; σ13; σ23) theoretical pressure jump numerical pressure jump relative error

(1; 1; 1) 113.101 113.59 0.453%
(1; 0.8; 1.4) 121.644 122.9 1.03%

In Figure 10 and in Table 1, we can see that the Cahn-Hilliard/Navier-Stokes model

enable to compute accurately the pressure jump for different surface tensions.

(a) (1; 1; 1) (b) (1; 0.8; 1.4)

Fig. 10 Pressure jump for different surface tensions (σ12; σ13; σ23)

In our computations, the velocity is not zero but very small. We observe parasitic

currents which are a common problem for methods where the surface tension force is

approximated by a volumic force (see [12]). These spurious currents decrease when the

system tends to the equilibrium state. Indeed, in Figure 11, we can see that the kinetic

energy decreases during time.
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(a) (1; 1; 1)
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(b) (1; 0.8; 1.4)

Fig. 11 Evolution of the kinetic energy for different surface tensions (σ12; σ13; σ23)
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4.1.2 Total spreading

In the case where one of the spreading parameters Si is positive (that is to say Σi < 0),

the spreading is said to be total. Two configurations of total spreading are simulated

when the lens spreads between the liquids and when the upper liquid spreads between

the lens and the lower liquid. The surface tensions are

– for the lens spreading: (σ12; σ13; σ23) = (3; 1; 1), Σ3 < 0,

– for the upper phase spreading: (σ12; σ13; σ23) = (1; 1; 3), Σ1 < 0.

We can see on Figure 12 that in both cases, the phase spreads in such a way that the

triple points disappear. Then, the system tends to the equilibrium state: the interfaces

are finally plane or spherical.

(a) (σ12; σ13; σ23) = (3; 1; 1.)

(b) (σ12; σ13; σ23) = (1; 1; 3)

Fig. 12 Evolution of the interface for total spreading situation

4.2 Behaviour of a bubble in stratified two-layers

During a gaz bubble rising in a two stratified liquid layers configuration, the bubble can

either remain captured in the interface, or can penetrate in the lighter phase leading

possibly the heavy phase. In [8,9], the authors suggest two criteria on the bubble volume

to predict the bubble penetration and the entrainment phenomenon. These criteria,

based on a macroscopic balance between buoyancy and surface tension forces, have

been validated experimentally. The physical parameters we used are given in Table 2.

This test case confirms that the model and the numerical method we proposed are able

to simulate three-phase flows with large density and viscosity ratios.

We are interested here in the first criterion which predicts the bubble penetration

if its volume V is greater than:

Vp =

0

@

2π
`

3
4π

´
1
3 σ23

(̺3 − ̺1)g

1

A

3
2

≃ 8.87 10−8 m3
,
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Table 2 Physical properties

surface tension [N.m−1]

σgas-liquid 0.07
σliquid-liquid 0.05

density [kg.m−3] viscosity [Pa.s]

bubble c1 1 10−4

heavy liquid c2 1200 0.15
light liquid c3 1000 0.1

i.e., for a bubble radius greater than rp ≃ 2.76 10−3 m. The numerical study gives

rnum
p ≃ 2.5 10−3 m which is in agreement with the criterion (see Figure 13).

(a) r = 0.002 m < rp

(b) r = 0.0029 m > rp

Fig. 13 Bubble rising in two stratified layers.

In the entrainment situations, the authors of [9] studied experimentally the en-

trained volume of heavy fluid into the light fluid when densities and viscosities vary.

We propose to find qualitatively these behaviours computing the quantity of the heavy

liquid which is above the initial liquid-liquid interface position. In our study, the simu-

lation with a bubble radius of r = 8 mm is considered as the reference case (see Figure
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14, circled marks in Figure 15). The physical properties are the same than previously.

Our results are in agreement with experiments: we observe an increase of the quantity

of entrained volume when the light liquid density increases (see Figure 15(b)) and a

decrease of the entrained volume when the viscosities and the heavy liquid density

increase (see Figures 15(a), 15(c) and 15(d)).

0 s 0.13 s 0.21 s 0.29 s 0.39 s 0.52 s 0.65 s

Fig. 14 Entrainment of the heavy liquid during the bubble rising with a radius r = 8mm.

5 Conclusion

In this article, we described a Cahn-Hilliard/Navier-Stokes model for the simulation of

incompressible flows composed of three immiscible components, with no phase change.

The model is consistent with the two phase model: there is no artificial apparition

of the third phase in the interface of the other two. Moreover the model is able to

simulate flows with large ratio between the densities and the viscosities, with three

different surface tensions and it takes into account total spreading situations.

The local adaptive refinement method enables us to simulate thin interfaces and

to have an accurate resolution in the interfacial zone. Finally, in order to compute 3D

flows, it is necessary to use efficient linear solvers. In this context, a possible strategy

is to use the multi-level structure naturally obtained by the local refinement algorithm

in order to build multigrid preconditioners. Such a methodology and corresponding

numerical resultat are described in [5].

In further works, we will concentrate on the precise mathematical study of the full

numerical method including the coupling between the Cahn-Hilliard and Navier-Stokes

equations and the adaptive local refinement method.
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