
OUTFLOW BOUNDARY CONDITIONS FOR THEINCOMPRESSIBLE NON-HOMOGENEOUS NAVIER-STOKESEQUATIONSFRANCK BOYER AND PIERRE FABRIEAbstra
t. In this paper we propose the analysis of the in
ompressible non-homogeneous Navier-Stokes equations with nonlinear out�ow boundary 
on-dition. This kind of boundary 
ondition appears to be, in some situations, auseful way to perform numeri
al 
omputations of the solution to the unsteadyNavier-Stokes equations when the Diri
hlet data are not given expli
itly bythe physi
al 
ontext on a part of the boundary of the 
omputational domain.The boundary 
ondition we propose, following previous works in the ho-mogeneous 
ase, is a relationship between the normal 
omponent of the stressand the out�ow momentum �ux taking into a

ount inertial e�e
ts. We provethe global existen
e of a weak solution to this model both in 2D and 3D. Inparti
ular, we show that the nonlinear boundary 
ondition under study holdsfor su
h a solution in a weak sense, even though the normal 
omponent of thestress and the density may not have tra
es in the usual sense.1. Introdu
tion1.1. Statement of the problem. We are given a smooth and bounded (say C2)domain Ω in R
d (d = 2 or d = 3) and we denote by ν the outward unit normal onthe boundary Γ = ∂Ω. For any real number x we de�ne its positive and negativepart respe
tively by x+ = max(x, 0) and x− = max(0,−x).This work is 
on
erned with the study of the non-homogeneous Navier-Stokesequations : 




∂tρ+ div (ρv) = 0,div v = 0,

∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf,

ρ(0) = ρ0, v(0) = v0,

(1)where the stress tensor, with density-dependent vis
osity, is de�ned by
σ = 2µ(ρ)D(v) − p Id,

ρ and p being respe
tively the density and the pressure of the �uid and D(v) =
1
2 (∇v+ t∇v) the symmetri
 part of the gradient of the velo
ity �eld v. This systemmodels the �ow of an in
ompressible non-homogeneous vis
ous �uid.It is ne
essary to pres
ribe boundary 
onditions for problem (1) on ∂Ω. Onepart of the boundary of Ω (denoted by Γin in the sequel) is said to be the in�owboundary (see Figure 1). On this part the Diri
hlet data ρin and vin are supposedto be given. Then, on the remaining part of boundary of Ω (denoted by Γout inthe sequel), we assume that no physi
al boundary data is available. This typi
allyDate: September 12, 2006. 1
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Ω

Γin

Γoutv = vin

ρ = ρin Out�ow B.C.
Figure 1. In�ow and out�ow parts of the boundary of Ωhappens when, for 
omputational reasons, the domain Ω is stri
tly in
luded in thephysi
al domain so that some part of the boundary is purely arti�
ial. We areinterested here in the analysis of a nonlinear out�ow boundary 
ondition model on

Γout given by




ρ = ρin, on Γ where (v · ν) < 0,

v = vin, on Γin,

σ.ν = σref .ν − 1

2
ρin(v · ν)−(v − vref), on Γout.

(2)Here, vref and σref .ν are given referen
e boundary data for the velo
ity �eld and thenormal 
omponent of the stress tensor su
h that ∫
Γout

vref ·νdω+

∫

Γin

vin ·νdω = 0 atany time t. This nonlinear term will let us obtain an energy inequality for system(1) preventing �nite time blow up of the solution. Noti
e that, even though Γinand Γout are respe
tively 
alled in�ow and out�ow part of the boundary, it is notassumed in the following analysis that vin · ν ≤ 0 on Γin and of 
ourse it 
an o

urthan v · ν < 0 even on Γout (it is the situation where the nonlinear term has a roleto play). In parti
ular, the Diri
hlet 
ondition on the density takes pla
e on thewhole part of the boundary Γ where v · ν < 0.The analysis of su
h a model is motivated by previous studies of similar boundary
onditions for homogeneous �uids. Indeed, in that 
ase, it is shown in [7, 8℄ thatsu
h a model is well-posed and 
an be su

essfully used to 
ompute �ows in arti�
ialdomains without too mu
h vortexes re�exions on Γout and good agreement withthe expe
ted solution.Of 
ourse, the numeri
al e�
ien
y of this approa
h highly depends on the 
hoi
eof the referen
e boundary data vref and σref .ν. To our knowledge there is no uni-versal strategy to make su
h a 
hoi
e. Nevertheless in many 
ases the physi
alintuition of the behavior of the �ow may help us to do so. As an example, for the
lassi
al 
omputation of a �ow past obsta
les in an open 
hannel, the Poiseuillereferen
e �ow is used in [6, 7, 8℄ and gives results that do not depend too mu
h onthe distan
e between the obsta
les and the arti�
ial open boundary of the 
ompu-tational domain. Furthermore, in the same referen
es, numeri
al 
omparisons with
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ondition are given showing that, for high Reynoldsnumbers, the nonlinear term in (2) is 
ru
ial to avoid non physi
al re�exions andblows up of the solution. Unfortunately, no rigorous results are available yet togive a pre
ise justi�
ation of the method and to understand the in�uen
e of thereferen
e �ow on the solution.Remark 1. Let us noti
e that the out�ow boundary 
ondition we propose is 
on-sistent with the Navier-Stokes equations in the physi
al domain in the followingsense.Indeed, 
onsider the 2D homogeneous 
ase (ρ = cst = 1), whi
h is the only onefor whi
h uniqueness of weak solutions is known and for whi
h the present remark
an be made rigorous. Suppose that the physi
al domain Ωphys 
ontains Ω and that
Γin = ∂Ω ∩ ∂Ωphys, so that Γout ⊂ Ωphys \ Ω. Let us 
onsider now an initial data
v0 for the NS equation on Ωphys and Diri
hlet boundary data vbound on ∂Ωphys.Denote by (vphys, pphys) the unique solution to the in
ompressible homogeneous NSequations asso
iated to those data and by σphys the 
orresponding stress tensor.Assume �nally that (vphys, pphys) is smooth enough, that is for instan
e a so-
alledstrong solution (see [22℄).Let (vref , σref) given and 
onsider now (v, p) the unique solution to problem (1)-(2) with ρ = 1 (see [8℄), the initial data v0 restri
ted to Ω and the in�ow data
vin = vbound on Γin. Then, the following estimate 
an be shown
‖v − vphys‖L∞(]0,T [,L2(Ω)) + ‖v − vphys‖L2(]0,T [,H1(Ω))

≤ C

(
‖σref .ν − σphys.ν‖

L2(]0,T [,H−
1

2 (Γout))

+ ‖(v · ν)−‖L3(]0,T [×Γout)‖vref − vphys‖L3(]0,T [×Γout)

)
,the 
onstant C depending only on the data T, v0, and vbound. This result showsin parti
ular that, if we are able to 
hoose vref and σref 
lose enough to vphys and

σphys (whi
h of 
ourse we do not know exa
tly) then the solution v 
omputed in
Ω with our out�ow boundary 
ondition will be 
lose to the exa
t physi
al solution
vphys.Su
h an estimate is not a
hievable in the present non-homogeneous frameworkdue to the la
k of regularity of the density ρ (that is the same di�
ulty whi
hprevents us to prove uniqueness of weak solutions).In the last years, many authors have 
onsidered the problem of out�ow (orarti�
ial) boundary 
onditions for various kinds of equations. In the parti
ularframework of �uid me
hani
s, the 
ase of Oseen equations were 
onsidered forinstan
e in [14℄ while the 
ase of stationnary homogeneous Navier-Stokes equationsis treated e.g. in [12, 17, 18℄ (see also the referen
es therein). In ea
h of these worksthe original physi
al domain is supposed to have a parti
ular shape (typi
ally anexterior domain or an half spa
e). This is used in a fundamental way by theauthors to derive their method and to prove 
onvergen
e results. On the 
ontrary,our boundary 
ondition (2) does not rely on parti
ular geometri
 assumptions onthe domain, provided that suitable referen
e �ow 
an be 
hosen.Boundary 
onditions only involving the pressure were 
onsidered for instan
ein [2, 9, 15℄ where well-posedness results are given but no 
onvergen
e results. In
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es, the validity of the 
hosen approa
h is dis
ussed through numeri
alsimulations. Some other authors have proposed to build arti�
ial boundary 
on-ditions in the velo
ity-vorti
ity formulation (see for instan
e [3℄). Unfortunately,this formulation is not available for non-homogeneous �ows and in that 
ase we areneeded to work with the primitive variables: density, velo
ity and pressure. To ourknowledge, arti�
ial boundary 
onditions in this parti
ular framework were onlystudied for 
ompressible vis
ous or invis
id �ows (see [19, 23, 24℄).1.2. Outline. The present analysis is devoted to the proof of existen
e of weaksolutions for the above problem, that is the transient non-homogeneous in
om-pressible Navier-Stokes equation (1) with boundary 
onditions (2). As usual in thetheory of weak solutions of the in
ompressible Navier-Stokes equations (see e.g.[22℄), uniqueness of su
h solutions is only established for homogeneous �uids (thatis when the density ρ is a 
onstant) in the two dimension 
ase (see [8, 5℄). In
omparison with the homogeneous situation, many new di�
ulties appear in thisanalysis.
• We need to give a pre
ise sense to the Cau
hy/Diri
hlet problem for thetransport equation with non tangential and non smooth ve
tor �eld v. Mostof this material is already available from a previous work by the �rst author[4℄ and is re
alled in Se
tion 2. Nevertheless, we needed in the present paperto 
omplete this framework with a stability result of the solution ρ as afun
tion of v (see Theorem 4), whi
h is an important result by itself. Thisresult will let us pass to the limit in an approximate problem, in parti
ularin boundary and vis
osity terms.
• Suitable weak formulations of the problem, with divergen
e free test fun
-tions, formally obtained by integrating by parts the equation an using (2)are dis
ussed in Se
tion 3. Our main results are then stated in Se
tion 4.
• In Se
tion 5, we introdu
e (in the same spirit than [16, 21℄) an approximateproblem for the weak formulation under study (equations (21) and (26)) andwe show that it admits a global solution, through a �xed point pro
edure.Then, in Se
tion 6, we provide estimates on the approximate solution andwe perform the limit in the approximate problem. This 
on
ludes the proofof Theorem 5.
• Se
tion 7 is devoted to the proof of Theorem 6 whi
h states that the non-linear boundary 
ondition under study is satis�ed, in a weak sense, by thesolution to the weak formulation of the problem. This is done using on
emore the �ne properties of the tra
es of solutions to the transport equationobtained in [4℄. Finally, we 
on
lude the paper by studying in Se
tion 8 aslight modi�
ation of our out�ow boundary 
ondition whi
h let us provethe same results under weaker assumptions on the data.1.3. Notations and assumptions. We suppose that Γ = Γin ∪ Γout where Γinand Γout are disjoint open sets in Γ with positive measures. We introdu
e the spa
e

V =
{
v ∈ (C∞(Ω))d, s.t. div v = 0, and v = 0 on Γin

}
,and let H (resp. V ) be the 
losure of V in (L2(Ω))d (resp. (H1(Ω))d). We alsode�ne the spa
e H1

in(Ω) of fun
tions in H1(Ω) whose tra
e vanishes on Γin and
H

1

2

in(Γ) the spa
e of fun
tions in H 1

2 (Γ) whi
h vanishes on Γin.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 5Let T > 0 be �xed. We assume that ρ0 ∈ L∞(Ω), ρ0 ≥ 0 and ρin ∈ L∞(]0, T [×Γ),
ρin ≥ 0. In this paper, ex
epted in Se
tion 8, we assume that there exists α > 0su
h that

1

ρα
0

∈ L1(Ω), (3)
1

ρα
in

∈ L1(]0, T [, L1(Γ)). (4)These 
onditions allow the given initial and in�ow boundary densities to vanishon zero measure sets. They are obviously satis�ed if we assume that inf ρ0 > 0and inf ρin > 0. Noti
e that, 
ondition (3) was 
onsidered in [16, 21℄ in order toimprove some of the results 
on
erning the problem (1) with homogeneous Diri
hletof periodi
 boundary 
onditions. In Se
tion 8 we will study a slightly modi�edboundary 
ondition (see (56)) for whi
h we are able to perform the analysis underthe weaker assumptions that ρ0 and ρin are positive almost everywhere.Noti
e that the boundary 
ondition (2) only depends on the value of the referen
e�ow vref on the out�ow boundary Γout. Nevertheless, in order to perform theanalysis, we need to 
onsider a divergen
e free extension of this boundary data andof vin, still denoted by vref in the sequel and satisfying





vref ∈ L∞(]0, T [, (L2(Ω))d) ∩ Lr(]0, T [, (H1(Ω))d),with r = 2 if d = 2 and r = 4 if d = 3,div vref = 0,

∂tvref ∈ L2(]0, T [, (L2(Ω))d),

vref = vin, on Γin.

(5)We also suppose given σref su
h that
σref .ν ∈ L2(]0, T [, (H−1

2 (Γ))d). (6)We take v0 ∈ H and f ∈ L2(]0, T [, (L2(Ω))d). Finally, the vis
osity µ is supposedto be a 
ontinuous fun
tion su
h that there exists µmin, µmax ∈ R satisfying
0 < µmin ≤ µ(s) ≤ µmax, ∀s ∈ R. (7)2. The transport equation2.1. Notations. For any x ∈ Ω we denote by d(x,Γ) the distan
e between x andthe 
ompa
t set Γ. For any ξ ≥ 0, we de�ne the following two open sets

Oξ = {x ∈ Ω, d(x,Γ) < ξ}, and Ωξ = {x ∈ Ω, d(x,Γ) > ξ}.Sin
e Ω is bounded and regular, there exists ξΩ > 0 su
h that the maps d(·,Γ)(distan
e to Γ) and PΓ (proje
tion on Γ) are well de�ned and smooth in OξΩ
.As a 
onsequen
e it is possible to use (d(x,Γ), PΓ(x)) ∈ [0, ξΩ]×Γ as a 
oordinatesystem in Oξ (see for instan
e [4, 5℄). For any fun
tion F :]0, T [×ΩξΩ

7→ R we willuse the notation:
F (t, ξ, ω) ≡ F (t, ω − ξν(ω)), ∀(t, ξ, ω) ∈]0, T [×[0, ξΩ] × Γ.Noti
e that for any ω ∈ Γ, we have F (t, 0, ω) = F (t, ω). The reverse formulaobviously reads

F (t, x) = F (t, d(x,Γ), PΓ(x)), for almost every (t, x) ∈]0, T [×OξΩ
.
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Ωξ

ξ

Γ = Γ0

Γξ

ν

OξFigure 2. Notations near the boundary of ΩWe 
an now introdu
e the spa
e C0([0, ξΩ], Lq(]0, T [×Γ)) of measurable fun
tions
F (t, x) su
h that ξ 7→ F (·, ξ, ·) is 
ontinuous with respe
t to ξ with values in
Lq(]0, T [×Γ) in the variables (t, ω).For any ξ ∈ [0, ξΩ[, we note Γξ = {x ∈ Ω, d(x,Γ) = ξ}. Noti
e that for any
ξ ∈ [0, ξΩ] we have

∂Oξ = Γ ∪ Γξ, ∂Ωξ = Γξ.For any 0 ≤ ξ ≤ ξΩ, the manifolds Γ and Γξ are isomorphi
 through the paralleltransport with respe
t to the ve
tor �eld −ξν. Let Jξ(ω), ω ∈ Γ be the Ja
obiandeterminant of the isomorphism between the manifolds Γ and Γξ. For any G ∈
L1(Γξ), we have∫

Γξ

G(ω′) dω′ =

∫

Γ

G(ω − ξν(ω))Jξ(ω) dω =

∫

Γ

G(ξ, ω)Jξ(ω) dω.Therefore, for any F ∈ L1(]0, T [×OξΩ
) the following 
hange of variables formulaholds:

∫ T

0

∫

Oη

F (t, x) dt dx =

∫ T

0

∫ η

0

∫

Γ

F (t, ξ, ω)Jξ(ω) dt dξ dω, ∀η ∈]0, ξΩ]. (8)Noti
e that J0(ω) = 1 for any ω ∈ Γ. Furthermore, we 
hoose ξΩ small enough sothat (ξ, ω) 7→ Jξ(ω) is smooth and satisfy 1
2 ≤ Jξ(ω) ≤ 3

2 for any (ξ, σ) ∈ [0, ξΩ]×Γ.Finally, noti
e that there exists a smooth fun
tion d̃ : Ω 7→ R su
h that d̃ = d(·,Γ)into OξΩ
so that we 
an de�ne for any x ∈ Ω, the ve
tor �eld ν(x) = −∇d̃(x) whi
his regular bounded and whi
h 
oin
ides with the outward normal ve
tor �eld nearthe boundary of the domain. More pre
isely, we have

ν(x) = ν(PΓ(x)), for any x ∈ OξΩ
.2.2. Tra
e theorem - Initial and boundary value problem. We re
all heresome of the results proved by the �rst author in [4℄ 
on
erning the transport equa-tion for non tangential ve
tor �eld with Sobolev regularity. These results are amongthe main tools in the study of our problem. The proofs of these results use, in par-ti
ular, the fundamental 
on
ept of renormalized solutions as introdu
ed in [13℄for the study of the transport equation for velo
ity �elds tangent to the boundary
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on
ept was used to study problem (1) with usual boundary
onditions (periodi
 or homogeneous Diri
hlet) in [10, 11, 16℄ for instan
e.Theorem 1 (Tra
e theorem). Let v ∈ L1(]0, T [, (W 1,1(Ω))d) su
h that div v = 0and (v · ν) ∈ Lδ(]0, T [×Γ) for some δ > 1. Then, any weak solution (in thedistribution sense) ρ ∈ L∞(]0, T [×Ω) of the transport equation
∂tρ+ v · ∇ρ = 0, (9)lies in C0([0, T ], Lq(Ω)) for any q ∈ [1,+∞[. Furthermore, there exists a unique

γ(ρ) in L∞(]0, T [×Γ, |v · ν| dt dω) (
alled the tra
e of ρ) su
h that for any ϕ ∈
C1([0, T ] × Ω) and any [t1, t2] ⊂ [0, T ] we have
∫ t2

t1

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx +

∫

Ω

ρ(t1)ϕ(t1) dx−
∫

Ω

ρ(t2)ϕ(t2) dx

−
∫ t2

t1

∫

Γ

γ(ρ)ϕ (v · ν) dt dω = 0.Theorem 2 (Initial and boundary value problem). Let v ∈ L1(]0, T [, (W 1,1(Ω))d)su
h that div v = 0 and (v · ν) ∈ Lδ(]0, T [×Γ) for some δ > 1. For any initial data
ρ0 ∈ L∞(Ω) and any in�ow data ρin ∈ L∞(]0, T [×Γ, (v · ν)− dt dω) there exists aunique 
ouple (ρ, ρout) ∈ L∞(]0, T [×Ω)× L∞(]0, T [×Γ, (v · ν)+ dt dω) su
h that:

• ρ is a weak solution to the transport equation (9) with ρ(0) = ρ0.
• The tra
e of ρ is 
hara
terized by γ(ρ)(v · ν) = ρout(v · ν)+ − ρin(v · ν)−.Furthermore, we have the renormalization property:For any β ∈ C1(R), the 
ouple (β(ρ), β(ρout)) is the unique weak solutionto the transport equation with initial data β(ρ0) and in�ow boundary data
β(ρin).Noti
e that the initial 
ondition ρ(0) = ρ0 makes sense sin
e, by Theorem 1, weknow that any weak solution of the transport equation is 
ontinuous in time withvalues in any Lq(Ω), q ∈ [1,+∞[.Theorem 3 (L∞ estimate). Using the notations of Theorem 2, we introdu
e

ρmin = min

(
inf
Ω
ρ0, inf

]0,T [×Γ
ρin

)
, (10)

ρmax = max

(
sup
Ω
ρ0, sup

]0,T [×Γ

ρin

)
, (11)where the in�mum and supremum of ρin on ]0, T [×Γ are taken with respe
t to themeasure (v · ν)− dt dω. Then, we have

ρmin ≤ ρ(t, x) ≤ ρmax, ∀t ∈ [0, T ], for a.e. x ∈ Ω,and
ρmin ≤ ρout(t, ω) ≤ ρmax, for a.e. (t, ω) ∈]0, T [×Γ,with respe
t to the measure (v · ν)+ dt dω.
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t to the velo
ity �eld. Using the results re
alledabove 
on
erning the initial and boundary value problem for the transport equation,we 
an prove the stability of the solution with respe
t to the data v, ρ0 and ρin. Sin
ethis result is interesting for itself we give here a quite general statement applyingto more general situations than the parti
ular one addressed in this paper.Theorem 4 (Stability with respe
t to v). For any k ≥ 1, let vk ∈ L1(]0, T [, (W 1,1(Ω))d)su
h that div vk = 0 and (vk · ν) ∈ Lδ(]0, T [×Γ) for some δ > 1. We supposegiven, for any k ≥ 1, an initial data ρ0,k ∈ L∞(Ω), and an in�ow boundary data
ρin,k ∈ L∞(]0, T [×Γ). We denote by

(ρk, ρout,k) ∈ L∞(]0, T [×Ω)× L∞(]0, T [×Γ, (vk · ν)+ dt dω),the unique solution to the problem




∂tρk + vk · ∇ρk = 0,

ρk(0) = ρ0,k,

γ(ρk) = ρin,k, where (vk · ν) < 0.

(12)We assume that
• (ρ0,k)k is bounded in L∞(Ω) and strongly 
onverges towards ρ0 ∈ L∞(Ω)for the L1(Ω) topology.
• (ρin,k)k is bounded in L∞(]0, T [×Γ) and strongly 
onverges towards ρin ∈
L∞(]0, T [×Γ) for the L1(]0, T [×Γ) topology.

• (vk)k 
onverges towards v in L1(]0, T [, (L1(Ω))d), where v is supposed tobelong to L1(]0, T [, (W 1,1(Ω))d).
• (vk · ν)k strongly 
onverges towards v · ν in Lδ(]0, T [×Γ).Then, if we denote by (ρ, ρout) the solution to the transport problem asso
iated tothe ve
tor �eld v, the initial data ρ0 and the boundary data ρin, we have
• (ρk)k strongly 
onverges towards ρ in all the spa
es Lq(]0, T [×Ω), q ∈

[1,+∞[. And more pre
isely we have
ρk(t) −−−−−→

k→+∞
ρ(t), in Lq(Ω), ∀t ∈ [0, T ], ∀q ∈ [1,+∞[. (13)

•
(
γ(ρk)(vk · ν)

)
k
strongly 
onverges towards γ(ρ)(v · ν) in Lδ(]0, T [×Γ).Remark 2. Noti
e that we do not need the strong 
onvergen
e of vk towards v inthe spa
e L1(]0, T [, (W 1,1(Ω))d) but only in L1(]0, T [, (L1(Ω))d) supplemented bythe strong 
onvergen
e of the normal tra
es (vk · ν).In se
tions 5 and 6 we will use this stability result in the 
ase where (vk)k
onverges towards v weakly in L2(]0, T [, (H1(Ω))d) and strongly in (Lγ(]0, T [×Ω))dfor some γ ∈]1, 2[. These 
onvergen
es imply in parti
ular the strong 
onvergen
eof the tra
es (vk ·ν)k in some spa
e Lδ(]0, T [×Γ) as required in the assumptions ofthe theorem.Proof. Let us assume that ρ0,k and ρin,k are non-negative for any k. This is notrestri
tive sin
e it is always possible to add a 
onstant to all the data without
hanging the 
onvergen
e properties in the statement of the Theorem.

• We �rst re
all that ρout,k is uniquely determined only on the part of theboundary where vk · ν > 0. Hen
e, for simpli
ity, we impose in the sequel
ρout,k = 0 on the part of ]0, T [×Γ where vk · ν ≤ 0.
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es (ρ0,k)k and (ρin,k)k being bounded in L∞ we know byTheorem 3 that (ρk)k is bounded in L∞(]0, T [×Ω) and that (ρout,k)k isbounded in L∞(]0, T [×Γ). Therefore, we 
an extra
t subsequen
es, alwaysdenoted by (ρk)k and (ρout,k)k whi
h ⋆-weakly 
onverge respe
tively in
L∞(]0, T [×Ω) and L∞(]0, T [×Γ).Using these weak 
onvergen
es and the assumptions 
on
erning the 
on-vergen
e of the sequen
es (ρ0,k)k, (ρin,k)k and (vk)k we see that for anytest fun
tion ϕ ∈ C1([0, T ] × Ω) we 
an perform the limit in the weak for-mulation of the problem (12). We �nd that the weak limits of (ρk)k and
(ρout,k)k satisfy the weak formulation for the transport problem asso
iatedto the velo
ity �eld v, the initial data ρ0 and the in�ow boundary data ρin.By Theorem 2, (ρ, ρout) is the unique 
ouple satisfying this formulation.Hen
e, we proved that

ρk −−−−−⇀
k→+∞

ρ, in L∞(]0, T [×Ω) ⋆-weak,, (14)
ρout,k −−−−−⇀

k→+∞
ρout, in L∞(]0, T [×Γ, (v · ν)+dt dω) ⋆-weak. (15)Sin
e ρ is unique, the 
onvergen
e (14) holds in fa
t for the whole sequen
e

(ρk)k and not only for a subsequen
e. As far as the out�ow boundary termis 
on
erned the situation is slightly di�erent sin
e ρout is only uniquelyde�ned on the set where v · ν > 0. Nevertheless, we obtain that the wholesequen
e of the tra
es (γ(ρk))k satis�es the weak 
onvergen
e
γ(ρk)(vk · ν) −−−−−⇀

k→+∞
γ(ρ)(v · ν), in Lδ(]0, T [×Γ) weak. (16)Finally, performing the limit in the weak formulation satis�ed by ρk, it iseasily seen that

ρk(t) −−−−−⇀
k→+∞

ρ(t), in Lδ(Ω) weak, for any t ∈ [0, T ]. (17)
• Our goal is now to prove that the above 
onvergen
es hold in fa
t for thestrong topologies.We use here the renormalization property given by Theorem 2. It im-plies in parti
ular that, for any k, (ρδ

k, ρ
δ
out,k) is the unique solution to thetransport problem (12) with initial data ρδ

0,k and in�ow boundary data
ρδ
in,k. Using the 
onvergen
e assumptions on the data, we easily see thatthe sequen
es (ρδ

0,k)k and (ρδ
in,k)k are bounded in L∞ and 
onverge stronglytowards ρδ

0 in L1(Ω) and towards ρδ
in in L1(]0, T [×Γ) respe
tively.Furthermore, using on
e more the renormalization property, we knowthat the solution to the transport problem asso
iated to the limit ve
tor�eld v and to the data ρδ

0 and ρδ
in is unique and given by (ρδ, ρδ

out). Hen
e,we 
an apply the argument of the �rst point of the proof to obtain the weak
onvergen
es
ρδ

k −−−−−⇀
k→+∞

ρδ, in L∞(]0, T [×Ω) ⋆-weak,, (18)
γ(ρk)δ(vk · ν) −−−−−⇀

k→+∞
γ(ρ)δ(v · ν), in Lδ(]0, T [×Γ) weak. (19)
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onvergen
e (18) imply in parti
ular that
‖ρk‖δ

Lδ(]0,T [×Ω) =

∫ T

0

∫

Ω

ρδ
k dt dx

−−−−−→
k→+∞

∫ T

0

∫

Ω

ρδ dt dx = ‖ρ‖δ
Lδ(]0,T [×Ω),and we dedu
e that the 
onvergen
e of (ρk)k towards ρ is strong in the spa
e

Lδ(]0, T [×Ω). Using (14) it follows that this strong 
onvergen
e holds infa
t in any Lq(]0, T [×Ω), q ∈ [1,+∞[.By assumption, (vk ·ν)k strongly 
onverges towards v ·ν in Lδ(]0, T [×Γ).It follows that
|vk · ν|δ−2(vk · ν) −−−−−→

k→+∞
|v · ν|δ−2(v · ν), in L δ

δ−1 (]0, T [×Γ). (20)Hen
e, using (19) and (20), we have
‖γ(ρk)(vk · ν)‖δ

Lδ(]0,T [×Γ) =

∫ T

0

∫

Γ

γ(ρk)δ(vk · ν)

(
|vk · ν|δ−2(vk · ν)

)
dt dω

−−−−−→
k→+∞

∫ T

0

∫

Γ

γ(ρ)δ(v · ν)

(
|v · ν|δ−2(v · ν)

)
dt dω

= ‖γ(ρ)(v · ν)‖δ
Lδ(]0,T [×Γ).Therefore, we have shown the 
onvergen
e of the Lδ norm of (γ(ρk)(vk ·ν))ktowards the one of γ(ρ)(v · ν) whi
h, using the weak 
onvergen
e (16),implies the strong 
onvergen
e announ
ed.

• It remains to prove (13). Let t ∈ [0, T ] be �xed. Using the renormalizationproperty with β(s) = sδ for any k and taking ϕ = 1 as a test fun
tion inthe weak formulation we get
∫

Ω

ρδ
k(t) dx =

∫

Ω

ρδ
0,k dx−

∫ t

0

∫

Γ

γ(ρk)δ(vk · ν) dt dω.By using the strong 
onvergen
es proved above, we 
an perform the limitin the right-hand side and we get that
∫

Ω

ρδ
k(t) dx −−−−−→

k→+∞

∫

Ω

ρδ
0 dx−

∫ t

0

∫

Γ

γ(ρ)δ(v · ν) dt dω =

∫

Ω

ρδ(t) dx.Noti
e that the last equality 
omes from the renormalization property ap-plied to the limit transport problem satis�ed by ρ. Hen
e, this provesthat ‖ρk(t)‖Lδ(Ω) 
onverges towards ‖ρ(t)‖Lδ(Ω) and then, using the weak
onvergen
e (17) the 
laim is proved.
�3. Weak formulations of the Navier-Stokes problemWe des
ribe here the weak formulations of the problem (1)-(2) we deal with inthis paper. In this se
tion we only give formal 
omputations that will be justi�edin Se
tion 5 on the approximate problem.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 113.1. The 
ontinuity equation. Following Theorem 2 (see the details in [4℄), thenatural weak formulation of the transport equation is
∫ T

0

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx+

∫

Ω

ρ0ϕ(0, .) dx

−
∫ T

0

∫

Γ

ρoutϕ(v · ν)+ dt dω +

∫ T

0

∫

Γ

ρinϕ(v · ν)− dt dω = 0, (21)for any ϕ ∈ C1
c ([0, T [, H1(Ω)).3.2. The momentum balan
e equation. As usual it is possible, at least at aformal level, to 
onsider the equivalent non-
onservative or 
onservative weak for-mulation for the momentum balan
e equation. In this se
tion we present these twoformulations but also a third one, 
alled intermediate. As we will see later, thenon-
onservative formulation is useful to express the problem (more pre
isely theapproximate problem that we will introdu
e) as a �nite dimensional ordinary dif-ferential equation. The intermediate one is used to obtain the energy estimate andthe 
onservative formulation is the one whi
h does not involve the time derivativeof the velo
ity, so that it will be easier to perform the limit in the approximateproblem.3.2.1. Non-
onservative formulation. Let us introdu
e ṽ = v − vref . The non-
onservative formulation reads

∫

Ω

ρ
(
∂tv + ((v · ∇)v)

)
· ψ dx+

∫

Ω

2µ(ρ)D(v) : D(ψ) dx − 〈σref .ν, ψ〉
H

−
1

2 ,H
1

2

+
1

2

∫

Γ

ρin(ṽ · ψ)(v · ν)− dω =

∫

Ω

ρf · ψ dx, ∀t ∈ [0, T ], (22)for any ψ ∈ V whi
h does not depend on t, with the initial data ṽ(0) = ṽ0 =
v0 − vref(0).3.2.2. Intermediate formulation. Consider ψ ∈ C1

c ([0, T [, V ) and let us take ϕ =
1
2 (ṽ · ψ) in (21). We get
∫ T

0

∫

Ω

ρ

(
1

2
∂tṽ · ψ +

1

2
ṽ · ∂tψ +

1

2
(v · ∇)(ṽ · ψ)

)
dt dx+

1

2

∫

Ω

ρ0ṽ0 · ψ(0) dx

− 1

2

∫ T

0

∫

Γ

ρout(ṽ · ψ)(v · ν)+ dt dω +
1

2

∫ T

0

∫

Γ

ρin(ṽ · ψ)(v · ν)− dt dω = 0. (23)We now take ψ depending on t in (22) and we integrate with respe
t to t, then wesubtra
t (23) and we get:
∫ T

0

∫

Ω

ρ

(
1

2
∂tṽ · ψ − 1

2
∂tψ · ṽ +

1

2
((v · ∇)ṽ) · ψ − 1

2
((v · ∇)ψ) · ṽ

)
dt dx

− 1

2

∫

Ω

ρ0ṽ0 · ψ(0) dx +

∫ T

0

∫

Ω

2µ(ρ)D(v) : D(ψ) dt dx −
∫ T

0

〈σref .ν, ψ〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

∫

Γ

ρout(ṽ · ψ)(v · ν)+ dt dω =

∫ T

0

∫

Ω

ρ

(
f − ∂tvref − ((v · ∇)vref)

)
· ψ dt dx.(24)



12 FRANCK BOYER AND PIERRE FABRIEThis formulation will be useful to obtain the energy estimate (formally by taking
ψ = ṽ) sin
e the �rst term is antisymmetri
 and vanishes when ψ = ṽ.3.2.3. Conservative formulation. We 
an now obtain a third weak formulation ofthe momentum balan
e equation whi
h is the �
onservative� form of the problem,and whi
h is in fa
t the one that will be solved. For any ψ ∈ C1

c ([0, T [, V ) we take
ϕ = (v · ψ) in (21) to obtain
∫ T

0

∫

Ω

ρ (∂tv · ψ + v · ∂tψ + (v · ∇)(v · ψ)) dt dx+

∫

Ω

ρ0v0 · ψ(0) dx

−
∫ T

0

∫

Γ

ρout(v · ψ)(v · ν)+ dt dω +

∫ T

0

∫

Γ

ρin(v · ψ)(v · ν)− dt dω = 0. (25)We integrate (22) on the time interval [0, T ] and we subtra
t (25). It follows
−
∫ T

0

∫

Ω

ρv ·
(
∂tψ + ((v · ∇)ψ)

)
dt dx−

∫

Ω

ρ0v0 · ψ(0) dx

+

∫ T

0

∫

Ω

2µ(ρ)D(v) : D(ψ) dt dx −
∫ T

0

〈σref .ν, ψ〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

∫

Γ

ρin(ṽ · ψ)(v · ν)− dt dω +

∫ T

0

∫

Γ

γ(ρ)(v · ψ)(v · ν) dt dω

=

∫ T

0

∫

Ω

ρf · ψ dt dx. (26)4. Main resultsThe main results of this paper are des
ribed in this se
tion. First of all, we showthe existen
e of the density ρ and velo
ity v satisfying the 
onservative formulationof the problem introdu
ed above.Theorem 5. Under the assumptions stated in Se
tion 1.3, there exists a density ρin L∞(]0, T [×Ω), and a velo
ity �eld v in L2(]0, T [, (H1(Ω))d) su
h that div v = 0and v = vref on Γin and satisfying (21) and (26).Then, we dedu
e the existen
e of the pressure term via the de Rham theorem.We obtain a triple (ρ, v, p) satisfying the Navier-Stokes equation in the distributionsense.Then, we are able to prove that the out�ow boundary 
ondition on Γout in (2)is satis�ed. This is not obvious sin
e ρ is not smooth and does not have tra
es inthe usual Sobolev sense. The pre
ise result is given by Theorem 7 in Se
tion 7 butat this point we only state the following formal result. We use here the notationsof Se
tion 2.1.Theorem 6. Let ρ and v given by Theorem 5. There exists a unique pressure �eld
p ∈ W−1,∞(]0, T [, L2(Ω)) su
h that the total stress tensor σ = 2µ(ρ)D(v) − p Idsatis�es

∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf,in the distribution sense, and su
h that furthermore the out�ow boundary 
onditionin (2) is satis�ed in the sense
1

η

∫ η

0

σ(·, ξ, ·).ν dξ −−−⇀
η→0

σref .ν − 1

2
ρin(v · ν)−(v − vref), on Γout.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 13That is to say that the mean values along the normal 
oordinate of the normal
omponent of the stress σ.ν near the boundary 
onverges towards the imposed stress
σref .ν − 1

2ρin(v · ν)−(v − vref) on Γout in a suitable weak topology.5. Approximate problem5.1. De�nition. For any integer k ≥ 1, let Vk be a k-dimensional Galerkin ap-proximation spa
e in V and (ηk)k a smooth approximation of the identity in thetime variable. We introdu
e approximations of the data de�ned by:
ρin,k = ρin ⋆ ηk +

1

k
, ρ0,k = ρ0 +

1

k
,

vref,k = vref ⋆ ηk, σref,k = σref ⋆ ηk, fk = f ⋆ ηk.
(27)Hen
e, ρin,k, vref,k, σref,k and fk are 
ontinuous in time and furthermore ρ0,k and

ρin,k are bounded from below by 1
k
, sin
e ρ0 and ρin are non-negative.Let us 
onsider the following approximate problem :Find ṽk ∈ C1([0, T ], Vk), ρk ∈ C0([0, T ], L1(Ω)) ∩ L∞(]0, T [×Ω) and ρout,k ∈

L∞(]0, T [×Γ) su
h that if we introdu
e vk = vref,k + ṽk:(1) The 
ouple (ρk, vk) is solution to (21) for any ϕ ∈ C1
c ([0, T [, H1(Ω)) withinitial data ρ0,k and in�ow boundary 
ondition ρin,k.(2) The 
ouple (ρk, vk) is solution to (22) with regularized data for any ψ ∈ Vk.If (ρk, vk) is su
h an approximate solution then, it also satis�es the equivalent for-mulations (24) and (26) for any ψ ∈ C1([0, T ], Vk), with regularized data. Indeed,the formal 
omputations of Se
tion 3 are now justi�ed sin
e the approximate solu-tions are smooth enough.Noti
e that the approximate density ρk does not lie in a �nite dimension spa
eand then the resolution of the approximate problem is not a straightforward 
on-sequen
e of the ordinary di�erential equations theory.5.2. Resolution of the approximate problem. The resolution of the approxi-mate problem is performed using a �xed point method (see for instan
e [5, 16℄).Let wk ∈ vref,k +C0([0, T ], Vk) be given and 
onsider the equations (21)-(22) withregularized data and where the adve
tion �eld is taken to be wk instead of v, thatis

∫ T

0

∫

Ω

ρk(∂tϕ+ wk · ∇ϕ) dt dx+

∫

Ω

ρ0,kϕ(0, ·) dx −
∫

Ω

ρk(T )ϕ(T ) dx

−
∫ T

0

∫

Γ

ρout,kϕ(wk · ν)+ dt dω +

∫ T

0

∫

Γ

ρin,kϕ(wk · ν)− dt dω = 0, (28)for any ϕ ∈ C1([0, T ], H1(Ω)) and
∫

Ω

ρk(∂tvk + (wk · ∇)vk) · ψ dx+

∫

Ω

2µ(ρk)D(vk) : D(ψ) dx

−〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
+

1

2

∫

Γ

ρin,k(ṽk ·ψ)(wk ·ν)− dω =

∫

Ω

ρkfk ·ψ dx, ∀0 ≤ t ≤ T,(29)for any ψ ∈ Vk and with the initial data ṽk(0) = PVk
ṽ0 = PVk

(v0 − vref), PVk
beingthe orthogonal proje
tor in H onto Vk.
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tor �eld wk being �xed in vref,k + C0([0, T ], Vk) ⊂ L2(]0, T [, (H1(Ω))d),we know by Theorem 2 that (28) has a unique weak solution
(ρk, ρout,k) ∈ L∞(]0, T [×Ω) × L∞(]0, T [×Γ, (wk · ν)+ dt dω).Furthermore, this solution enjoys the renormalization property and, in parti
ular,

ρk is 
ontinuous with respe
t to t and with values in Lq(Ω) for any q ∈ [1,+∞[.Even though ρout,k is only uniquely de�ned on the part of boundary where (wk ·ν) >
0, it is 
onvenient for the analysis to extend it to the whole boundary by letting
ρout,k = 0 where (wk · ν) ≤ 0.By using Theorem 3 we dedu
e the �rst useful estimate on (ρk, ρout,k).Lemma 1. We de�ne ρmin and ρmax by (10)-(11). For any k we have

ρmin +
1

k
≤ ρk(t, x) ≤ ρmax +

1

k
, for a.e. (t, x) ∈]0, T [×Ω,and

ρmin +
1

k
≤ ρout,k(t, ω) ≤ ρmax +

1

k
, for a.e. (t, ω) ∈]0, T [×Γ,with respe
t to the measure (wk · ν)+ dt dω.In parti
ular, for any k, ρk ≥ 1

k
> 0 and then, (ρk, ρout,k) being �xed, the equa-tion (29) for vk is now a 
lassi
al �nite dimensional ordinary di�erential equationsin
e the regularized data are 
ontinuous with respe
t to the time variable. Further-more, the adve
tion velo
ity �eld wk being �xed, the system is linear. Using theCau
hy theorem, there exists a unique (global) solution vk ∈ vref,k + C1([0, T ], Vk)to this problem for the given approximate initial data. We denote this solution by

vk = Θk(wk). We are now going to show that the map Θk has a �xed point in asuitable spa
e.Before this, let us observe that, the solutions ρk, vk of (28) and (29) being smoothenough, we 
an justify the algebrai
 manipulations of se
tion 3 so that we have forany ψ ∈ C1([0, T ], Vk)

∫ T

0

∫

Ω

ρk

(
1

2
∂tṽk · ψ − 1

2
∂tψ · ṽk +

1

2
((wk · ∇)ṽk) · ψ − 1

2
((wk · ∇)ψ) · ṽk

)
dt dx

+
1

2

∫

Ω

ρk(T )ṽk(T ) · ψ(T ) dx− 1

2

∫

Ω

ρ0,kṽ0,k · ψ(0) dx−
∫ T

0

〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
dt

+

∫ T

0

∫

Ω

2µ(ρk)D(vk) : D(ψ) dt dx+
1

2

∫ T

0

∫

Γ

ρout,k(ψ · ṽk)(wk · ν)+ dt dω

=

∫ T

0

∫

Ω

ρk

(
fk − ∂tvref,k − ((wk · ∇)vref,k)

)
· ψ dt dx. (30)
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−
∫ T

0

∫

Ω

ρkvk ·
(
∂tψ + ((wk · ∇)ψ)

)
dt dx−

∫

Ω

ρ0,kv0,k · ψ(0) dx+

∫

Ω

ρk(T )vk(T ) · ψ(T ) dx

+

∫ T

0

∫

Ω

2µ(ρk)D(vk) : D(ψ) dt dx−
∫ T

0

〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

∫

Γ

ρin,k(ṽk · ψ)(wk · ν)− dt dω +

∫ T

0

∫

Γ

γ(ρk)(vk · ψ)(wk · ν) dt dω

=

∫ T

0

∫

Ω

ρkfk · ψ dt dx. (31)By taking ϕ = (ψ ·vref,k) as a test fun
tion in (28) we also get the following equationsatis�ed by ṽk

−
∫ T

0

∫

Ω

ρk

(
ṽk · ∂tψ + ((wk · ∇)ψ) · ṽk

)
dt dx

+

∫

Ω

ρk(T )(ṽk(T ) · ψ(T )) dx−
∫

Ω

ρ(0)(ṽ0,k · ψ(0)) dx

+

∫ T

0

∫

Ω

2µ(ρk)D(vk) : D(ψ) dt dx −
∫ T

0

〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
dt

− 1

2

∫ T

0

∫

Γ

ρin,k(ṽk · ψ)(wk · ν)− dt dω +

∫ T

0

∫

Γ

ρout,k(ṽk · ψ)(wk · ν)+ dt dω

=

∫ T

0

∫

Ω

ρk

(
fk − ∂tvref,k − ((wk · ∇)vref,k)

)
· ψ dt dx.

(32)
This equation will be useful to obtain time translation estimates in the sequel.5.2.1. Energy estimate. Consider wk ∈ vref,k + C0([0, T ], Vk) and vk = Θk(wk) asde�ned previously. Let us 
hoose ψ = ṽk = vk − vref,k as a test fun
tion in (30), itfollows
1

2

∫

Ω

ρk(T )|ṽk(T )|2 dx+

∫ T

0

∫

Ω

2µ(ρk)|D(ṽk)|2 dt dx+
1

2

∫ T

0

∫

Γ

ρout,k|ṽk|2(wk · ν)+ dt dω

=
1

2

∫

Ω

ρ0,k|ṽ0,k|2 dx−
∫ T

0

∫

Ω

2µ(ρk)D(ṽk) : D(vref,k) dt dx

+

∫ T

0

〈σref,k.ν, ṽk〉
H

−
1

2 ,H
1

2
dt−

∫ T

0

∫

Ω

ρk((wk · ∇)vref,k) · ṽk dt dx

−
∫ T

0

∫

Ω

ρk∂tvref,k · ṽk dt dx+

∫ T

0

∫

Ω

ρkfk · ṽk dt dx.



16 FRANCK BOYER AND PIERRE FABRIEUsing the L∞ bound on ρk given by Lemma 1, assumption (7) and Hölder andYoung's inequalities, we 
lassi
ally dedu
e the estimate
∫

Ω

ρk(T )|ṽk(T )|2 dx+
∫ T

0

∫

Ω

2µ(ρk)|D(ṽk)|2 dt dx+
∫ T

0

∫

Γ

ρout,k|ṽk|2(wk·ν)+ dt dω

≤ C(ρ0, v0, µ, ‖vref‖L2(H1), ‖f‖L2(L2), ‖σref‖
L2(H−

1

2 )
, ‖∂tvref‖L2(L2))

+ C(ρmax, µ)

(∫ T

0

‖vref,k‖4
H1(Ω)‖

√
ρkwk‖2

L2 dt

) 1

2
(∫ T

0

∫

Ω

|∇wk|2 dt dx
) 1

2

,where we emphasize that the 
onstants C above do not depend on k. Hen
e, sin
e
vk = vref,k + ṽk and using (5) we dedu
e
∫

Ω

ρk(T )|vk(T )|2 dx+
∫ T

0

∫

Ω

µ(ρk)|D(vk)|2 dt dx+
∫ T

0

∫

Γ

ρout,k|ṽk|2(wk·ν)+ dt dω

≤ C(ρ0, v0, µ, ‖vref‖L2(H1), ‖f‖L2(L2), ‖σref‖
L2(H−

1

2 )
, ‖∂tvref‖L2(L2))

+ C(ρmax, µ)

(∫ T

0

‖vref,k‖4
H1(Ω)‖

√
ρk wk‖2

L2 dt

) 1

2
(∫ T

0

∫

Ω

|∇wk|2 dt dx
) 1

2

,(33)We now use the fa
t that, k being �xed, vref,k belongs to L∞(]0, T [, (H1(Ω))d).Furthermore on the �nite dimensional spa
e Vk, the H1(Ω) norm is equivalent tothe L2(Ω) norm so that it follows from (33)
‖vk(T )‖2

L2 ≤ Ck +Dk

∫ T

0

‖wk(t)‖2
L2 dt,where the 
onstants Ck and Dk depend on k.The above estimate applies for any �nal time T > 0 so that we have in fa
t

‖vk(t)‖2
L2 ≤ Ck +Dk

∫ t

0

‖wk(s)‖2
L2 ds, ∀t ∈ [0, T ]. (34)Let us introdu
e

Mk(t) = Cke
Dkt, ∀t ≥ 0.Suppose that we have

‖wk(t)‖2
L2 ≤Mk(t), ∀t ∈ [0, T ],then, using (34) we dedu
e

‖vk(t)‖2
L2 ≤Mk(t), ∀t ∈ [0, T ].Hen
e, we proved that Θk maps the 
onvex set

K0 =

{
v ∈ vref,k + C1([0, T ], Vk), su
h that ‖v(t)‖2

L2 ≤Mk(t), ∀t ∈ [0, T ]

}
,into itself. Noti
e in parti
ular that the elements of K0 are uniformly bounded in

L∞(]0, T [, (L2(Ω))d) by a 
onstant depending only on k, on the data and on the�nal time T . Moreover, sin
e Vk is a �nite dimensional subspa
e of (H1(Ω))d, the
L2-norm and the H1-norm are equivalent on Vk and then the set K0 is also boundedin L∞(]0, T [, (H1(Ω))d) sin
e vref,k ∈ L∞(]0, T [, (H1(Ω))d).
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tness. Let wk ∈ K0 and vk = Θk(wk). We take ψ = ∂tṽk in (29).Sin
e all the norms in Vk are equivalent and using the fa
t that ∂tvref,k lies in
L2(]0, T [×Ω), we easily get a bound

sup
0≤t≤T

‖∂tṽk‖Vk
≤ C′

k,where C′
k depends only on T, k and on the data. Of 
ourse, we used here that theapproximate density ρk is bounded from below by 1

k
.As a 
onsequen
e, the 
onvex set

K1 =

{
v ∈ K0, sup

0≤t≤T

‖∂tṽ‖Vk
≤ C′

k

}
,is invariant through the map Θk. Using the As
oli theorem, we know that the set

K1 is relatively 
ompa
t in vref,k + C0([0, T ], Vk). In order to apply the S
hauder�xed point theorem to the map Θk on the 
ompa
t 
onvex set K1, it remains toshow that Θk is 
ontinuous for the topology of vref,k + C0([0, T ], Vk). In fa
t it isenough to show that Θk is sequentially 
ontinuous.5.2.3. Continuity of Θk. Re
all that k is a �xed integer. Let (wn
k )n we a sequen
ein vref,k + C0([0, T ], Vk) whi
h 
onverges towards wk in this spa
e. For any n let

(ρk,n, ρout,k,n) be the solution to the transport problem (28) with wk = wn
k and let

(ρk, ρout,k) the solution to (28) for the limit velo
ity �eld wk.Sin
e Vk is embedded in (H1(Ω))d, the sequen
e (wn
k )n strongly 
onverges in

C0([0, T ], (H1(Ω))d). In parti
ular, the tra
es (wn
k ·ν)n 
onverge towards (wk ·ν) in

L2(]0, T [×Γ). Hen
e, by the stability Theorem 4 we dedu
e that (ρk,n)n strongly
onverges towards ρk in all the spa
es Lq(]0, T [×Ω) and that (ρout,k,n(wn
k · ν)+)nstrongly 
onverges towards ρout,k(wk · ν)+ in L2(]0, T [×Γ).Finally, sin
e µ is a bounded 
ontinuous fun
tion, we dedu
e that (µ(ρk,n))n
onverges towards µ(ρk) in all the spa
es Lq(]0, T [×Ω), q < +∞.Let us now 
onsider the solution vn

k to (29) for the adve
tion ve
tor �eld wn
k andthe density ρk,n 
onstru
ted above. Sin
e (wn

k )n is bounded in C0([0, T ], (H1(Ω))d),the energy estimate (33) leads to
‖vn

k ‖C0([0,T ],(L2(Ω))d) ≤ Ck, ∀n ≥ 0,and we also easily get that
‖∂tv

n
k ‖C0([0,T ],(L2(Ω))d) ≤ C′

k, ∀n ≥ 0.Using the As
oli theorem, there exists a subsequen
e always denoted by (vn
k )nwhi
h strongly 
onverges towards a limit vk in the spa
e vref,k+C0([0, T ], Vk), and inparti
ular strongly in C0([0, T ], (H1(Ω))d). Furthermore, up to another extra
tionof a subsequen
e, (∂tv

n
k )n ⋆-weakly 
onverges towards ∂tvk in L∞(]0, T [, Vk).Thanks to the 
onvergen
es obtained above, we 
an perform the limit in theequation satis�ed by vn
k . We obtain that ρk, vk, wk and ρout,k satisfy (29) and also(31). Sin
e the solution to (31) is unique as soon as ρk, ρout,k and wk are �xedwe dedu
e that the whole sequen
e (vn

k )n 
onverges in C0([0, T ], (H1(Ω))d) towards
vk = Θk(wk).This 
on
ludes the proof of the 
ontinuity of the map Θk.
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lusion. We just proved that Θk is a 
ontinuous map from vref,k +

C0([0, T ], Vk) into itself and that the 
onvex 
ompa
t set K1 is invariant by Θk.Thanks to the S
hauder �xed point theorem, we �nd that there exists at least one�xed point vk of Θk into K1.Hen
e, there exists at least one solution to the approximate problem under study.Furthermore, this solution (ρk, vk) being 
ontinuous in time, it also satis�es all theequivalent weak formulations of the momentum balan
e equation.In the following se
tion, we are going to provide uniform estimates with respe
tto k for this approximate solution whi
h let us perform the limit when k goes toin�nity.6. Estimates for the approximate solution and proof of Theorem 56.1. Energy estimate. Sin
e we have vk = Θk(vk), the inequality (33) providesa �rst useful inequality whi
h implies, using the Gronwall lemma and assumption(5), the estimate
‖√ρkvk‖2

L∞(]0,T [,L2)+‖vk‖2
L2(]0,T [,H1)+

∫ T

0

∫

Γ

ρout,k|vk|2(vk ·ν)+ dt dω ≤ C0, (35)where C0 depends only on the data and the �nal time T , and in parti
ular is uniformwith respe
t to k. Noti
e that we used here the Korn inequality whi
h says thatthere exists C > 0 su
h that
‖∇u‖L2(Ω) ≤ C‖D(u)‖L2(Ω), ∀u ∈ (H1

in(Ω))d, divu = 0.6.2. Additional estimates on ρk and vk. Sin
e ρk may vanish we do not havea 
lassi
al L∞(]0, T [, (L2(Ω))d) estimate on the velo
ity �eld vk from the energyestimate (35). Nevertheless, using (3) and (4), we 
an obtain estimates on vk andon its tra
e in spa
es with time integrability index greater than 2 whi
h will bevery useful in the sequel.Lemma 2. Under the assumptions (3)-(4), there exist C1 > 0, β1, β2 ∈]2,+∞],su
h that for any k
sup

t∈[0,T ]

∫

Ω

1

ρk

α
2 (t)

dx ≤ C1. (36)
‖vk‖Lβ1(]0,T [,L1(Ω)) ≤ C1, (37)
‖vk‖Lβ2(]0,T [,L2(Γ)) ≤ C1. (38)Proof. Let k being �xed.

• Using Lemma 1 we know that ρk is bounded from below by 1
k
. Let βk ∈

C1(R) su
h that βk(s) = s−
α
2 for any s ≥ 1

k
. Using the renormalizationproperty given in Lemma 2 we know that (βk(ρk), βk(ρout,k)) is solution tothe transport equation with initial data βk(ρ0,k) and in�ow data βk(ρin,k).It follows that for any t ∈ [0, T ]

∫

Ω

βk(ρk(t)) dx+

∫ t

0

∫

Γ

βk(ρout,k)(vk · ν)+ dt dω

=

∫

Ω

βk(ρ0,k) dx+

∫ t

0

∫

Γ

βk(ρin,k)(vk · ν)− dt dω,
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∫

Ω

1

ρk(t)
α
2

dx ≤
∫

Ω

1

ρ0,k

α
2

dx+

∫ t

0

∫

Γ

(ρin ⋆ ηk)−
α
2 (vk · ν)− dt dω

≤ ‖ρ0‖
α
2

L∞

∫

Ω

1

ρ0
α
dx

+ ‖(ρin ⋆ ηk)−
α
2 ‖L2(]0,T [,L2(Γ))‖(vk · ν)−‖L2(]0,T [,L2(Γ)).

(39)Sin
e (vk)k is bounded in L2(]0, T [, (H1(Ω))d), we know that (vk · ν)− isbounded in L2(]0, T [, L2(Γ)). Furthermore, sin
e s 7→ s−
α
2 is 
onvex on

R
+, Jensen's inequality gives

(ρin ⋆ ηk)−
α
2 ≤ (ρin

−α
2 ) ⋆ ηk.Then, by assumptions (3) and (4) and using Young's inequality, we see thatthe right-hand side of (39) is bounded. This proves the �rst point of thelemma.

• We �rst assume that α ≥ 2, then we write |vk| = (
√
ρk|vk|) 1√

ρ
k

. Using (35),the �rst fa
tor is bounded in L∞(]0, T [, L2(Ω)) and using (36) the se
ondfa
tor is bounded in L∞(]0, T [, Lα(Ω)). By using Hölder's inequality, we�nd that (37) holds with β1 = +∞ in that 
ase.
• We assume now that α < 2 and let β = 5α

2α+6 ∈]0, 1[. We write
|vk| =

(
ρk

β
2 |vk|β

)
|vk|1−βρk

− β
2 . (40)Using (35), one 
an see that the �rst fa
tor is bounded in L∞(]0, T [, L

2

β (Ω))and that (vk)k is bounded in L2(]0, T [, (H1(Ω))d)) ⊂ L2(]0, T [, (L6(Ω))d).Hen
e, the fa
tor |vk|1−β in (40) is bounded in L 2

1−β (]0, T [, L
6

1−β (Ω)). Fi-nally, using (36), we see that the third fa
tor in (40) is bounded in thespa
e L∞(]0, T [, L
α
β (Ω)). Hen
e, we �nd that (37) holds with β1 = 4(α+3)

3(2−α)in that 
ase.
• We re
all that there exists C > 0 su
h that

‖u‖L2(Γ) ≤ C‖u‖
1

2

L2(Ω)‖u‖
1

2

H1(Ω), ∀u ∈ H1(Ω).Using interpolation properties between Lebesgue spa
es on bounded do-mains and the embedding of H1(Ω) into L6(Ω) as soon as d ≤ 3, we have
‖u‖L2(Γ) ≤ C‖u‖

1

5

L1(Ω)‖u‖
4

5

H1(Ω), ∀u ∈ H1(Ω). (41)From (35) and (37) we know that (vk)k is bounded in L2(]0, T [, (H1(Ω))d)and in Lβ1(]0, T [, (L1(Ω))d). Hen
e, applying (41) with u = vk, we obtainthe bound (38) with β2 = 5β1

2β1+1 > 2.
�6.3. Time translations estimates. In order to perform the limit in the approxi-mate problem, it is ne
essary to prove some 
ompa
tness property for the sequen
e

(vk)k. As in [21℄ for instan
e, this 
ompa
tness property will follow from fra
tionaltime derivatives and more pre
isely from time translations estimates.



20 FRANCK BOYER AND PIERRE FABRIELet us denote by τh, h > 0, the time translation operator de�ned for any Bana
hspa
e X and any u ∈ L1
loc(]0, T [, X) by
τhu(t) = u(t+ h), ∀t ∈]0, T − h[.Lemma 3. There exist δ > 0 and C2 > 0 depending only on the data and the �naltime T , su
h that for any k ≥ 0 and any h > 0, we have

‖√τhρk(τhṽk − ṽk)‖L2(]0,T−h[,(L2(Ω))d) ≤ C2h
δ. (42)Proof. Let us �rst write the following identity

τhρk(τhṽk − ṽk) · (τhṽk − ṽk) =(τh(ρkṽk) − ρkṽk) · (τhṽk − ṽk)

−
(

(τhρk − ρk)ṽk

)
· (τhṽk − ṽk) = A+B.

(43)
• Estimate of the term A :Consider Ψ(t, x) ∈ C1([0, T ], Vk) and let us introdu
e ψ(t, x) = 1[s,s+h](t)Ψ(s, x).We use ψ(t, x) as a test fun
tion in the 
onservative formulation (32) where were
all that wk = vk. This 
omputation is allowed sin
e ρk and ṽk are 
ontinuouswith respe
t to the time variable. We get
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · Ψ(s) dx

=

∫ s+h

s

∫

Ω

ρk((vk · ∇)Ψ(s)) · ṽk dt dx−
∫ s+h

s

∫

Ω

2µ(ρk)D(vk) : D(Ψ(s)) dt dx

+

∫ s+h

s

〈σref,k.ν,Ψ(s)〉
H

−
1

2 ,H
1

2
dt+

1

2

∫ s+h

s

∫

Γ

ρin,k(ṽk · Ψ(s))(vk · ν)− dt dω

−
∫ s+h

s

∫

Γ

ρout,k(ṽk · Ψ(s))(vk · ν)+ dt dω

+

∫ s+h

s

∫

Ω

ρk

(
fk − ∂tvref,k − ((vk · ∇)vref,k)

)
· Ψ(s) dt dx.Using the bounds on ρk given by Lemma 1, we get

∣∣∣∣
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · Ψ(s) dx

∣∣∣∣

≤ C

(∫ s+h

s

‖√ρkvk‖L4(‖√ρk‖ṽk‖L4 + ‖∇vref,k‖L2) dt

)
‖∇Ψ(s)‖L2

+ C

(∫ s+h

s

‖∇vk‖L2 dt

)
‖∇Ψ(s)‖L2 + C

(∫ s+h

s

‖σref,k.ν‖
H

−
1

2
dt

)
‖Ψ(s)‖

H
1

2 (Γ)

+
1

2

∣∣∣∣∣

∫ s+h

s

∫

Γ

ρin,k(ṽk · Ψ(s))(vk · ν)− dt dω

∣∣∣∣∣+
∣∣∣∣∣

∫ s+h

s

∫

Γ

ρout,k(ṽk · Ψ(s))(vk · ν)+ dt dω

∣∣∣∣∣

+ C

(∫ s+h

s

‖fk‖L2 + ‖∂tvref,k‖L2 dt

)
‖∇Ψ(s)‖L2.Using the energy estimate (35) and assumptions (5)-(6) we 
an easily bound all theinterior terms by Chδ‖∇Ψ(s)‖L2 (see [5, 21℄). It remains to bound the boundaryterms.
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e estimate (38), where we re
all that β2 > 2. Hen
e,using the Hölder inequality, the two boundary terms above 
an be bounded by
Ch

β2−2

2β2 ‖∇Ψ(s)‖L2 . Hen
e, for δ > 0 small enough, we �nally proved the followingestimate ∣∣∣∣
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · Ψ(s) dx

∣∣∣∣ ≤ Chδ‖∇Ψ(s)‖L2 .Now let us take Ψ(s) = τh(ṽk)(s) − ṽk(s). It follows
∣∣∣∣
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · (τh(ṽk)(s) − ṽk(s)) dx

∣∣∣∣ ≤ Chδ‖τhṽk(s)−ṽk(s)‖H1 .By integrating this inequality with respe
t to s and using (35), we get
∣∣∣∣∣

∫ T−h

0

∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · (τh(ṽk)(s) − ṽk(s)) ds dx

∣∣∣∣∣

≤ Chδ‖ṽk‖L2(0,T−h,H1) ≤ K1h
δ. (44)This is the estimate of the term A in (43).

• Estimate for the term B :Consider a given time s ∈]0, T − h[, and 
hoose a time-independent fun
tion
ϕ ∈ H1(Ω). We take (t, x) 7→ 1[s,s+h](t)ϕ(x) as a test fun
tion in (28) (this ispossible sin
e ρk is 
ontinuous in time), it follows
∫

Ω

(τhρk(s, x) − ρk(s, x))ϕ(x) dx =

∫

Ω

(∫ s+h

s

ρkvk dt

)
· ∇ϕ(x) dx +

∫ s+h

s

∫

Γ

γ(ρk)ϕ(vk · ν) dt dω.Let ψ ∈ C0([0, T ], (H1(Ω))d). We 
hoose ϕ(x) = ṽk(s, x) · ψ(s, x) in the aboveidentity. It follows, using Sobolev embeddings, tra
e theorems and Lemma 1 that :
∣∣∣∣
∫

Ω

(τhρk(s) − ρk(s))ṽk(s) · ψ(s) dx

∣∣∣∣

≤ C

(∫ s+h

s

‖vk(t)‖H1 dt

)
‖ṽk(s)‖H1‖ψ(s)‖H1

0

≤ Ch
1

2 ‖vk‖L2(]0,T [,H1)‖ṽk(s)‖H1‖ψ(s)‖H1 .

(45)We now take ψ(s) = τhṽk(s) − ṽk(s) in (45), so that integrating with respe
t to swe get
∣∣∣∣∣

∫ T−h

0

∫

Ω

(τhρk − ρk)ṽk · (τhṽk − ṽk) ds dx

∣∣∣∣∣

≤ Ch
1

2 ‖vk‖L2(]0,T [,(H1(Ω))d)‖ṽk‖2
L2(]0,T [,(H1(Ω))d) ≤ K ′

1h
1

2 . (46)Combining estimates (44) and (46) gives the 
laim thanks to (43). �Sin
e ρk is not ne
essarily bounded from below away from 0 uniformly withrespe
t to k, it is needed to use the estimates of Lemma 2 in order to dedu
etranslation estimates on ṽk from the previous Lemma.



22 FRANCK BOYER AND PIERRE FABRIELemma 4. For any γ < 2, there exists δ > 0 su
h that for any ε > 0 there exists
Cε > 0 satisfying

‖τhṽk − ṽk‖Lγ(]0,T−h[×Ω) ≤ ε+ Cεh
δ, ∀k ≥ 0, ∀h > 0.Proof. For any η > 0 we have

η
γ
2

∫ T−h

0

∫

Ω

|τhṽk − ṽk|γ dt dx ≤η γ
2

∫∫

{τhρ
k
<η}

|τhṽk − ṽk|γ dt dx

+

∫∫

{τhρ
k
≥η}

|τhρk|
γ
2 |τhṽk − ṽk|γ dt dx.It follows by using the Hölder inequality that

∫ T−h

0

∫

Ω

|τhṽk − ṽk|γ dt dx ≤
∣∣∣∣{τhρk < η}

∣∣∣∣

2−γ
2

‖τhṽk − ṽk‖γ

L2(]0,T−h[×Ω)

+
|Ω| 2−γ

2

η
γ
2

‖√τhρk(τhṽk − ṽk)‖γ

L2(]0,T−h[×Ω),where |A| denotes the Lebesgue measure of any measurable set A ⊂]0, T [×Ω. UsingPoin
aré's inequality we dedu
e from (35) a bound in L2(]0, T [, (L2(Ω))d) for ṽkwhi
h let us bound the �rst term above. We use (42) to treat the se
ond term. Itfollows
∫ T−h

0

∫

Ω

|τhṽk − ṽk|γ dt dx ≤ C

∣∣∣∣{τhρk < η}
∣∣∣∣

2−γ
2

+ C
1

η
γ
2

hδγ .The 
laim will be proved if we show that for any ε > 0 there exists η > 0 su
h that∣∣∣∣{τhρk < η}
∣∣∣∣ ≤ ε for any k and any h. To this end, we use (36) whi
h gives

∣∣∣∣{τhρk < η}
∣∣∣∣ ≤ η

α
2

∫ T

0

∫

Ω

1

ρk

α
2

dt dx ≤ η
α
2 TC0,and the 
laim is proved. �6.4. Performing the limit in the equations. From Lemma 3 and the 
om-pa
tness results by J. Simon (see [20℄) we dedu
e that the sequen
es (ṽk)k and

(vk = ṽk + vref,k)k are relatively 
ompa
t in (Lγ(]0, T [×Ω))d for any γ < 2. Sin
e
(vk)k is bounded in L2(]0, T [, (H1(Ω))d) thanks to (35), we 
an extra
t a subse-quen
e always denoted by (vk)k whi
h 
onverges weakly in L2(]0, T [, (H1(Ω))d)and strongly in all the intermediate spa
es Lγ(]0, T [, (H1−ε(Ω))d) for any γ < 2and any ε > 0. In parti
ular, the normal tra
es (vk · ν)k 
onverge towards (v · ν)in Lγ(]0, T [×Γ) for any γ < 2.Hen
e, we 
an apply the stability Theorem 4 whi
h gives us the strong 
onver-gen
e of (ρk)k towards ρ in all the spa
es Lq(]0, T [×Ω), q < +∞. Sin
e µ is abounded 
ontinuous fun
tion we get the 
onvergen
e of (µ(ρk))k towards µ(ρ) isthe same spa
es. Furthermore, the stability theorem also gives the 
onvergen
e ofthe tra
es, that is

γ(ρk)(vk · ν) −−−−−→
k→+∞

γ(ρ)(v · ν), in Lγ(]0, T [×Γ), for any γ < 2. (47)
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onvergen
es above (and the 
onvergen
e properties of the regularizeddata de�ned in (27)) let us perform the limit in all the interior terms in (31) (with
wk repla
ed by vk) without any di�
ulties.Let us now treat the boundary terms. We proved that (vk)k strongly 
on-verges towards v in Lγ(]0, T [, (H1−ε(Ω))d), for any γ < 2 and ε > 0. We dedu
e,in parti
ular, that the tra
e of vk strongly 
onverges towards the tra
e of v in
Lγ(]0, T [, (L3(Γ))d) for instan
e. Thanks to the estimate (38) (re
all that β2 > 2)and to a 
lassi
al interpolation argument, we dedu
e that there exists β > 2 su
hthat the tra
e of vk strongly 
onverges in Lβ(]0, T [, (Lβ(Γ))d). Sin
e we also have(47), it is now straightforward to perform the limit in all the boundary terms in(31).This 
on
ludes the proof of Theorem 5 sin
e the limits ρ and v obtained abovehave been proved to satisfy the weak formulations (21) and (26).7. Interpretation of the outflow boundary 
onditionLet us now prove that the arti�
ial nonlinear out�ow boundary 
ondition thatwe proposed in (2) is satis�ed in a suitable weak sense by the solution (ρ, v) of (21)and (26) that we obtained in the previous se
tion.First of all, if we restri
t (26) to test fun
tions ψ ∈ W

1,1
0 (]0, T [, (H1

0 (Ω))d)su
h that divψ = 0 then we 
an use the 
lassi
al de Rham argument (see forinstan
e [21℄) to get the existen
e of the pressure. More pre
isely, there exists p ∈
W−1,∞(]0, T [, L2

0(Ω)) su
h that, introdu
ing the stress tensor σ = 2µ(ρ)D(v)−p Id,we have
∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf, (48)in the distribution sense on ]0, T [×Ω. Noti
e that all the terms in this equationbelong to W−1,∞(]0, T [, (H−1(Ω))d) so that any element of W 1,1

0 (]0, T [, (H1
0 (Ω))d)
an be 
hosen as a test fun
tion in (48).From now on, we denote by 〈·, ·〉W−1,∞,W

1,1
0

the duality bra
ket between thespa
es W−1,∞(]0, T [) and W 1,1
0 (]0, T [).Let us �rst prove that, even though the term ρv ⊗ v is not smooth enough, we
an give a weak sense to its normal tra
e on the boundary of the domain by usingthe fa
t that ρ is the solution of the transport equation asso
iated to the velo
ity�eld v. The pre
ise result is the following.Lemma 5. For any ψ ∈ C0([0, T ], (H1(Ω))d) and any α ∈ L∞(]0, T [), we have

1

ξ

∫ T

0

α(t)

∫

Oξ

ρ(v · ψ)(v · ν) dt dx −−−→
ξ→0

∫ T

0

α(t)

∫

Γ

γ(ρ)(v · ψ)(v · ν) dt dω.Proof. We refer to Se
tion 2.1 for the de�nition of Ωξ.First of all, sin
e v ∈ L2(]0, T [, (H1(Ω))d), the 
laim follows from the results inSe
tion 7 of [4℄ in the 
ase where ψ is assumed to be smooth enough.Then, sin
e v ∈ L2(]0, T [, (H1(Ω))d), ψ ∈ C0([0, T ], (H1(Ω))d) and d ≤ 3, weeasily see that (v · ψ)(v · ν) ∈ L1(]0, T [,W 1,1(Ω)) and that
‖(v · ψ)(v · ν)‖L1(W 1,1) ≤ C‖v‖2

L2(H1)‖ψ‖C0(H1).
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e that (v · ψ)(v · ν) lies in C0([0, ξΩ], L1(]0, T [×Γ)) and its norm in thisspa
e is 
ontrolled by ‖v‖2
L2(H1)‖ψ‖C0(H1). Hen
e, using (8), for any ξ ∈ [0, ξΩ] wehave∣∣∣∣∣1ξ ∫ T

0

α(t)

∫

Oξ

ρ(v · ψ)(v · ν) dt dx

∣∣∣∣∣ ≤ C‖α‖L∞‖ρ‖L∞‖v‖2
L2(H1)‖ψ‖C0(H1).The 
laim follows by density of smooth fun
tions in C0([0, T ], (H1(Ω))d). �We now prove that, against a test fun
tion vanishing on Γ, the mean-value alongthe normal dire
tion of the normal 
omponent of the stress tensor tends to zerowhen approa
hing the boundary. This result is very natural but important sin
eit implies that, for any ψ ∈ W

1,1
0 (]0, T [, (H1(Ω))d) the limit (if it exists !) when

ξ → 0 of the quantity
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx,only depends on the tra
e of ψ on the boundary Γ.Lemma 6. For any ψ ∈W
1,1
0 (]0, T [, (H1

0 (Ω))d) we have
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx −−−→
ξ→0

0.Proof. Noti
e �rst that the 
laim makes sense sin
e σ = 2µ(ρ)D(v) + p Id belongsto W−1,∞(]0, T [, (L2(Ω))d).For any ξ ∈ [0, ξΩ], we introdu
e the fun
tion θξ de�ned by θξ = 1 on Ωξ and
θξ = d(x,Γ)

ξ
on Oξ. Hen
e, θξ ∈ W 1,∞(Ω) and ∇θξ = 0 in Ωξ, ∇θξ = − 1

ξ
ν in Oξ.Consider now ψ ∈ W

1,1
0 (]0, T [, (H1

0 (Ω))d) and, for ξ small enough, let us take
θξψ as a test fun
tion in (48). We get

−
∫ T

0

∫

Ω

θξρv · (∂tψ + (v · ∇)ψ) dt dx+

∫ T

0

1

ξ

∫

Oξ

ρ(v · ψ)(v · ν) dt dx

+

∫

Ω

θξ 〈σ,D(ψ)〉W−1,∞,W
1,1
0

dx−
∫ T

0

∫

Ω

θξρf · ψ dt dx

=
1

ξ

∫

Oξ

〈σ.ν , ψ〉
W−1,∞,W

1,1
0

dx. (49)By Lemma 5, the se
ond term tends to zero as ξ → 0 be
ause ψ vanishes on theboundary. Sin
e θξ → 1 when ξ → 0 we 
an perform the limit in the other termsof the left-hand side. It follows
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx −−−→
ξ→0

−
∫ T

0

∫

Ω

ρv · (∂tψ + (v · ∇)ψ) dt dx

+

∫

Ω

〈σ,D(ψ)〉W−1,∞,W
1,1
0

dx −
∫ T

0

∫

Ω

ρf · ψ dt dx.One 
an �nally see that this limit is zero by taking ψ as a test fun
tion in (48). �We are now able to express the limit of the mean-value along the normal dire
tionof the normal 
omponent of the stress tested against any smooth divergen
e freetest fun
tion vanishing on Γin.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 25Lemma 7. For any ψ ∈W
1,1
0 (]0, T [, V ) we have

1

ξ

∫

Oξ

〈σ.ν, ψ〉
W−1,∞,W

1,1
0

dx

−−−→
ξ→0

∫ T

0

〈σref .ν, ψ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(ṽ · ψ)(v · ν)− dt dω.Proof. Noti
e �rst that for any ξ > 0 small enough, the equality (49) also holds forany ψ ∈ W
1,1
0 (]0, T [, V ) sin
e θξψ is a suitable test fun
tion for (48). Furthermore,for this parti
ular 
hoi
e of ψ, we have

∫

Ω

θξ 〈σ,D(ψ)〉W−1,∞,W
1,1
0

dx =

∫ T

0

∫

Ω

2µ(ρ)θξD(v) : D(ψ) dt dx,sin
e divψ = 0 and then the pressure term (whi
h is the only one whi
h is notintegrable in time) is 
an
elled. Using Lemma 5 we 
an perform the limit in these
ond term in (49). It follows that
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx −−−→
ξ→0

−
∫ T

0

∫

Ω

ρv · (∂tψ + (v · ∇)ψ) dt dx

+

∫ T

0

∫

Γ

γ(ρ)(v ·ν)(v ·ψ) dt dω+

∫ T

0

∫

Ω

2µ(ρ)D(v) : D(ψ) dt dx−
∫ T

0

∫

Ω

ρf dt dx.Using now the weak formulation (26) satis�ed by ρ and v, the 
laim follows. �The nonlinear boundary 
ondition under 
onsideration in this paper is a 
ondi-tion on the normal 
omponent of the stress tensor at the boundary. In this kindof situations, the pressure is uniquely determined (see [5℄), 
ontrarily to the 
ase ofDiri
hlet boundary 
onditions where the pressure is only de�ned modulo a spa
e in-dependent term (this degree of freedom is often �xed by imposing a zero mean-value
ondition on p).Sin
e the tra
e of the test fun
tions ψ allowed in Lemma 7 are 
onstraint tosatisfy ∫
Γ
(ψ · ν)dω = 0, we will determine uniquely the pressure by removing this
onstraint. To this end we will need the following result.Lemma 8. For any Φ ∈ (H1(Ω))d there exists gΦ ∈ W−1,∞(]0, T [) su
h that, forany α ∈ W

1,1
0 (]0, T [) we have

1

ξ

∫

Oξ

〈σ.ν, αΦ〉
W−1,∞,W

1,1

0

dx −−−→
ξ→0

〈gΦ, α〉W−1,∞,W
1,1

0

.Proof. We take ψ = θξα(t)Φ as a test fun
tion in (48). It follows
−
∫ T

0

(∂tα)

(∫

Ω

θξρv · Φ dx
)
dt−

∫ T

0

α(t)

(∫

Ω

θξρv · ((v · ∇)Φ) dx

)
dt

+

∫ T

0

α(t)

(
1

ξ

∫

Oξ

ρ(v · Φ)(v · ν) dx

)
dt+

∫

Ω

θξ 〈σ, αD(Φ)〉W−1,∞,W
1,1
0

dx

−
∫ T

0

α(t)

(∫

Ω

θξρf · Φ dx
)
dt =

1

ξ

∫

Oξ

〈σ.ν, αΦ〉W−1,∞,W
1,1
0

dx.
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an perform the limit in the third term. The other terms in theleft-hand side are treated by using the Lebesgue theorem. It follows
1

ξ

∫

Oξ

〈σ.ν, αΦ〉
W−1,∞,W

1,1

0

dx −−−→
ξ→0

−
∫ T

0

(∂tα)

(∫

Ω

ρv · Φ dx
)
dt

−
∫ T

0

α(t)

(∫

Ω

ρv · ((v · ∇)Φ) dx

)
dt+

∫ T

0

α(t)

(∫

Γ

γ(ρ)(v · Φ)(v · ν) dω

)
dt

+

〈∫

Ω

σ : D(Φ) dx, α

〉

W−1,∞,W
1,1

0

−
∫ T

0

α(t)

(∫

Ω

ρf · Φ dx
)
dt.Sin
e L1(]0, T [) ⊂W−1,∞(]0, T [), the limit obtained above 
an 
learly be expressedas a duality bra
ket 〈gΦ, α〉W−1,∞,W

1,1
0

, with gΦ ∈ W−1,∞(]0, T [). �We 
an now prove Theorem 6 whi
h gives existen
e and uniqueness of the pres-sure and the interpretation of the out�ow boundary 
ondition. More pre
isely, weprove the following result.Theorem 7. Let ρ and v given by Theorem 5. There exists a unique pressure �eld
p ∈ W−1,∞(]0, T [, L2(Ω)) su
h that the total stress tensor σ = 2µ(ρ)D(v) − p Idsatis�es

∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf,in the distribution sense, and su
h that furthermore the out�ow boundary 
onditionis satis�ed on Γout in the following sense:For any ϕ ∈W
1,1
0 (]0, T [, (H

1

2

in(Γ))d), we have
〈

1

η

∫ η

0

σ(ξ, ·).ν dξ, ϕ
〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

−−−→
η→0

∫ T

0

〈σref .ν, ϕ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ) dt dω. (50)Noti
e that, sin
e ϕ vanishes on Γin, formula (50) gives a sense to the out�owboundary 
ondition only on Γout as expe
ted.Proof. We know that the tra
e operator from H1(Ω) onto H 1

2 (Γ) admits a 
on-tinuous right inverse denoted by R. Furthermore, the divergen
e operator ad-mits a 
ontinuous right inverse from L2
0(Ω) into (H1

0 (Ω))d denoted by Π. For any
ϕ ∈W

1,1
0 (]0, T [, (H

1

2

in(Γ))d) we de�ne its spatial mean-valuem(ϕ·ν)(t) =
∫
Γ ϕ·ν dω,for any t ∈ [0, T ].For any ϕ su
h that m(ϕ · ν)(t) = 0 for any t, the fun
tion G(ϕ) de�ned by

G(ϕ) = R(ϕ) − Π(div (R(ϕ))),lies in W 1,1
0 (]0, T [, V ) and its tra
e on Γ is ϕ. Consider now the map F (ϕ) de�nedby

F (ϕ)(t, ξ, ω) =
ϕ(t, ω)

Jξ(ω)
, ∀t ∈]0, T [, ∀ξ ∈ [0, ξΩ], ∀ω ∈ Γ,and extended in a regular way to the whole domain Ω. In this formula, we re
allthat Jξ(ω) is the smooth Ja
obian determinant appearing in (8). By de�nition, we
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〈

1

η

∫ η

0

σ.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1

0
(H

1

2 )

=
1

η

∫

Oη

〈σ.ν, F (ϕ)〉W−1,∞,W
1,1
0

dx. (51)Furthermore, by 
onstru
tion the tra
e of F (ϕ) on Γ is ψ. Hen
e, the di�eren
e
F (ϕ) −G(ϕ) lies in W 1,1

0 (]0, T [, (H1
0 (Ω))d) and then, by Lemma 6 we get

lim
η→0

1

η

∫

Oη

〈σ.ν, F (ϕ) −G(ϕ)〉W−1,∞,W
1,1
0

dx. (52)Hen
e, applying Lemma 7 to ψ = G(ϕ), and using (51)-(52) we �nd
lim
η→0

〈
1

η

∫ η

0

σ.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

=

∫ T

0

〈σref .ν, ϕ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ) dt dω. (53)Hen
e, we proved (53) for any ϕ su
h that m(ϕ · ν) = 0 for any t ∈ [0, T ]. Letus now 
hoose Φ0 ∈ (H1
in(Ω))d, independent of t, su
h that m(Φ0 · ν) = 1. Thisis possible sin
e we assume that Γout has a positive measure. For any ϕ like inthe statement of the theorem we introdu
e ϕ̃ = ϕ −m(ϕ · ν)Φ0. By 
onstru
tion,

m(ϕ̃ · ν) = 0 and then (53) holds with ϕ repla
ed by ϕ̃. Let us now write by usingformula (51)
〈

1

η

∫ η

0

σ.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

=

〈
1

η

∫ η

0

σ.ν dξ, ϕ̃

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

+

〈
1

η

∫ η

0

σ.ν dξ,m(ϕ · ν)Φ0

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

=

〈
1

η

∫ η

0

σ.ν dξ, ϕ̃

〉

W−1,∞(H−
1

2 ),W 1,1

0
(H

1

2 )

+
1

η

∫

Oη

〈σ.ν ,m(ϕ · ν)F (Φ0)〉W−1,∞,W
1,1
0

dx. (54)The �rst term in the right-hand side 
onverges when η → 0 as we have seen in(53). By Lemma 8, the se
ond one 
onverges towards 〈gF (Φ0),m(ϕ · ν)
〉

W−1,∞,W
1,1
0sin
e m(ϕ · ν) ∈ W

1,1
0 (]0, T [). We remark that gF (Φ0) depends only on the timevariable so that we 
an also write this term as follows

〈
gF (Φ0),m(ϕ · ν)

〉
W−1,∞,W

1,1
0

=

〈
1

η

∫ η

0

gF (Φ0) Id.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

.(55)It is then natural to introdu
e the new stress tensor σ̃ = σ − gF (Φ0) Id, whi
hamounts to add a term depending only on the time variable to the pressure. Of
ourse, (48) is also satis�ed when we repla
e σ by σ̃. Furthermore, from (53), (54)
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〈

1

η

∫ η

0

σ̃.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

−−−→
ξ→0

∫ T

0

〈σref .ν, ϕ̃〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ̃) dt dω.By de�nition, we have ϕ̃ = ϕ−m(ϕ · ν)Φ0 so that we get
〈

1

η

∫ η

0

σ̃.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1

0
(H

1

2 )

−−−→
η→0

∫ T

0

〈σref .ν, ϕ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ) dt dω

−
∫ T

0

m(ϕ · ν) 〈σref .ν,Φ0〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

m(ϕ · ν)

∫

Γ

ρin(v · ν)−(ṽ · Φ0) dt dω.If we add to the pressure the quantity
π(t) = −〈σref .ν,Φ0〉

H
−

1

2 ,H
1

2
+

1

2

∫

Γ

ρin(v · ν)−(ṽ · Φ0) dω ∈ W−1,∞(]0, T [),that is letting
˜̃σ = σ̃ − π(t) Id = σ − (gF (Φ0)(t) + π(t)) Id = 2µ(ρ)D(v)− (p+ π(t) + gF (Φ0)(t)) Id,and repla
ing the pressure p by p+ π(t) + gF (Φ0)(t), the 
laim is proved. �8. A possible variant for the outflow boundary 
onditionIn this se
tion we propose to prove that similar results than the one of Theorems5 and 7 still hold in the 
ase where the initial density ρ0 and the in�ow data ρinare only supposed to be non-negative almost everywhere provided that we 
onsidera slightly modi�ed out�ow boundary 
ondition. Hen
e, in this se
tion we do notassume that (3) and (4) hold.We propose to 
onsider here the following out�ow boundary 
ondition

σ.ν = σref .ν − θρin(v · ν)−(v − vref), (56)instead of the one in (2), where θ is any real number su
h that θ > 1
2 . This 
hoi
e
orresponds, roughly speaking, to add a small dissipation at the out�ow boundaryfor our problem.Theorem 8. We only assume that ρ0 > 0 and ρin > 0 almost everywhere insteadof (3) and (4).Then, the results of Theorems 5 and 7 hold if we repla
e the last boundary 
on-dition in (2) by (56) with θ > 1

2 (and repla
ing the 
oe�
ient 1
2 by θ in (50)).Proof. The main lines of the proof of Theorem 5 are the same, we only give thedetails of the points that need a parti
ular attention.
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e in the same way an approximate problem for whi
h existen
e of asolution is proved with the same �xed point te
hnique. It is now easy to see thatthe energy estimate (35) now be
omes
‖√ρkvk‖2

L∞(]0,T [,L2) + ‖vk‖2
L2(]0,T [,H1)

+

∫ T

0

∫

Γ

ρout,k|vk|2(vk ·ν)+ dt dω+

(
θ − 1

2

)∫ T

0

∫

Γ

ρin,k|vk|2(vk ·ν)− dt dω ≤ C0,whi
h imply a bound, uniform with respe
t to k
∫ T

0

∫

Γ

γ(ρk)|vk|2|vk · ν| dt dω ≤ C1,from whi
h we dedu
e an L3(]0, T [×Γ) estimate whi
h reads
∫ T

0

∫

Γ

(γ(ρk)|vk · ν|)3 dt dω ≤ C1. (57)Sin
e we do not assume that (3) and (4) hold, we 
learly see that estimates(36)-(38) are not valid anymore. Nevertheless we are going to show that Lemmas 3and 4 are still valid. Indeed, in the proof of Lemma 3 the only thing whi
h 
hangeis the estimate of the boundary term sin
e we do not have (38). Let us now boundthese boundary terms by using (57):
∣∣∣∣
∫ s+h

s

∫

Γ

γ(ρk)(vk · ν)(ṽk · Ψ(s)) dt dω

∣∣∣∣

≤
∣∣∣∣∣

∫ s+h

s

∫

Γ

γ(ρk)(vk · ν)(ṽk · Ψ(s)) dt dω

∣∣∣∣∣

≤ Ch
1

6 ‖γ(ρk)(vk · ν)‖L3(]0,T [×Γ)‖ṽk‖L2(]0,T [,H1)‖Ψ(s)‖H1

≤ C′h
1

6 ‖Ψ‖H1 .This estimate let us 
on
lude the proof of Lemma 3 as before.Let us now turn to Lemma 4. Here again most of the proof still holds. We justhave to provide an alternative argument for the last point. More pre
isely we aregoing to show, without using (36), that for any ε > 0, there exists η > 0 and k0 ≥ 0,su
h that
|{τhρk < η}| ≤ ε, ∀k ≥ k0, ∀h > 0. (58)To this end, let us show

|{x ∈ Ω, ρk(t, x) < η}| ≤ ε, ∀k ≥ k0, ∀t ∈ [0, T ], (59)whi
h imply (58) by integration with respe
t to the time variable.Let β ∈ C1(R) be a non-negative non-in
reasing fun
tion su
h that β(s) = 1 forany s ≤ 1 and β(s) = 0 for any s ≥ 2. For any η > 0, we let βη(s) = β
(

s
η

).We now use the renormalization property for (28) (with wk = vk) applied to thefun
tion βη and we �nally take ϕ = 1 as a test fun
tion in the equation satis�ed by
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βη(ρk). It follows that for any t ∈ [0, T ] we have

∫

Ω

βη(ρk(t)) dx ≤
∫

Ω

βη(ρ0,k) dx +

∫ T

0

∫

Γ

βη(ρin,k)(vk · ν)− dt dω

≤
∫

Ω

βη(ρ0) dx+ ‖vk‖L2(]0,T [×Γ)

(∫ T

0

∫

Γ

β2
η(ρin,k) dt dω

) 1

2

≤
∫

Ω

βη(ρ0) dx+ C

(∫ T

0

∫

Γ

β2
η(ρin) dt dω

) 1

2

+ C

(∫ T

0

∫

Γ

|β2
η(ρin) − β2

η(ρin,k)| dt dω
) 1

2Sin
e βη(s) = 0 as soon as s ≥ 2η the �rst two terms above are bounded respe
tivelyby |{ρ0 < 2η}| and by C|{ρin < 2η}| 12 . The last term, 
alled S, 
an be 
ontrolledas follows
S ≤ C‖βη(ρin) − βη(ρin,k)‖

1

2

L1(]0,T [×Γ)

≤ C
1

η
1

2

‖ρin − ρin,k‖
1

2

L1(]0,T [×Γ).Sin
e, by 
onstru
tion, βη(s) = 1 any for s < η, we �nally proved for any t ∈ [0, T ],and any k ≥ 0

∣∣{ρk(t) < η}
∣∣ ≤

∣∣{ρ0 < 2η}
∣∣+ C

∣∣{ρin < 2η}
∣∣ 12 + C

1

η
1

2

‖ρin − ρin,k‖
1

2

L1(]0,T [×Γ).Sin
e ρ0 and ρin are positive almost everywhere, there exists η > 0 small enoughsu
h that ea
h of the �rst two terms are smaller than ε. This η being �xed, we 
annow �nd k0 su
h that the last term is smaller than ε as soon as k ≥ k0. This proves(59) and then (58).Finally, following the proof of Lemma 4, we proved that, for any γ < 2, thereexists δ > 0 su
h that for any ε > 0, there exists Cε > 0 and kε su
h that
‖τhṽk − ṽk‖Lγ(]0,T−h[×Ω) ≤ ε+ Cεh

δ, ∀k ≥ kε, ∀h > 0.This translation estimate is su�
ient to apply the 
ompa
tness results in [20℄ andwe dedu
e in that 
ase the same 
ompa
tness properties than in Se
tion 6.4.Finally, it remains to perform the limit in the approximate problem. As far asthe transport equation is 
on
erned the proof is the same than in Se
tion 6.4 byusing the weak-⋆ 
onvergen
e of ρk and ρout,k in L∞ and the strong 
onvergen
eof vk obtained above. In the same way we 
an prove the strong 
onvergen
e of ρktowards ρ in all the spa
es Lq(]0, T [×Ω) with q < +∞.Remark now that (γ(ρk)(vk · ν))k weakly 
onverges towards γ(ρ)(v · ν) in thespa
e Lγ(]0, T [, L2(Γ)) for any γ < 2. But, from (57) we know that (γ(ρk)(vk ·
ν))k is bounded in L3(]0, T [×Γ). Hen
e, up to a subsequen
e, we dedu
e that
(γ(ρk)(vk · ν))k weakly 
onverges in L3(]0, T [×Γ) towards γ(ρ)(v · ν). Sin
e thetra
e of vk strongly 
onverges in Lγ(]0, T [, (L3(Γ))d) we 
an now perform the limitin the boundary terms in (31) (with wk = vk, ψ(T ) = 0 and θ instead of 1

2 ).
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e and uniqueness of the pressure satisfying (48) and the weak
onvergen
e (50) with θ instead of 1
2 are proved in exa
tly the same way than inTheorem 7. �9. Con
lusionsIn this paper, we perform the analysis of the non-homogeneous in
ompressibleNavier-Stokes equations with non standard nonlinear out�ow boundary 
onditions.In the homogeneous 
ase, this boundary 
ondition has already been shown to leadto a well-posed problem and to be e�
ient, provided a suitable referen
e �ow 
anbe 
hosen.In the present work we establish an existen
e result of weak solutions for thismodel in the non-homogeneous framework. Parti
ular attention is paid to theinterpretation of the out�ow boundary 
ondition for weak solutions. This pointis not obvious and relies upon the analysis of the properties of the tra
es of weaksolutions of the Cau
hy/Diri
hlet problem for the transport equation.Many questions remain open like the problems of regularity and uniqueness ofsolutions. It would also be interesting to have a better understanding of how thesolution depend on the referen
e data vref and σref and how to 
hoose those datadepending on the physi
s of the �ow we are interested in.A
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