About the HUM method and its application to the numerical approximation of controls of parabolic PDEs

Franck BOYER

I2M, Aix-Marseille Université

Besançon, March 2015

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- MUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- **S** CONCLUSIONS / PERSPECTIVES

OUTLINE

- Introduction
- SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- Numerical results
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

ABSTRACT PARABOLIC CONTROL PROBLEM

- Two Hilbert spaces: the state space $(E, \langle ., . \rangle)$ and the control space (U, [., .]).
- $A: D(A) \subset E \mapsto E$ is some *elliptic* operator such that -A generates an analytic semigroup in E.
- $\mathcal{B}: U \mapsto D(\mathcal{A}^*)'$ the control (bounded) operator, \mathcal{B}^* its adjoint.
- COMPATIBILITY ASSUMPTION: we assume that

$$\left(t\mapsto \mathcal{B}^{\star}e^{-t\mathcal{A}^{\star}}\psi\right)\in L^{2}(0,T;U), \text{ and } \left[\left[\mathcal{B}^{\star}e^{-\cdot\mathcal{A}^{\star}}\psi\right]\right]_{L^{2}(0,T;U)}\leq C\left\|\psi\right\|, \ \forall\psi\in E.$$

Our controlled parabolic problem is
$$(S) \begin{cases} \partial_t y + \mathcal{A}y = \mathcal{B}v & \text{in }]0, T[, \\ y(0) = y_0, \end{cases}$$

Here, $y_0 \in E$ is the initial data, $v \in L^2(]0, T[, U)$ is the control we are looking for.

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any $y_0 \in E$ and $v \in L^2(0,T;U)$, there exists a unique $y = y_{v,y_0} \in C^0([0,T],E)$ such that

$$\left\langle y(t), \psi \right\rangle - \left\langle y_0, e^{-t\mathcal{A}^{\star}} \psi \right\rangle = \int_0^t \left[v(s), \mathcal{B}^{\star} e^{-(t-s)\mathcal{A}^{\star}} \psi \right] ds, \ \forall t \in [0, T], \forall \psi \in E.$$

NOTATION:
$$\mathcal{L}_T(v|y_0) \stackrel{\text{def}}{=} y_{v,y_0}(T)$$
.

CONTROLLABILITY QUESTIONS

(S)
$$\begin{cases} \partial_t y + \mathcal{A}y = \mathcal{B}v & \text{in }]0, T[, \\ y(0) = y_0. \end{cases}$$

For a given (fixed) control time T > 0 and any $\delta \ge 0$, we set

$$\left(\operatorname{Adm}(y_0,\delta)\stackrel{\text{def}}{=} \left\{v \in L^2(0,T;U), \text{ s.t. } \left\|\mathcal{L}_T(v|y_0)\right\| \leq \delta\right\}.\right)$$

APPROXIMATE CONTROL PROBLEM FROM THE INITIAL DATA y_0

Do we have

$$Adm(y_0, \delta) \neq \emptyset, \ \forall \delta > 0 ?$$

NULL-CONTROL PROBLEM FROM THE INITIAL DATA *y*₀

Do we have

$$Adm(y_0, 0) \neq \emptyset$$
?

(Fattorini-Russel, '71) (Lebeau-Robbiano, '95)

 $(Fursikov-Imanuvilov, \verb§'96') (Alessandrini-Escauriaza, \verb§'08')$

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, '11)

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- MUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

THE HILBERT UNIQUENESS METHOD

(Lions, '88) (Glowinski-Lions, '90s)

IDEAS

- To formulate control problems as constrainted optimisation problems.
- To write the associated unconstrainted dual optimisation problem.
- To find conditions for the solvability of the dual problem and prove that there are satisfied.

COST OF THE CONTROL We set

$$F(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \llbracket v(t) \rrbracket^2 dt, \ \forall v \in L^2(0, T; U),$$

and for any $\delta \geq 0$, we define (it it exists !), v^{δ} to be the unique minimiser

$$F(v^{\delta}) = \inf_{v \in Adm(y_0, \delta)} F(v). \tag{P^{\delta}}$$

DUAL PROBLEMS

- The dual pb of (P^0) is not coercive in the natural space E. We need to introduce a **big** abstract space obtained as the completion of E with respect to a suitable norm.
- The dual pb of (P^{δ}) , $\delta > 0$ is coercive in E but is not smooth.

THE PENALIZED HUM

PRIMAL PROBLEM

$$\boxed{F_{\varepsilon}(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \llbracket v(t) \rrbracket^{2} \ dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v|y_{0}) \right\|^{2}, \ \forall v \in L^{2}(0, T; U),}$$

we consider the following problem : to find $v_{\varepsilon} \in L^2(0,T;U)$ such that

$$F_{\varepsilon}(v_{\varepsilon}) = \inf_{v \in L^{2}(0,T;U)} F_{\varepsilon}(v). \tag{P_{ε}}$$

PROPOSITION

For any $\varepsilon > 0$, the functional F_{ε} is strictly convex, continuous and coercive. Therefore, it admits a unique minimiser $v_{\varepsilon} \in L^2(0,T;U)$.

DUAL PROBLEM

(Fenchel-Rockafellar duality theorem)

$$\left[J_{\varepsilon}(q^F)\stackrel{\text{def}}{=}\frac{1}{2}\int_0^T \left[\!\!\left[\mathcal{B}^{\star}e^{-(T-t)\mathcal{A}^{\star}}q^F\right]\!\!\right]^2\,dt + \frac{\varepsilon}{2}\left\|q^F\right\|^2 + \left\langle y_0, e^{-T\mathcal{A}^{\star}}q^F\right\rangle, \;\; \forall q^F \in E.\right]$$

PROPOSITION

For any $\varepsilon > 0$, the functional J_{ε} is strictly convex, continuous and coercive. Therefore, it admits a unique minimiser $q_{\varepsilon}^F \in E$.

THE PENALIZED HUM

REMARK

We do not require any particular assumption on the operators A and B. In particular **we do not assume** that the PDE (S) is (or is not) controllable.

PROPOSITION (DUALITY PROPERTIES PRECISED)

For any $\varepsilon > 0$, the minimisers v_{ε} and q_{ε}^F of the functionals F_{ε} and J_{ε} respectively, are related through the formulas

$$v_{\varepsilon}(t) = \mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q_{\varepsilon}^{F}, \text{ for a.e. } t \in]0, T[,$$

and

$$\mathcal{L}_{T}(v_{\varepsilon}|y_{0}) = y_{v_{\varepsilon},y_{0}}(T) = -\varepsilon q_{\varepsilon}^{F}.$$

As a consequence, we have

$$\inf_{L^2(0,T;U)} F_arepsilon = F_arepsilon(v_arepsilon) = -J_arepsilon(q_arepsilon^F) = -\inf_E J_arepsilon.$$

(B., '13)

THEOREM

• Problem (S) is approximately controllable from the initial data y_0 if and only if

$$\mathcal{L}_T(v_{\varepsilon}|y_0) = y_{v_{\varepsilon},y_0}(T) \xrightarrow[\varepsilon \to 0]{} 0.$$

2 Problem (S) is null-controllable from the initial data y_0 if and only if

$$M_{y_0}^2 \stackrel{\text{def}}{=} 2 \sup_{\varepsilon > 0} \left(\inf_{L^2(0,T;U)} F_{\varepsilon} \right) = 2 \sup_{\varepsilon > 0} F_{\varepsilon}(v_{\varepsilon}) < +\infty.$$

IN THE NULL-CONTROLLABLE CASE

$$[v_{\varepsilon}]_{L^2(0,T;U)} \leq M_{y_0}, \text{ and } ||\mathcal{L}_T(v_{\varepsilon}|y_0)|| \leq M_{y_0}\sqrt{\varepsilon}.$$

Moreover we have $[v^0]_{L^2(0,T;U)} = M_{y_0}$ and

$$v_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} v^{0}$$
, strongly in $L^{2}(0, T; U)$, and $\underbrace{\mathcal{L}_{T}(v_{\varepsilon}|y_{0})}_{\sqrt{\varepsilon}} \xrightarrow[\varepsilon \to 0]{} 0$,

where v^0 is the unique HUM null-control (that is the one of minimal L^2 -norm).

Non observable adjoint states and HUM

Non observable adjoint states : $Q_F \stackrel{\text{def}}{=} \left\{ q^F \in E, \text{ s.t. } \mathcal{B}^* e^{-t\mathcal{A}^*} q^F = 0, \forall t \geq 0 \right\}.$

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any $y_0 \in E$, the penalised-HUM sequence of controls $(v_{\varepsilon})_{\varepsilon}$ satisfies

$$\mathcal{L}_{T}(v_{\varepsilon}|y_{0}) \xrightarrow[\varepsilon \to 0]{} \mathbb{P}_{Q_{F}}(e^{-TA}y_{0}).$$

PROPOSITION (SELFADJOINT CASE)

Assume that A is selfadjoint, and set $Y_T \stackrel{\text{def}}{=} e^{-TA^*}Q_F)e^{-TA}Q_F$ then

$$\mathbb{P}_{Q_F}\left(e^{-T\mathcal{A}}y_0\right) = e^{-T\mathcal{A}}\left(\mathbb{P}_{\overline{Y_T}}y_0\right).$$

Therefore, the system is approximately controllable from y_0 if and only if $\mathbb{P}_{\overline{Y_T}}y_0 = 0$.

- The set of (approximately) controllable initial data is Y_T^{\perp} .
- For any $y_0 \in Y_T$ we have

$$v_{\varepsilon} = 0, \ \forall \varepsilon > 0,$$

$$Adm(y_0, \delta) \neq \emptyset \Leftrightarrow \delta \ge \|e^{-TA}y_0\|.$$

NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states : $Q_F \stackrel{\text{def}}{=} \left\{ q^F \in E, \text{ s.t. } \mathcal{B}^* e^{-t\mathcal{A}^*} q^F = 0, \forall t \geq 0 \right\}.$

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any $y_0 \in E$, the penalised-HUM sequence of controls $(v_{\varepsilon})_{\varepsilon}$ satisfies

$$\mathcal{L}_T(v_{\varepsilon}|y_0) \xrightarrow[\varepsilon \to 0]{} \mathbb{P}_{Q_F}(e^{-TA}y_0).$$

COROLLARY (APP. CONTROLLABILITY AND UNIQUE CONTINUATION)

The system (S) is approximately controllable from the initial data y_0 if and only if

$$\left[\mathcal{B}^{\star}e^{-(T-t)\mathcal{A}^{\star}}q^{F}=0, \quad \forall t \in [0,T]\right] \Longrightarrow \left\langle y_{0}, e^{-T\mathcal{A}^{\star}}q^{F}\right\rangle = 0. \tag{UC}$$

PROPOSITION (APP. CONTROLLABILITY AND WEAK OBSERVABILITY)

The property (UC) is equivalent to the following weak observability inequality

$$\left|\left\langle y_{0},e^{-T\mathcal{A}^{\star}}q^{F}\right\rangle \right|^{2}\leq \textcolor{red}{C_{\varepsilon,y_{0}}^{2}}\left[\hspace{-0.2cm}\left[\mathcal{B}^{\star}e^{-(T-.)\mathcal{A}^{\star}}q^{F}\right]\hspace{-0.2cm}\right]_{L^{2}(0,T;U)}^{2}+\varepsilon\left\|q^{F}\right\|^{2},\ \forall q^{F}\in E,\,\forall \varepsilon>0.$$

READING CONTROLLABILITY PROPERTIES ON THE PENALISED HUM

THEOREM (NULL-CONTROLLABILITY AND OBSERVABILITY)

Problem (S) is null-controllable from y_0 if and only if, there exists $\widetilde{M}_{y_0} \ge 0$ such that

$$\left|\left\langle y_0, e^{-T\mathcal{A}^{\star}} q^F \right\rangle \right|^2 \leq \widetilde{M}_{y_0}^2 \left[\left[\mathcal{B}^{\star} e^{-(T-.)\mathcal{A}^{\star}} q^F \right] \right]_{L^2(0,T;U)}^2, \ \forall q^F \in E.$$

Moreover, the best constant \widetilde{M}_{y_0} is equal to the cost of the HUM control $[v^0]_{L^2(0,T;U)}$.

For each $\varepsilon > 0$, let $y_{0,\varepsilon} \in E$ such that $(y_{0,\varepsilon})_{\varepsilon}$ is bounded in E and

$$e^{-TA}y_{0,\varepsilon} \xrightarrow[\varepsilon \to 0]{} e^{-TA}y_0.$$

ASSOCIATED HUM FUNCTIONALS

$$\tilde{F}_{\varepsilon}(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \llbracket v(t) \rrbracket^{2} dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v|\mathbf{y_{0,\varepsilon}}) \right\|^{2}, \quad \forall v \in L^{2}(0,T;U),$$

$$\tilde{J}_{\varepsilon}(q^F) \stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \left[\left[\mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q^F \right]^2 dt + \frac{\varepsilon}{2} \left\| q^F \right\|^2 + \left\langle \mathbf{y}_{0,\varepsilon}, e^{-T\mathcal{A}^{\star}} q^F \right\rangle, \quad \forall q^F \in E.$$

We denote by \tilde{v}_{ε} the unique minimiser of \tilde{F}_{ε} .

CONTROLLABILITY CONDITIONS

(S) is app. cont. from
$$y_0 \iff \mathcal{L}_T(\tilde{v}_{\varepsilon} | y_{0,\varepsilon}) \xrightarrow[\varepsilon \to 0]{} 0$$
.

$$\sup_{\varepsilon>0} \left(\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon}\right) < +\infty \Longrightarrow (S) \text{ is null-controllable from } y_0.$$

(S) is null-controllable from
$$y_0$$

$$\sup_{\varepsilon>0} \frac{1}{\varepsilon} \left\| e^{-T\mathcal{A}} (y_0 - y_{0,\varepsilon}) \right\|^2 < +\infty$$

$$\Longrightarrow \sup_{\varepsilon>0} \left(\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon} \right) < +\infty.$$

For each $\varepsilon > 0$, let $y_{0,\varepsilon} \in E$ such that $(y_{0,\varepsilon})_{\varepsilon}$ is bounded in E and

$$e^{-TA}y_{0,\varepsilon} \xrightarrow[\varepsilon \to 0]{} e^{-TA}y_0.$$

ASSOCIATED HUM FUNCTIONALS

$$\tilde{F}_{\varepsilon}(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \llbracket v(t) \rrbracket^{2} dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v \big| \mathbf{y_{0,\varepsilon}}) \right\|^{2}, \quad \forall v \in L^{2}(0,T;U),$$

$$\tilde{J}_{\varepsilon}(q^F) \stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \left[\left[\mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q^F \right]^2 dt + \frac{\varepsilon}{2} \left\| q^F \right\|^2 + \left\langle \mathbf{y}_{0,\varepsilon}, e^{-T\mathcal{A}^{\star}} q^F \right\rangle, \quad \forall q^F \in E.$$

We denote by \tilde{v}_{ε} the unique minimiser of \tilde{F}_{ε} .

CONTROLLABILITY CONDITIONS

$$\left\{ \begin{array}{c} \text{(S) is null-controllable from } y_0 \\ \sup_{\varepsilon > 0} \frac{1}{\varepsilon} \left\| e^{-T\mathcal{A}} (y_0 - y_{0,\varepsilon}) \right\|^2 < +\infty \end{array} \right\} \Longrightarrow \sup_{\varepsilon > 0} \left(\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon} \right) < +\infty.$$

DISCUSSION: Assume $A = A^*$ and $Q_F \neq \{0\}$, then take $y_{0,\varepsilon} = \varepsilon^{\alpha} z, z \in e^{-TA^*}Q_F$

$$\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon} = \frac{\varepsilon^{2\alpha-1}}{2} \left\| e^{-TA} z \right\|^2 \xrightarrow[\varepsilon \to 0]{} +\infty, \text{ as soon as } \alpha < 1/2.$$

$$y_{0,\varepsilon} \longrightarrow 0$$
 \iff this initial data is indeed null-controllable !!.

For each $\varepsilon > 0$, let $y_{0,\varepsilon} \in E$ such that $(y_{0,\varepsilon})_{\varepsilon}$ is bounded in E and

$$e^{-TA}y_{0,\varepsilon} \xrightarrow[\varepsilon \to 0]{} e^{-TA}y_0.$$

ASSOCIATED HUM FUNCTIONALS

$$\tilde{F}_{\varepsilon}(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \llbracket v(t) \rrbracket^{2} dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v | \mathbf{y_{0,\varepsilon}}) \right\|^{2}, \quad \forall v \in L^{2}(0,T;U),$$

$$\tilde{J}_{\varepsilon}(q^F) \stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \left[\mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q^F \right]^2 dt + \frac{\varepsilon}{2} \left\| q^F \right\|^2 + \left\langle \mathbf{y}_{\mathbf{0},\varepsilon}, e^{-T\mathcal{A}^{\star}} q^F \right\rangle, \quad \forall q^F \in E.$$

We denote by \tilde{v}_{ε} the unique minimiser of \tilde{F}_{ε} .

PROPOSITION (RELAXED OBSERVABILITY INEQUALITY)

Assume that

$$\sup_{\varepsilon>0} \frac{1}{\varepsilon} \left\| e^{-T\mathcal{A}} (y_0 - y_{0,\varepsilon}) \right\|^2 < +\infty.$$

The system (S) is null-controllable from the initial data y₀ if and only if

$$\left|\left\langle \mathbf{y_{0,\varepsilon}}, e^{-T\mathcal{A}^{\star}} q^F \right\rangle\right|^2 \leq M \left(\left[\!\left[\mathcal{B}^{\star} e^{-(T-.)\mathcal{A}^{\star}} q^F \right]\!\right]_{L^2(0,T;U)}^2 + \varepsilon \left\| q^F \right\|^2 \right), \ \, \forall q^F \in E.$$

We do not require the system to be null-controllable from any of the $(y_{0,\varepsilon})_{\varepsilon}$.

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- 4 NUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- Numerical results
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

SEMI-DISCRETE (UNIFORM) CONTROL PROBLEMS

FRAMEWORK

For any h > 0, we are given

- A discrete state space $(E_h, \langle \cdot, \cdot \rangle_h)$.
- An approximate operator A_h on E_h .
- A discrete control space $(U_h, [\cdot, \cdot]_h)$.
- A linear operator $\mathcal{B}_h: U_h \to E_h, \mathcal{B}_h^*$ being its adjoint $\langle \mathcal{B}_h u, x \rangle_h = [\mathcal{B}_h^* x, u]_h$.

The semi-discrete control problem is
$$(S_h)$$
 $\begin{cases} \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \\ y_h(0) = y_{0,h}. \end{cases}$

Its solution is referred to as $t \mapsto y_{\nu_h,\nu_{0,h}}(t) \in E_h$ and we set

$$\mathcal{L}_T^h(v_h|y_{0,h}) \stackrel{\text{def}}{=} y_{v_h,y_{0,h}}(T).$$

QUESTIONS

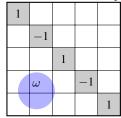
Assume that $(y_{0,h})_h$ are, in some sense, approximations of a $y_0 \in E$.

- Can we relate the controllability properties of (S) starting from y_0 to the ones of (S_h) starting from $y_{0,h}$?
- 2 Can we obtain uniform bounds (w.r.t. h) for the associated controls v_h ?

MAIN ISSUES RELATED TO DISCRETISATION

• It may happen that (S_h) is not controllable even if (S) is. EXAMPLE: the 2D 5-point discrete Laplace operator A_h .

(Kavian, Zuazua)



There exists a non trivial $\psi_h \in E_h$ such that

$$\mathcal{A}_h^{\star}\psi_h = \mu_h\psi_h$$
, and $\mathcal{B}_h^{\star}\psi_h = 0$.

$$\Longrightarrow \psi_h \in Q_{F,h} \stackrel{\text{def}}{=} \{q_h^F \in E_h, \text{ s.t. } \mathcal{B}_h^{\star} e^{-t\mathcal{A}_h^{\star}} q_h^F = 0, \ \forall t \geq 0\},\$$

For any control
$$v_h \in L^2(0, T; U_h)$$
, $\frac{d}{dt} \langle y_h(t), \psi_h \rangle_h + \mu_h \langle y_h(t), \psi_h \rangle = 0$,

and thus

$$\left\langle \mathcal{L}_{T}^{h}(v_{h}|y_{0,h}), \psi_{h} \right\rangle_{h} = \left\langle y_{h}(T), \psi_{h} \right\rangle_{h} = e^{-\mu_{h}T} \left\langle y_{0,h}, \psi_{h} \right\rangle_{h}.$$
 (1)

REMARK: The eigenvalue μ_h is very large $\sim \frac{C}{h^2}$ thus $\langle \mathcal{L}_T^h(v_h|y_{0,h}), \psi_h \rangle_h$ is exponentially small.

2 Even if (S) and (S_h) are both controllable, it is not necessarily desirable to compute a null-control v_h of (S_h) to obtain a suitable approximation of a null-control of (S).

PENALISED HUM APPLIED TO SEMI-DISCRETE PROBLEMS

$$\begin{split} F_{\varepsilon,h}(v_h) &\stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \left[v_h(t) \right]_h^2 \, dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_T^h(v_h \big| y_{0,h}) \right\|_h^2, \ \, \forall v_h \in L^2(0,T;U_h), \\ J_{\varepsilon,h}(q_h^F) &\stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \left[\left[\mathcal{B}_h^\star e^{-(T-t)\mathcal{A}_h^\star} \, q_h^F \right]_h^2 \, dt + \frac{\varepsilon}{2} \left\| q_h^F \right\|_h^2 + \left\langle y_{0,h}, e^{-T\mathcal{A}_h^\star} \, q_h^F \right\rangle_h, \ \, \forall q_h^F \in E_h. \end{split}$$

- For each value of h > 0, all the previous results apply.
- We denote by $v_{\varepsilon,h}$ the unique minimiser of $F_{\varepsilon,h}$.

Goal

One would like to let $(\varepsilon, h) \to (0, 0)$ but this should be done with some care.

COMMENTS

• Even if (S) is controllable from y_0 , in the cases where $Q_{F,h} \neq \{0\}$ we may have

$$\lim_{\varepsilon \to 0} \left\| \mathcal{L}_T^h \big(v_{\varepsilon,h} \big| y_{0,h} \big) \right\|_h \neq 0, \ \forall h > 0$$

② One can prove that for any h > 0

$$\sup_{\varepsilon>0} \llbracket v_{\varepsilon,h} \rrbracket_{L^2(0,T;U_h)} < +\infty.$$

$\phi(h)$ -NULL CONTROLLABILITY

Let $h \in]0, +\infty[\mapsto \phi(h) \in]0, +\infty[$ be given such that $\lim_{h\to 0} \phi(h) = 0$.

DEFINITION

For a given family of initial data $Y_0 = (y_{0,h})_h \in \prod_{h>0} E_h$, we say that the family of problems (S_h) is $\phi(h)$ -null controllable from Y_0 , if there exists a $h_0 > 0$ such that

$$M_{\gamma_0}^2\stackrel{\text{def}}{=} 2\sup_{0< h< h_0} \left(\inf_{L^2(0,T;U_h)} F_{\phi(h),h}\right)<+\infty,$$

where $F_{\phi(h),h}$ is built upon $y_{0,h}$.

THEOREM (RELAXED OBSERVABILITY)

For a given $Y_0 \in E_{init}$, the problems (S_h) are $\phi(h)$ -null-controllable from Y_0 if and only if there exists $h_0 > 0$ and $\widetilde{M}_{Y_0} > 0$, such that, for any $0 < h < h_0$

$$\left|\left\langle y_{0,h}, e^{-T\mathcal{A}_h^{\star}} q_h^F \right\rangle_h \right|^2 \leq \widetilde{M}_{Y_0}^2 \left(\left[\left[\mathcal{B}_h^{\star} e^{-(T-.)\mathcal{A}_h^{\star}} q_h^F \right] \right]_{L^2(0,T;U_h)}^2 + \phi(h) \left\| q_h^F \right\|_h^2 \right), \quad \forall q_h^F \in E_h.$$

In such case, the best constant \widetilde{M}_{Y_0} is equal to M_{Y_0} and

$$\llbracket v_{\phi(h),h} \rrbracket_{L^2(0,T;U_h)} \leq M_{Y_0}, \text{ and } \lVert \mathcal{L}_T^h (v_{\phi(h),h} | y_{0,h}) \rVert_h \leq M_{Y_0} \sqrt{\phi(h)}, \ \forall 0 < h < h_0.$$

$\phi(h)$ -NULL CONTROLLABILITY

Let $h \in]0, +\infty[\mapsto \phi(h) \in]0, +\infty[$ be given such that $\lim_{h\to 0} \phi(h) = 0$.

DEFINITION

For a given family of initial data $Y_0 = (y_{0,h})_h \in \prod_{h>0} E_h$, we say that the family of problems (S_h) is $\phi(h)$ -null controllable from Y_0 , if there exists a $h_0 > 0$ such that

$$M_{Y_0}^2\stackrel{\text{def}}{=} 2\sup_{0< h< h_0} \left(\inf_{L^2(0,T;U_h)} F_{\phi(h),h}\right)<+\infty,$$

where $F_{\phi(h),h}$ is built upon $y_{0,h}$.

PROPOSITION

Assume that, for some $C_{obs} > 0$, the following relaxed observability inequality holds

$$\left\| e^{-T\mathcal{A}_h^{\star}} q_h^F \right\|_h^2 \leq C_{\text{obs}}^2 \left(\left[\left[\mathcal{B}_h^{\star} e^{-(T-.)\mathcal{A}_h^{\star}} q_h^F \right] \right]_{L^2(0,T;U_h)}^2 + \phi(h) \left\| q_h^F \right\|_h^2 \right), \quad \left| \forall q_h^F \in E_h, \right| \\ \forall 0 < h < h_0$$

then for any **bounded** family Y_0 , the problems (S_h) are $\phi(h)$ -null-controllable from Y_0 and we have

$$M_{Y_0} \leq C_{\text{obs}}\left(\sup_{0 < h < h_0} \|y_{0,h}\|_h\right).$$

(Lasiecka-Triggiani, '00) (Labbé-Trélat, '06)

• We suppose given $\widetilde{P}_h: E_h \to D((\mathcal{A}^*)^{\frac{1}{2}})$ and $\widetilde{Q}_h: U_h \to U$ such that

$$\|y_h\|_h = \|\widetilde{P}_h y_h\|, \forall y_h \in E_h, \text{ and } [u_h]_h = [\widetilde{Q}_h u_h].$$

• We set $P_h = (\widetilde{P}_h)^* : D((\mathcal{A}^*)^{\frac{1}{2}})' \to E_h$ and $Q_h = (\widetilde{Q}_h)^* : U \to U_h$ and we assume that

$$P_h\widetilde{P}_h = \mathrm{Id}_{E_h}$$
, and $Q_h\widetilde{Q}_h = \mathrm{Id}_{U_h}$.

• We define now A_h and B_h through their adjoints by the formulas

$$\mathcal{A}_h^{\star} = P_h \mathcal{A}^{\star} \widetilde{P}_h, \ \mathcal{B}_h^{\star} = Q_h \mathcal{B}^{\star} \widetilde{P}_h.$$

• + Standard approximation properties ...

EXAMPLE: Finite element Galerkin approximation.

(Labbé-Trélat, '06)

THEOREM

Assume that (S) is null-controllable at time T.

There exists a $\beta > 0$, depending on the approximation properties of E_h and U_h such that the relaxed-observability inequality holds as soon as

$$\left[\liminf_{h \to 0} \frac{\phi(h)}{h^{\beta}} > 0. \right]$$

In that case, for any $y_0 \in E$, we can define $y_{0,h} = P_h y_0$ and build the associated penalised HUM discrete controls $v_{\phi(h),h}$.

Then, there is a null-control $v \in Adm(y_0, 0)$ such that, up to a subsequence, we have

$$\widetilde{Q}_h v_{\phi(h),h} \xrightarrow[h \to 0]{} v, \quad \text{in } L^2(0,T;U), \ \ \text{and} \ \ \widetilde{P}_h y_h \xrightarrow[h \to 0]{} y_{v,y_0}, \quad \text{in } L^2(0,T;E).$$

- The limit control v may not be the HUM control.
- Proving **strong convergence** of the discrete control is very difficult.
- In practive, the power β is low: for the 1D heat equation, Neumann boundary control, \mathbb{P}^1 finite element, we get $\beta=0.45$. It means that

$$\|y_h(T)\|_h \approx_0 \sqrt{\phi(h)} = h^{0.225}$$
 \iff Very poor convergence.

(B.-Hubert-Le Rousseau, '09-'11)

THEOREM

We assume that A_h is the usual finite difference approximation of $-\text{div}(\gamma \nabla.)$ for a smooth γ on a regular Cartesian mesh and that $\mathcal{B}_h = 1_\omega$. Then, there exists $h_0 > 0$, C > 0 such that, the relaxed observability inequality holds as soon as the function ϕ satisfies

$$\left(\liminf_{h \to 0} \frac{\phi(h)}{e^{-C/h^2}} > 0. \right)$$

Thus, for any bounded family of initial data $Y_0 \in E_{init}$, and for any $0 < h < h_0$ we have

$$\left[\!\left[v_{\phi(h),h}\right]\!\right]_{L^2(0,T;U_h)} \leq C_{\text{obs}} \left\|y_{0,h}\right\|_h, \text{ and } \left\|\mathcal{L}_T^h\left(v_{\phi(h),h}\middle|y_{0,h}\right)\right\|_h \leq C_{\text{obs}} \left\|y_{0,h}\right\|_h \sqrt{\phi(h)}.$$

CONSEQUENCE: The $\phi(h)$ -null-controllability holds for any $\phi(h) \ge e^{-C/h^2}$.

OUTLINE

- Introduction
- SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- Numerical results
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE: Minimise dual functionals $J_{\varepsilon,h}$ or $J_{\varepsilon,h,\delta t}$ (with $\varepsilon = \phi(h)$).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0, $\delta t > 0$, $\varepsilon > 0$ and any $q_h^F \in E_h$, we have

$$\nabla J_{\varepsilon,h}(q_h^F) = \underbrace{\mathcal{L}_{\scriptscriptstyle T}^h \Big(\mathcal{B}_h^{\star} e^{-(T-.)\mathcal{A}_h^{\star}} q_h^F \big| 0\Big)}_{\stackrel{\text{def}}{=} \Lambda^h q_h^F} + \varepsilon q_h^F + \mathcal{L}_{\scriptscriptstyle T}^h \big(0 \big| y_{0,h}\big) \,,$$

$$\nabla J_{\varepsilon,h,\delta t}(q_h^F) = \underbrace{\mathcal{L}_T^{h,\delta t} \Big(\mathcal{B}_h^\star \mathcal{L}_T^{*,h,\delta t} \Big(q_h^F\Big) \, \big| 0 \Big)}_{\stackrel{\text{def}}{=} \Lambda^{h,\delta t} q_h^F} + \varepsilon q_h^F + \mathcal{L}_T^{h,\delta t} \big(0 \big| y_{0,h} \big) \, ,$$

where $\mathcal{L}_{T}^{*,h,\delta t}(q_{h}^{F})$ is the solution of the adjoint fully-discrete pb associated with q_{h}^{F} .

COMPUTATION OF GRAMIAN OPERATORS

The computation of $\Lambda_{\bullet}q_h^F$ amounts to

- Solve a backward parabolic problem.
- **2** Apply \mathcal{B}_h^{\star}
- Solve a forward parabolic problem with the control previously computed.

SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE: Minimise dual functionals $J_{\varepsilon,h}$ or $J_{\varepsilon,h,\delta t}$ (with $\varepsilon = \phi(h)$).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0, $\delta t > 0$, $\varepsilon > 0$ and any $q_h^F \in E_h$, we have

$$\nabla J_{\varepsilon,h}(q_h^F) = \underbrace{\mathcal{L}_{\scriptscriptstyle T}^h \Big(\mathcal{B}_h^{\star} e^{-(T-.)\mathcal{A}_h^{\star}} q_h^F \big| 0\Big)}_{\stackrel{\text{def}}{=} \Lambda^h q_h^F} + \varepsilon q_h^F + \mathcal{L}_{\scriptscriptstyle T}^h \big(0 \big| y_{0,h}\big) \,,$$

$$\nabla J_{\varepsilon,h,\delta t}(q_h^F) = \underbrace{\mathcal{L}_T^{h,\delta t} \Big(\mathcal{B}_h^\star \mathcal{L}_T^{*,h,\delta t} \Big(q_h^F\Big) \, \big| 0 \Big)}_{\stackrel{\underline{\text{def}}}{\underline{\text{A}}^h,\delta t} q_h^F} + \varepsilon q_h^F + \mathcal{L}_T^{h,\delta t} \big(0 \big| y_{0,h} \big) \, ,$$

where $\mathcal{L}_{T}^{*,h,\delta t}(q_{h}^{F})$ is the solution of the adjoint fully-discrete pb associated with q_{h}^{F} .

EQUATIONS TO SOLVE

The semi/fully-discrete controls ar computed by solving the equations

$$(\Lambda^h + \varepsilon \operatorname{Id})q_h^F = -\mathcal{L}_T^h(0|y_{0,h}),$$

$$(\Lambda^{h,\delta t} + \varepsilon \operatorname{Id})q_h^F = -\mathcal{L}_T^{h,\delta t}(0|y_{0,h}).$$

In practice, we use a conjugate gradient algorithm.

SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE: Minimise dual functionals $J_{\varepsilon,h}$ or $J_{\varepsilon,h,\delta t}$ (with $\varepsilon = \phi(h)$).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0, $\delta t > 0$, $\varepsilon > 0$ and any $q_h^F \in E_h$, we have

$$abla J_{arepsilon,h}(q_h^F) = \underbrace{\mathcal{L}_T^h \Big(\mathcal{B}_h^\star e^{-(T-.)\mathcal{A}_h^\star} q_h^F ig| 0\Big)}_{\stackrel{ ext{def}}{=} \Lambda^h q_h^F} + arepsilon q_h^F + \mathcal{L}_T^h ig(0 ig| y_{0,h}ig) \,,$$

$$\nabla J_{\varepsilon,h,\delta t}(q_h^F) = \underbrace{\mathcal{L}_{T}^{h,\delta t} \Big(\mathcal{B}_{h}^{\star} \mathcal{L}_{T}^{*,h,\delta t} \Big(q_h^F\Big) \, \big| 0\Big)}_{\stackrel{\triangleq f_h,\delta t}{=} q_h^F + \mathcal{L}_{T}^{h,\delta t} \Big(0 \big| y_{0,h} \Big) \, ,$$

where $\mathcal{L}_{T}^{*,h,\delta t}(q_{h}^{F})$ is the solution of the adjoint fully-discrete pb associated with q_{h}^{F} .

CONDITION NUMBER

$$\text{Basic estimate} \, : \, \varepsilon \left\| q_h^F \right\|_h \leq \left\| (\Lambda^{\bullet} + \varepsilon \mathrm{Id}) q_h^F \right\|_h \leq (C + \varepsilon) \left\| q_h^F \right\|_h.$$

$$\boxed{\operatorname{\mathsf{Cond}}(\Lambda^ullet + arepsilon \operatorname{\mathsf{Id}}) \sim rac{1}{arepsilon}.}$$

TWO MAIN PRINCIPLES

• $\varepsilon = \phi(h)$ should not be too small in order to maintain a reasonable condition number (i.e. computational cost)

$$\left[\operatorname{Cond}(\Lambda^{ullet} + \phi(h)\operatorname{Id}) \sim \frac{1}{\phi(h)}.
ight]$$

 \odot The size of the computed solution at time T is

$$\|y_h(T)\|_h \approx C_{\text{obs}} \sqrt{\phi(h)}.$$

It seems reasonnable to choose

$$\phi(h) \sim_{h \to 0} h^{2p},$$

where p is the order of accuracy of the numerical method under study.

REMARKS

- Computing a null-control for (S_h) , i.e. taking $\varepsilon = \phi(h) = 0$, is not possible in general.
- Choosing $\phi(h)$ much smaller than h^{2p} (like e^{-C/h^2}) is a useless computational effort.

We set $E = E_h = \mathbb{R}$, $A = \lambda > 0$, $A_h = (\lambda + \delta_h) \in \mathbb{R}$ with $\delta_h \xrightarrow[h \to 0]{} 0$, $B = B_h = 1$.

$$(S) \begin{cases} y' + \lambda y = v, \\ y(0) = 1, \end{cases} \text{ and } (S_h) \begin{cases} y'_h + (\lambda + \delta_h)y_h = v_h, \\ y_h(0) = 1. \end{cases}$$

Uncontrolled solution $e^{-TA_h}y_{0,h} = e^{-(\lambda + \delta_h)T}$.

GRAMIAM "OPERATORS"

$$\Lambda_h q^F = \frac{1 - e^{-2(\lambda + \delta_h)T}}{2(\lambda + \delta_h)} q^F, \text{ and } \Lambda q^F = \frac{1 - e^{-2\lambda T}}{2\lambda} q^F, \ \forall q^F \in \mathbb{R},$$

PROPOSITION

The corresponding semi-discrete penalised and exact HUM controls are

$$v_{\varepsilon,h}(t) = -e^{-(T-t)(\lambda+\delta_h)} \frac{2(\lambda+\delta_h)e^{-(\lambda+\delta_h)T}}{1-e^{-2(\lambda+\delta_h)T} + \left(2\varepsilon(\lambda+\delta_h)\right)},$$

$$v(t) = -e^{-(T-t)\lambda} \frac{2\lambda e^{-\lambda T}}{1 - e^{-2\lambda T}}$$

(S)
$$\begin{cases} y' + \lambda y = v, \\ y(0) = 1, \end{cases} \text{ and } (S_h) \begin{cases} y'_h + (\lambda + \delta_h)y_h = v_h, \\ y_h(0) = 1. \end{cases}$$

PROPOSITION

The corresponding semi-discrete penalised and exact HUM controls are

$$v_{\varepsilon,h}(t) = -e^{-(T-t)(\lambda+\delta_h)} \frac{2(\lambda+\delta_h)e^{-(\lambda+\delta_h)T}}{1-e^{-2(\lambda+\delta_h)T} + \left(2\varepsilon(\lambda+\delta_h)\right)},$$

$$v(t) = -e^{-(T-t)\lambda} \frac{2\lambda e^{-\lambda T}}{1 - e^{-2\lambda T}}.$$

ERROR ESTIMATES

$$\llbracket v - v_{\varepsilon,h} \rrbracket_{L^2(0,T;U)} \leq C(\lambda,T)(|\delta_h| + \varepsilon), \text{ for } \delta_h \text{ and } \varepsilon \text{ small},$$

$$\mathcal{L}_T(v_{\varepsilon,h} | 1) = C_1(\lambda,T)\delta_h + C_2(\lambda,T)\varepsilon + O(\varepsilon^2 + \delta_h^2),$$
with $C_i(\lambda,T) > 0$.

CONCLUSION: The *optimal* choice is to take $\varepsilon = \phi(h) \sim \delta_h$.

$$\partial_t y - \partial_x^2 y = \mathbf{1}_{\Omega} v$$
, in $\Omega =]0, 1[$,

in the particular case where $\omega = \Omega$.

STANDARD FINITE DIFFERENCE APPROXIMATION ON A UNIFORM GRID

$$\partial_t y_i - \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = v_i, \quad \forall i \in \{1, ..., N\}.$$

Eigenfunctions of ${\cal A}$

$$\phi_k(x) = \sin(k\pi x), \ \lambda_k = k^2 \pi^2, \ \forall k \ge 1.$$

EIGENFUNCTIONS OF A_h

$$\phi_{k,h} = (\sin(k\pi x_i))_i, \quad \lambda_{k,h} = \frac{4\sin^2\left(\frac{k\pi h}{2}\right)}{h^2}, \quad \forall 1 \le k \le 1/h.$$

EQUATIONS FOR THE k-TH EIGENMODE

$$y' + \lambda_k y = v$$
, $y'_h + \lambda_{k,h} y_h = v_h$.

Here

$$\delta_{k,h} = \lambda_{k,h} - \lambda_k \underset{h \to 0}{\sim} -\frac{k^4 \pi^4}{12} h^2.$$

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- Numerical results
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

DISCRETE LEBEAU-ROBBIANO INEQUALITY

(B.-Hubert-Le Rousseau, '09-'11)

We assume that A_h is SPD and let $(\psi_{j,h}, \mu_{j,h})_j$ its eigenelements.

ASSUMPTION: DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists $h_0 > 0$, $\alpha \in [0, 1)$, $\beta > 0$, and $\kappa, \ell > 0$ such that, for any $h < h_0$ and for any $(a_j)_j \in \mathbb{R}^{\mathbb{N}}$, we have

$$\left\| \sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} \left(\sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right) \right] \right]_h^2, \quad \forall \mu < \frac{\ell}{h^{\beta}}. \tag{$\mathcal{H}_{\alpha,\beta}$}$$

THEOREM

Assume that assumption $(\mathcal{H}_{\alpha,\beta})$ holds, then there exists $h_0 > 0$, C > 0 such that, the relaxed observability inequality holds as soon as the function ϕ satisfies

$$\left[\liminf_{h \to 0} \frac{\phi(h)}{e^{-C/h^{\beta}}} > 0. \right]$$

Thus, for any bounded family of initial data $Y_0 \in E_{init}$, and for any $0 < h < h_0$ we have

$$\left\| \left[v_{\phi(h),h} \right] \right\|_{L^{2}(0,T;U_{h})} \leq C_{\text{obs}} \left\| y_{0,h} \right\|_{h}, \text{ and } \left\| \mathcal{L}_{T}^{h} \left(v_{\phi(h),h} \middle| y_{0,h} \right) \right\|_{h} \leq C_{\text{obs}} \left\| y_{0,h} \right\|_{h} \sqrt{\phi(h)}.$$

$$\left\|q_h\right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} q_h\right]\right]_h^2, \quad \forall q_h \in E_h, \forall \mu < \frac{\ell}{h^{\beta}}.$$

Non-uniform partial observability

$$\left\|e^{-\tau\mathcal{A}_h^\star}q_h^F\right\|_h^2 \leq C\frac{Ce^{C\mu^\alpha}}{\tau}\int_0^\tau \left[\!\!\left[\mathcal{B}_h^\star e^{-s\mathcal{A}_h^\star}q_h^F\right]\!\!\right]_h^2ds, \ \ \forall q_h^F \in E_{\mu,h}, \forall \tau>0.$$

$$\left\|q_h\right\|_h^2 \leq \kappa e^{\kappa \mu^{lpha}} \left[\left[\mathcal{B}_h^{\star} q_h\right]\right]_h^2, \quad \forall q_h \in E_h, \forall \mu < \frac{\ell}{h^{\beta}}.$$

Non-uniform partial observability

$$\left\|e^{-\tau\mathcal{A}_h^\star}q_h^F\right\|_h^2 \leq C\frac{Ce^{C\mu^\alpha}}{\tau}\int_0^\tau \left[\!\!\left[\mathcal{B}_h^\star e^{-s\mathcal{A}_h^\star}q_h^F\right]\!\!\right]_h^2 ds, \ \forall q_h^F \in E_{\mu,h}, \forall \tau > 0.$$

Partial controllability

For any $y_{0,h} \in E_{\mu,h}$, and any $\tau > 0$ there exists a $v_h \in L^2(0,\tau;U_h)$ such that

$$\begin{cases} \|v_h\|_{L^2(0,\tau;U_h)} \le C \frac{e^{C\mu^{\alpha}}}{\tau^{1/2}} \|y_{0,h}\|_h, \\ \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \ y_h(0) = y_{0,h}, \ \mathbb{P}_{\mathcal{E}_{\mu,h}} y_h(\tau) = 0. \end{cases}$$

$$\left\|q_h\right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} q_h\right]\right]_h^2, \quad \forall q_h \in E_h, \forall \mu < \frac{\ell}{h^{\beta}}.$$

Non-uniform partial observability

$$\left\|e^{-\tau\mathcal{A}_h^\star}q_h^F\right\|_h^2 \leq C\frac{Ce^{C\mu^\alpha}}{\tau}\int_0^\tau \left[\!\!\left[\mathcal{B}_h^\star e^{-s\mathcal{A}_h^\star}q_h^F\right]\!\!\right]_h^2 ds, \ \, \forall q_h^F \in E_{\mu,h}, \forall \tau>0.$$

PARTIAL CONTROLLABILITY

For any $y_{0,h} \in E_{\mu,h}$, and any $\tau > 0$ there exists a $v_h \in L^2(0,\tau;U_h)$ such that

$$\begin{cases} \llbracket v_h \rrbracket_{L^2(0,\tau;U_h)} \leq C \frac{e^{C\mu^{\alpha}}}{\tau^{1/2}} \lVert y_{0,h} \rVert_h, \\ \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \quad y_h(0) = y_{0,h}, \quad \boxed{\mathbb{P}_{E_{\mu,h}} y_h(\tau) = 0.} \end{cases}$$

ONSTRUCTION OF THE CONTROL: Time slicing procedure.

$$\left\|q_h\right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} q_h\right]\right]_h^2, \quad \forall q_h \in E_h, \forall \mu < \frac{\ell}{h^{\beta}}.$$

NON-UNIFORM PARTIAL OBSERVABILITY

$$\left\|e^{-\tau\mathcal{A}_h^\star}q_h^F\right\|_h^2 \leq C\frac{Ce^{C\mu^\alpha}}{\tau}\int_0^\tau \left[\!\!\left[\mathcal{B}_h^\star e^{-s\mathcal{A}_h^\star}q_h^F\right]\!\!\right]_h^2 ds, \ \forall q_h^F \in E_{\mu,h}, \forall \tau > 0.$$

PARTIAL CONTROLLABILITY

For any $y_{0,h} \in E_{\mu,h}$, and any $\tau > 0$ there exists a $v_h \in L^2(0,\tau;U_h)$ such that

$$\begin{cases} \left[\left[v_h \right]_{L^2(0,\tau;U_h)} \le C \frac{e^{C\mu^{\alpha}}}{\tau^{1/2}} \left\| y_{0,h} \right\|_h, \\ \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \ \ y_h(0) = y_{0,h}, \ \ \left[\mathbb{P}_{E_{\mu,h}} y_h(\tau) = 0. \right] \end{cases}$$

3 CONSTRUCTION OF THE CONTROL: Time slicing procedure.

$$\left\|q_h\right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} q_h\right]\right]_h^2, \quad \forall q_h \in E_h, \forall \mu < \frac{\ell}{h^{\beta}}.$$

Non-uniform partial observability

$$\left\|e^{-\tau\mathcal{A}_h^\star}q_h^F\right\|_h^2 \leq C\frac{Ce^{C\mu^\alpha}}{\tau}\int_0^\tau \left[\!\!\left[\mathcal{B}_h^\star e^{-s\mathcal{A}_h^\star}q_h^F\right]\!\!\right]_h^2 ds, \ \forall q_h^F \in E_{\mu,h}, \forall \tau > 0.$$

PARTIAL CONTROLLABILITY

For any $y_{0,h} \in E_{\mu,h}$, and any $\tau > 0$ there exists a $\nu_h \in L^2(0,\tau;U_h)$ such that

$$\begin{cases} \llbracket v_h \rrbracket_{L^2(0,\tau;U_h)} \leq C \frac{e^{C\mu^{\alpha}}}{\tau^{1/2}} \lVert y_{0,h} \rVert_h, \\ \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \quad y_h(0) = y_{0,h}, \quad \boxed{\mathbb{P}_{E_{\mu,h}} y_h(\tau) = 0.} \end{cases}$$

ONSTRUCTION OF THE CONTROL: Time slicing procedure.

$$\left\|q_h\right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} q_h\right]\right]_h^2, \quad \forall q_h \in E_h, \forall \mu < \frac{\ell}{h^{\beta}}.$$

NON-UNIFORM PARTIAL OBSERVABILITY

$$\left\|e^{-\tau\mathcal{A}_h^\star}q_h^F\right\|_h^2 \leq C\frac{Ce^{C\mu^\alpha}}{\tau}\int_0^\tau \left[\!\!\left[\mathcal{B}_h^\star e^{-s\mathcal{A}_h^\star}q_h^F\right]\!\!\right]_h^2 ds, \ \forall q_h^F \in E_{\mu,h}, \forall \tau > 0.$$

PARTIAL CONTROLLABILITY

For any $y_{0,h} \in E_{\mu,h}$, and any $\tau > 0$ there exists a $v_h \in L^2(0,\tau;U_h)$ such that

$$\begin{cases} \left[\left[v_h \right]_{L^2(0,\tau;U_h)} \le C \frac{e^{C\mu^{\alpha}}}{\tau^{1/2}} \left\| y_{0,h} \right\|_h, \\ \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \ \ y_h(0) = y_{0,h}, \ \ \left[\mathbb{P}_{E_{\mu,h}} y_h(\tau) = 0. \right] \end{cases}$$

3 CONSTRUCTION OF THE CONTROL: Time slicing procedure.

$$\left\|q_h\right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} q_h\right]\right]_h^2, \quad \forall q_h \in E_h, \forall \mu < \frac{\ell}{h^{\beta}}.$$

Non-uniform partial observability

$$\left\|e^{-\tau\mathcal{A}_h^\star}q_h^F\right\|_h^2 \leq C\frac{Ce^{C\mu^\alpha}}{\tau}\int_0^\tau \left[\!\!\left[\mathcal{B}_h^\star e^{-s\mathcal{A}_h^\star}q_h^F\right]\!\!\right]_h^2 ds, \ \forall q_h^F \in E_{\mu,h}, \forall \tau > 0.$$

PARTIAL CONTROLLABILITY

For any $y_{0,h} \in E_{\mu,h}$, and any $\tau > 0$ there exists a $\nu_h \in L^2(0,\tau;U_h)$ such that

$$\begin{cases} & \llbracket v_h \rrbracket_{L^2(0,\tau;U_h)} \leq C \frac{e^{C\mu^{\alpha}}}{\tau^{1/2}} \left\| y_{0,h} \right\|_h, \\ & \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \ \ y_h(0) = y_{0,h}, \end{cases} \quad \boxed{\mathbb{P}_{E_{\mu,h}} y_h(\tau) = 0.}$$

ONSTRUCTION OF THE CONTROL: Time slicing procedure.

$$\left\| \sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\left[\mathcal{B}_h^{\star} \left(\sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right) \right] \right]_h^2, \quad \boxed{\forall \mu < \frac{\ell}{h^{\beta}}}. \quad (\mathcal{H}_{\alpha,\beta})$$

IMPORTANT OBSERVATION

Excepted in very particular cases, the assumption $(\mathcal{H}_{\alpha,\beta})$ has no chance to hold true without restriction on μ , for dimension reasons.

See also the counter-example of Kavian.

FINITE DIFFERENCE FRAMEWORK

We assume now that \mathcal{A}_h is the finite-difference discretisation of $-\nabla \cdot (\gamma \nabla .)$, γ being a Lipschitz continuous coefficient and $\mathcal{B}_h = 1_\omega$ with $\omega = \subset \Omega$.

$$\left\| \sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\mathcal{B}_h^{\star} \left(\sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right) \right]_h^2, \quad \forall \mu < \frac{\ell}{h^{\beta}}. \tag{$\mathcal{H}_{\alpha,\beta}$}$$

THE CARLEMAN ESTIMATE

For a suitable weight function φ , $\varepsilon_0 > 0$, $s_0 > 0$ and C > 0.

For any $s \ge s_0$ such that $sh \le \varepsilon_0$ and any $u \in C^2([0,\tau], E_h)$, with u(0) = 0, we have

$$s^{3} \int_{0}^{\tau} \|e^{s\varphi}u\|_{h}^{2} dt + s \|e^{s\varphi(0,\cdot)}\partial_{t}u(0)\|_{h}^{2} + se^{s\varphi(\tau)} \|\partial_{t}u(\tau)\|_{h}^{2} + s^{3}e^{2s\varphi(\tau)} \|u(\tau)\|_{h}^{2}$$

$$\leq C \int_{0}^{\tau} \|e^{s\varphi}(-\partial_{t}^{2} + \mathcal{A}_{h})u\|_{h}^{2} dt + Cse^{2s\varphi(\tau)} \langle \mathcal{A}_{h}u(\tau), u(\tau)\rangle_{h} + Cs \|\mathcal{B}_{h}^{\star}e^{s\varphi(0,\cdot)}\partial_{t}u(0)\|_{h}^{2}.$$

$$\left\| \sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\mathcal{B}_h^{\star} \left(\sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right) \right]_h^2, \quad \forall \mu < \frac{\ell}{h^{\beta}}. \tag{$\mathcal{H}_{\alpha,\beta}$}$$

THE CARLEMAN ESTIMATE

For a suitable weight function φ , $\varepsilon_0 > 0$, $s_0 > 0$ and C > 0.

For any $s \ge s_0$ such that $sh \le \varepsilon_0$ and any $u \in C^2([0,\tau], E_h)$, with u(0) = 0, we have

$$s^{3}e^{2s\varphi(\tau)}\left\|u(\tau)\right\|_{h}^{2} \leq Cse^{2s\varphi(\tau)}\left\langle \mathcal{A}_{h}u(\tau), u(\tau)\right\rangle_{h} + Cse^{Cs}\left\|\mathcal{B}_{h}^{\star}\partial_{t}u(0)\right\|_{h}^{2},$$

as soon as $(-\partial_t^2 + A_h)u = 0$.

$$\left\| \sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right\|_h^2 \leq \kappa e^{\kappa \mu^{\alpha}} \left[\mathcal{B}_h^{\star} \left(\sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right) \right]_h^2, \quad \forall \mu < \frac{\ell}{h^{\beta}}. \tag{$\mathcal{H}_{\alpha,\beta}$}$$

THE CARLEMAN ESTIMATE

For a suitable weight function φ , $\varepsilon_0 > 0$, $s_0 > 0$ and C > 0.

For any $s \ge s_0$ such that $sh \le \varepsilon_0$ and any $u \in \mathcal{C}^2([0,\tau], E_h)$, with u(0) = 0, we have

$$s^{3}e^{2s\varphi(\tau)}\left\|u(\tau)\right\|_{h}^{2}\leq Cse^{2s\varphi(\tau)}\left\langle \mathcal{A}_{h}u(\tau),u(\tau)\right\rangle _{h}+Cse^{Cs}\left\|\mathcal{B}_{h}^{\star}\partial_{t}u(0)\right\|_{h}^{2},$$

as soon as $(-\partial_t^2 + A_h)u = 0$.

WE TAKE: $u(t) = \sum_{\mu_{j,h} \leq \mu} a_j \frac{\sinh(\sqrt{\mu_{j,h}}t)}{\sqrt{\mu_{j,h}}} \psi_{j,h}$, sol. of the elliptic Cauchy problem.

$$\|u(\tau)\|_h^2 \ge \frac{1}{\mu} \sum_{\mu_{j,h} \le \mu} |a_j|^2 \sinh^2(\sqrt{\mu_{j,h}}\tau), \text{ and } \langle \mathcal{A}_h u(\tau), u(\tau) \rangle_h = \sum_{\mu_{j,h} \le \mu} |a_j|^2 \sinh^2(\sqrt{\mu_{j,h}}\tau)^2,$$

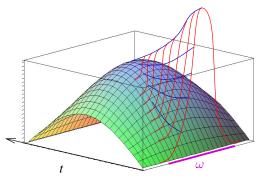
$$\|\partial_t u(0)\|_h^2 = \left[\left[\mathcal{B}_h^{\star} \left(\sum_{\mu_{j,h} \leq \mu} a_j \psi_{j,h} \right) \right] \right]_h^2.$$

Finally, we need $s \sim \sqrt{\mu}$ which gives the condition $\sqrt{\mu}h \leq \varepsilon_0$.

THE CONTINUOUS CASE

We consider a weight function ψ in $\mathcal{C}^2([0,\tau]\times\overline{\Omega},\mathbb{R})$, sich that

$$\begin{split} |\nabla \psi| &\geq c \text{ and } \psi > 0 \text{ in }]0, \tau[\times \Omega, \quad \partial_{n_x} \psi(t,x) < 0 \text{ in } (0,\tau) \times \partial \Omega, \\ \partial_t \psi &\geq c \text{ on } \{0\} \times (\Omega \setminus \omega), \quad \nabla_x \psi(T,.) = 0 \text{ and } \partial_t \psi(T,.) \leq -c \text{ on } \Omega. \end{split}$$



THE CONTINUOUS CASE

We consider a weight function ψ in $C^2([0,\tau] \times \overline{\Omega}, \mathbb{R})$, sich that

$$\begin{split} |\nabla \psi| &\geq c \text{ and } \psi > 0 \text{ in }]0, \tau[\times \Omega, \quad \partial_{n_x} \psi(t,x) < 0 \text{ in } (0,\tau) \times \partial \Omega, \\ \partial_t \psi &\geq c \text{ on } \{0\} \times (\Omega \setminus \omega), \quad \nabla_x \psi(T,.) = 0 \text{ and } \partial_t \psi(T,.) \leq -c \text{ on } \Omega. \end{split}$$

We set $\varphi = e^{\lambda \psi}$ and $\rho = e^{s\varphi}$, and

$$P = -\partial_t^2 - \nabla \cdot (\gamma \nabla \cdot).$$

We compute the commutator between P and ho

Assume d=1 and $\gamma=1$

$$f = Pu = -\partial_t^2 u - \partial_x^2 u,$$

becomes (with $r = \rho^{-1}$)

$$\underbrace{\partial_t^2 v + \partial_x^2 v + r(\partial_t^2 \rho) v + r(\partial_x^2 \rho) v}_{=Av} + \underbrace{2r(\partial_t \rho)(\partial_t v) + r(\partial_x \rho)(\partial_x v)}_{=Bv} = -rf.$$

Then

$$2(Av, Bv)_{L^2_{t,x}} \le ||rf||_{L^2_{t,x}}.$$

We conclude by integrating by parts in the term (Av, Bv) and using the properties of the weights (and by choosing λ large enough). The inequality then holds for any s large enough.

THE 1D UNIFORM DISCRETISATION CASE

✓ for smooth Cartesian multi-D geometry

Primal/Dual discrete functions

$$u = (u_i)_{1 \le i \le N} \in \mathbb{R}^{\mathfrak{M}}, \qquad v = (v_{i+\frac{1}{2}})_{0 \le i \le N} \in \mathbb{R}^{\overline{\mathfrak{M}}}.$$

• Discrete derivatives (Dirichlet BC : $\Leftrightarrow u_0 = u_{N+1} = 0$)

$$\left((\underline{D}u)_{i+\frac{1}{2}} = \frac{u_{i+1} - u_i}{h} \right)_{0 \le i \le N} \in \mathbb{R}^{\overline{\mathfrak{M}}}, \quad \left((\bar{D}v)_i = \frac{v_{i+\frac{1}{2}} - v_{i-\frac{1}{2}}}{h} \right)_{1 \le i \le N} \in \mathbb{R}^{\mathfrak{M}},$$

Discrete integrals and norms

$$||u||_h^2 = \int_{\Omega} u^2 = \sum_{i=1}^N h u_i^2, \quad \int_{\Omega} v = \sum_{i=0}^N h v_{i+\frac{1}{2}}, \dots$$

The discrete operator reads $\mathcal{A}_h = -ar{D}(\gamma D \cdot)$

- We consider the same weight as in the continuous case which is sampled on the
 meshes.
- Discrete integration by parts and discrete derivation of products lead to new terms

$$\underbrace{\frac{\partial_t^2 v + r\overline{\overline{\rho}} \, \overline{D} D v + r(\partial_t^2 \rho) \, v + r(\overline{D} D \rho) \, \overline{\overline{v}}}_{=Av} + \underbrace{2r(\partial_t \rho)(\partial_t v) + 2r\overline{D} \rho \, \overline{D} v}_{=Bv}}_{=Bv}$$

$$= -rf + \cdots$$

- All the additional terms are small with respect to h but contain high powers of the parameters s and λ.
- We shall need a condition relating s and h of the following form

$$sh \leq \varepsilon_0$$
,

where ε_0 only depends on the data.

• In the proof of the discrete Lebeau-Robbiano, we take $s \sim \sqrt{\mu}$, which gives the threshold $\mu \leq \frac{\varepsilon_1}{h^2}$.

PRODUCTS DERIVATIVES

$$f_i \in \mathbb{R}^{\mathfrak{M}}, g_i \in \mathbb{R}^{\overline{\mathfrak{M}}}$$

$$D(f_1f_2) = (Df_1)\overline{f_2} + (Df_2)\overline{f_1},$$

$$\overline{D}(g_1g_2) = (\overline{D}g_1)\overline{g_2} + (\overline{D}g_2)\overline{g_1},$$

PRODUCTS AVERAGES

$$\overline{f_1f_2} = \overline{f_1}\,\overline{f_2} + \frac{h^2}{4}(Df_1)(Df_2).$$

REPEATED AVERAGES

$$\bar{\bar{f}} = f + \frac{h^2}{4} \bar{D}Df,$$

Typical term (remember that $r = \rho^{-1}$)

$$r\overline{\overline{\rho}} = 1 + \frac{h^2}{4}r(\overline{D}D\rho) \approx 1 + \frac{h^2}{4}r\partial_x^2\rho \approx 1 + \frac{h^2s^2}{4}(\partial_x\phi)^2\underbrace{r\rho}_{=1} + \cdots$$

DISCRETE INTEGRATION BY PARTS

$$f \in \mathbb{R}^{\overline{\mathfrak{M}}}$$
 and $g \in \mathbb{R}^{\mathfrak{M}}$

$$\int_{\Omega} f(\mathbf{D}g) = -\int_{\Omega} (\bar{\mathbf{D}}f)g + f_{N+1}g_{N+\frac{1}{2}} - f_0g_{\frac{1}{2}}.$$

Another (parabolic) discrete Carleman estimate

(B. - Le Rousseau, '14)

GOALS

- To obtain relaxed observability estimates for some time depend coefficients parabolic equations.
- To study some semi-linear case.
- To derive discrete parabolic Carleman estimates (a la Fursikov-Imanuvilov).

CARLEMAN WEIGHTS

- Standard weights in space $\varphi = e^{\lambda \psi} e^{\lambda \|\psi\|_{\infty}}$.
- Singular weights in time $\theta(t) = (t + \alpha h)^{-1} (T t + \alpha h)^{-1}$.

THEOREM

For any $\tau > 0$ large enough, there exists $\alpha > 0$ and $h_0 > 0$ such that for any function $q_h \in \mathcal{C}^1([0,T],E_h)$ and any $h < h_0$ we have

$$\begin{split} \|(\tau\theta)^{\frac{1}{2}}e^{-\tau\theta\varphi}Dq_{h}\|_{L^{2}(0,T;E_{h})}^{2} + \|(\tau\theta)^{\frac{3}{2}}e^{-\tau\theta\varphi}q_{h}\|_{L^{2}(0,T;E_{h})}^{2} \\ &\leq C\left(\|e^{-\tau\theta\varphi}(-\partial_{t}+\mathcal{A}_{h}^{*})q_{h}\|_{L^{2}(0,T;E_{h})}^{2} + \|(\tau\theta)^{\frac{3}{2}}e^{-\tau\theta\varphi}\mathcal{B}_{h}^{*}q_{h}\|_{L^{2}(0,T;E_{h})}^{2}\right) \\ &+ Ch^{-2}\left(\left\|e^{-\tau\theta\varphi}q_{h}(0)\right\|_{h}^{2} + \left\|e^{-\tau\theta\varphi}q_{h}(T)\right\|_{h}^{2}\right) \end{split}$$

ANOTHER (PARABOLIC) DISCRETE CARLEMAN ESTIMATE

(B. - Le Rousseau, '14)

GOALS

- To obtain relaxed observability estimates for some time depend coefficients parabolic equations.
- To study some semi-linear case.
- To derive discrete parabolic Carleman estimates (a la Fursikov-Imanuvilov).

CARLEMAN WEIGHTS

- Standard weights in space $\varphi = e^{\lambda \psi} e^{\lambda \|\psi\|_{\infty}}$.
- Singular weights in time $\theta(t) = (t + \alpha h)^{-1} (T t + \alpha h)^{-1}$.

THEOREM (RELAXED OBSERVABILITY INEQUALITY)

There exists C > 0 s.t. for any function $a_h \in L^{\infty}(]0, T[, E_h)$, and any $h \leq \min(h_0, h_1)$ with $h_1 \sim \|a_h\|_{\infty}^{-\frac{2}{3}}$, any solution of $-\partial_t q_h + \mathcal{A}_h^{\star} q_h + a_h q_h = 0$ satisfies

$$\|q_h(0)\|_h^2 \le C_{\text{obs}} \|\mathcal{B}_h^{\star} q_h\|_{L^2(0,T;E_h)}^2 + e^{-\frac{C^{-1}}{h} + T \|a_h\|_{\infty}} \|q_h(T)\|_h^2.$$

with
$$C_{\text{obs}} = e^{C(1+\frac{1}{T}+T\|a_h\|_{\infty}+\|a_h\|_{\infty}^{\frac{2}{3}})}$$
.

APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

(Fernández-Cara - Zuazua, '00), (B. - Le Rousseau, '14)

$$\partial_t y_h + \mathcal{A}_h y_h + \mathbf{g}(y_h) y_h = \mathbf{1}_\omega v_h, \quad y_h(0) = y_{0,h},$$

Sublinear case : $|g(s)| \le M$

There exists

$$C = e^{C_1(1 + \frac{1}{T} + T \|g\|_{\infty} + \|g\|_{\infty}^{\frac{2}{3}})}$$

such that for any initial data $y_{0,h} \in E_h$, and any $h < h_0$, there exists a semi-discrete control v_h such that

$$\|v_h\|_{L^2(0,T;U_h)} \le C \|y_{0,h}\|_h$$
, and $\|y_h(T)\|_h \le Ce^{-\frac{C^{-1}}{h}} \|y_0\|_h$.

- Uniform estimates with respect to h:
 - Weak convergence of the contro towards a null-control of the semi-linear problem. At least for a subsequence ...
 - Strong convergence of the controlled solution
- We can replace $e^{-C^{-1}/h}$ by any $\phi(h)$ that goes to 0 not too fast.
- In practice, we use a Picard fixed-point procedure to compute the approximate solution but other non-linear solvers can be useful.

APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

(Fernández-Cara – Zuazua, '00), (B. – Le Rousseau, '14)

$$\partial_t y_h + \mathcal{A}_h y_h + g(y_h) y_h = \mathbf{1}_\omega v_h, \quad y_h(0) = y_{0,h},$$

Superlinear case : $|g(s)| \le M \ln(1+|s|)^r$, r < 3/2

• In 1D : For any initial data $y_{0,h} \in E_h$ such that $\|Dy_{0,h}\|_h \le M$ and $h < h_0$ there exists a v_h such that

$$\|v_h\|_{L^2(0,T;U_h)} \le C_M$$
, and $\|y_h(T)\|_h \le C_M e^{-\frac{C^{-1}}{h}}$.

 In multi-D: similar result (no need of a H¹ estimate) but with a non-uniform bound of the control

$$\|v_h\|_{L^2(0,T;U_h)} \le C_{\|y_{0,h}\|_h} \frac{h^{-\alpha}}{h}, \text{ and } \|y_h(T)\|_h \le C_{\|y_{0,h}\|_h} e^{-\frac{C^{-1}}{h}}.$$

BONUS: Uniform local controllability result in 1D for any g

LINEARIZATION + TRUNCATURE + SCHAUDER FIXED-POINT PROCEDURE

$$(S_{z_h}): \partial_t y_h + \mathcal{A}_h y_h + \underbrace{g(\mathbf{T}_{R_h}(z_h))}_{=a_h} y_h = \mathbf{1}_{\omega} v_h,$$

 $\Lambda_h: z_h \in \text{Some space } Z_h \longmapsto \nu_h \text{the HUM-pen. control for } (S_{z_h})$

 $\longmapsto y_h \in \text{the same space } Z_h.$

MAIN ISSUE: to find a suitable space Z_h

• Sublinear case : one can take for some R_0

$$Z_h \stackrel{\text{def}}{=} \{ z_h \in L^2(0,T;U_h), \|z_h\|_{L^2(0,T;U_h)} \le R_0 \}.$$

LINEARIZATION + TRUNCATURE + SCHAUDER FIXED-POINT PROCEDURE

$$(S_{z_h}): \partial_t y_h + \mathcal{A}_h y_h + \underbrace{g(\mathbf{T}_{R_h}(z_h))}_{=a_h} y_h = \mathbf{1}_\omega v_h,$$

 $\Lambda_h: z_h \in \text{Some space } \mathbb{Z}_h \longmapsto v_h \text{the HUM-pen. control for } (S_{z_h})$

 $\longmapsto y_h \in \text{the same space } Z_h.$

MAIN ISSUE: to find a suitable space Z_h

- Sublinear case :
- Superlinear case : We need an L^{∞} estimate

$$Z_h \stackrel{\text{def}}{=} \{ z_h \in L^{\infty}(0, T; U_h), \|z_h\|_{L^{\infty}(0, T; U_h)} \leq R_h \}.$$

Then we take $R_h = Ch^{-\alpha}$, $\alpha > d/2$ in order to satisfy

$$\begin{cases} h \lesssim \|a_h\|_{\infty}^{-\frac{2}{3}} \sim \ln(1+R_h)^{-\frac{2r}{3}} \Rightarrow \text{Carleman} \\ \frac{h^{-d/2}e^{C_T + \ln(1+R_h)^{-\frac{2r}{3}}}}{\|y_{0,h}\|_h} \leq R_h \Rightarrow \text{stability estimate} \\ + \text{a good estimate on the control time } T_h \end{cases}$$

since we want that

$$||y_h||_{L^{\infty}} \leq h^{-d/2} ||y_h||_{L^{\infty}(0,T;E_h)} \lesssim h^{-d/2} e^{C_T + \ln(1+R_h)^{-\frac{2r}{3}}} ||y_{0,h}||_h \leq R_h.$$

LINEARIZATION + TRUNCATURE + SCHAUDER FIXED-POINT PROCEDURE

$$(S_{z_h}): \partial_t y_h + \mathcal{A}_h y_h + \underbrace{g(\mathbf{T}_{R_h}(z_h))}_{=a_h} y_h = \mathbf{1}_\omega v_h,$$

 $\Lambda_h: z_h \in \text{Some space } \mathbb{Z}_h \longmapsto v_h \text{the HUM-pen. control for } (S_{z_h})$

 $\longmapsto y_h \in \text{the same space } Z_h.$

MAIN ISSUE: to find a suitable space Z_h

- Sublinear case:
- Superlinear case:
- Improvment in 1D:

Discrete Sobolev embedding $||y_h||_{\infty} \le C||Dy_h||_h$.

LEMMA (UNIFORM REGULARISING EFFECT)

Assume that $y_{0,h} \in E_h$ is such that $||y_{0,h}||_{\infty} \le M_0$ for some $M_0 > 0$ then there exists $t_1 > 0$ depending only on M_0 , and g, such that the solution y_h of

$$\partial_t y_h + A_h y_h + g(y_h) y_h = 0$$
, and $y_h(0) = y_{0,h}$,

exists on $[0, t_1]$ and satisfies $||Dy_h(t_1)||_h \leq C(M_0, g)$.

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- Numerical results
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

THE FULLY DISCRETE SETTING

We have introduced and analyzed the $\phi(h)$ -null-controllability hold for

$$(S_h) \begin{cases} \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \\ y_h(0) = y_{0,h}. \end{cases}$$

WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM?

We study **unconditionally stable schemes**: the θ -scheme with $\theta \in [1/2, 1]$

$$(S_{h,\delta t}) \begin{cases} \frac{y_h^{n+1} - y_h^n}{\delta t} + \mathcal{A}_h(\theta y_h^{n+1} + (1-\theta)y_h^n) = \mathcal{B}_h v_h^{n+1}, \ \forall n \in [0, M-1], \\ y_h^0 = y_{0,h} \in E_h, \end{cases}$$

where, $\delta t = T/M$, $v_{h,\delta t} = (v_h^n)_{1 \le n \le M} \in (U_h)^M$ is a fully-discrete control function whose cost is defined by

$$\llbracket v_{h,\delta t} \rrbracket_{L^2_{\delta t}(0,T;U_h)} \stackrel{\text{def}}{=} \left(\sum_{n=1}^M \delta t \llbracket v_h^n \rrbracket_h^2 \right)^{\frac{1}{2}}.$$

The value at the final time iteration of the controlled solution of $(S_{h,\delta t})$ is denoted by

$$\mathcal{L}_{T}^{h,\delta t}(v_{h,\delta t}|y_{0,h})\stackrel{\text{def}}{=} y_{h}^{M}.$$

THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

$$F_{\varepsilon,h,\delta t}(v_{h,\delta t}) \stackrel{\text{\tiny def}}{=} \frac{1}{2} \left[\! \left[v_{h,\delta t} \right] \! \right]_{L^2_{\delta t}(0,T;U_h)}^2 + \frac{1}{2\varepsilon} \left\| \mathcal{L}_T^{h,\delta t} \! \left(v_{h,\delta t} \middle| y_{0,h} \right) \right\|_h^2.$$

DEFINITION (DUAL FUNCTIONAL)

We define the functional

$$\begin{split} J_{\varepsilon,h,\delta t}(q_h^F) &\stackrel{\text{def}}{=} \frac{1}{2} \left[\left[\mathcal{B}_h^{\star} \mathcal{L}_T^{*,h,\delta t} \left(q_h^F \right) \right] \right]_{L_{\delta t}^2(0,T;U_h)}^2 + \frac{\varepsilon}{2} \left\| q_h^F \right\|_h^2 \\ & - \left\langle y_{0,h}, q_h^1 - \delta t (1-\theta) \mathcal{A}_h q_h^1 \right\rangle_h, \ \forall q_h^F \in E_h, \end{split}$$

where $\mathcal{L}_{T}^{*,h,\delta t}ig(q_{h}^{F}ig)=(q_{h}^{n})_{1\leq n\leq M}$ is the solution of the following adjoint problem

$$\begin{cases} q_h^{M+1} = q_h^F, \\ \frac{q_h^M - q_h^{M+1}}{\delta t} + \theta \mathcal{A}_h q_h^M = 0, \\ \frac{q_h^n - q_h^{n+1}}{\delta t} + \mathcal{A}_h (\theta q_h^n + (1 - \theta) q_h^{n+1}) = 0, \ \forall n \in [\![1, M - 1]\!]. \end{cases}$$

THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

$$F_{\varepsilon,h,\delta t}(v_{h,\delta t}) \stackrel{\text{def}}{=} \frac{1}{2} \left[v_{h,\delta t} \right]_{L^2_{\delta t}(0,T;U_h)}^2 + \frac{1}{2\varepsilon} \left\| \mathcal{L}_T^{h,\delta t}(v_{h,\delta t} \big| y_{0,h}) \right\|_h^2.$$

$$\begin{split} J_{\varepsilon,h,\delta t}(q_h^F) &\stackrel{\text{def}}{=} \frac{1}{2} \left[\left[\mathcal{B}_h^{\star} \mathcal{L}_T^{*,h,\delta t} \left(q_h^F \right) \right] \right]_{L_{\delta t}^2(0,T;U_h)}^2 + \frac{\varepsilon}{2} \left\| q_h^F \right\|_h^2 \\ & - \left\langle y_{0,h}, q_h^1 - \delta t (1-\theta) \mathcal{A}_h q_h^1 \right\rangle_h, \ \forall q_h^F \in E_h, \end{split}$$

THEOREM (DUALITY)

The functionals $F_{\varepsilon,h,\delta t}$ and $J_{\varepsilon,h,\delta t}$ are in duality, in the sense that their respective minimisers $v_{\varepsilon,h,\delta t} \in L^2(0,T;U_h)$ and $q^F_{\varepsilon,h,\delta t} \in E_h$ satisfy

$$\inf_{L^2_{\delta t}(0,T;U_h)} F_{\varepsilon,h,\delta t} = F_{\varepsilon,h,\delta t}(v_{\varepsilon,h,\delta t}) = -J_{\varepsilon,h,\delta t}(q^F_{\varepsilon,h,\delta t}) = -\inf_{E_h} J_{\varepsilon,h,\delta t},$$

and moreover

$$v_{\varepsilon,h} = \mathcal{B}_h^{\star} \mathcal{L}_T^{*,h,\delta t} \Big(q_{\varepsilon,h,\delta t}^F \Big)$$
.

THEOREM (CASE $\theta \in]1/2, 1]$)

Assume that the discrete Lebeau-Robbiano inequality $(\mathcal{H}_{\alpha,\beta})$ holds and let ϕ be such that

$$\left[\liminf_{h \to 0} \frac{\phi(h)}{e^{-C/h^{\beta}}} > 0. \right]$$

Then, there exists $h_0 > 0$, $C_T > 0$, $C_{\text{obs}} > 0$ such that for any $0 < h < h_0$ and any $\delta t \le C_T |\log \phi(h)|^{-1}$, the following relaxed observability inequality holds

$$\left\|q_h^1 - \delta t(1-\theta)\mathcal{A}_h q_h^1\right\|_h^2 \leq C_{\text{obs}}^2 \left(\left[\!\left[\mathcal{B}_h^{\star} q_h^n\right]\!\right]_{L_{\delta t}^2(0,T;U_h)}^2 + \phi(h) \left\|q_h^F\right\|_h^2 \right), \ \forall q_h^F \in E_h.$$

Thus, for any such δt and h and any initial data $y_{0,h} \in E_h$, the full-discrete control $v_{\phi(h),h,\delta t}$, obtained by minimising $F_{\phi(h),h,\delta t}$ (or equivalently $J_{\phi(h),h,\delta t}$) satisfies

$$\llbracket v_{\phi(h),h,\delta t} \rrbracket_{L^2_{\delta t}(0,T;U_h)} \le C_{\text{obs}} \lVert y_{0,h} \rVert_h,$$

$$\left\| \mathcal{L}_{T}^{h,\delta t} \left(v_{\phi(h),h,\delta t} \middle| y_{0,h} \right) \right\|_{h} \leq C_{\text{obs}} \sqrt{\phi(h)} \left\| y_{0,h} \right\|_{h}.$$

CASE $\theta = 1/2$: We need the (much stronger) condition $\delta t \rho(A_h) \leq \delta$ for some δ .

SKETCH OF THE PROOFS

MAIN IDEA: ADAPT THE LEBEAU-ROBBIANO ORIGINAL STRATEGY

- STEP 1: Use the discrete L.R. inequality to prove controllability of frequency modes less than μ with cost $e^{C\mu^{\alpha}} \|y_0\|_h$.
- STEP 2 : Construct a suitable full discrete control by a discrete **finite** time slicing procedure :

$$\{0,...,M\} = \bigsqcup_{j=1}^{J} \{M'_j,...,M'_j + 2M_j\}. \tag{*}$$

• Between discrete times M'_j and $M'_j + M_j$:

Use a control for frequencies less than $2^{j/\alpha}$ (Step 1).

Between discrete times M'_j + M_j + 1 and M'_j + 2M_j:
 Let the system evolve without control and take advantage of the parabolic dissipation since the solution only contains frequencies greater than 2^{j/α}.

NEW DIFFICULTIES

- δt has to be small enough (i.e. M large enough) in order to construct a suitable slicing (\star) .
- The full-discrete heat semi-group

$$(Id + \theta \delta t \mathcal{A}_h)^{-1}(Id + (1 - \theta)\delta t \mathcal{A}_h)$$

do not have the same dissipation properties as the semi-discrete semi-group

$$e^{-\delta t A_h}$$

The θ -scheme for $\theta > 1/2$

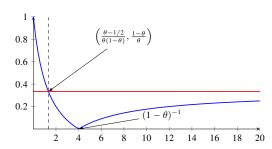
The iteration matrix for the system is

$$C_{h,\delta t} = (\mathrm{Id} + \theta \delta t \mathcal{A}_h)^{-1} (\mathrm{Id} - (1 - \theta) \delta t \mathcal{A}_h).$$

• Let us analyse $Sp(C_{h,\delta t})$:

Image of $Sp(\delta t A_h)$ through

$$x \mapsto \frac{1 - (1 - \theta)x}{1 + \theta x}$$



• In practice, $\rho(\delta t A_h) \sim C \frac{\delta t}{h^p}$, for some p (e.g. p=2 for classical FD)

The θ -scheme for $\theta > 1/2$

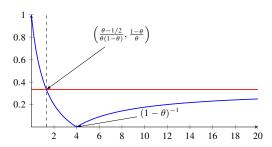
The iteration matrix for the system is

$$C_{h,\delta t} = (\mathrm{Id} + \theta \delta t \mathcal{A}_h)^{-1} (\mathrm{Id} - (1 - \theta) \delta t \mathcal{A}_h).$$

• Let us analyse $Sp(C_{h,\delta t})$:

Image of $Sp(\delta t A_h)$ through

$$x \mapsto \frac{1 - (1 - \theta)x}{1 + \theta x}$$



- In practice, $\rho(\delta t \mathcal{A}_h) \sim C \frac{\delta t}{h^p}$, for some p (e.g. p=2 for classical FD)
- \rightsquigarrow Case (a): For $\delta t \times \mu_{i,h}$ less than $\frac{\theta 1/2}{\theta(1 \theta)}$: we have exponential damping.

The θ -scheme for $\theta > 1/2$

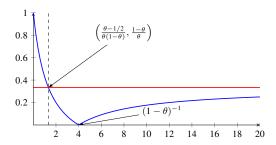
The iteration matrix for the system is

$$C_{h,\delta t} = (\mathrm{Id} + \theta \delta t \mathcal{A}_h)^{-1} (\mathrm{Id} - (1 - \theta) \delta t \mathcal{A}_h).$$

• Let us analyse $Sp(C_{h,\delta t})$:

Image of $Sp(\delta t A_h)$ through

$$x \mapsto \frac{1 - (1 - \theta)x}{1 + \theta x}$$



• In practice, $\rho(\delta t A_h) \sim C \frac{\delta t}{h^p}$, for some p (e.g. p=2 for classical FD) \rightsquigarrow Case (b): For $\delta t \times \mu_{i,h}$ greater than $\frac{\theta-1/2}{\theta(1-\theta)}$ (possibly $\to +\infty$) the damping factor can be $\sim (1-\theta)/\theta < 1$ but we assumed that $\delta t \leq C_T |\log \phi(h)|$:

$$\left(\frac{1-\theta}{\theta}\right)^M \le \left(\frac{1-\theta}{\theta}\right)^{\frac{M\delta t}{C_T |\log(\phi(h))|}} = e^{-\xi \frac{M\delta t}{h^{\gamma}}} \sim e^{-\xi \frac{T}{C_T |\log\phi(h)|}} \sim \phi(h).$$

The Crank-Nicolson scheme ($\theta = 1/2$)

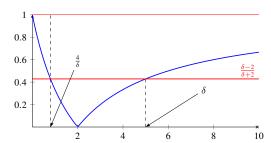
The iteration matrix for the system is

$$\mathcal{C}_{h,\delta t} = \left(\mathrm{Id} - rac{\delta t}{2} \mathcal{A}_h
ight)^{-1} \left(\mathrm{Id} + rac{\delta t}{2} \mathcal{A}_h
ight).$$

• Let us analyse $Sp(C_{h,\delta t})$:

Image of $Sp(\delta t A_h)$ through

$$x\mapsto \frac{1-x/2}{1+x/2}$$



• For large $\delta t \times \mu_{i,h}$, the damping factor can be ~ 1 . Here we use

$$\delta t \rho(\mathcal{A}_h) \leq \delta.$$

We thus split the analysis into two cases:

- The case $\delta t \times \mu_{i,h}$ less than $4/\delta$: natural exponential damping
- The case $\delta t \times \mu_{i,h}$ greater than $4/\delta$: damping bounded by $\frac{\delta-2}{\delta+2} < 1$.

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- MUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

$$\hat{y}_F = e^{-T\mathcal{A}_h} \hat{y}_0.$$

PROBLEM 1

Starting from any $y_0 \in E_h$, can we drive the solution of the semi-discrete system

$$\partial_t y + \mathcal{A}_h y = \mathcal{B}_h v, \ y(0) = y_0,$$

to \hat{y}_F at time T?

 \rightsquigarrow equivalent to the null-controllability problem with initial data $\hat{y}_0 - y_0$

FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

$$\hat{y}_F = e^{-T\mathcal{A}_h} \hat{y}_0.$$

PROBLEM 2

Starting from any $y_0 \in E_h$, can we drive the solution of the full-discrete system

$$\frac{y^{n+1} - y^n}{\delta t} + \mathcal{A}_h(\theta y^{n+1} + (1 - \theta)y^n) = \mathcal{B}_h v^{n+1}, \quad y^0 = y_0,$$

to \hat{y}_F at discrete time M?

 \leadsto This is not equivalent to the null-controllability problem with initial data $\hat{y}_0 - y_0$

INDEED: The full-discrete free trajectory starting at \hat{y}_0 is not equal to \hat{y}_F at time M.

• In most cases (but not always) \hat{y}_F belongs to some full discrete trajectory

$$\hat{y}_F = \left((\mathrm{Id} + \theta \mathcal{A}_h)^{-1} (\mathrm{Id} + (1 - \theta) \mathcal{A}_h) \right)^M \tilde{y}_0^{\delta t}.$$

- We do not want the estimates to depend on $\tilde{y}_0^{\delta t}$ since :
 - In general we do not want to compute $\tilde{y}_0^{\delta t}$.
 - Its norm can be large with respect to that of \hat{y}_F .

FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

$$\hat{y}_F = e^{-T\mathcal{A}_h} \hat{y}_0.$$

OUR RESULT: Under suitable assumptions, by minimizing the functional

$$J^{h,\delta t}(q^F) = \frac{1}{2} \sum_{n=1}^{M} \delta t \left[\left[\mathcal{B}_h^{\star} q^n \right]_h^2 + \frac{\phi(h)}{2} \left\| q^F \right\|_h^2 - \left\langle \hat{\mathbf{y}}_F, \mathbf{q}^F \right\rangle_h + \left\langle y_0, q^1 - \delta t (1-\theta) \mathcal{A}_h q^1 \right\rangle_h,$$

we produce a full discrete control $v_{h,\delta t} = (\mathcal{B}_h^{\star} q^n)_n$ such that

• The cost of the control satisfies

$$\sum_{n=1}^{M} \delta t \left\| v^{n} \right\|_{h}^{2} \leq C_{\text{obs}}^{2} \left(\left\| y_{0} - \hat{y}_{0} \right\|_{h} + C_{s} \delta t^{\zeta_{1}} \left\| A_{h}^{\frac{1}{2}} \hat{y}_{0} \right\|_{h} \right)^{2} + e^{-C/\delta t^{\zeta_{2}}} \left\| \hat{y}_{0} \right\|_{h}^{2},$$

for some $\zeta_1, \zeta_2 > 0$.

• The controlled solution $(y^n)_n$ associated with $v_{h,\delta t}$ and y_0 is such that

$$\left\| y^{M} - \hat{y}_{F} \right\|_{h} \leq \sqrt{\phi(h)} C_{\text{obs}} \left(\left\| y_{0} - \hat{y}_{0} \right\|_{h} + C \delta t^{\zeta_{1}} \left\| A_{h}^{\frac{1}{2}} \hat{y}_{0} \right\|_{h} \right) + e^{-C/\delta t^{\zeta_{2}}} \left\| \hat{y}_{0} \right\|_{h}.$$

MAIN TOOL: Estimate of the difference between the two initial data

$$\left\| \tilde{y}_0^{\delta t} - \hat{y}_0 \right\|_h \leq C \delta t^{\zeta} \left\| \mathcal{A}_h^{\frac{1}{2}} \hat{y}_0 \right\|_h$$

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- MUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

Introduction

- The error analysis in space is intricate (low regularity expected for the HUM null-control, ...).
- We try here to analyse the error induced by time discretisation in this problem.

FRAMEWORK

- We assume the uniform discrete Lebeau-Robbiano $(\mathcal{H}_{\alpha,\beta})$ to hold.
- We suppose that h > 0 is fixed, that $y_0 \in E_h$ is given and that $h \mapsto \phi(h)$ is given.
- The minimization of the functional

$$J^{h}(q^{F}) = \frac{1}{2} \int_{0}^{T} \left[\mathcal{B}_{h}^{\star} q(t) \right]_{h}^{2} dt + \frac{\phi(h)}{2} \left\| q^{F} \right\|_{h}^{2} + \left\langle y_{0}, q(0) \right\rangle_{h},$$

leads to a semi-discrete control $t \mapsto v_h(t) \in L^2(]0, T[, U_h)$.

• For simplicity, we consider the implicit Euler scheme (similar results hold for $\theta \in [1/2, 1[)$). The minimization of the functional

$$J^{h,\delta t}(q^F) = \frac{1}{2} \sum_{n=1}^{M} \delta t \left[\left[\mathcal{B}_h^{\star} q^n \right]_h^2 + \frac{\phi(h)}{2} \left\| q^F \right\|_h^2 + \left\langle y_0, q^1 \right\rangle_h,$$

leads to a full discrete control $v_{h,\delta t} = (v^n)_n \in (U_h)^M$.

GOAL: Prove an error estimate between $v_{h,\delta t}$ and v_h .

MAIN RESULT

THEOREM

Under the same assumptions than previous results (in particular $\delta t \leq Ch^{\gamma}$), the following error estimate holds

$$\left\| v_h - \underbrace{\sum_{n=1}^{M} \mathbf{1}_{(t^{n-1},t^n)} v^n}_{\text{def } \mathcal{F}_0[v_h,\delta t]} \right\|_{L^2(]0,T[,U_h)} \leq C \underbrace{\delta t}_{\text{o}} \frac{\rho(\mathcal{A}_h)}{\sqrt{\phi(h)}} \left(1 + \delta t^{\frac{3}{2}} \rho(\mathcal{A}_h)^{\frac{3}{2}} \right) \left\| y_0 \right\|_h.$$

REMARKS

- First order in time estimate (second order for CN provided a suitable time interpolation operator is used in place of $\mathcal{F}_0[.]$).
- The estimate is not uniform in h, even if we are interested in the approximate control problem where $\phi(h) = \varepsilon > 0$. The result is probably not optimal.

SKETCH OF PROOF

- Write the Euler-Lagrange equations corresponding to the two minimization problems we consider (the semi-discrete and the full-discrete).
- Compare the two Euler-Lagrange equations by using error estimates in time for the adjoint problem.

EULER-LAGRANGE EQUATION FOR J^h

We denote the minimizer by q_{opt}^F and $t \mapsto q_{opt}(t)$ the corresponding solution to the semi-discrete adjoint problem:

$$0 = \int\limits_0^T \left[\mathcal{B}_h^\star q_{opt}(t), \mathcal{B}_h^\star ilde{q}(t)
ight]_h \, dt + \phi(h) \left\langle q_{opt}^F, ilde{q}^F
ight
angle_h + \left\langle y_0, ilde{q}(0)
ight
angle_h,$$

for any $\tilde{q}^F \in E_h$.

Euler-Lagrange equation for $J^{h,\delta t}$

We denote the minimizer by $q_{opt,\delta t}^F$ and by $(q_{opt,\delta t}^n)_n$ the corresponding solution to the full-discrete adjoint problem

$$0 = \sum_{n=1}^{M} \delta t \left[\mathcal{B}_{h}^{\star} q_{opt,\delta t}^{n}, \mathcal{B}_{h}^{\star} \tilde{q}^{n} \right]_{h} + \phi(h) \left\langle q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} + \left\langle y_{0}, \tilde{q}^{1} \right\rangle_{h},$$

for any $\tilde{q}^F \in E_h$.

$$\int\limits_{0}^{T}\left[\mathcal{B}_{h}^{\star}q_{opt}(t),\mathcal{B}_{h}^{\star} ilde{q}(t)
ight]_{h}\,dt+\phi(h)\left\langle q_{opt}^{F}, ilde{q}^{F}
ight
angle _{h}+\left\langle y_{0}, ilde{q}(0)
ight
angle _{h}=0,$$

$$\sum_{n=1}^{M} \delta t \left[\mathcal{B}_{h}^{\star} q_{opt,\delta t}^{n}, \mathcal{B}_{h}^{\star} \tilde{q}^{n} \right]_{h} + \phi(h) \left\langle q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} + \left\langle y_{0}, \tilde{q}^{1} \right\rangle_{h}$$

=0,

$$\int\limits_{0}^{T}\left[\mathcal{B}_{h}^{\star}q_{opt}(t),\mathcal{B}_{h}^{\star}\tilde{q}(t)\right]_{h}\,dt+\phi(h)\left\langle q_{opt}^{F},\tilde{q}^{F}\right\rangle _{h}+\left\langle y_{0},\tilde{q}(0)\right\rangle _{h}=0,$$

$$\left[\sum_{n=1}^{M} \delta t \left[\mathcal{B}_{h}^{\star} q_{opt,\delta t}^{n}, \mathcal{B}_{h}^{\star} \tilde{q}^{n} \right]_{h} \right] + \phi(h) \left\langle q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} + \left\langle y_{0}, \tilde{q}^{1} \right\rangle_{h}$$

$$= 0,$$

TRANSFORMATION OF THESE EQUATIONS

$$\begin{split} \delta t \left[\mathcal{B}_{h}^{\star} q_{opt,\delta t}^{n}, \mathcal{B}_{h}^{\star} \tilde{q}^{n} \right]_{h} &= \int_{t^{n-1}}^{t^{n}} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} (\mathcal{F}_{0}[\tilde{q}_{\delta t}](t)) \right]_{h} dt \\ &= \int_{t^{n-1}}^{t^{n}} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \tilde{q}(t) \right]_{h} dt + \int_{t^{n-1}}^{t^{n}} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right]_{h} dt. \end{split}$$

$$\int\limits_{0}^{T}\left[\mathcal{B}_{h}^{\star}q_{opt}(t),\mathcal{B}_{h}^{\star} ilde{q}(t)
ight]_{h}\,dt+\phi(h)\left\langle q_{opt}^{F}, ilde{q}^{F}
ight
angle _{h}+\left\langle y_{0}, ilde{q}(0)
ight
angle _{h}=0,$$

$$\begin{split} \int\limits_{0}^{T} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \tilde{q}(t) \right]_{h} dt + \phi(h) \left\langle q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} + \left\langle y_{0}, \tilde{q}^{1} \right\rangle_{h} \\ = - \int\limits_{0}^{T} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right]_{h} dt, \end{split}$$

$$\int\limits_{0}^{T}\left[\mathcal{B}_{h}^{\star}q_{opt}(t),\mathcal{B}_{h}^{\star} ilde{q}(t)
ight]_{h}dt+\phi(h)\left\langle q_{opt}^{F}, ilde{q}^{F}
ight
angle _{h}+\left\langle y_{0}, ilde{q}(0)
ight
angle _{h}=0,$$

$$\begin{split} \int_{0}^{T} \left[\mathcal{F}_{0}[v_{h},\delta_{t}](t), \mathcal{B}_{h}^{\star} \tilde{q}(t) \right]_{h} dt + \phi(h) \left\langle q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} + \left[\left\langle y_{0}, \tilde{q}^{1} \right\rangle_{h} \right] \\ = -\int_{0}^{T} \left[\mathcal{F}_{0}[v_{h},\delta_{t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right]_{h} dt, \end{split}$$

TRANSFORMATION OF THESE EQUATIONS

$$\tilde{q}^1 = \tilde{q}(0) + (\tilde{q}^1 - \tilde{q}(0))$$

$$\int\limits_{0}^{T}\left[\mathcal{B}_{h}^{\star}q_{opt}(t),\mathcal{B}_{h}^{\star} ilde{q}(t)
ight]_{h}\,dt+\phi(h)\left\langle q_{opt}^{F}, ilde{q}^{F}
ight
angle _{h}+\left\langle y_{0}, ilde{q}(0)
ight
angle _{h}=0,$$

$$\begin{split} \int\limits_{0}^{T} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \tilde{q}(t) \right]_{h} dt + \phi(h) \left\langle q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} + \left\langle y_{0}, \tilde{q}(0) \right\rangle_{h} \\ = - \int\limits_{0}^{T} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right]_{h} dt - \left\langle y_{0}, \tilde{q}^{1} - \tilde{q}(0) \right\rangle_{h}, \end{split}$$

$$\int\limits_{0}^{T}\left[\mathcal{B}_{h}^{\star}q_{opt}(t),\mathcal{B}_{h}^{\star} ilde{q}(t)
ight]_{h}dt+\phi(h)\left\langle q_{opt}^{F}, ilde{q}^{F}
ight
angle _{h}+\left\langle y_{0}, ilde{q}(0)
ight
angle _{h}=0,$$

$$\begin{split} \int\limits_{0}^{\cdot} \left[\mathcal{F}_{0}[\nu_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \tilde{q}(t) \right]_{h} dt + \phi(h) \left\langle q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} + \left\langle y_{0}, \tilde{q}(0) \right\rangle_{h} \\ = - \int\limits_{0}^{T} \left[\mathcal{F}_{0}[\nu_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right]_{h} dt - \left\langle y_{0}, \tilde{q}^{1} - \tilde{q}(0) \right\rangle_{h}, \end{split}$$

SUBTRACTION OF THE EQUATIONS

$$\begin{split} \int_{0}^{T} \left[\mathcal{B}_{h}^{\star} q_{opt}(t) - \mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \tilde{q}(t) \right]_{h} dt + \phi(h) \left\langle q_{opt}^{F} - q_{opt,\delta t}^{F}, \tilde{q}^{F} \right\rangle_{h} \\ = \int_{0}^{T} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right]_{h} dt + \left\langle y_{0}, \tilde{q}^{1} - \tilde{q}(0) \right\rangle_{h}, \end{split}$$

$$ightharpoonup$$
 Now we choose $ilde{q}^F = q^F_{opt} - q^F_{opt,\delta t}$, so that $ilde{q}(t) = q_{opt}(t) - \underline{q}(t)$ and then
$$\mathcal{B}^\star_h ilde{q}(t) = \left(\mathcal{B}^\star_h q_{opt}(t) - \mathcal{F}_0[v_{h,\delta t}](t)\right) + \mathcal{B}^\star_h \left(\mathcal{F}_0[q_{opt,\delta t}](t) - \underline{q}(t)\right).$$

$$\begin{split} \int\limits_{0}^{T} \left[\! \left[v(t) - \mathcal{F}_{0}[v_{h,\delta t}](t) \right] \! \right]_{h}^{2} dt + \phi(h) \left\| q_{opt}^{F} - q_{opt,\delta t}^{F} \right\|_{h}^{2} \\ &= \int\limits_{0}^{T} \left[\mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right]_{h} dt + \left\langle y_{0}, \tilde{q}^{1} - \tilde{q}(0) \right\rangle_{h} \\ &- \int\limits_{0}^{T} \left[v(t) - \mathcal{F}_{0}[v_{h,\delta t}](t), \mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[q_{opt,\delta t}](t) - \underline{q}(t) \right) \right]_{h} dt. \end{split}$$

• The error terms are estimated as follows by usual parabolic techniques :

$$\int_{0}^{T} \left[\left[\mathcal{B}_{h}^{\star} \left(\mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right) \right] \right]_{h}^{2} dt \leq C \int_{0}^{T} \left\| \mathcal{F}_{0}[\tilde{q}_{\delta t}](t) - \tilde{q}(t) \right\|_{h}^{2} dt$$

$$\leq C \left(\delta t^{2} \left\| \mathcal{A}_{h}^{\frac{1}{2}} \tilde{q}^{F} \right\|_{h}^{2} + \delta t^{5} \left\| \mathcal{A}_{h}^{2} \tilde{q}^{F} \right\|_{h}^{2} \right) \leq C \delta t^{2} \left\| \tilde{q}^{F} \right\|_{h}^{2} \rho_{h} (1 + \rho_{h}^{3})$$

• We conclude by using Cauchy-Schwarz inequality.

MORE OR LESS STANDARD NUMERICAL ANALYSIS TOOLS

Assume that A_h is self-adjoint.

DISCRETE H^s NORMS $||u_h||_{s,h}^2 = \langle (\mathcal{A}_h)^s u_h, u_h \rangle_h$.

PROPOSITION

Let $s \in \mathbb{R}$, $q^F \in \mathbb{R}^m$, $t \mapsto q(t) \in \mathbb{R}^m$ the solution of the semi-discrete adjoint problem $-\partial_t q(t) + \mathcal{A}_h q(t) = 0$ with $q(T) = q^F$ and $(q^n)_n$ the solution of the fully discrete (backward) problem

$$\frac{q^n-q^{n+1}}{\delta t}+\mathcal{A}_hq^n=0, \ \forall n\in\{1,\ldots,M\},$$

associated with the same data $q^{M+1} = q^F$. Let the error be $E^n = q^n - q(t^{n-1})$. There exists $C_s > 0$ independent of h such that

$$\sup_{1 \le n \le M} \|E^n\|_{s,h}^2 + \left(\sum_{n=1}^M \delta t \|E^n\|_{s+1,h}^2\right)^{\frac{1}{2}} \le C_s \delta t \|q^F\|_{s+2,h},$$

$$\sup_{1 \le n \le M} \left\| (T - t^{n-1}) E^n \right\|_{s,h} \le C_s \delta t \|q^F\|_{s,h} + C_s \delta t^2 \|q^F\|_{s+2,h}.$$

We apply those estimates for s = 0, s = -1 and with

$$q^F = q^F_{opt,\delta t}$$
, and $q^F = q^F_{opt,\delta t} - q^F_{opt}$.

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- MUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- Numerical results
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3,0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3,0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

NT.	M				
N	20	80	320	1280	$+\infty$
20	14	16	16	16	16
20 50	22	26	29	29	31
100	30	38	44	49	48
200	45	58	69	77	82

N	20	80	M 320	1280	$+\infty$
20	24	30	28	27	32
50 100	83 235	87 240	87 233	93 262	106 265
200	778	850	1098	1230	1374

(A) Case
$$\phi(h) = h^2$$

(B) Case
$$\phi(h) = h^4$$

TABLE : Conjugate gradient iterates; $\omega =]0.3, 0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3,0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

N	20	80	M 320	1280	$+\infty$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$6.34 \cdot 10^{-2}$ $6.79 \cdot 10^{-2}$	
100	$8.5 \cdot 10^{-2}$		$7.15 \cdot 10^{-2}$		$7.05 \cdot 10^{-2}$

Table : Optimal energy; $\phi(h)=h^2$; $\omega=]0.3,0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3,0.8[}v,$$

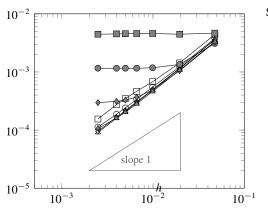
 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

N	M				
	20	80	320	1280	$+\infty$
		$8.92 \cdot 10^{-2}$	$8.43 \cdot 10^{-2}$	$8.3 \cdot 10^{-2}$	$8.26 \cdot 10^{-2}$
50	0.12	$8.94 \cdot 10^{-2}$	$8.29 \cdot 10^{-2}$	$8.12 \cdot 10^{-2}$	$8.07 \cdot 10^{-2}$
		$9.1 \cdot 10^{-2}$	$8.33 \cdot 10^{-2}$	$8.13 \cdot 10^{-2}$	$8.06 \cdot 10^{-2}$
200	0.13	$9.33 \cdot 10^{-2}$	$8.41 \cdot 10^{-2}$	$8.17 \cdot 10^{-2}$	$8.09 \cdot 10^{-2}$

TABLE : Optimal energy ; $\phi(h)=h^4$; $\omega=]0.3,0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3,0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

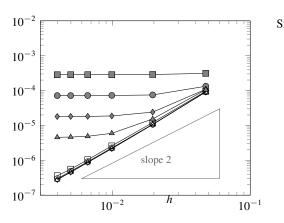


Size of the target $M = 20 \longrightarrow$ $M = 80 \longrightarrow$ $M = 320 \longrightarrow$ $M = 1280 \longrightarrow$ Exact solution $M = 20 \longrightarrow$ $M = 80 \longrightarrow$ $M = 320 \longrightarrow$ $M = 1280 \longrightarrow$

FIGURE : Convergence analysis with $\phi(h)=h^2$; $\omega=]0.3,0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3,0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$



Size of the target
$$M = 320 \longrightarrow$$

$$M = 1280 \longrightarrow$$

$$M = 5120 \longrightarrow$$

$$M = 20480 \longrightarrow$$
Exact solution $M = 320 \longrightarrow$

$$M = 1280 \longrightarrow$$

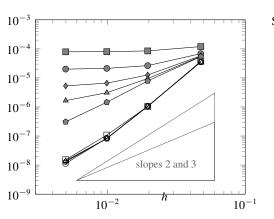
$$M = 5120 \longrightarrow$$

$$M = 20480 \longrightarrow$$

FIGURE : Convergence analysis with $\phi(h)=h^4$; $\omega=]0.3,0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3,0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$



Size of the target
$$M = 1280 \longrightarrow$$

$$M = 5120 \longrightarrow$$

$$M = 20480 \longrightarrow$$

$$M = 81920 \longrightarrow$$

$$M = +\infty \longrightarrow$$
Exact solution $M = 1280 \longrightarrow$

$$M = 5120 \longrightarrow$$

$$M = 20480 \longrightarrow$$

$$M = 81920 \longrightarrow$$

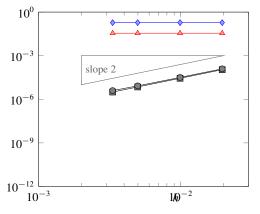
$$M = +\infty \longrightarrow$$

FIGURE : Convergence analysis with $\phi(h)=1000h^6$; $\omega=]0.3,0.8[$

THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

$$\partial_t y - 0.1 \partial_x^2 y = \mathbf{1}_{\Omega} v,$$

$$T = 0.5, y_0(x) = \sin(\pi x)^{10}.$$



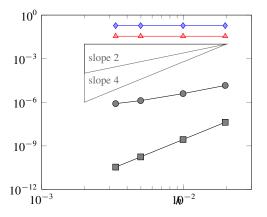
Cost of the control
Size of the target
Optimal energy
Exact solution

FIGURE : $\phi(h) = h^2$; Semi-discrete scheme

THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

$$\partial_t y - 0.1 \partial_x^2 y = \mathbf{1}_{\Omega} v,$$

$$T = 0.5, y_0(x) = \sin(\pi x)^{10}.$$



Cost of the control
Size of the target
Optimal energy
Exact solution

FIGURE : $\phi(h) = h^4$; Semi-discrete scheme

A 1D PARABOLIC EQUATION WITH UNSTABLE MODES

$$\partial_t y - 0.1 \partial_x^2 y - 1.5 y = 1_{]0.3,0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

A NONLINEAR CASE

(Fernández-Cara – Münch, '11)

(B.-Le Rousseau, '13)

$$\partial_t y - 0.1 \partial_x^2 y - 5y \log^{1.4} (1 + |y|) = 1_{]0.2,0.8[} v,$$

 $T = 0.5, y_0(x) = 20 \sin(\pi x).$

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- 4 NUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- **5** Conclusions / Perspectives

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

SHORT REVIEW OF KNOWN RESULTS

• In the case a_{21} = cte the system is null-controllable if and only if $a_{21} \neq 0$ (Kalman-like condition)

(Ammar-Khodja-Benabdallah-Dupaix-González-Burgos, '09)

- In the case where $\operatorname{Supp}(a_{21}) \cap \omega \neq \emptyset$, the system is null-controllable (González-Burgos-de Teresa, '10)
- In the case where $\operatorname{Supp}(a_{21}) \cap \omega = \emptyset$ and a_{21} has a constant sign, the system is null-controllable

(Rosier-de Teresa, '11)

- In the case where Supp $(a_{21}) \cap \omega = \emptyset$ and a_{21} changes it sign:
 - There are structural conditions for the system to be even approximatively controllable.

(B.- Olive, '13)

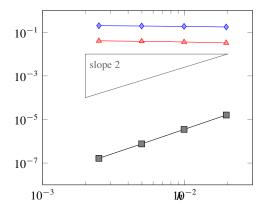
A minimal time condition for the null-controllability can occur
 (Ammar-Khodja-Benabdallah-González-Burgos-de Teresa, '14)

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$
Case 1: $a_{21}(x) = \mathbf{1}_{]0.2,0.9[}(x), \, \omega =]0.1, 0.5[, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$

60/70

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 1:
$$a_{21}(x) = \mathbf{1}_{]0.2,0.9[}(x), \omega =]0.1, 0.5[, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$$



Cost of the control
Size of the target
Optimal energy

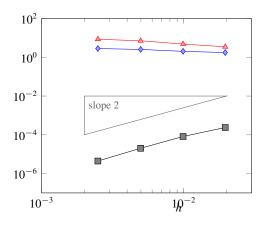
App. Cont. V
Null Cont. V

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_\omega v.$$

CASE 2:
$$a_{21}(x) = \mathbf{1}_{]0.7,0.9[}(x), \omega =]0.1, 0.5[, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

Case 2:
$$a_{21}(x) = \mathbf{1}_{]0.7,0.9[}(x), \omega =]0.1, 0.5[, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$$

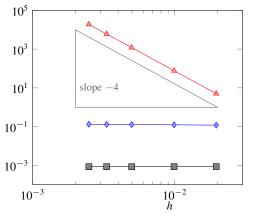


Cost of the control
Size of the target
Optimal energy

App. Cont. V
Null Cont. V

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 3:
$$a_{21}(x) = (x - \alpha)\mathbf{1}_{[0,0.5[}(x), \omega =]0.5, 1[, y_0(x) = (\sin(2\pi x), 3\sin(2\pi x))^t.$$

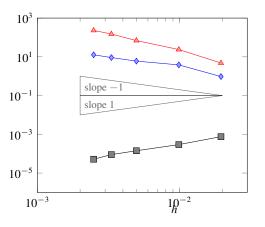


Cost of the control
Size of the target
Optimal energy

App. Cont. ★
Null Cont. ★

FIGURE:
$$\alpha = 1/4$$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$
CASE 3: $a_{21}(x) = (x - \alpha) \mathbf{1}_{[0,0.5]}(x), \ \omega =]0.5, 1[, y_0(x) = (\sin(2\pi x), 3\sin(2\pi x))^t.$



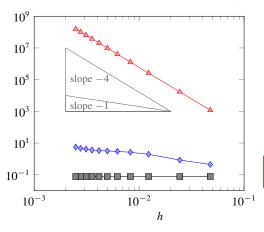
Cost of the control
Size of the target
Optimal energy

App. Cont. \checkmark Null Cont. \checkmark for $T > T_{\min}$

FIGURE : $\alpha = 1/8$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 4:
$$a_{21}(x) = \mathbf{1}_{[\alpha-d,\alpha]} - \mathbf{1}_{[\alpha,\alpha+d]}, y_0(x) = \left(\sin(\pi x)^{10}, -2\sin(2\pi x)^{10}\right)^t.$$



Cost of the control
Size of the target
Optimal energy

App. Cont. X Null Cont. X

FIGURE:
$$\alpha = 1/2, d = \frac{1}{2\sqrt{3}}, \omega =]0.8, 1.0[$$
.

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

Case 4:
$$a_{21}(x) = \mathbf{1}_{[\alpha - d, \alpha]} - \mathbf{1}_{[\alpha, \alpha + d]}, y_0(x) = \left(\sin(\pi x)^{10}, -2\sin(2\pi x)^{10}\right)^t$$
.

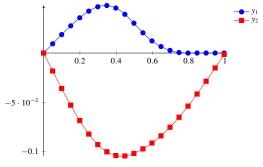


FIGURE : $\alpha = 1/2, d = \frac{1}{2\sqrt{3}}, \omega =]0.8, 1.0[$.

A TWO EQUATION CASCADE SYSTEM

$$\partial_{t}y - 0.1\partial_{x} \left(\begin{pmatrix} 1 & 0 \\ 0 & \gamma(x) \end{pmatrix} \partial_{x}y \right) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{1}_{\omega}v.$$

$$\gamma(x) = \mathbf{1}_{\omega} + \alpha \mathbf{1}_{\omega^{c}}, y_{0}(x) = \left(\sin(\pi x)^{10}, -2\sin(2\pi x)^{10} \right)^{t}, \omega =]0.5, 1.0[$$

$$10^{7}$$

$$10^{5}$$

$$10^{3}$$

$$10^{1}$$

$$10^{-1}$$

$$10^{-3}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-1}$$

$$App. Cont.$$
Null Cont.

FIGURE : $\alpha = 1/9$

$$\partial_t y - 0.1 \partial_x \left(\begin{pmatrix} 1 & 0 \\ 0 & \gamma(x) \end{pmatrix} \partial_x y \right) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{1}_\omega v.$$

$$\gamma(x) = \mathbf{1}_{\omega} + \alpha \mathbf{1}_{\omega^c}, y_0(x) = \left(\sin(\pi x)^{10}, -2\sin(2\pi x)^{10}\right)^t, \omega =]0.5, 1.0[$$

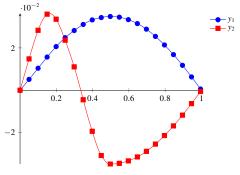


FIGURE : $\alpha = 1/9$

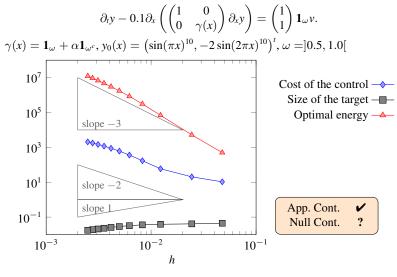


FIGURE : $\alpha = 1/8$

$$\partial_t y - 0.1 \partial_x \left(\begin{pmatrix} 1 & 0 \\ 0 & \gamma(x) \end{pmatrix} \partial_x y \right) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{1}_\omega v.$$

$$\gamma(x) = \mathbf{1}_{\omega} + \alpha \mathbf{1}_{\omega^c}, y_0(x) = \left(\sin(\pi x)^{10}, -2\sin(2\pi x)^{10}\right)^t, \omega =]0.5, 1.0[$$

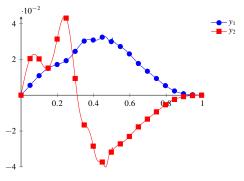
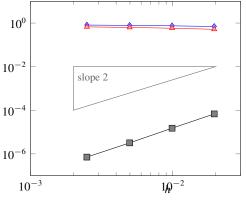


FIGURE : $\alpha = 1/8$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

Here also necessary and sufficient conditions for approximate controllability are known

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

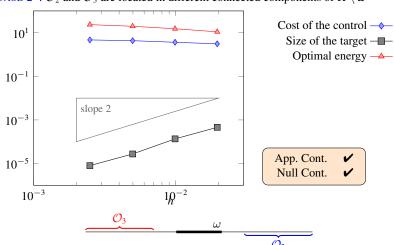


Cost of the control
Size of the target
Optimal energy

App. Cont. V
Null Cont. ?

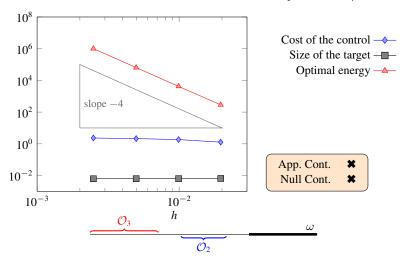
$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

CASE 2: \mathcal{O}_2 and \mathcal{O}_3 are located in different connected components of $\Omega \setminus \omega$



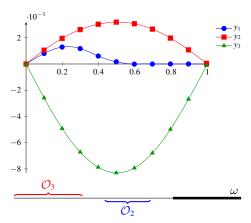
$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

CASE 3 : \mathcal{O}_2 and \mathcal{O}_3 are located in the same connected component of $\Omega \setminus \omega$



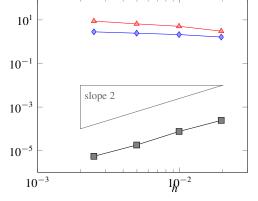
$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

CASE 3 : \mathcal{O}_2 and \mathcal{O}_3 are located in the same connected component of $\Omega \setminus \omega$



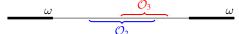
$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

CASE 4.1: $\mathcal{O}_2 =]0.35, 0.65[, \mathcal{O}_3 =]0.5, 1/\sqrt{2}[, \omega =]0, 0.2[\cup]0.8, 1.0[$



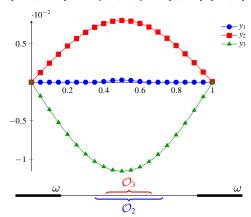
Cost of the control -Size of the target — Optimal energy -

App. Cont. Null Cont.



$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

Case 4.2: $\mathcal{O}_2 = [0.35, 0.65], \mathcal{O}_3 = [0.4, 0.6], \omega = [0, 0.2] \cup [0.8, 1]$



A THREE EQUATION CASCADE SYSTEM

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ 0 & a_{32}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

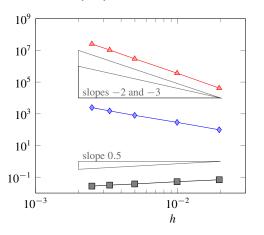
VERY SHORT REVIEW:

- If the supports of all the a_{ij} intersect the control domain ω and keeps a constant sign on a part of ω , then the system is null-controllable.
- Necessary and sufficient conditions for approximate controllability are known in the general case.

A THREE EQUATION CASCADE SYSTEM

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ 0 & a_{32}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

CASE 1: $a_{21} = \mathbf{1}_{[0,0.5[}, a_{32} = 1, \omega =]0.5, 1[.$



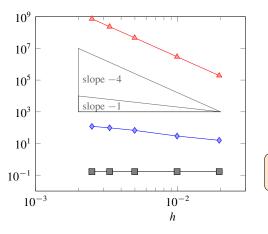
Cost of the control
Size of the target
Optimal energy

App. Cont. / Null Cont. ?

A THREE EQUATION CASCADE SYSTEM

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ 0 & a_{32}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

Case 2:
$$a_{21} = \mathbf{1}_{[0,0.5[}, \ a_{32}(x) = x - 1/2, \ \omega =]0.5, 1[.$$



Cost of the control →
Size of the target —
Optimal energy →

App. Cont. *
Null Cont. *

A 3 EQUATION SYSTEM WITH 2 DISJOINT CONTROLS

(Olive, '12)

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} y = \begin{pmatrix} \mathbf{1}_{\omega_1}(x) & 0 \\ 0 & \mathbf{1}_{\omega_2}(x) \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$
$$y_0(x) = \begin{pmatrix} 0, 0, \sin(\pi x)^{10} \end{pmatrix}^t, \ \omega_1 =]0.7, 1.0[, \ \omega_2 =]0.1, 0.5[$$

A 3 EQUATION SYSTEM WITH 2 DISJOINT CONTROLS

(Olive, '12)

$$\partial_{t}y - 0.1\partial_{x}^{2}y + \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} y = \begin{pmatrix} \mathbf{1}_{\omega_{1}}(x) & 0 \\ 0 & \mathbf{1}_{\omega_{2}}(x) \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}.$$

$$y_{0}(x) = \begin{pmatrix} 0, 0, \sin(\pi x)^{10} \end{pmatrix}^{t}, \ \omega_{1} =]0.7, 1.0[, \ \omega_{2} =]0.1, 0.5[$$

$$10^{-1}$$

$$10^{-3}$$

$$10^{-2}$$

$$App. Cont.$$

$$V$$
Null Cont.

OUTLINE

- Introduction
- 2 Some facts about the Hilbert Uniqueness Method and its penalized version
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- 4 NUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- S CONCLUSIONS / PERSPECTIVES

$$\partial_t y - 0.05 \Delta y = \mathbf{1}_{]0.3,0.9[\times]0.2,0.8[} v,$$

$$y(0,x) = \sin(2\pi x_1)\sin(\pi x_2), \text{ and } y_F(x) = -0.4\sin(\pi x_1)\sin(2\pi x_2).$$

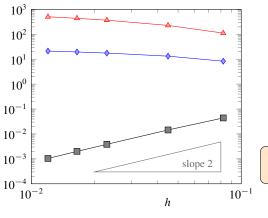
(Beauchard, Cannarsa, Gugliemi, '14), (Beauchard, Miller, Morancey, '14)

$$\Omega =]-1, 1[\times]0, 1[, \ \omega =] \underbrace{0.75}_{=a}, 1[\times]0, 1[, T = 0.5 \in] \frac{a^2}{2}, \frac{1+a^2}{2}[.$$
$$\partial_t y - \partial_{x_1}^2 y - x_1^2 \partial_{x_2}^2 y = 1_{\omega} v,$$

(Beauchard, Cannarsa, Gugliemi, '14), (Beauchard, Miller, Morancey, '14)

$$\Omega =]-1,1[\times]0,1[,\ \omega =]\underbrace{0.75}_{=a},1[\times]0,1[,T=0.5\in]\frac{a^2}{2},\frac{1+a^2}{2}[.$$

$$\partial_t y - \partial_{x_1}^2 y - x_1^2 \partial_{x_2}^2 y = 1_\omega v,$$



Cost of the control
Size of the target
Optimal energy

App. Cont. \checkmark Null Cont. \checkmark $T_{min} > 0$

(Beauchard, Cannarsa, Gugliemi, '14), (Beauchard, Miller, Morancey, '14)

$$\Omega =]-1, 1[\times]0, 1[, \omega =] \underbrace{0.75}_{=a}, 1[\times]0.6, 1[, T = 0.5 > \frac{a^2}{2}.$$
$$\partial_t y - \partial_{y_1}^2 y - x_1^2 \partial_{y_2}^2 y = 1_\omega v,$$

 10^{4}

 10^{2}

 10^{0}

 10^{-2}

 10^{-2}

(Beauchard, Cannarsa, Gugliemi, '14), (Beauchard, Miller, Morancey, '14)

$$\Omega =]-1,1[\times]0,1[, \quad \omega =]\underbrace{0.75}_{=a},1[\times]0.6,1[, T=0.5>\frac{a^2}{2}.$$

$$\partial_t y - \partial_{x_1}^2 y - x_1^2 \partial_{x_2}^2 y = 1_\omega v,$$

$$Cost of the control \\Size of the target \\Optimal energy \\ \triangle$$

$$App. Cont. \quad \checkmark$$

$$Null Cont. \quad \checkmark T_{min} > 0$$

h

 10^{-1}

OUTLINE

- Introduction
- 2 SOME FACTS ABOUT THE HILBERT UNIQUENESS METHOD AND ITS PENALIZED VERSION
- 3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - Practical considerations
 - Discrete Carleman inequalities and applications
 - The fully discrete setting
 - Few words about control to the trajectories
 - Error analysis in time
- 4 NUMERICAL RESULTS
 - 1D Scalar equations
 - 1D Parabolic systems
 - Some 2D results
- **S** Conclusions / Perspectives

THE END

SUMMARY

- In the PDE world
 - Many standard results in controllability theory can be deduced from the analysis of the penalized HUM approach.
 - The penalized HUM approach always converge towards something as the penalization parameter tends to 0.
- In the discrete world
 - Necessity to relate the penalization parameter to discretisation parameters in a clever way.
 - Analysis of uniform null-controllability properties with respect to δt and/or h for semi/fully discrete problems.
 - Associated relaxed observability inequalities.
 - We may use numerical simulations to investigate open problems.
 - Even for non controllable problems, the numerical method applies and gives interesting results.

PERSPECTIVES

- Extend our analysis in the discrete setting to other cases
 - Non symmetric scalar operators.
 - Parabolic systems with few controls.
 - Boundary control problems.
 - Analysis for other space discretizations (Finite Volume, Finite Element, ...)
- From a computational point of view
 - A deeper understanding of HUM operators \leadsto preconditioning methods.
 - More suitable solvers than standard Conjugate Gradient?