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ABSTRACT PARABOLIC CONTROL PROBLEM

e Two Hilbert spaces : the state space (E, (., .)) and the control space (U, [.,.]).

o A:D(A) C E — E is some elliptic operator such that — A generates an analytic
semigroup in E.

@ B: U+ D(A*) the control (bounded) operator, B* its adjoint.

o COMPATIBILITY ASSUMPTION : we assume that
(z — B*e*“‘*w) € 12(0,T; U), and [[B*e**‘*w]] <Cll, ¥ € E.

L2(0,T;U)

Oy+ Ay=Bv in]0,T],
¥(0) = o,
Here, yo € E is the initial data, v € L*(]0, T[, U) is the control we are looking for.

Our controlled parabolic problem is (S) {

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any yo € E and v € L[*(0,T; U), there exists a unique y = y,.,, € C°([0, T], E)
such that

(y(1),v) — <y0,ef“4*1/1> = /Ot [v(sLB*e*(tﬂ)A*w] ds, Vt€[0,T],Vy € E.

NOTATION : [LT(V|yO) dInyv,yo(T)}
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CONTROLLABILITY QUESTIONS

¥(0) = yo.

For a given (fixed) control time 7 > 0 and any § > 0, we set

(s {8,y +Ay=Bv in]0,T|,

(Adm(yo,a) = [y € 20.7:0), st. || £ (vlyo) | < 6 J

APPROXIMATE CONTROL PROBLEM FROM THE INITIAL DATA Yo

Do we have
Adm(yo,d) #0, V6§ >07

NULL-CONTROL PROBLEM FROM THE INITIAL DATA Yy,

Do we have

Adm(yo,0) # 0 ?

(Fattorini-Russel, *71) (Lebeau-Robbiano, *95)
(Fursikov-Imanuvilov, ’96) (Alessandrini-Escauriaza, *08)

(Ammar-Khodja, Benabdallah, Gonzalez-Burgos, de Teresa, *11)
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THE HILBERT UNIQUENESS METHOD

(Lions, ’88) (Glowinski-Lions, *90s)
IDEAS

@ To formulate control problems as constrainted optimisation problems.
@ To write the associated unconstrainted dual optimisation problem.

@ To find conditions for the solvability of the dual problem and prove that there are
satisfied.

COST OF THE CONTROL We set

Fv) & % /0 "DOP dr, e 20.T:0),

and for any 6 > 0, we define (it it exists !), v to be the unique minimiser

FO)= inf F(v). (P%)

vEAdm(yg,6)

DUAL PROBLEMS

@ The dual pb of (P°) is not coercive in the natural space E. We need to introduce a
big abstract space obtained as the completion of E with respect to a suitable norm.

o The dual pb of (P°), § > 0 is coercive in E but is not smooth.
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THE PENALIZED HUM

PRIMAL PROBLEM

[Fa(v) & %/0 O di + 2—16 12 (v|yo) >, W € L(0, T U)}

we consider the following problem : to find v. € L*(0, T; U) such that
F.(ve)= inf F:(v). (Pe)
veL2(0,T;U)
PROPOSITION

For any € > 0, the functional F. is strictly convex, continuous and coercive.
Therefore, it admits a unique minimiser v. € L*(0,T; U).

v

DUAL PROBLEM (Fenchel-Rockafellar duality theorem)
£y odet 1 ’ *x —(T—1)A* F 2 el rl? —TA* F F
2d) =5 [[Be q]] dt+§Hq H+<yo,e q>,Vq €E.
0
PROPOSITION

For any € > 0, the functional J. is strictly convex, continuous and coercive.
Therefore, it admits a unique minimiser g- € E.
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THE PENALIZED HUM

REMARK

We do not require any particular assumption on the operators A and 5.
In particular we do not assume that the PDE (S) is (or is not) controllable.

PROPOSITION (DUALITY PROPERTIES PRECISED)

For any € > 0, the minimisers ve and g~ of the functionals F. and J. respectively, are
related through the formulas

ve(t) = B e T4 foraet €]0, 77,

and
L (ve|y0) = Yoo (T) = —eqt.

As a consequence, we have

inf F.=F.(v.)=—J.(¢}) = —infJ..
L2(0,T;U) E
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READING CONTROLLABILITY PROPERTIES ON THE PENALISED HUM

(B.,’13)
THEOREM

@ Problem (S) is approximately controllable from the initial data yy if and only if

Lr(ve[yo) = yreo(T) — 0.

e—0

@ Problem (S) is null-controllable from the initial data yy if and only if

Mfo = 2 sup ( inf FE) =2sup Fe(ve) < +o0.
- e>0 \L?(0,T;U) >0

IN THE NULL-CONTROLLABLE CASE
[[VE]]LZ(O,T;U) < My,, and |’£T(V5|y0)H < My, /e

= M,, and

0
Moreover we have [v'] 12(0,7:0) o

Lr(velwo)

0 q 2 5
e ¥ swongly i 20,750}, ana | S5

where 1° is the unique HUM null-control (that is the one of minimal L*-norm).
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NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states : [Qp e {qF €E st Be™ g =0,v> 0} }

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any yo € E, the penalised-HUM sequence of controls (ve). satisfies

Ly (v5|y0) — Pop (eiTAyo) .

PROPOSITION (SELFADJOINT CASE)

Assume that A is selfadjoint, and set Yr &l TA” Qp)efTAQp then

]PQF (e_TAy()) = e_T'A (]P)Wyo) 5

Therefore, the system is approximately controllable from yo if and only if Py yo = 0.

v

o The set of (approximately) controllable initial data is Y.
e For any yg € Yr we have
ve =0, Ve >0,

Adm(y,8) £0 < 6> |le”™

Yo
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NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states : [Qp “ {qF €E st Be™ g =0,vt> 0} ]

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any yy € E, the penalised-HUM sequence of controls (ve). satisfies

Lz (ve|yo) — Py, (eiTAyo) .

COROLLARY (APP. CONTROLLABILITY AND UNIQUE CONTINUATION)

The system (S) is approximately controllable from the initial data yo if and only if

|:B*e*(7‘7t).,4* ql-‘ =0, Vrelo, T}} — <y0,e*“‘* ql-‘> —0. UC)

PROPOSITION (APP. CONTROLLABILITY AND WEAK OBSERVABILITY)
The property (UC) is equivalent to the following weak observability inequality

* 2 ~ _ _ *
|<y07e—T.A qF> <, [[B*e (T—)A qF]] F

2 2 F
‘ . Vd' €E, Ve >0.

€llq

L2(0,T;U)
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READING CONTROLLABILITY PROPERTIES ON THE PENALISED HUM

THEOREM (NULL-CONTROLLABILITY AND OBSERVABILITY)

Problem (S) is null-controllable from yo if and only if, there exists IVIyO > 0 such that
om0

Moreover, the best constant 1\~/I)<0 is equal to the cost of the HUM control [[v

2

2 P *
< M}Z,o [[B*e_(T_‘)A qF]] V4" €E.

b
L2(0,T;U)

0]] 12(0,T;U)"
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THE PENALIZED HUM APPROACH ...

... WITH AN APPROXIMATE INITIAL DATA

For each ¢ > 0, let yo, € E such that (yo,c ). is bounded in E and

—TA —TA
e Yo,e — e Yo-
e—0

ASSOCIATED HUM FUNCTIONALS

def 1 T 2 1
P 3 [ BOF dr g 165Gl
N w1 [T . (T A 2 2 A
JE(qF) der 5/ [[B o~ (T=0A qFH dt—i—% ‘qFH + <yo_g,e TA qF>7 qu cE.
0

We denote by 7. the unique minimiser of F..
CONTROLLABILITY CONDITIONS

>, wel’0,T;V),

[(S) is app. cont. from yo <= L7 (Ve |yo,c) — O.}
e—0

[sup ( z(inf F 5) < 400 = (S) is null-controllable from yo]
I

e>0 0,7;U)

(S) is null-controllable from yo

1 = 2 :>sup< inf F)<+oo.
sup — He " (3 *)’O,E)‘ < +oo e>0 \I2O,T;0)
>0
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THE PENALIZED HUM APPROACH ...

... WITH AN APPROXIMATE INITIAL DATA

For each ¢ > 0, let yo, € E such that (yo,c ). is bounded in E and

ASSOCIATED HUM FUNCTIONALS

X T
F.(v) ¥ %/0 V()] dr + 2—18 [Lr(vfyo )|, Wy e L0, T3 0),

3 e 1 T — — * 2 _ *
AUSE 5/ [[B*e (T=0A%, H dt+ = HqFH + <yo_g,e A qF>, vq" € E.
0

We denote by 7. the unique minimiser of F..
CONTROLLABILITY CONDITIONS

(S) is null-controllable from yo

= sup< inf FE> < +o0.
‘ < +o0 e>0 \L?(0,T;0)

sup — H yo—y()s)
e>0 €

DISCUSSION : Assume A = A* and Qr # {0}, then take yo,. = ez, z € e ™" Qr
2a0—1

. = € - 2
inf F.= He TAzH —— +o0, assoonasa < 1/2.
12(0,T;U) 2 =0

yo,e — (0) <= this initial data is indeed null-controllable !!.
- e—0
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THE PENALIZED HUM APPROACH ...

... WITH AN APPROXIMATE INITIAL DATA

For each ¢ > 0, let yo, € E such that (yo,c ). is bounded in E and
e—TAyO’E e My
e—0

ASSOCIATED HUM FUNCTIONALS

X T
Fo(n) & %/0 V()] dr + 715 [Lr(vfyo )|, Wy e L0, T3 0),

~ a1 7 e ax T2 e 2 ok

J-(q") dzri/ HB*e (T=nA qF]] dH—E ‘qFH +<)’<;_g7e A qF>, vq" € E.
0

We denote by V. the unique minimiser of F..

PROPOSITION (RELAXED OBSERVABILITY INEQUALITY)
Assume that )
‘ < +o0.

1y -
s1p L =460 30.)
e>0 €

The system (S) is null-controllable from the initial data yy if and only if

* 2 * 2 2
‘<-"°'f’eim qp>’ <M ([[B*e*”*-)*‘ qp]] +€qu“ ) v ek

L2(0,T;0)

We do not require the system to be null-controllable from any of the (yo.)-.
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SEMI-DISCRETE (UNIFORM) CONTROL PROBLEMS

FRAMEWORK
For any & > 0, we are given
o A discrete state space (Ej, (-, -),)-
@ An approximate operator Ay, on Ej.
@ A discrete control space (Uy, [+, -],)-
@ A linear operator By, : U, — Ej, B, being its adjoint (Buu, x), = [Byx,u, .

Oyn + Anyn = B,

The semi-discrete control problem is (Sy)
yu(0) = yo-

Its solution is refered to as ¢ +— yy, 5, , (f) € E; and we set

[Lﬁ (Vh ’yU,h) = Yvnsyo,n (T) }

QUESTIONS
Assume that (yo,»)s are, in some sense, approximations of a yy € E.

© Can we relate the controllability properties of (S) starting from yy to the ones of
(Sn) starting from yo 5 ?

© Can we obtain uniform bounds (w.r.t. &) for the associated controls v, ?
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MAIN ISSUES RELATED TO DISCRETISATION

© It may happen that (S}) is not controllable even if (S) is.

EXAMPLE : the 2D 5-point discrete Laplace operator Aj. (Kavian, Zuazua)
1
1 There exists a non trivial ¢, € Ej such that
1 Ay = pntn, and Bijypy = 0.
w -1 = oy € Qrs 2 {q] € By, st. Bie gl =0, Vi >0},
1

d
For any control v, € L*(0, T; Uy), = n(t), ¥n),, + pn n(t), Yn) = 0,

and thus
<£’¥(Vh|yo,h) ﬂ/fh>h = ou(T), vu),, = e " (you, ), - )

REMARK : The eigenvalue p, is very large ~ h% thus <£¥ (vh‘yo,h) ,wh>h is
exponentially small.

@ Even if (S) and (S;) are both controllable, it is not necessarily desirable to
compute a null-control v;, of (S)) to obtain a suitable approximation of a
null-control of (S).
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PENALISED HUM APPLIED TO SEMI-DISCRETE PROBLEMS

def 1 T 2 1 h 2 2
Fealn) 23 [ Il dr+ 5 HLT(V,,@O,h) ‘/ . Vv € 120, T; Uy),
0 a

et 1 T T —irenar T2 el w12 oax .
Jen(qh) = 5/ [[B/,e <T ’)A”qﬁﬂl dt+§’qﬁ h+<yo,h,e “‘"qf,>,, Vg, € Ep.
0 a4 f

@ For each value of 4 > 0, all the previous results apply.
@ We denote by v, the unique minimiser of F¢ .

GOAL

One would like to let (g, /) — (0, 0) but this should be done with some care.

COMMENTS

@ Even if (S) is controllable from yo, in the cases where O, # {0} we may have
lim || 24 (velon) | #0, ¥ >0
e—0 h

@ One can prove that for any 2 > 0

sup [[Ve,h]]U(O,T;Uh) < too.
e>0
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¢(h)-NULL CONTROLLABILITY

Let h €]0, +-00[— ¢(h) €]0, +o0] be given such that lim,_,o ¢(h) = 0.

DEFINITION

For a given family of initial data Yo = (yo,n)n € [ 1,5 En we say that the family of
problems (S;,) is QS(h)—null controllable from Yy, if there exists a ho > 0 such that

MfzoﬁZ sup ( inf F¢(h)7h><+oo,
0<h<hy \L?(0,T;Up)

where F g 1, is built upon yo .

THEOREM (RELAXED OBSERVABILITY)

For a given Yo € Eini, the problems (Sw) are ¢(h)-null-controllable from Yy if and only
if there exists ho > 0 and My, > 0, such that, for any 0 < h < hy

* 2 =~ *
|<y0,n,€_mh 6]5>I < sz/o (HBEE_(T_')A’I qﬂ]
n

In such case, the best constant A7[y0 is equal to My, and

2

2
an h), Vg, € Ej.

+o(h) |

L2(0,T;Uy)

[I:V‘b(h)vh:l]LZ(()’T;Uh) S Myo, and H‘Cl} (vd)(h),h‘yo,h) Hh S MYO V QZ)(h), YO < h < ]’lo.
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¢(h)-NULL CONTROLLABILITY

Let h €]0, +-00[— ¢(h) €]0, +o0] be given such that lim,_,o ¢(h) = 0.

DEFINITION

For a given family of initial data Yo = (yo,n)n € 1,5 En we say that the family of
problems (S;,) is QS(h)—null controllable from Yy, if there exists a ho > 0 such that

M§0ﬁ2 sup ( inf F¢(h)7h><+oo,
0<h<hy \L?(0,T;Up)

where F gy, is built upon yo .

PROPOSITION
Assume that, for some Cops > 0, the following relaxed observability inequality holds

2
)
h

then for any bounded family Yo, the problems (Sy) are ¢(h)-null-controllable from Y

and we have
My, < Cobs ( sup ||yo,n ) .
0<h<hg

\761111F e Ep,
VO < h < ho

F

Gh

H —TAS F
e G

2 . 2
< i ([me

]]LZ(O,T;U,,) + (’b(h) ‘
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MAIN EXAMPLES

AN ABSTRACT GALERKIN FRAMEWORK

(Lasiecka-Triggiani, 00) (Labbé-Trélat, >06)
. = 1 =
@ We suppose given Py, : E, — D((A*)2) and Qy, : U, — U such that

,Vyh € Eh7 and [[Mh]]h = [[éhuhﬂ .

Il = || Pos

o Weset P, = (F/,)* : D((A*)%)' — Epand Q) = (éh)* : U — Uy, and we
assume that
PyPy = 1dg,, and 0,0, = Idy,.
@ We define now A, and B through their adjoints by the formulas
Ay = Py APy, B = QB Py
@ + Standard approximation properties ...
EXAMPLE : Finite element Galerkin approximation.

F. Boyer HUM method and applications



MAIN EXAMPLES

AN ABSTRACT GALERKIN FRAMEWORK

(Labbé-Trélat, *06)

THEOREM

Assume that (S) is null-controllable at time T.

There exists a 5 > 0, depending on the approximation properties of £, and U,
such that the relaxed-observability inequality holds as soon as

W,

hm mf

In that case, for any yo € E, we can define o, = Pnyo and build the associated
penalised HUM discrete controls vy -
Then, there is a null-control v € Adm(yo, 0) such that, up to a subsequence, we have

= - : = - :
OnVe (), h T—m v, inL°(0,T;U), and Ppys E) Yoo, ML7(0,T;E).

@ The limit control v may not be the HUM control.

@ Proving strong convergence of the discrete control is very difficult.

@ In practive, the power (3 is low : for the 1D heat equation, Neumann boundary
control, P! finite element, we get f = 0.45. It means that

Ivn(T)|, =0 \/d(h) = B>** <= Very poor convergence.
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MAIN EXAMPLES

A FINITE DIFFERENCE FRAMEWORK

(B.-Hubert-Le Rousseau, ’09-°11)

THEOREM

We assume that Ay, is the usual finite difference approximation of —div(yV.) for a
smooth ~y on a regular Cartesian mesh and that B, = 1.,. Then, there exists hy > 0,
C > 0 such that, the relaxed observability inequality holds as soon as the function ¢
satisfies

[liminf ¢(h) > 0.

h—0 e—C/h?

Thus, for any bounded family of initial data Yy € Einyt, and for any 0 < h < hg we have

h
|IV¢>(h),h]] L2(0,T50,) < Cobs ||yo,ll, , and Hﬁr (V¢(h),h‘y0,h) Hh < Cobs |[yo,n]l, v/ O(B).

CONSEQUENCE : The ¢(h)-null-controllability holds for any ¢ (k) > e/
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e THE HUM APPROACH IN THE DISCRETE FRAMEWORK

@ Practical considerations
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SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals J¢ » or Je »,s: (With e = ¢(h)).
PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0,6t > 0, > 0 and any g}, € Ej, we have

Vien(qh) = L7 (l’ﬁ’;?e_"_‘)““’T quO) +eqr, + L7 (0]yon) ,

def \n F
_AqlX

Vienailah) = £ (BLL (af ) [0) +egh + £ (0o,

def
AR, 6 ‘15

where E;k-’h";’ (q,liF ) is the solution of the adjoint fully-discrete pb associated with qp.

COMPUTATION OF GRAMIAN OPERATORS

The computation of Aeg, amounts to
@ Solve a backward parabolic problem.
@ Apply B;
© Solve a forward parabolic problem with the control previously computed.
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SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals Je , or Jc 5,6: (With € = ¢(h)).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

Forany h > 0,6t > 0, > 0 and any q;, € E;, we have

Vien(qh) = L7 (B* —=A qﬂo) +eqp, + L£7(0]yo.) ,

g

Vienailah) = £ (BLL" (af ) [0) +eaf + £ (0o,

dﬁfAh ér F

where ﬁ*’h’&(

qr ) is the solution of the adjoint fully-discrete pb associated with qj.

EQUATIONS TO SOLVE

The semi/fully-discrete controls ar computed by solving the equations
(A" +eld)g, = —L7(0]yo) ,

(A" 4 eld)gh = —Lr* (0]yo,s) -

In practice, we use a conjugate gradient algorithm.
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SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals Je , or Jc 5,6: (With € = ¢(h)).
PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0,6t > 0, > 0 and any g}, € Ey, we have

Viealah) = £4(Bie™ 4 6510) +eqf + £1(0]yos)

def \p F
_AqlX

Vienailah) = £ (BLLi (af ) [0) +egf + £1% (0o,

def T
:Ah,mqh

where E;k-’h";’ (qf ) is the solution of the adjoint fully-discrete pb associated with qp.

CONDITION NUMBER

Basic estimate : € ‘ qf 6115

< H(A' +eld)gF
h

S(C—!—a)‘

h h

[Cond(A' + eld) ~ ij
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HOW TO CHOOSE h +— ¢(h) ?

BASIC USER GUIDE

TWO MAIN PRINCIPLES

© & = ¢(h) should not be too small in order to maintain a reasonable condition
number (i.e. computational cost)

[cm(x\' + $(W)Id) ~ ¢<1h)}

@ The size of the computed solution at time 7 is

[yn(T)l;, & Cobs\/ G (h).
It seems reasonnable to choose
¢(h) ~h—0 tha

where p is the order of accuracy of the numerical method under study.

REMARKS
e Computing a null-control for (S},), i.e. taking e = ¢(h) = 0, is not possible in
general.

@ Choosing ¢(h) much smaller than A% (like e~/ hz) is a useless computational
effort.
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HOW TO CHOOSE h +— ¢(h) ?

THE SIMPLEST EXAMPLE IN THE WORLD

WesetE:Eh:]R,A:)\>O,.A/l:()\+6h)ERWith(Shﬁ)O,B:Bh:1.
h—s

’ ’
+)‘Y: ) 1+ )\+51 h — )
(s) {y y=voo4 (Sh){y/ (A Gn)yn = vi

y(0) =1, yn(0) = 1.
Uncontrolled solution eiTA”yoyh = g~ (AT
GRAMIAM “OPERATORS”
1 — ¢—2(+8)T | — =T
A = —— ¢ "~ " F dASf = L=¢ " F FeR
1q 20+ 50) q , and Ag ™ q,VYq €R,
PROPOSITION

The corresponding semi-discrete penalised and exact HUM controls are
2(\ + 6/})e7(/\+5,,)r

1 — 2047 4 (2e(A + 1))

—(T— 2A€ 2
A
V(t)_ e ( 1) S

o T=D(+8)

Ve,h(l) =
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HOW TO CHOOSE h +— ¢(h) ?

THE SIMPLEST EXAMPLE IN THE WORLD

’ ’
+)\’: 5 7+ )\+51 h = Vh,
B AR IR B (A =+ 8n)yn = vi
yh(O):l.

PROPOSITION
The corresponding semi-discrete penalised and exact HUM controls are
-0y 2+ e (T

vea(t) = ’
1 — e=2+0)T [ 2(X + 6;)

—r—nx_2xe
v = —e” TP

ERROR ESTIMATES
Iv = verl 2,0y < CAT)(|64| + €), for 6 and e small,
Lr(ves|l) = CL(A, T)éh + C2(N, T)e + O(E? + 57),
with C;(\, T) > 0.

CONCLUSION : The optimal choice is to take ¢ = ¢(h) ~ 0.
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HOW TO CHOOSE h +— ¢(h) ?

THE SIMPLEST EXAMPLE IN THE WORLD IS NOT SO STUPID

By — &2y = lav, inQ=]0,1][,
in the particular case where w = 2.
STANDARD FINITE DIFFERENCE APPROXIMATION ON A UNIFORM GRID

i _21' i—
Oyys — V! Vi £ Yi-1

2 = Vi, Vle{l,,N}

EIGENFUNCTIONS OF A
o (x) = sin(kmx), M = kK*7°, Vk > 1.
EIGENFUNCTIONS OF Ay,

4 sin? (k”h

Ok = (sin(kmx;))i, A = hzT)’ V1<k<1/h

EQUATIONS FOR THE k-TH EIGENMODE

Y Ay =V, Vit Aeayh = Vi
Here

k
i = D = M 15, =
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OUTLINE

e THE HUM APPROACH IN THE DISCRETE FRAMEWORK

@ Discrete Carleman inequalities and applications
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

(B.-Hubert-Le Rousseau, ’09-’11)
We assume that Ay is SPD and let (1; 5, pj,»); its eigenelements.

ASSUMPTION : DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists ip > 0, « € [0, 1), 8 > 0, and x, £ > 0 such that, for any & < ho and for
any (a;); € RY, we have
2

| 5wl <ne (X awa)] . wu<im e

Hjn S p B hSp h

THEOREM

Assume that assumption (Ha,g) holds, then there exists ho > 0, C > 0 such that, the
relaxed observability inequality holds as soon as the function ¢ satisfies

[hm 1nfM > 0.}

h—0 e—C/hP

Thus, for any bounded family of initial data Yo € Einit, and for any 0 < h < ho we have

|IV¢>(/1),h]]L2(OTUh) < Cobs |[yo,n]l,, , and HE Vo (h), h‘)’Oh H < Cobs |[yo,ull, v/ O(B).
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

CONSTRUCTION OF THE DISCRETE CONTROL

Let E,, , = Span{vj,n, pjn < p}. Assumption (Ha,g) says that

© NON-UNIFORM PARTIAL OBSERVABILITY

CoCH® e 2
. /0 [[B;fe SA q}f]]h ds, NYq € E,n, V1 > 0.

2

qn hﬁ .

2

Kp® 4

< ke"™ [[B;qh]] , Van € Ep,Vu < —
h h

He—T.A,’X‘ F

2
|| <C
h
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

CONSTRUCTION OF THE DISCRETE CONTROL

Let E,, , = Span{vj,n, pjn < p}. Assumption (Ha,g) says that

© NON-UNIFORM PARTIAL OBSERVABILITY

CoCH® T o
e / [[B;e A q;]]h ds, Vqh € E,p, N7 > 0.
0

2

qn hﬂ .

2

rop® I

< ke"™ [[B;qn]] , Van € Ep,Vu < —
h h

* 2
He_”"’ a| <cC

h

@ PARTIAL CONTROLLABILITY
For any yo,» € E,. i, and any 7 > O there exists a v, € L’ (0, 7; Ux) such that

3 Cec“’a
thﬂLz(O,T;U/,) —= m ||y0’h

I

aryh + Ahyh = Bth, yh(o) = Yo,h;, ]P)E“,hyh(T) =0.

F. Boyer HUM method and applications



DISCRETE LEBEAU-ROBBIANO INEQUALITY

CONSTRUCTION OF THE DISCRETE CONTROL

Let E,, , = Span{vj,n, pjn < p}. Assumption (Ha,g) says that

© NON-UNIFORM PARTIAL OBSERVABILITY

CoCH® T o
e / [[B;e A q;]]h ds, Vqh € E,p, N7 > 0.
0

2

qn hﬂ .

2

rop® I

< ke"™ [[B;qn]] , Van € Ep,Vu < —
h h

* 2
He_”"’ a| <cC

h

@ PARTIAL CONTROLLABILITY
For any yo,» € E,. i, and any 7 > O there exists a v, € L’ (0, 7; Ux) such that

3 Cec“’a
thﬂLz(O,T;U/,) —= m ||y0’h

L s
Oyn + Anyn = Buvi, yi(0) = you, |Pg, ,yu(7) = 0.

© CONSTRUCTION OF THE CONTROL : Time slicing procedure.
()],

10,11l
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

CONSTRUCTION OF THE DISCRETE CONTROL

Let E,, , = Span{vj,n, pjn < p}. Assumption (Ha,g) says that

© NON-UNIFORM PARTIAL OBSERVABILITY

CoCH® T o
e / [[B;e A q;]]h ds, Vqh € E,p, N7 > 0.
0

2

qn hﬂ .

2

rop® I

< ke"™ [[B;qn]] , Van € Ep,Vu < —
h h

* 2
He_”"’ a| <cC

h

@ PARTIAL CONTROLLABILITY
For any yo,» € E,. i, and any 7 > O there exists a v, € L’ (0, 7; Ux) such that

3 Cec“’a
thﬂLz(O,T;U/,) —= m ||y0’h

L s
Oyn + Anyn = Buvi, yi(0) = you, |Pg, ,yu(7) = 0.

© CONSTRUCTION OF THE CONTROL : Time slicing procedure.
()],

10,11l
Control low
frequencies
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

CONSTRUCTION OF THE DISCRETE CONTROL

Let E,, , = Span{vj,n, pjn < p}. Assumption (Ha,g) says that

© NON-UNIFORM PARTIAL OBSERVABILITY

CoCH® T o
e / [[B;e A q;]]h ds, Vqh € E,p, N7 > 0.
0

2

qn hﬂ .

2

rop® I

< ke"™ [[B;qn]] , Van € Ep,Vu < —
h h

* 2
He_”"’ a| <cC

h

@ PARTIAL CONTROLLABILITY
For any yo,» € E,. i, and any 7 > O there exists a v, € L’ (0, 7; Ux) such that

3 Cec“’a
thﬂLz(O,T;U/,) —= m ||y0’h

L s
Oyn + Anyn = Buvi, yi(0) = you, |Pg, ,yu(7) = 0.

© CONSTRUCTION OF THE CONTROL : Time slicing procedure.
()],

Do nothing

10,11l
Control low
frequencies
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

CONSTRUCTION OF THE DISCRETE CONTROL

Let E,, , = Span{vj,n, pjn < p}. Assumption (Ha,g) says that

th

2 o 2 l
< ke™ |\|Biqu|| , Vqn € Epn,Vu < —.
h A hﬂ

© NON-UNIFORM PARTIAL OBSERVABILITY

CoCH® T o
e / [[B;e A q;]]h ds, Vqh € E,p, N7 > 0.
0

* 2
He_”"’ a| <cC

h

@ PARTIAL CONTROLLABILITY
For any yo,» € E,. i, and any 7 > O there exists a v, € L’ (0, 7; Ux) such that

3 Cec“’a
thﬂLz(O,T;U/,) —= m ||y0’h

L s
Oyn + Anyn = Buvi, yi(0) = you, |Pg, ,yu(7) = 0.

© CONSTRUCTION OF THE CONTROL : Time slicing procedure.
()],

Do nothing Control
ontro

low
freq.

10,11l

Control low
frequencies
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

CONSTRUCTION OF THE DISCRETE CO

Let E,, , = Span{vj,n, pjn < p}. Assumption (Ha,g) says that
2

2 o ¢
< ke™ |Bign| , Vaqn € En,Vu < —.
h A hﬂ

th

© NON-UNIFORM PARTIAL OBSERVABILITY

Cecua

* 2
He_”"’ a| <cC

h

T N 2
/ [[BZe_‘VA” qf]] ds, Yqi € Eun, VT > 0.
o h

@ PARTIAL CONTROLLABILITY
For any yo,» € E,. i, and any 7 > O there exists a v, € L’ (0, 7; Ux) such that

3 Cec“’a
thﬂLz(O,T;U/,) —= m ||y0’h

L s
Oyn + Anyn = Buvi, yi(0) = you, |Pg, ,yu(7) = 0.

© CONSTRUCTION OF THE CONTROL : Time slicing procedure.

()],

Do nothing

Control D until the
0
) threshold
H}O’h”h low nothing _s !
Control low freq. H= 5

frequencies
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

SKETCH OF P

H > an

Hih<p

2
i < ke [[B;( Z aﬂbj,h)]] s | V< hé . (Ha,p)

Hia<p h

IMPORTANT OBSERVATION

Excepted in very particular cases, the assumption (#H,5) has no chance to hold true
without restriction on p, for dimension reasons.
See also the counter-example of Kavian.

FINITE DIFFERENCE FRAMEWORK

We assume now that Aj, is the finite-difference discretisation of —V - (yV.), v being a
Lipschitz continuous coefficient and B, = 1., with w =C .

F. Boyer HUM method and applications



DISCRETE LEBEAU-ROBBIANO INEQUALITY

SKETCH OF PROOF

2

| S awl < [Bi( Z aws)| . wu<p ot

Hjn S i< p h

THE CARLEMAN ESTIMATE

For a suitable weight function ¢, g > 0, so > 0 and C > 0.
For any s > s such that sh < o and any u € C*([0, 7], Ex), with u(0) = 0, we have

.
s3/ le*Cully dt + s
0

<c|
J0

2
eI9u(0) | + 5 o)} + 5> lu(r)l;

(=0 + Anu }

di+Cse®? ) (Auu(r), u(t)), + Cs HB;eW(O")atu(O)

%)
1

F. Boyer HUM method and applications



DISCRETE LEBEAU-ROBBIANO INEQUALITY

SKETCH OF PROOF

2

| S awl < [Bi( Z aws)| . wu<p ot

Hjn S i< p h

THE CARLEMAN ESTIMATE

For a suitable weight function ¢, g > 0, so > 0 and C > 0.
For any s > so such that sh < ey and any u € C*([0, 7], Ej), with u(0) = 0, we have

S0 [lu(m)|[} < Cse** ™ (Au(r), u(r)), + Cse® || Brow(0)]2,

as soon as (—0; + Aj)u = 0.

F. Boyer HUM method and applications



DISCRETE LEBEAU-ROBBIANO INEQUALITY

SKETCH OF PROOF

2

| S awl < [Bi( Z aws)| . wu<p ot

Hjn S i< p h

THE CARLEMAN ESTIMATE

For a suitable weight function ¢, g > 0, so > 0 and C > 0.
For any s > so such that sh < &9 and any u € C*([0, 7], E;), with u(0) = 0, we have

SO lu(m); < Cse®? T (Auu(r), u(r)), + Cse ||y du(0)

as soon as (—07 + Aj)u = 0.

sinh(,/
WE TAKE : u(t) = Z ajij 1, sol. of the elliptic Cauchy problem.

Hjn<p V ik
1 .
(> L S laf? s (i) and () = 3l s (i
Hih<p HjnSp
2
2
fowto); = [5: (3 ajwj,h)]] ~
h

HiaSp
Finally, we need s ~ /i which gives the condition /ph < &o.

F. Boyer HUM method and applications



A DISCRETE CARLEMAN INEQUALITY

SKETCH OF PROOF

THE CONTINUOUS CASE B
We consider a weight function 1 in C*([0, 7] x ©, R), sich that

V| > candy > 0in]0,7[x2, I t)(1,x) < 0in (0,7) x 99,
O > con {0} x (2\w), Vi(T,.)=0andd(T,.) < —con.
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A DISCRETE CARLEMAN INEQUALITY

SKETCH OF PROOF

THE CONTINUOUS CASE B
We consider a weight function 1 in C*([0, 7] x ©, R), sich that

V| > candy > 0in]0,7[x2, I t)(1,x) < 0in (0,7) x 99,
O > con {0} x (Q\w), Vi(T,.)=0and 09(T,.) < —conf.
We set ¢ = ¢*¥ and p = ¢*%, and
P=—-8 -V -(yV).

WE COMPUTE THE COMMUTATOR BETWEEN P AND p
ASSUMEd =1 ANDy =1

f:Pu:_atzu_afu7
becomes (with r = p_l)

v + 00y + (8] p)v + (9 p)v +2r(8,p) (B1v) + r(D:p) (D) = —f -

=Av =Bv

Then

2(Av, BV)L,ZVA < H’f”L,{A-
We conclude by integrating by parts in the term (Av, Bv) and using the properties of
the weights (and by choosing ) large enough). The inequality then holds for any s
large enough.

F. Boyer HUM method and applications



A DISCRETE CARLEMAN INEQUALITY

SKETCH OF PROOF
THE 1D UNIFORM DISCRETISATION CASE

v for smooth Cartesian multi-D geometry
0

1 M = (xi)i1<i<n
L | | _ | J
X0 X1 X2

XN XN41 M= (x"+% )OS'SN

@ Primal/Dual discrete functions

u= (uii<i<v € R™, V= (‘G‘Jr%)ogfg/v c R™.

@ Discrete derivatives (Dirichlet BC : < up = un4+1 = 0)

_ V.1 —V._ 1
Uit+1 — Ui ) = i+3 i—3 9
((Du)i+% - T)0<i<€NRﬂ’ ((Dv),- - 27) R,

1<i<N
@ Discrete integrals and norms

N N
2 2 2
||u||h:/9u :Zhu” /Qv:Zl1vi+%7..,
i=1

i=0

[The discrete operator reads A, = —D(WD-)]

F. Boyer

HUM method and applications



A DISCRETE CARLEMAN INEQUALITY

SKETCH OF PROOF

@ We consider the same weight as in the continuous case which is sampled on the
meshes.

@ Discrete integration by parts and discrete derivation of products lead to new terms

A7v + rpDDv + (87 p) v + r(DDp) v + 2r(8:p)(8iv) + 2rDp Dv
=Av =Bv

o All the additional terms are small with respect to / but contain high powers of
the parameters s and \.

@ We shall need a condition relating s and / of the following form
sh < €0,

where ¢ only depends on the data.

@ In the proof of the discrete Lebeau-Robbiano, we take s ~ /i1, which gives the
threshold p < 2—21

F. Boyer HUM method and applications



A DISCRETE CARLEMAN INEQUALITY

DISCRETE DIFFERENTIAL CALCULUS

PRODUCTS DERIVATIVES fi e R™, g e R™
D(fif) = (DA + (DR)f,
D(g182) = (Dg1)g2 + (Dg2)g1-
PRODUCTS AVERAGES
fh=hfk+ (Dfl)(sz)~

REPEATED AVERAGES

Typical term (remember that r = p~ )

- 2

h
=1+ Zr(DDp)

Q

hZ
I+Zr82pk\:l+—( 0:p)? rp + -

:1

DISCRETE INTEGRATION BY PARTS feR™and g € R™

/f(Dé’) = - / (Df)g +fN+1gN+% —f08%~
Q Q

F. Boyer HUM method and applications



ANOTHER (PARABOLIC) DISCRETE CARLEMAN ESTIMATE

(B. - Le Rousseau, ’14)

GOALS

@ To obtain relaxed observability estimates for some time depend coefficients

parabolic equations.

@ To study some semi-linear case.

@ To derive discrete parabolic Carleman estimates (a la Fursikov-Imanuvilov).
CARLEMAN WEIGHTS

o Standard weights in space ¢ = e — eMvlloo,

o Singular weights in time 0(f) = (t + ah) ™ (T — 4+ ah) ™"

THEOREM

For any T > 0 large enough, there exists o > 0 and hy > 0 such that for any function
qn € C'([0, T], E;) and any h < hy we have

2
L2(0,T;Ep)

—T * e —TO0P 1%
< C(le™ ™ (=0 + AR a3 0.1, + 1(70)2 € 707 Bii g

+Ch? (

1 —70 2 3 —10p
1(70)2e™""*Danlliz0,r;m,) + [1(70)2 €™ qn

2
12 (()A,T:E/,))
2

+

h

) e "% q,(T)

2
/7>
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ANOTHER (PARABOLIC) DISCRETE CARLEMAN ESTIMATE

(B. - Le Rousseau, ’14)
GOALS
@ To obtain relaxed observability estimates for some time depend coefficients
parabolic equations.
@ To study some semi-linear case.
@ To derive discrete parabolic Carleman estimates (a la Fursikov-Imanuvilov).

CARLEMAN WEIGHTS
o Standard weights in space ¢ = e — eMvlloo,
o Singular weights in time 0(f) = (t + ah) ™ (T — 4+ ah) ™"
THEOREM (RELAXED OBSERVABILITY INEQUALITY)
There exists C > 0 s.t. for any function ay € L*°(]0, T, E;), and any h < min(hg, hy)
with hy ~ ||y H;Z any solution of —dqn + Ay qn + angn = 0 satisfies

2 * 2 Gl ap || oo 2
lgn (O < ComsllBranllzzo,riey +¢ 7 1 llan(T)]]5-

%

C+ L 47| ap ]l oo +lan | )

with Cops = €
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APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

(Fernandez-Cara — Zuazua, ’00), (B. — Le Rousseau, ’14)

atyh + Ahyh + g(_\'h)_\'/z = lwvh, yh(o) = Yo,h,

SUBLINEAR CASE : [g(s)| <M

There exists .
C = C10+7+Tlglloo+Igll &)

such that for any initial data yo , € Ej, and any i < ho, there exists a semi-discrete
control v;, such that

—1

_ (el
Vallz2 0,10y < C ol and flyn(T)l, < Ce™ 7 [|yoll, -

@ Uniform estimates with respect to / :

o Weak convergence of the contro towards a null-control of the semi-linear problem. At

least for a subsequence ...
o Strong convergence of the controlled solution
—1
@ We can replace e =€ /" by any ¢(h) that goes to 0 not too fast.
@ In practice, we use a Picard fixed-point procedure to compute the approximate
solution but other non-linear solvers can be useful.

F. Boyer HUM method and applications



APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

(Fernandez-Cara — Zuazua, ’00), (B. — Le Rousseau, ’14)

Oyn + Apyn + 2(vi)yn = Love, yu(0) = you,

SUPERLINEAR CASE : |g(s)] < MIn(1+ |s])", r < 3/2
@ In 1D : For any initial data yo » € Ej such that || Dyo || < M and h < hg there
exists a v, such that
—1

="
||"hHL2(o,T;U,,) < Cu, and |jyn(T)|l, < Cye™ 7

o In multi-D : similar result (no need of a H' estimate) but with a non-uniform
bound of the control

N Gl
Vallz .70 < Clyg %5 and Iyn(Dlly < Cpy € 7

BONUS : UNIFORM LOCAL CONTROLLABILITY RESULT IN 1D FOR ANY g

F. Boyer HUM method and applications



APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

SKETCH OF PROOF

LINEARIZATION 4+ TRUNCATURE + SCHAUDER FIXED-POINT PROCEDURE

(Sl/l) : 8})711 + Ahyh + g(TR,, (Zh)) Y = lwvlu
—_————

=ay,

Ay =z € Some space Zj, — vithe HUM-pen. control for (S;,)
—— y» € the same space Z;.

MAIN ISSUE : to find a suitable space Z;
o Sublinear case : one can take for some Ry

def

Zy=Am € L2(07 T; Uy), HZ/?HLZ(O,T;Uh) < Ro}.

F. Boyer HUM method and applications



APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

SKETCH OF PROOF

LINEARIZATION 4+ TRUNCATURE + SCHAUDER FIXED-POINT PROCEDURE

( gh) 8})711 + Ah}h + g(TR,, (Zh)) Y = lwvlu
—_————

=ay,

Ay =z € Some space Zj, — vithe HUM-pen. control for (S;,)
—— y» € the same space Z;.

MAIN ISSUE : to find a suitable space Z;
@ Sublinear case :
@ Superlinear case : We need an L°° estimate
Zy = {zh € L™(0,T; Uy), l|zallzoe 0,70,) < R}
Then we take R, = Ch™, a > d/2 in order to satisfy

hs HahH;f ~ ln(l +Rh)_% = Carleman

/2 LR R Hyo nll, < Ry = stability estimate

+ a good estimate on the control time 7},
since we want that

—d/2 <n d/2 ,Cr+in(1+Ry)

[yalleee < R < Ry.

llyullzee 0,7:,) H)o h
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APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

SKETCH OF PROOF

LINEARIZATION 4+ TRUNCATURE + SCHAUDER FIXED-POINT PROCEDURE

(Sl/l) : 8})711 + Ahyh + g(TR,, (Zh)) Y = 1wvh7
—_————

=ay,

Ay =z € Some space Zj, — vithe HUM-pen. control for (S;,)
—— y» € the same space Z;.

MAIN ISSUE : to find a suitable space Z;
@ Sublinear case :
@ Superlinear case :
@ Improvmentin 1D :

Discrete Sobolev embedding ||yi||cc < C||Dya]|n-

LEMMA (UNIFORM REGULARISING EFFECT)

Assume that yo.n € Ej is such that ||yo,n||cc < Mo for some Mo > O then there exists
t1 > 0 depending only on My, and g, such that the solution yy of

Oyn + Awyn + gvn)yn = 0, and yi(0) = yo,n,

exists on [0, t1] and satisfies | Dy (t:)||n < C(Mo, g).

F. Boyer HUM method and applications



OUTLINE

e THE HUM APPROACH IN THE DISCRETE FRAMEWORK

@ The fully discrete setting
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THE FULLY DISCRETE SETTING

We have introduced and analyzed the ¢(/)-null-controllability hold for
Oiyn + Awyn = By,
(S0 1
y1(0) = yo -

WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM ?
We study unconditionally stable schemes : the 6-scheme with 6 € [1/2,1]

n+l _ n

W T A0y (1 - 0)y) = Bl W e [0,M—1],
(Sh,s) ot

y?l = Yo,h S Eh7

where, 8t = T /M, vi,50 = (Vi) i1<n<m € (Up)™ is a fully-discrete control function
whose cost is defined by

M 1
def nn2 2
[vnsiliz .10 = (Z(S’ [[v;,]],l) :

n=1

The value at the final time iteration of the controlled solution of (Sj.s;) is denoted by

[[ﬁ’&(\)h,5:|yo,h) défy;‘,l.}

F. Boyer HUM method and applications



THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

2
Fe,/z,dl(vll,(?l) : [[Vh 5[]]L2 (0 T;Up) + — Hch Vi 5t|y0 h) H .

DEFINITION (DUAL FUNCTIONAL)
We define the functional

F 2

! o 2 €
Jenoi(qh) == [[Bh[' ot (fIDH ) + 5 ‘ qn
12,00,T30) 2

<y0 ]laqh ( )Ahqh> ’ qu € Eh7

where L3 (a1) = (gh)1<n<m is the solution of the following adjoint problem

o = qh,
M+1
q B qh M *
5 A =0, (S7.51)
qn qn+1
= 1 A,(6q1+ (1 - 0)as™") =0, Vn € [1,M — 1],

F. Boyer HUM method and applications



THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

def 1 2 1 h,ét 2
Fe (Vo) = B [[Vh,éf]]Lgr(o,T;U,,) + % Hﬁr (V/1,5f|y0,h)H, :

‘ 2 € 2
[ @) £
e 6i(qn) 5 [Pk I 2,0,150,) 2 i

- <y0,/laqfll - 5t(1 - O)Ahq/lr> ) V‘Iﬁ € Eh7

h

THEOREM (DUALITY)

The functionals F. j.5; and J. j,5: are in duality, in the sense that their respective
minimisers Ve j 5 € L? (0,T; Uy) and q§7h751 € Ey, satisfy

. F .
inf  Feps = Fs,h,éz(vs,h,ér) = _Js,h,&(qs,h,é/) = —infJc p 51,
Lgr(o,T;Uh) Ej

and moreover

* px,h,0t( F
Ve = By Ly (qe,h,ét) .
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THE FULLY DISCRETE SETTING

A ¢(h)-NULL-CONTROLLABILITY RESULT

THEOREM (CASE 0 €]1/2, 1])

Assume that the discrete Lebeau-Robbiano inequality (Ha,g) holds and let ¢ be such

that
o(h)
[h}gmf —C/hP > 0.

Then, there exists ho > 0,Cr > 0, Cops > 0 such that for any 0 < h < hy and any
5t < Cr|log o(h)| ™", the following relaxed observability inequality holds

HQh or(1 —0) AthH < Cos ([[BthJ]LZ o) T o(h H%H ) , Vq; € Ep.

Thus, for any such dt and h and any initial data yo, € Ej, the full-discrete control
Ve (h),h,61 Obtained by minimising F gy n,5: (0r equivalently Jgny n,5:) satisfies

<
[[vqﬁ(h),hﬁljﬂ 12,070, = Cobs

)|, < o/ 0l -

CASE 0 = 1/2 : We need the (much stronger) condition dzp(Aj) < ¢ for some 6.

s
Hﬁr' " (Vo (hy,n,5¢ Yo

F. Boyer HUM method and applications



SKETCH OF THE PROOFS

MAIN IDEA : ADAPT THE LEBEAU-ROBBIANO ORIGINAL STRATEGY
STEP 1 : Use the discrete L.R. inequality to prove controllability of frequency modes less
than p with cost e*” ||y,
STEP 2 : Construct a suitable full discrete control by a discrete finite time slicing
procedure :

J
{0, e, M} = |_|{M], ... ] + 201}, *)
j=1

o Between discrete times M; and M + M; :

Use a control for frequencies less than 2/ /o (Step 1).
o Between discrete times M; + M; + 1 and M; +2M; :

Let the system evolve without control and take advantage of the parabolic dissipation
since the solution only contains frequencies greater than 2/ /e,
NEW DIFFICULTIES
@ 4t has to be small enough (i.e. M large enough) in order to construct a suitable
slicing (x).
o The full-discrete heat semi-group

(1d 4 062.A,) "' (1d + (1 — 8)d1.A)

do not have the same dissipation properties as the semi-discrete semi-group
e—&tA,,‘
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SKETCH OF THE PROOFS

FULL-DISCRETE PARABOLIC DISSIPATION

THE 6-SCHEME FOR 6 > 1/2
The iteration matrix for the system is

Chsr = (Id + 051.4,) " (1d — (1 — 0)51.A4y) .

l 4 I
| ( 6-1/2 ﬂ)

e Let us analyse Sp(Cp,s:) : 087 | 0(1-6)" 6
0.6\ 1
Image of Sp(dz.A}) through !
041 \
PN 1—(1-0)x !

14 6x 021 1—0)"

2 4 6 § 10 12 14 16 18 20

o In practice, p(61.A;) ~ Co

i » for some p (e.g. p = 2 for classical FD)
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SKETCH OF THE PROOFS

FULL-DISCRETE PARABOLIC DISSIPATION

THE 6-SCHEME FOR 6 > 1/2
The iteration matrix for the system is

Chsr = (Id + 051.4,) " (1d — (1 — 0)51.A4y) .

e Let us analyse Sp(Cp,s:) : 08

Image of Sp(dz.A}) through
04|

PN 1—(1-0)x
40 " \\/ﬁé)’/"

2 4 6 § 10 12 14 16 18 20

I
I
I
I
1
0.6\ 1
I
I
I
L
I
I
I
I

o In practice, p(67A;) ~ C, for some p (e.g. p = 2 for classical FD)

hﬂ b
~~ Case (a) : For 6t x i, less than 99 (71/92) : we have exponential damping.
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SKETCH OF THE PROOFS

FULL-DISCRETE PARABOLIC DISSIPATION

THE 6-SCHEME FOR 6 > 1/2
The iteration matrix for the system is

Chsr = (Id + 051.4,) " (1d — (1 — 0)51.A4y) .

e Let us analyse Sp(Cp,s:) : 08

Image of Sp(dz.A}) through
04|

PN 1—(1-0)x
40 " \\/ﬁé)’/"

2 4 6 § 10 12 14 16 18 20

I
I
I
I
1
0.6\ 1
I
I
I
L
I
I
I
I

e In practice, p(0t.Ay) ~ C%, for some p (e.g. p = 2 for classical FD)
~ Case (b) : For 0t X p;  greater than 99(%/92) (possibly — +00) the damping factor
canbe ~ (1 — 0)/6 < 1 but we assumed that 67 < Cr|log ¢(h)] :

1—0\" 1 — 0\ GTestam] Leus e T
7 < 7 —e ST ~ e STrllogdM] ~ qb(h)
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SKETCH OF THE PROOFS

FULL-DISCRETE PARABOLIC DISSIPATION

THE CRANK-NICOLSON SCHEME (0 = 1/2)
The iteration matrix for the system is

6\ ot
Chst = (Id — EA;,) <Id + 5.»4;,) .

1

e Let us analyse Sp(Cp,s:) : 0.8 1\ |
061 \1 ¢
Image of Sp(dt.4,) through ! s
0.4 71 ;
L, Lo | | ’
X is
1+x/2 027 /
2 4 6 8 10
e For large 6t X p; 5, the damping factor can be ~ 1. Here we use
5l‘p(Ah) < 0.
We thus split the analysis into two cases :
@ The case dt X p;,, less than 4/6 : natural exponential damping
@ The case 0t X p;,; greater than 4/ : damping bounded by ‘;;Jr% < 1L
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OUTLINE

e THE HUM APPROACH IN THE DISCRETE FRAMEWORK

@ Few words about control to the trajectories
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FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

3 e*TA/,

Yr = Jo-

PROBLEM 1
Starting from any yo € Ej, can we drive the solution of the semi-discrete system

Oy + Ay = By, y(0) = yo,

to yr attime 7' ?

~> equivalent to the null-controllability problem with initial data yo — yo

F. Boyer HUM method and applications



FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

}A}F — e*TA/,

Jo-
PROBLEM 2

Starting from any yo € Ej, can we drive the solution of the full-discrete system
yn+1 =" 1 1 0
Tt A (10 = B, =,

to yr at discrete time M ?

~ This is not equivalent to the null-controllability problem with initial data o — yo
INDEED : The full-discrete free trajectory starting at yo is not equal to yr at time M.
@ In most cases (but not always) yr belongs to some full discrete trajectory

~ —1 M ~0t
= ((Id +04) 7 1+ (1 — G)Ah)) 5.

@ We do not want the estimates to depend on 7' since :
o In general we do not want to compute ygf .
o Its norm can be large with respect to that of yr.

F. Boyer HUM method and applications



FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

N _TA, ~
yF —e /1y0.

OUR RESULT : Under suitable assumptions, by minimizing the functional

F

Jh,ét( F): liét[{lg* n]]2+@‘ 2_<{ F> +< I—ét(l —9)./4 ]>
q 2n:| g B q N YFy q N Yo, q hq W

we produce a full discrete control vy, 5, = (B ¢"). such that
@ The cost of the control satisfies

M
1
251 [[v"]]i < Cﬁbs (Hyo — o, + C,01°! HA; Yo

n=1

2
—C/8152 |1~ 112
) el 5ol
h

for some (i, > 0.
@ The controlled solution (y"), associated with vy s; and yo is such that

_ €2 A
R \/¢(h)cobs< )—|—e 22 1501,
h

MAIN TOOL : Estimate of the difference between the two initial data

1
Aj o

1
Yo = Soll, + COr || AZ 5o

M A~
-

58 = 50| < car
h

h
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OUTLINE

e THE HUM APPROACH IN THE DISCRETE FRAMEWORK

@ Error analysis in time
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INTRODUCTION

@ The error analysis in space is intricate (low regularity expected for the HUM
null-control, ...).
@ We try here to analyse the error induced by time discretisation in this problem.
FRAMEWORK
@ We assume the uniform discrete Lebeau-Robbiano (H,g) to hold.
@ We suppose that 4 > 0 is fixed, that yo € E}, is given and that & — ¢(h) is given.
@ The minimization of the functional

" b0.4(0)),

h

¢(h) ‘ g

T
1 x
) =3 [ e a2
0

leads to a semi-discrete control ¢ — v;,(f) € L*(]0, T, Uy).
e For simplicity, we consider the implicit Euler scheme (similar results hold for
0 € [1/2,1]). The minimization of the functional

h

P = 5 YT [ | (),

leads to a full discrete control vi, 5, = (v*), € (Un)™.

GOAL : Prove an error estimate between vy 5, and vy,.
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MAIN RESULT

THEOREM

Under the same assumptions than previous results (in particular 0t < Ch”), the
following error estimate holds

M

n

Vi — E l(tnfl‘tn)v
n=1

def
= Folvn,e1]

3

(1 + 5t%p(./4h)i) ||)’0Hh 0

< Cét
L£2(]0,T[,Uy) ¢(h)

REMARKS

e First order in time estimate (second order for CN provided a suitable time
interpolation operator is used in place of Fpl.]).

@ The estimate is not uniform in 4, even if we are interested in the approximate
control problem where ¢(h) = ¢ > 0. The result is probably not optimal.

SKETCH OF PROOF

@ Write the Euler-Lagrange equations corresponding to the two minimization
problems we consider (the semi-discrete and the full-discrete).

@ Compare the two Euler-Lagrange equations by using error estimates in time for
the adjoint problem.
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PROOF DETAILS

EULER-LAGRANGE EQUATION FOR J"
We denote the minimizer by qu, and 1 — gop (1) the corresponding solution to the
semi-discrete adjoint problem :

0= [ Bl ). Bia(0), di-+ 6(8) (), + 00200

for any §" € Ej.

EULER-LAGRANGE EQUATION FOR J™%!
We denote the minimizer by qf,,h s and by (g5, 5,)n the corresponding solution to the
full-discrete adjoint problem

M
0= 8t [Bidimsn Bid'], + 6(0) (dhsn @) + (0:7") .

h
n=1

for any " € Ej.
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PROOF DETAILS

(Bir dops (1), Bira(1)],, dt + ¢(h) {dop, @), + (v0,3(0)), = 0,

o\\l

ﬁ ot [B;q:’)pt,éﬂ B;én] A + o(h) <q5pz,6n ‘~]F>h + <y(), él >h

n=1
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PROOF DETAILS

(Bir dops (1), Bira(1)],, dt + ¢(h) {dop, @), + (v0,3(0)), = 0,

o\\l

i e [Bﬁq:ﬁp,ﬂ;” B;Z]”]h +o() <q§”’=5” ?]F>h * <y0’él>n

n=1
— ()7
TRANSFORMATION OF THESE EQUATIONS
.
ot [B;LIZP;’&, B,Tt}"] A = / [-7:0[‘/}1,61] (t)) BIT (-7:0[65?] (t))]h dt
tn—l
I I
- / [Folvnsl (0, BLa(n)], di+ / [Folvnsel (), Br (Folas () — a(1))], dr.
1"_] 1"_]
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PROOF DETAILS

(Bir dops (1), Bira(1)],, dt + ¢(h) {dop, @), + (v0,3(0)), = 0,

o\\l

T
/ ]:0 Vh, 51 Bh ( )] h dt + d)(h) <q§pr,5ﬁqF>h + <y0’ Ell>h
0

[Folvas] (D), By (Folas] (1) — a(1))], d

O\N
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PROOF DETAILS

[B;qoﬁl(t)v B}Ta(l‘)]h dt + ¢(h) <Q5pt’ qF>h + <y0’ Q(O)>h = 0’

o\\l

T
[ Bl 0,812, de+ 606) (s, + (i),
0

[Folvasd (D), By (Folas] (1) — a(1))], d

O\N

TRANSFORMATION OF THESE EQUATIONS
7' =3(0)+ (@' — 3(0))
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PROOF DETAILS

(Bir dops (1), Bira(1)],, dt + ¢(h) {dop, @), + (v0,3(0)), = 0,

o\\l

[Folvnsl (0, Bra(0)], dt + &) (alye 5127") + (30,30

o\\!

[Folvn,sd) (1), B (Folgai (1) — q(1))], dr — <yo,f/‘ - z;<0>>h,

II
o\’\!
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PROOF DETAILS

(Bir dops (1), Bira(1)],, dt + ¢(h) {dop, @), + (v0,3(0)), = 0,

o\\l

T
[ Fobons 0. 55a0)), di + 06) (alyy 507", + 00,20)),
0

T

[ Bl 0,5 (Falas) - a0)], de = (o.d* = 70)),.

0
SUBTRACTION OF THE EQUATIONS

T
/ Bh q()Pt }—O[Vh,ét](t), B;q(t)}h dt + ¢(h) <q5pl - 45/7/,517 71F>h
0

T
— [ [Fobnad®, 5 (Folasd 0~ a0)], e+ (0. = 300,
0

~+ Now we choose ¢ = g}, — ¢, 5,» 50 that §(t) = qopi(t) — g(1) and then

.7'—()[1/]1757](1‘) + B; J:O[qapt,ét} (t) - Q(Z)

Bjiq(1) = ( Biqop(1) —
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PROOF DETAILS

T

- . 2
J 10 = Falonsd 01 di + 60y~ i
0

[]:O[Vh,ér}( ), Bi (}—()[qér}( ) —q(t ))} dt+ <YO’EII - 51(0)>h

oS~~~

T

~ [ [0 = Fbnsd @), 5 (Fla ) - (1)), .
0
e The error terms are estimated as follows by usual parabolic techniques :

T

/ Bh Folgs: () — ]]/ dr < C/ 1 Folgar) (2) (I)Hz dt

0
(51

e We conclude by using Cauchy-Schwarz inequality.

~F
‘Ah

+6t HA

) <o i Lo
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MORE OR LESS STANDARD NUMERICAL ANALYSIS TOOLS

Assume that Ay is self-adjoint.
DISCRETE H® NORMS [l |2, = ((An)'un, un), -

PROPOSITION

Lets € R, ¢ € R™, t q(t) € R™ the solution of the semi-discrete adjoint problem
—0iq(t) + Ang(t) = 0 with q(T) = q" and (q"). the solution of the fully discrete
(backward) problem

qn _ qn+l

s A" =0, Yne {l,..., M},

associated with the same data ¢" " = gF. Let the error be E" = q" — q(t"™").
There exists Cs > 0 independent of h such that

1

sup (1B, + (ZME |§+1h> < cot|o"

1<n< s+2,n
sup H(T — " NE" < Cérlld"|| + o ’ q .
1<n<M $;h s,h s+2,h
We apply those estimates for s = 0, s = —1 and with

F_ F dd =d F
qd = dYopt,5r» ANA g = Gops,5t — YGopt-
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OUTLINE

o NUMERICAL RESULTS
@ 1D Scalar equations
@ 1D Parabolic systems
@ Some 2D results
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OUTLINE

o NUMERICAL RESULTS
@ 1D Scalar equations
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs

- 10
T = 1,y0(x) = sin(mx)
Time t=0
B —— Component #1
Free component #1

| = Control domain
0.8
0.6
0.4
0.2+
0.

T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

[KIKIIRIDT] [=l+]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs

T =1, yo(x) = sin(mx)"°.

N M N M
20 80 320 1280 +oo 20 80 320 1280  +oco
20 14 16 16 16 16 20 24 30 28 27 32
50 |22 26 29 29 31 50 &3 87 87 93 106
100 | 30 38 44 49 48 100 | 235 240 233 262 265
200 | 45 58 69 71 82 200 | 778 850 1098 1230 1374

(A) Case p(h) = h?

(B) Case ¢(h) = h*

TABLE : Conjugate gradient iterates ; w =]0.3,0.8]

F. Boyer

HUM method and applications



THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

M
20 80 320 1280 400

20 | 7.17-107%2 6.54-1072 6.38-10"%2 6.34-1072 6.33-1072
50 | 7.98-1072 7.08-1072 6.85-1072 6.79-1072 6.78- 102
100 | 85-1072 7.44-10"%2 7.15-1072 7.07-10"2 7.05-10"2
200 | 9.1-1072  7.75-107%2 739-1072 73-107%2 7.27-1072

TABLE : Optimal energy ; ¢(h) = h?; w =]0.3,0.8]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

M
20 80 320 1280 400

20 | 0.11 8.92-1072 843-1072 83-1072 8.26-10"2
50 | 0.12 894-1072 829-107%2 8.12-1072 8.07-10"2
100 | 0.12 9.1-1072 833-1072 8.13-10"2 8.06-102
200 | 0.13 9.33-102 841-1072 8.17-1072 8.09-10"2

N

TABLE : Optimal energy ; ¢(h) = h*; w =]0.3,0.8]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

1072 FTTTTT T T T TTT —T T SiZGOfthetargetMZZO%
B ] M =80 —o—
L 1 M =320 ——
| i M = 1280 ——
1073 £ E -
B 1 Exact solution M = 20 —m—
L 1 M =80 —e—
i 1 M =320 ——
107 ¢ B M = 1280 —a—
1075 Ll L1 Ll

1073 1072 107!

FIGURE : Convergence analysis with ¢(h) = h?; w =]0.3,0.8]

F. Boyer HUM method and applications



THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

1072 F I EE Size of the target M = 320 -5
i 1 M = 1280 —o—

1073 | < M = 5120 ——
P ] M = 20480 —a—

107 E E Exact solution M = 320 —m—
i ] M = 1280 —e—

1077 ¢ E M = 5120 ——
P ] M = 20480 ——

10_6 f ;

10—7 [ h L L1l

1072 107!

FIGURE : Convergence analysis with ¢(h) = h*; w =]0.3,0.8]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

107° F — —3  Size of the target M = 1280 —5—
r 1 M = 5120 ——
10741 E M = 20480 ——
B § M = 81920 —&—
107 g E M = 400 —6—
1078 F E Exact solution M = 1280 —m—
i 1 M = 5120 —e—
1077 1 E M = 20480 ——
B B M = 81920 —a—
1078 F slopes 2 and 3 - M= 400 —o—
10—9 L1l 70 L L1

1072 107!

FIGURE : Convergence analysis with ¢(h) = 1000A°; w =]0.3,0.8]
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THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

10°

Oy — 0.187y = lav,

T = 0.5, yo(x) = sin(mx)"’.

1073 [

10—9 [

10712

1073

m)—z

Cost of the control ——
Size of the target —l—
Optimal energy ——
Exact solution —@—

FIGURE : ¢(h) = h?; Semi-discrete scheme
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THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

10°

Oy — 0.187y = lav,

T = 0.5, yo(x) = sin(mx)"’.

1073 [

10—9 [

10712

slope 2

slope 4

,,,4/'/‘ }

1073

m)—z

Cost of the control ——
Size of the target —l—
Optimal energy ——
Exact solution —@—

FIGURE : ¢(h) = h*; Semi-discrete scheme
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A 1D PARABOLIC EQUATION WITH UNSTABLE MODES

Ay — 0.107y — 1.5y = jg.3,057,

T =1, yo(x) = sin(mx)"

Time t=0

B m—— Component #1

Free component #1

R = Control domain
0.8
0.6
0.4
0.2
X

T T T T U T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 10

[KIKIIRIBT] =]+
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A NONLINEAR CASE

(Fernandez-Cara — Miinch, ’11)
(B.-Le Rousseau, ’13)

Ay — 0.107y — Sylog"*(1 + [y]) = L2081,
T = 0.5, y0(x) = 20sin(7x).

Time t=0
i Component #1
Free component #1
i —— Control domain
15—
10—
5]
o]
1 T T T T URS— T T T
00 01 02 03 04 05 06 07 08 09 10

[KIIIDIBT] [=]+]
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OUTLINE

o NUMERICAL RESULTS

@ 1D Parabolic systems
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A TWO EQUATION CASCADE SYSTEM

> 0 0y /1
Oy —0.10;y + (ml ) 0) y= (0> 1,v.

SHORT REVIEW OF KNOWN RESULTS

@ In the case ay; = cte the system is null-controllable if and only if az; # 0
(Kalman-like condition)
(Ammar-Khodja-Benabdallah-Dupaix-Gonzalez-Burgos, *09)
@ In the case where Supp(az1) Nw # 0, the system is null-controllable

(Gonzalez-Burgos—de Teresa, *10)

@ In the case where Supp(a21) Nw = () and ay; has a constant sign, the system is
null-controllable
(Rosier—de Teresa, ’11)
@ In the case where Supp(az21) Nw = () and az; changes it sign :

o There are structural conditions for the system to be even approximatively controllable.
(B.- Olive, ’13)

o A minimal time condition for the null-controllability can occur
(Ammar-Khodja-Benabdallah-Gonzilez-Burgos—de Teresa, *14)
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A TWO EQUATION CASCADE SYSTEM

5 0o 0\ (1
Oy —0.10;y + (a {(%) 0) y= <0> 1,v.
CASE 1 ax(x) = 1j2,0.97(x), w =]0.1,0.5[, yo(x) = (sin(37x), sin(mx)')".

Time t=0
01
01
001
01
o00
01
01
001
01
T T T T T T T T T |
0 04 02 03 04 05 06 07 08 09 1

[KIKII PRI =]+
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A TWO EQUATION CASCADE SYSTEM

> 0 0y /1
Oy —0.10;y + (a21 ) 0) y= <0> 1,v.

CASE 1 :ax(x) = 1j.2,0.00(x), w =]0.1,0.5[, yo(x) = (sin(3mx), sin(ﬂx)m)t.

] Cost of the control ——
107" P Size of the target —l—
Optimal energy —A—
slope 2
1072 [ :
1075 |- :
10-7 1 i App. Cont.
Null Cont. ¢
L]
1073 w2
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A TWO EQUATION CASCADE SYSTEM

5 0o 0\ (1
Oy —0.10;y + (a {(%) 0) y= <0> 1,v.
CASE 2 : ax(x) = 1j7,0.97(x), w =]0.1,0.5, yo(x) = (sin(37x), sin(mx)'°)".

Time t=0

T T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1

[KIKII PRI =]+
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A TWO EQUATION CASCADE SYSTEM

> 0 0y /1
Oy —0.10;y + (a21 ) 0) y= <0> 1,v.

CASE 2 : ax(x) = 1j.7,0.00(x), w =]0.1,0.5[, yo(x) = (sin(3mx), sin(ﬂx)m)t.

102 T T 17
Cost of the control ——
N ?:‘\H\h\% Size of the target —l—
107 | Optimal energy —A—
1072} :
slope 2
1074 7 -/-/./. |
el | App. Cont. ¢
10 Null Cont. ¢/
L1
1077 1p—
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A TWO EQUATION CASCADE SYSTEM

10° —_—
Cost of the control ——
108 F Size of the target —m—
Optimal energy —A—
10" slope —4
10-' ————0
3 App.Cont. %
[ a3
10 Null Cont. %
|
1073 1072

FIGURE : v = 1/4
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A TWO EQUATION CASCADE SYSTEM

10° —_— ‘
Cost of the control ——
™ | Size of the target —l—
O\O\O\o\o Optimal energy ——
slope —1
-1l i
10 slope 1
1073 ././././I R
sl | App. Cont. ¢
10 Null Cont. ¢ for T > Tmin
|
107 1p~?

FIGURE : . = 1/8
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A TWO EQUATION CASCADE SYSTEM

> 0 0y /1
Oy —0.10;y + (a21 ) 0) y= <0> 1,v.

CASE4 : ax (%) = lja—q,a) — La,atap yo(x) = (sin(mx)'®, —=2sin(2mx)'°)".

109 T T T T T T TTT
107 b Cost of the control ——
Size of the target —m—
105 F Optimal energy —4—
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FIGURE : o = 1/2,d = ﬁ w =]0.8,1.0[.
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A TWO EQUATION CASCADE SYSTEM

> 0 0y /1
Oy —0.10;y + (a21 ) 0) y= <0> 1,v.

CASE4 :an(x) = 1ja—a,6] — Lja,a+a)s Yo(X)

\ 0.2 0.4 0.6
L
n
~5.107 K
—0.1 \Nil.,
co = - 1
FIGURE : o = 1/2,d = 35
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(sin(mx)'*, —2 sin(27rx)10)t.
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A TWO EQUATION CASCADE SYSTEM

) 0o 0\ (1
Oy — Ol@xy—f—( (x 0)}—<0>1wv.

)
CASE4 :ax(x) = lja—a,a] — Ya,ata) yo(x) = (sin(mx) 10 _2 Sin(27rx)10)t.
T T T T 1T 1717 T T T L
10 i Cost of the control ——
WM—H\“‘:‘F—% Size of the target —l—
Optimal energy ——
107" - .
1073 slope 2 |
10-5 | App. Cont. ¢
Null Cont.
(| L1
3 _2 _
10 1077 4, 10

FIGURE : @ = 1/2,d = 2%/? w =]0,0.2[U]0.8,1.0[.
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A TWO EQUATION SYSTEM WITHOUT COUPLING

0
ar=010.((5409) ) = (1) 1
Y(x) = L + alue, yo(x) = (sin(mx)'?, =2 sin(27x) '), w =]0.5, 1.0
107 —_—
Cost of the control ——
10° |- B Size of the target —B—
slope —4 Optimal energy —A—
10° 1 slope —1/2 |
ol W |
N | App. Cont. %
10 HH+—O—0—0 Null Cont. %
[ [ |
1073 1072 107!
h

FIGURE : o = 1/9
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A TWO EQUATION SYSTEM WITHOUT COUPLING

By — 0.10, ((é 7&) 8xy> - G) Lov.

Y(x) = 1o + alue, yo(x) = (sin(mx)'?, —2sin(2mx) '), w =]0.5, 1.0]
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FIGURE: v = 1/9
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A TWO EQUATION SYSTEM WITHOUT COUPLING

afy—O-lax(@ 7?) ) ()

Y(x) = 1 + alue, yo(x) = (sin(mx)"?, =2 sin(2mx)" ) ,w =]0.5,1.0]

—— ‘ —
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A TWO EQUATION SYSTEM WITHOUT COUPLING

By — 0.10, ((é 7&) 8xy> - G) Lov.

Y(x) = 1o + alue, yo(x) = (sin(mx)'?, —2sin(2mx) '), w =]0.5, 1.0]

——)1
——)2

FIGURE : o« = 1/8
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

Oy — 0.105y + [ 1o, (x)
lo,(x) 0 0

Here also necessary and sufficient conditions for approximate controllability are known

F. Boyer HUM method and applications



SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
oy — O.Iafy + (1o,(x) 0 0)y=10]1,(x)v.
1o, ()C) 0 0 0
CASEl :OrNw #0
: —_—
o Cost of the control ——
107 A—A— | Size of the target —m—
Optimal energy —A—
1072 [ :
slope 2
1074 [ :
105 | i App. Cont.
Null Cont. ?
L]
1073 192
Os w
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Oy —0.18y+ [1o,(x) 0 0]y=[0]1,(x)v
lo,(x) 0 0 0
CASE 2 : O, and O3 are located in different connected components of Q2 \ w
. A\A\A\A Cost of the control ——
10° N .
o Size of the target —B—
Optimal energy —A—
107" |- i
slope 2
1077 |- i
10-5 | App. Cont. ¢/
Null Cont. ¢/
L]
107 1p~?
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Oy —0.18y+ [1o,(x) 0 0]y=[0]1,(x)v
lo,(x) 0 0 0
CASE 3 : O, and O; are located in the same connected component of 2 \ w
108 T T T T
6 Cost of the control ——
10° 1 Size of the target —l—
. Optimal energy ——
10" | B
102 - slope —4 |
100 T |
App. Cont. %8
-2
1077 o o = m Null Cont. %
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0
Oy — 0.105y + [ 1o, (x)
lo;(x) 0 0
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CASE 3 : O, and Oj3 are located in the same connected component of 2 \ w
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Dy — 019y + [ 10,(x) 0 0fy= (0] 1.(x)v.
lo,(x) 0 0 0
CASE 4.1 : O, =]0.35,0.65[, 03 =]0.5,1/v/2[,w =]0,0.2[U]0.8, 1.0]

Cost of the control ——

11
10 m\g Size of the target —l—

Optimal energy —A—

10" 1
slope 2
1077 |- i
10-5 i App. Cont.
Null Cont.  ?
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Dy — 019y + [ 10,(x) 0 0fy= (0] 1.(x)v.
lo,(x) 0 0 0
CASE4.2: O, :]0.35,0.65[, Os :]0.4,0.6[,0.) :]0, O.Z[U]O.S7 1[
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0000000004000 000
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A THREE EQUATION CASCADE SYSTEM

0 0 0 1
Ay — 0182y + | ax (x) 0 0ly={(0]1u(x)v.
0 6132()() 0 0

VERY SHORT REVIEW :

o If the supports of all the a;; intersect the control domain w and keeps a constant
sign on a part of w, then the system is null-controllable.

@ Necessary and sufficient conditions for approximate controllability are known in
the general case.

F. Boyer HUM method and applications



A THREE EQUATION CASCADE SYSTEM

0 0 0 1
Ay — 0182y + | ax (x) 0 0ly=1{(0]1.(x)v
0 6132()() 0 0
CASE 1 1 ap = 1]0,0'5[, ap =1, w :]0.57 1[
10° S
107 b i Cost of the control ——
Size of the target —m—
10 1 Optimal energy ——

slopes —2 and —3

10° |- 0\0\0\0\0 2

10' -

App. Cont. ¢

107" s m ® —=—8 | | NullCont. ?

1073 1072
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A THREE EQUATION CASCADE SYSTEM

0 0 0 1
Ay —0.190y + | ax (x) 0 0)ly=1{0]1,(x)v
0 6132()() 0 0
CASE 2 : a1 = Ljp .5, asn(x) =x—1/2, w=]0.5,1].
10° S
107 b i Cost of the control ——
Size of the target —m—
10 1 slope —4 Optimal energy ——
103 | slope —1 |
10' b H\O\O\O i
App. Cont. %
- a—a—8—8n
-y 1 | NullCont. %
L1
1072 1072
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A 3 EQUATION SYSTEM WITH 2 DISJOINT CONTROLS

(Olive, ’12)

i 110 L,(x) 0 y
Oy—010y+ |1 1 0|y= 0 1., (x) (v2>
1 1 0 0 0

[KIKII PRI =]+
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A 3 EQUATION SYSTEM WITH 2 DISJOINT CONTROLS

(Olive, ’12)

i 110 1o,(x) 0 N
Oy—010;y+ |1 1 0)y= 0 Lo, (%) (m) '
1 1 0 0 0

Yo(x) = (0,0, sin(mx)'?) , wi =]0.7, 1.0[, w2 =]0.1,0.5[

Cost of the control ——

a |
10 AAADA—A A Size of the target —l—
Optimal energy —A—
107" |- |
slope 2
107° | |
0| i App. Cont. ¢

Null Cont. ¢
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OUTLINE

o NUMERICAL RESULTS

@ Some 2D results
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ORIES EXAMPLE
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi, 14), (Beauchard, Miller, Morancey, ’14)

2
Q=] = L,1[x]0,1[, w =] 075, 1[x]0,1[,T _056]“2 IZ“[

=a

Oy — a;y — x%c")‘fzy =1y,

\ \ \\\‘ }\ /[ i H{m‘” i \‘ /‘};/\ ‘/:MW/‘ i,

[KIKIIRIDI] [=l+]
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi,’ 14), (Beauchard, Miller, Morancey, *14)

2 2
a l+a
Q=]-1,1 1], w=]075,1[x]0,1,T=05¢ L, .
| = 1,1[x]0, 1], w }0\/ [x]0,1] ose]z, 5 [
Ay — Oy —x105y = luv,
103 E T T T T T T T T E
mzi Aﬂ\A\A\A i Cost of the control ——
E ] Size of the target —m—
10' b W 4 Optimal energy —A—
10° .
107 |
1072} |
1077 | dope2 | 7 App. Cont. ¢/
F ] Null Cont. ¢ Tpin > 0
—4 Ll
104 3
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi,’ 14), (Beauchard, Miller, Morancey, *14)

2
a

Q =]~ L1[x]0, 1[, w =]0.75,1[x]0.6,1[,T = 05> =

=a

Oy — 0hy — xi0hy = luv,
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi,’ 14), (Beauchard, Miller, Morancey, *14)

2
a

Q =]~ L1[x]0, 1[, w =]0.75,1[x]0.6,1[,T = 05> =

Oy — Oy —x105y = luv,

10* |- f Cost of the control ——
Size of the target —l—
Optimal energy —A—

10% O\o\o\o\o
M 4

‘ slope 1

10-2 ./l/'/./. i [ App. Cont. ¢ }

100 [

Null Cont. ¢ Ty > 0

1072 107!

F. Boyer HUM method and applications



OUTLINE

© CONCLUSIONS / PERSPECTIVES
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THE END

SUMMARY

@ In the PDE world
e Many standard results in controllability theory can be deduced from the analysis of
the penalized HUM approach.
o The penalized HUM approach always converge towards something as the penalization
parameter tends to 0.
o In the discrete world
o Necessity to relate the penalization parameter to discretisation parameters in a clever
way.
e Analysis of uniform null-controllability properties with respect to 6z and/or h for
semi/fully discrete problems.
o Associated relaxed observability inequalities.
o We may use numerical simulations to investigate open problems.
o Even for non controllable problems, the numerical method applies and gives
interesting results.

PERSPECTIVES

o Extend our analysis in the discrete setting to other cases

o Non symmetric scalar operators.

e Parabolic systems with few controls.

e Boundary control problems.

o Analysis for other space discretizations (Finite Volume, Finite Element, ...)
@ From a computational point of view

o A deeper understanding of HUM operators ~~ preconditioning methods.

e More suitable solvers than standard Conjugate Gradient ?

F. Boyer HUM method an
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