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ABSTRACT PARABOLIC CONTROL PROBLEM

Two Hilbert spaces : the state space (E, 〈., .〉) and the control space (U, [., .]).
A : D(A) ⊂ E 7→ E is some elliptic operator such that −A generates an analytic
semigroup in E.
B : U 7→ D(A?)′ the control (bounded) operator, B? its adjoint.
COMPATIBILITY ASSUMPTION : we assume that(

t 7→ B?e−tA?ψ
)
∈ L2(0, T; U), and

r
B?e−·A

?

ψ
z

L2(0,T;U)
≤ C ‖ψ‖ , ∀ψ ∈ E.

Our controlled parabolic problem is (S)

{
∂ty +Ay = Bv in ]0, T[,

y(0) = y0,

Here, y0 ∈ E is the initial data, v ∈ L2(]0, T[,U) is the control we are looking for.

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any y0 ∈ E and v ∈ L2(0, T; U), there exists a unique y = yv,y0 ∈ C0([0, T],E)
such that

〈y(t), ψ〉 −
〈

y0, e−tA?ψ
〉

=

∫ t

0

[
v(s),B?e−(t−s)A?ψ

]
ds, ∀t ∈ [0, T], ∀ψ ∈ E.

NOTATION : LT

(
v
∣∣y0
) def

= yv,y0 (T).
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CONTROLLABILITY QUESTIONS

(S)

{
∂ty +Ay = Bv in ]0, T[,

y(0) = y0.

For a given (fixed) control time T > 0 and any δ ≥ 0, we set

Adm(y0, δ)
def
=
{

v ∈ L2(0, T; U), s.t.
∥∥LT

(
v
∣∣y0
)∥∥ ≤ δ

}
.

APPROXIMATE CONTROL PROBLEM FROM THE INITIAL DATA y0

Do we have
Adm(y0, δ) 6= ∅, ∀δ > 0 ?

NULL-CONTROL PROBLEM FROM THE INITIAL DATA y0

Do we have
Adm(y0, 0) 6= ∅ ?

(Fattorini-Russel, ’71) (Lebeau-Robbiano, ’95)
(Fursikov-Imanuvilov, ’96) (Alessandrini-Escauriaza, ’08)

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, ’11)
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THE HILBERT UNIQUENESS METHOD

(Lions, ’88) (Glowinski–Lions, ’90s)
IDEAS

To formulate control problems as constrainted optimisation problems.

To write the associated unconstrainted dual optimisation problem.

To find conditions for the solvability of the dual problem and prove that there are
satisfied.

COST OF THE CONTROL We set

F(v)
def
=

1
2

∫ T

0
Jv(t)K2 dt, ∀v ∈ L2(0, T; U),

and for any δ ≥ 0, we define (it it exists !), vδ to be the unique minimiser

F(vδ) = inf
v∈Adm(y0,δ)

F(v). (Pδ)

DUAL PROBLEMS

The dual pb of (P0) is not coercive in the natural space E. We need to introduce a
big abstract space obtained as the completion of E with respect to a suitable norm.

The dual pb of (Pδ), δ > 0 is coercive in E but is not smooth.
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THE PENALIZED HUM

PRIMAL PROBLEM

Fε(v)
def
=

1
2

∫ T

0
Jv(t)K2 dt +

1
2ε

∥∥LT

(
v
∣∣y0
)∥∥2

, ∀v ∈ L2(0, T; U),

we consider the following problem : to find vε ∈ L2(0, T; U) such that

Fε(vε) = inf
v∈L2(0,T;U)

Fε(v). (Pε)

PROPOSITION

For any ε > 0, the functional Fε is strictly convex, continuous and coercive.
Therefore, it admits a unique minimiser vε ∈ L2(0, T; U).

DUAL PROBLEM (Fenchel-Rockafellar duality theorem)

Jε(qF)
def
=

1
2

∫ T

0

r
B?e−(T−t)A?qF

z2
dt +

ε

2

∥∥∥qF
∥∥∥

2
+
〈

y0, e−TA?qF
〉
, ∀qF ∈ E.

PROPOSITION

For any ε > 0, the functional Jε is strictly convex, continuous and coercive.
Therefore, it admits a unique minimiser qF

ε ∈ E.
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THE PENALIZED HUM

REMARK

We do not require any particular assumption on the operators A and B.
In particular we do not assume that the PDE (S) is (or is not) controllable.

PROPOSITION (DUALITY PROPERTIES PRECISED)

For any ε > 0, the minimisers vε and qF
ε of the functionals Fε and Jε respectively, are

related through the formulas

vε(t) = B?e−(T−t)A?qF
ε , for a.e. t ∈]0, T[,

and
LT

(
vε
∣∣y0
)

= yvε,y0 (T) = −εqF
ε .

As a consequence, we have

inf
L2(0,T;U)

Fε = Fε(vε) = −Jε(qF
ε) = − inf

E
Jε.
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READING CONTROLLABILITY PROPERTIES ON THE PENALISED HUM

(B., ’13)

THEOREM

1 Problem (S) is approximately controllable from the initial data y0 if and only if

LT

(
vε
∣∣y0
)

= yvε,y0 (T) −−−→
ε→0

0.

2 Problem (S) is null-controllable from the initial data y0 if and only if

M2
y0

def
= 2 sup

ε>0

(
inf

L2(0,T;U)
Fε

)
= 2 sup

ε>0
Fε(vε) < +∞.

IN THE NULL-CONTROLLABLE CASE

JvεKL2(0,T;U) ≤ My0 , and
∥∥LT

(
vε
∣∣y0
)∥∥ ≤ My0

√
ε.

Moreover we have
q

v0y
L2(0,T;U)

= My0 and

vε −−−→
ε→0

v0, strongly in L2(0, T; U) , and
LT

(
vε
∣∣y0
)

√
ε

−−−→
ε→0

0,

where v0 is the unique HUM null-control (that is the one of minimal L2-norm).
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NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states : QF
def
=
{

qF ∈ E, s.t. B?e−tA?qF = 0, ∀t ≥ 0
}
.

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any y0 ∈ E, the penalised-HUM sequence of controls (vε)ε satisfies

LT

(
vε
∣∣y0
)
−−−→
ε→0

PQF

(
e−TAy0

)
.

PROPOSITION (SELFADJOINT CASE)

Assume that A is selfadjoint, and set YT
def
= e−TA?QF)e−TAQF then

PQF

(
e−TAy0

)
= e−TA (PYT

y0
)
.

Therefore, the system is approximately controllable from y0 if and only if PYT
y0 = 0.

The set of (approximately) controllable initial data is Y⊥T .
For any y0 ∈ YT we have

vε = 0, ∀ε > 0,

Adm(y0, δ) 6= ∅ ⇔ δ ≥
∥∥∥e−TAy0

∥∥∥ .
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NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states : QF
def
=
{

qF ∈ E, s.t. B?e−tA?qF = 0, ∀t ≥ 0
}
.

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any y0 ∈ E, the penalised-HUM sequence of controls (vε)ε satisfies

LT

(
vε
∣∣y0
)
−−−→
ε→0

PQF

(
e−TAy0

)
.

COROLLARY (APP. CONTROLLABILITY AND UNIQUE CONTINUATION)

The system (S) is approximately controllable from the initial data y0 if and only if
[
B?e−(T−t)A?qF = 0, ∀t ∈ [0, T]

]
=⇒

〈
y0, e−TA?qF

〉
= 0. (UC)

PROPOSITION (APP. CONTROLLABILITY AND WEAK OBSERVABILITY)

The property (UC) is equivalent to the following weak observability inequality
∣∣∣
〈

y0, e−TA?qF
〉∣∣∣

2
≤ C2

ε,y0

r
B?e−(T−.)A?qF

z2

L2(0,T;U)
+ε
∥∥∥qF
∥∥∥

2
, ∀qF ∈ E, ∀ε > 0.
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READING CONTROLLABILITY PROPERTIES ON THE PENALISED HUM

THEOREM (NULL-CONTROLLABILITY AND OBSERVABILITY)

Problem (S) is null-controllable from y0 if and only if, there exists M̃y0 ≥ 0 such that
∣∣∣
〈

y0, e−TA?qF
〉∣∣∣

2
≤ M̃2

y0

r
B?e−(T−.)A?qF

z2

L2(0,T;U)
, ∀qF ∈ E.

Moreover, the best constant M̃y0 is equal to the cost of the HUM control
q

v0y
L2(0,T;U)

.
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THE PENALIZED HUM APPROACH ...
... WITH AN APPROXIMATE INITIAL DATA

For each ε > 0, let y0,ε ∈ E such that (y0,ε)ε is bounded in E and

e−TAy0,ε −−−→
ε→0

e−TAy0.

ASSOCIATED HUM FUNCTIONALS

F̃ε(v)
def
=

1
2

∫ T

0
Jv(t)K2 dt +

1
2ε

∥∥LT

(
v
∣∣y0,ε

)∥∥2
, ∀v ∈ L2(0, T; U),

J̃ε(qF)
def
=

1
2

∫ T

0

r
B?e−(T−t)A?qF

z2
dt +

ε

2

∥∥∥qF
∥∥∥

2
+
〈

y0,ε, e−TA?qF
〉
, ∀qF ∈ E.

We denote by ṽε the unique minimiser of F̃ε.
CONTROLLABILITY CONDITIONS

(S) is app. cont. from y0 ⇐⇒ LT

(
ṽε
∣∣y0,ε

)
−−−→
ε→0

0.

sup
ε>0

(
inf

L2(0,T;U)
F̃ε

)
< +∞ =⇒ (S) is null-controllable from y0.

(S) is null-controllable from y0

sup
ε>0

1
ε

∥∥∥e−TA(y0 − y0,ε)
∥∥∥

2
< +∞





=⇒ sup
ε>0

(
inf

L2(0,T;U)
F̃ε

)
< +∞.

PROPOSITION (RELAXED OBSERVABILITY INEQUALITY)

Assume that
sup
ε>0

1
ε

∥∥∥e−TA(y0 − y0,ε)
∥∥∥

2
< +∞.

The system (S) is null-controllable from the initial data y0 if and only if

∣∣∣
〈

y0,ε, e−TA?qF
〉∣∣∣

2
≤ M

(r
B?e−(T−.)A?qF

z2

L2(0,T;U)
+ ε

∥∥∥qF
∥∥∥

2
)
, ∀qF ∈ E.

We do not require the system to be null-controllable from any of the (y0,ε)ε.
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∥∥∥e−TA(y0 − y0,ε)
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



=⇒ sup
ε>0

(
inf

L2(0,T;U)
F̃ε

)
< +∞.

DISCUSSION : Assume A = A? and QF 6= {0}, then take y0,ε = εαz, z ∈ e−TA?QF

inf
L2(0,T;U)

F̃ε =
ε2α−1

2

∥∥∥e−TAz
∥∥∥

2
−−−→
ε→0

+∞, as soon as α < 1/2.

y0,ε −−−→
ε→0

0 ⇐= this initial data is indeed null-controllable ! !.
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ε
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SEMI-DISCRETE (UNIFORM) CONTROL PROBLEMS

FRAMEWORK

For any h > 0, we are given
A discrete state space (Eh, 〈·, ·〉h).
An approximate operator Ah on Eh.
A discrete control space (Uh, [·, ·]h).
A linear operator Bh : Uh → Eh, B?h being its adjoint 〈Bhu, x〉h = [B?h x, u]h .

The semi-discrete control problem is (Sh)

{
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h.

Its solution is refered to as t 7→ yvh,y0,h (t) ∈ Eh and we set

Lh
T

(
vh
∣∣y0,h

) def
= yvh,y0,h (T).

QUESTIONS

Assume that (y0,h)h are, in some sense, approximations of a y0 ∈ E.
1 Can we relate the controllability properties of (S) starting from y0 to the ones of

(Sh) starting from y0,h ?
2 Can we obtain uniform bounds (w.r.t. h) for the associated controls vh ?
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MAIN ISSUES RELATED TO DISCRETISATION

1 It may happen that (Sh) is not controllable even if (S) is.
EXAMPLE : the 2D 5-point discrete Laplace operator Ah. (Kavian, Zuazua)

1

−1

1

−1

1

ω

There exists a non trivial ψh ∈ Eh such that

A?hψh = µhψh, and B?hψh = 0.

=⇒ ψh ∈ QF,h
def
= {qF

h ∈ Eh, s.t.B?h e−tA?h qF
h = 0, ∀t ≥ 0},

For any control vh ∈ L2(0, T; Uh),
d
dt
〈yh(t), ψh〉h + µh 〈yh(t), ψh〉 = 0,

and thus 〈
Lh

T

(
vh
∣∣y0,h

)
, ψh

〉
h

= 〈yh(T), ψh〉h = e−µhT 〈y0,h, ψh〉h . (1)

REMARK : The eigenvalue µh is very large ∼ C
h2 thus

〈
Lh

T

(
vh
∣∣y0,h

)
, ψh
〉

h
is

exponentially small.
2 Even if (S) and (Sh) are both controllable, it is not necessarily desirable to

compute a null-control vh of (Sh) to obtain a suitable approximation of a
null-control of (S).
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PENALISED HUM APPLIED TO SEMI-DISCRETE PROBLEMS

Fε,h(vh)
def
=

1
2

∫ T

0
Jvh(t)K2

h dt +
1
2ε

∥∥∥Lh
T

(
vh
∣∣y0,h

)∥∥∥
2

h
, ∀vh ∈ L2(0, T; Uh),

Jε,h(qF
h )

def
=

1
2

∫ T

0

r
B?h e−(T−t)A?h qF

h

z2

h
dt+

ε

2

∥∥∥qF
h

∥∥∥
2

h
+
〈

y0,h, e−TA?h qF
h

〉
h
, ∀qF

h ∈ Eh.

For each value of h > 0, all the previous results apply.
We denote by vε,h the unique minimiser of Fε,h.

GOAL

One would like to let (ε, h)→ (0, 0) but this should be done with some care.

COMMENTS

1 Even if (S) is controllable from y0, in the cases where QF,h 6= {0} we may have

lim
ε→0

∥∥∥Lh
T

(
vε,h
∣∣y0,h

)∥∥∥
h
6= 0, ∀h > 0

2 One can prove that for any h > 0

sup
ε>0

Jvε,hKL2(0,T;Uh) < +∞.
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φ(h)-NULL CONTROLLABILITY

Let h ∈]0,+∞[ 7→ φ(h) ∈]0,+∞[ be given such that limh→0 φ(h) = 0.

DEFINITION

For a given family of initial data Y0 = (y0,h)h ∈
∏

h>0 Eh, we say that the family of
problems (Sh) is φ(h)-null controllable from Y0, if there exists a h0 > 0 such that

M2
Y0

def
= 2 sup

0<h<h0

(
inf

L2(0,T;Uh)
Fφ(h),h

)
< +∞,

where Fφ(h),h is built upon y0,h.

THEOREM (RELAXED OBSERVABILITY)

For a given Y0 ∈ Einit, the problems (Sh) are φ(h)-null-controllable from Y0 if and only
if there exists h0 > 0 and M̃Y0 > 0, such that, for any 0 < h < h0

∣∣∣
〈

y0,h, e−TA?h qF
h

〉
h

∣∣∣
2
≤ M̃2

Y0

(r
B?h e−(T−.)A?h qF

h

z2

L2(0,T;Uh)
+ φ(h)

∥∥∥qF
h

∥∥∥
2

h

)
, ∀qF

h ∈ Eh.

In such case, the best constant M̃Y0 is equal to MY0 and

q
vφ(h),h

y
L2(0,T;Uh)

≤ MY0 , and
∥∥∥Lh

T

(
vφ(h),h

∣∣y0,h
)∥∥∥

h
≤ MY0

√
φ(h), ∀0 < h < h0.

PROPOSITION

Assume that, for some Cobs > 0, the following relaxed observability inequality holds

∥∥∥e−TA?h qF
h

∥∥∥
2

h
≤ C2

obs

(r
B?h e−(T−.)A?h qF

h

z2

L2(0,T;Uh)
+ φ(h)

∥∥∥qF
h

∥∥∥
2

h

)
,

∣∣∣∣∣
∀qF

h ∈ Eh,

∀0 < h < h0

then for any bounded family Y0, the problems (Sh) are φ(h)-null-controllable from Y0

and we have

MY0 ≤ Cobs

(
sup

0<h<h0

‖y0,h‖h

)
.
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problems (Sh) is φ(h)-null controllable from Y0, if there exists a h0 > 0 such that

M2
Y0

def
= 2 sup

0<h<h0

(
inf

L2(0,T;Uh)
Fφ(h),h

)
< +∞,

where Fφ(h),h is built upon y0,h.

PROPOSITION

Assume that, for some Cobs > 0, the following relaxed observability inequality holds

∥∥∥e−TA?h qF
h

∥∥∥
2

h
≤ C2

obs

(r
B?h e−(T−.)A?h qF

h

z2

L2(0,T;Uh)
+ φ(h)

∥∥∥qF
h

∥∥∥
2

h

)
,

∣∣∣∣∣
∀qF

h ∈ Eh,

∀0 < h < h0

then for any bounded family Y0, the problems (Sh) are φ(h)-null-controllable from Y0

and we have

MY0 ≤ Cobs

(
sup

0<h<h0

‖y0,h‖h

)
.
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MAIN EXAMPLES
AN ABSTRACT GALERKIN FRAMEWORK

(Lasiecka-Triggiani, ’00) (Labbé-Trélat, ’06)

We suppose given P̃h : Eh → D((A?) 1
2 ) and Q̃h : Uh → U such that

‖yh‖h =
∥∥∥P̃hyh

∥∥∥ , ∀yh ∈ Eh, and JuhKh =
r

Q̃huh

z
.

We set Ph = (P̃h)
∗ : D((A?) 1

2 )′ → Eh and Qh = (Q̃h)
∗ : U → Uh and we

assume that
PhP̃h = IdEh , and QhQ̃h = IdUh .

We define now Ah and Bh through their adjoints by the formulas

A?h = PhA?P̃h, B?h = QhB?P̃h.

+ Standard approximation properties ...
EXAMPLE : Finite element Galerkin approximation.

(Labbé-Trélat, ’06)

THEOREM

Assume that (S) is null-controllable at time T.
There exists a β > 0, depending on the approximation properties of Eh and Uh

such that the relaxed-observability inequality holds as soon as

lim inf
h→0

φ(h)

hβ
> 0.

In that case, for any y0 ∈ E, we can define y0,h = Phy0 and build the associated
penalised HUM discrete controls vφ(h),h.
Then, there is a null-control v ∈ Adm(y0, 0) such that, up to a subsequence, we have

Q̃hvφ(h),h −−⇀
h→0

v, in L2(0, T; U), and P̃hyh −−→
h→0

yv,y0 , in L2(0, T; E).

The limit control v may not be the HUM control.
Proving strong convergence of the discrete control is very difficult.
In practive, the power β is low : for the 1D heat equation, Neumann boundary
control, P1 finite element, we get β = 0.45. It means that

‖yh(T)‖h ≈0

√
φ(h) = h0.225 ⇐= Very poor convergence.
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MAIN EXAMPLES
A FINITE DIFFERENCE FRAMEWORK

(B.-Hubert-Le Rousseau, ’09-’11)

THEOREM

We assume that Ah is the usual finite difference approximation of −div(γ∇.) for a
smooth γ on a regular Cartesian mesh and that Bh = 1ω . Then, there exists h0 > 0,
C > 0 such that, the relaxed observability inequality holds as soon as the function φ
satisfies

lim inf
h→0

φ(h)

e−C/h2 > 0.

Thus, for any bounded family of initial data Y0 ∈ Einit, and for any 0 < h < h0 we have

q
vφ(h),h

y
L2(0,T;Uh)

≤ Cobs ‖y0,h‖h , and
∥∥∥Lh

T

(
vφ(h),h

∣∣y0,h
)∥∥∥

h
≤ Cobs ‖y0,h‖h

√
φ(h).

CONSEQUENCE : The φ(h)-null-controllability holds for any φ(h) ≥ e−C/h2
.
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SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals Jε,h or Jε,h,δt (with ε = φ(h)).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0, δt > 0, ε > 0 and any qF
h ∈ Eh, we have

∇Jε,h(qF
h ) = Lh

T

(
B?h e−(T−.)A?h qF

h

∣∣0
)

︸ ︷︷ ︸
def
=ΛhqF

h

+εqF
h + Lh

T

(
0
∣∣y0,h

)
,

∇Jε,h,δt(qF
h ) = Lh,δt

T

(
B?hL∗,h,δt

T

(
qF

h

) ∣∣0
)

︸ ︷︷ ︸
def
=Λh,δtqF

h

+εqF
h + Lh,δt

T

(
0
∣∣y0,h

)
,

where L∗,h,δt
T

(
qF

h

)
is the solution of the adjoint fully-discrete pb associated with qF

h .

COMPUTATION OF GRAMIAN OPERATORS

The computation of Λ•qF
h amounts to

1 Solve a backward parabolic problem.
2 Apply B?h
3 Solve a forward parabolic problem with the control previously computed.
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=Λh,δtqF

h

+εqF
h + Lh,δt
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0
∣∣y0,h

)
,

where L∗,h,δt
T

(
qF

h

)
is the solution of the adjoint fully-discrete pb associated with qF

h .

EQUATIONS TO SOLVE

The semi/fully-discrete controls ar computed by solving the equations

(Λh + εId)qF
h = −Lh

T

(
0
∣∣y0,h

)
,

(Λh,δt + εId)qF
h = −Lh,δt

T

(
0
∣∣y0,h

)
.

In practice, we use a conjugate gradient algorithm.
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︸ ︷︷ ︸
def
=Λh,δtqF

h

+εqF
h + Lh,δt

T

(
0
∣∣y0,h

)
,

where L∗,h,δt
T

(
qF

h

)
is the solution of the adjoint fully-discrete pb associated with qF

h .

CONDITION NUMBER

Basic estimate : ε
∥∥∥qF

h

∥∥∥
h
≤
∥∥∥(Λ• + εId)qF

h

∥∥∥
h
≤ (C + ε)

∥∥∥qF
h

∥∥∥
h
.

Cond(Λ• + εId) ∼ 1
ε
.
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HOW TO CHOOSE h 7→ φ(h) ?
BASIC USER GUIDE

TWO MAIN PRINCIPLES

1 ε = φ(h) should not be too small in order to maintain a reasonable condition
number (i.e. computational cost)

Cond(Λ• + φ(h)Id) ∼ 1
φ(h)

.

2 The size of the computed solution at time T is

‖yh(T)‖h ≈ Cobs

√
φ(h).

It seems reasonnable to choose

φ(h) ∼h→0 h2p,

where p is the order of accuracy of the numerical method under study.

REMARKS

Computing a null-control for (Sh), i.e. taking ε = φ(h) = 0, is not possible in
general.

Choosing φ(h) much smaller than h2p (like e−C/h2
) is a useless computational

effort.
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HOW TO CHOOSE h 7→ φ(h) ?
THE SIMPLEST EXAMPLE IN THE WORLD

We set E = Eh = R, A = λ > 0, Ah = (λ+ δh) ∈ R with δh −−→
h→0

0, B = Bh = 1.

(S)

{
y′ + λy = v,

y(0) = 1,
and (Sh)

{
y′h + (λ+ δh)yh = vh,

yh(0) = 1.

Uncontrolled solution e−TAh y0,h = e−(λ+δh)T .

GRAMIAM “OPERATORS”

ΛhqF =
1− e−2(λ+δh)T

2(λ+ δh)
qF, and ΛqF =

1− e−2λT

2λ
qF, ∀qF ∈ R,

PROPOSITION

The corresponding semi-discrete penalised and exact HUM controls are

vε,h(t) = −e−(T−t)(λ+δh) 2(λ+ δh)e−(λ+δh)T

1− e−2(λ+δh)T + 2ε(λ+ δh)
,

v(t) = −e−(T−t)λ 2λe−λT

1− e−2λT .
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1− e−2(λ+δh)T + 2ε(λ+ δh)
,

v(t) = −e−(T−t)λ 2λe−λT

1− e−2λT .

ERROR ESTIMATES

Jv− vε,hKL2(0,T;U) ≤ C(λ, T)(|δh|+ ε), for δh and ε small,

LT

(
vε,h
∣∣1
)

= C1(λ, T)δh + C2(λ, T)ε+ O(ε2 + δ2
h),

with Ci(λ, T) > 0.

CONCLUSION : The optimal choice is to take ε = φ(h) ∼ δh.
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HOW TO CHOOSE h 7→ φ(h) ?
THE SIMPLEST EXAMPLE IN THE WORLD IS NOT SO STUPID

∂ty− ∂2
x y = 1Ωv, in Ω =]0, 1[,

in the particular case where ω = Ω.
STANDARD FINITE DIFFERENCE APPROXIMATION ON A UNIFORM GRID

∂tyi − yi+1 − 2yi + yi−1

h2 = vi, ∀i ∈ {1, ...,N}.

EIGENFUNCTIONS OF A
φk(x) = sin(kπx), λk = k2π2, ∀k ≥ 1.

EIGENFUNCTIONS OF Ah

φk,h = (sin(kπxi))i, λk,h =
4 sin2 ( kπh

2

)

h2 , ∀1 ≤ k ≤ 1/h.

EQUATIONS FOR THE k-TH EIGENMODE

y′ + λky = v, y′h + λk,hyh = vh.

Here

δk,h = λk,h − λk ∼
h→0
− k4π4

12
h2.
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DISCRETE LEBEAU-ROBBIANO INEQUALITY

(B.-Hubert-Le Rousseau, ’09-’11)
We assume that Ah is SPD and let (ψj,h, µj,h)j its eigenelements.

ASSUMPTION : DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists h0 > 0, α ∈ [0, 1), β > 0, and κ, ` > 0 such that, for any h < h0 and for
any (aj)j ∈ RN, we have

∥∥∥
∑

µj,h≤µ
ajψj,h

∥∥∥
2

h
≤ κeκµ

α
s
B?h
( ∑

µj,h≤µ
ajψj,h

){2

h

, ∀µ < `

hβ
. (Hα,β)

THEOREM

Assume that assumption (Hα,β) holds, then there exists h0 > 0, C > 0 such that, the
relaxed observability inequality holds as soon as the function φ satisfies

lim inf
h→0

φ(h)

e−C/hβ
> 0.

Thus, for any bounded family of initial data Y0 ∈ Einit, and for any 0 < h < h0 we have

q
vφ(h),h

y
L2(0,T;Uh)

≤ Cobs ‖y0,h‖h , and
∥∥∥Lh

T

(
vφ(h),h

∣∣y0,h
)∥∥∥

h
≤ Cobs ‖y0,h‖h

√
φ(h).
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DISCRETE LEBEAU-ROBBIANO INEQUALITY
CONSTRUCTION OF THE DISCRETE CONTROL

Let Eµ,h = Span{ψj,h, µj,h ≤ µ}. Assumption (Hα,β) says that
∥∥∥qh

∥∥∥
2

h
≤ κeκµ

α
s
B?h qh

{2

h

, ∀qh ∈ Eh, ∀µ < `

hβ
.

1 NON-UNIFORM PARTIAL OBSERVABILITY
∥∥∥e−τA

?
h qF

h

∥∥∥
2

h
≤ C

CeCµα

τ

∫ τ

0

r
B?h e−sA?h qF

h

z2

h
ds, ∀qF

h ∈ Eµ,h, ∀τ > 0.

2 PARTIAL CONTROLLABILITY

For any y0,h ∈ Eµ,h, and any τ > 0 there exists a vh ∈ L2(0, τ ; Uh) such that




JvhKL2(0,τ ;Uh) ≤ C
eCµα

τ 1/2 ‖y0,h‖h ,

∂tyh +Ahyh = Bhvh, yh(0) = y0,h, PEµ,h yh(τ) = 0.

3 CONSTRUCTION OF THE CONTROL : Time slicing procedure.

t

‖yh(t)‖h

0

‖y0,h‖h•

T
•
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frequencies
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Let Eµ,h = Span{ψj,h, µj,h ≤ µ}. Assumption (Hα,β) says that
∥∥∥qh

∥∥∥
2

h
≤ κeκµ

α
s
B?h qh

{2

h

, ∀qh ∈ Eh, ∀µ < `

hβ
.

1 NON-UNIFORM PARTIAL OBSERVABILITY
∥∥∥e−τA

?
h qF

h

∥∥∥
2

h
≤ C

CeCµα

τ

∫ τ

0

r
B?h e−sA?h qF

h

z2

h
ds, ∀qF

h ∈ Eµ,h, ∀τ > 0.

2 PARTIAL CONTROLLABILITY

For any y0,h ∈ Eµ,h, and any τ > 0 there exists a vh ∈ L2(0, τ ; Uh) such that




JvhKL2(0,τ ;Uh) ≤ C
eCµα

τ 1/2 ‖y0,h‖h ,

∂tyh +Ahyh = Bhvh, yh(0) = y0,h, PEµ,h yh(τ) = 0.

3 CONSTRUCTION OF THE CONTROL : Time slicing procedure.

t

‖yh(t)‖h

0

‖y0,h‖h•

T
•

Do
nothing

until the
threshold
µ = l

hβ ...

Control
low
freq.

Do nothing

Control low
frequencies
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DISCRETE LEBEAU-ROBBIANO INEQUALITY
SKETCH OF PROOF

∥∥∥
∑

µj,h≤µ
ajψj,h

∥∥∥
2

h
≤ κeκµ

α
s
B?h
( ∑

µj,h≤µ
ajψj,h

){2

h

, ∀µ < `

hβ
. (Hα,β)

IMPORTANT OBSERVATION

Excepted in very particular cases, the assumption (Hα,β) has no chance to hold true
without restriction on µ, for dimension reasons.
See also the counter-example of Kavian.

FINITE DIFFERENCE FRAMEWORK

We assume now thatAh is the finite-difference discretisation of −∇ · (γ∇.), γ being a
Lipschitz continuous coefficient and Bh = 1ω with ω =⊂ Ω.

THE CARLEMAN ESTIMATE

For a suitable weight function ϕ, ε0 > 0, s0 > 0 and C > 0.
For any s ≥ s0 such that sh ≤ ε0 and any u ∈ C2([0, τ ],Eh), with u(0) = 0, we have
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ajψj,h
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2

h
≤ κeκµ

α
s
B?h
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h
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For a suitable weight function ϕ, ε0 > 0, s0 > 0 and C > 0.
For any s ≥ s0 such that sh ≤ ε0 and any u ∈ C2([0, τ ],Eh), with u(0) = 0, we have

s3
∫ τ

0
‖esϕu‖2

h dt + s
∥∥∥esϕ(0,.)∂tu(0)

∥∥∥
2

h
+ sesϕ(τ) ‖∂tu(τ)‖2

h + s3e2sϕ(τ) ‖u(τ)‖2
h

≤ C
∫ τ

0

∥∥∥esϕ(−∂2
t +Ah)u

∥∥∥
2

h
dt+Cse2sϕ(τ) 〈Ahu(τ), u(τ)〉h + Cs

∥∥∥B?h esϕ(0,.)∂tu(0)
∥∥∥

2

h
.

30/ 70
F. Boyer HUM method and applications



DISCRETE LEBEAU-ROBBIANO INEQUALITY
SKETCH OF PROOF

∥∥∥
∑

µj,h≤µ
ajψj,h

∥∥∥
2

h
≤ κeκµ

α
s
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THE CARLEMAN ESTIMATE

For a suitable weight function ϕ, ε0 > 0, s0 > 0 and C > 0.
For any s ≥ s0 such that sh ≤ ε0 and any u ∈ C2([0, τ ],Eh), with u(0) = 0, we have

s3e2sϕ(τ) ‖u(τ)‖2
h ≤ Cse2sϕ(τ) 〈Ahu(τ), u(τ)〉h + CseCs ‖B?h ∂tu(0)‖2

h ,

as soon as (−∂2
t +Ah)u = 0.
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DISCRETE LEBEAU-ROBBIANO INEQUALITY
SKETCH OF PROOF
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h
≤ κeκµ

α
s
B?h
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THE CARLEMAN ESTIMATE

For a suitable weight function ϕ, ε0 > 0, s0 > 0 and C > 0.
For any s ≥ s0 such that sh ≤ ε0 and any u ∈ C2([0, τ ],Eh), with u(0) = 0, we have

s3e2sϕ(τ) ‖u(τ)‖2
h ≤ Cse2sϕ(τ) 〈Ahu(τ), u(τ)〉h + CseCs ‖B?h ∂tu(0)‖2

h ,

as soon as (−∂2
t +Ah)u = 0.

WE TAKE : u(t) =
∑

µj,h≤µ
aj

sinh(
√
µj,ht)

√
µj,h

ψj,h, sol. of the elliptic Cauchy problem.

‖u(τ)‖2
h ≥

1
µ

∑
µj,h≤µ

|aj|2 sinh2(
√
µj,hτ), and 〈Ahu(τ), u(τ)〉h =

∑
µj,h≤µ

|aj|2 sinh2(
√
µj,hτ)

2,

‖∂tu(0)‖2
h =

s
B?h
( ∑
µj,h≤µ

ajψj,h

){2

h
.

Finally, we need s ∼ √µ which gives the condition
√
µh ≤ ε0.
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A DISCRETE CARLEMAN INEQUALITY
SKETCH OF PROOF

THE CONTINUOUS CASE

We consider a weight function ψ in C2([0, τ ]× Ω,R), sich that

|∇ψ| ≥ c and ψ > 0 in ]0, τ [×Ω, ∂nxψ(t, x) < 0 in (0, τ)× ∂Ω,

∂tψ ≥ c on {0} × (Ω \ ω), ∇xψ(T, .) = 0 and ∂tψ(T, .) ≤ −c on Ω.

ωt

We set ϕ = eλψ and ρ = esϕ, and

P = −∂2
t −∇ · (γ∇·).

WE COMPUTE THE COMMUTATOR BETWEEN P AND ρ
ASSUME d = 1 AND γ = 1

f = Pu = −∂2
t u− ∂2

x u,
becomes (with r = ρ−1)

∂2
t v + ∂2

x v + r(∂2
t ρ)v + r(∂2

xρ)v︸ ︷︷ ︸
=Av

+ 2r(∂tρ)(∂tv) + r(∂xρ)(∂xv)︸ ︷︷ ︸
=Bv

= −rf .

Then
2(Av,Bv)L2

t,x
≤ ‖rf‖L2

t,x
.

We conclude by integrating by parts in the term (Av,Bv) and using the properties of
the weights (and by choosing λ large enough). The inequality then holds for any s
large enough.
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A DISCRETE CARLEMAN INEQUALITY
SKETCH OF PROOF

THE 1D UNIFORM DISCRETISATION CASE

4 for smooth Cartesian multi-D geometry

xN

10

x0 x1 x2 xN+1

M = (xi)1≤i≤N

M = (xi+ 1
2
)0≤i≤N

Primal/Dual discrete functions

u = (ui)1≤i≤N ∈ RM, v = (vi+ 1
2
)0≤i≤N ∈ RM.

Discrete derivatives (Dirichlet BC :⇔ u0 = uN+1 = 0)

(
(Du)i+ 1

2
=

ui+1 − ui

h

)
0≤i≤N
∈ RM,

(
(D̄v)i =

vi+ 1
2
− vi− 1

2

h

)

1≤i≤N

∈ RM,

Discrete integrals and norms

‖u‖2
h =

∫

Ω

u2 =
N∑

i=1

hu2
i ,

∫

Ω

v =
N∑

i=0

hvi+ 1
2
, ...

The discrete operator reads Ah = −D̄(γD·)
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A DISCRETE CARLEMAN INEQUALITY
SKETCH OF PROOF

We consider the same weight as in the continuous case which is sampled on the
meshes.

Discrete integration by parts and discrete derivation of products lead to new terms

∂2
t v + rρ D̄Dv + r(∂2

t ρ) v + r(D̄Dρ) v︸ ︷︷ ︸
=Av

+ 2r(∂tρ)(∂tv) + 2rDρDv︸ ︷︷ ︸
=Bv

= −rf + · · ·

All the additional terms are small with respect to h but contain high powers of
the parameters s and λ.

We shall need a condition relating s and h of the following form

sh ≤ ε0,

where ε0 only depends on the data.

In the proof of the discrete Lebeau-Robbiano, we take s ∼ √µ, which gives the
threshold µ ≤ ε1

h2 .
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A DISCRETE CARLEMAN INEQUALITY
DISCRETE DIFFERENTIAL CALCULUS

PRODUCTS DERIVATIVES fi ∈ RM, gi ∈ RM

D(f1f2) = (Df1)f2 + (Df2)f1,

D̄(g1g2) = (D̄g1)g2 + (D̄g2)g1.

PRODUCTS AVERAGES

f1f2 = f1 f2 +
h2

4
(Df1)(Df2).

REPEATED AVERAGES

f = f +
h2

4
D̄Df ,

Typical term (remember that r = ρ−1)

rρ = 1 +
h2

4
r(D̄Dρ) ≈ 1 +

h2

4
r∂2

xρ ≈ 1 +
h2s2

4
(∂xφ)2 rρ︸︷︷︸

=1

+ · · ·

DISCRETE INTEGRATION BY PARTS f ∈ RM and g ∈ RM

∫

Ω

f (Dg) = −
∫

Ω

(D̄f )g + fN+1gN+ 1
2
− f0g 1

2
.
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ANOTHER (PARABOLIC) DISCRETE CARLEMAN ESTIMATE

(B. - Le Rousseau, ’14)
GOALS

To obtain relaxed observability estimates for some time depend coefficients
parabolic equations.
To study some semi-linear case.
To derive discrete parabolic Carleman estimates (a la Fursikov-Imanuvilov).

CARLEMAN WEIGHTS

Standard weights in space ϕ = eλψ − eλ‖ψ‖∞ .
Singular weights in time θ(t) = (t + αh)−1(T − t + αh)−1.

THEOREM

For any τ > 0 large enough, there exists α > 0 and h0 > 0 such that for any function
qh ∈ C1([0, T],Eh) and any h < h0 we have

‖(τθ) 1
2 e−τθϕDqh‖2

L2(0,T;Eh) + ‖(τθ) 3
2 e−τθϕqh‖2

L2(0,T;Eh)

≤ C
(
‖e−τθϕ(−∂t +A∗h )qh‖2

L2(0,T;Eh) + ‖(τθ) 3
2 e−τθϕB?h qh‖2

L2(0,T;Eh)

)

+ Ch−2
(∥∥∥e−τθϕqh(0)

∥∥∥
2

h
+
∥∥∥e−τθϕqh(T)

∥∥∥
2

h

)
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ANOTHER (PARABOLIC) DISCRETE CARLEMAN ESTIMATE

(B. - Le Rousseau, ’14)
GOALS

To obtain relaxed observability estimates for some time depend coefficients
parabolic equations.
To study some semi-linear case.
To derive discrete parabolic Carleman estimates (a la Fursikov-Imanuvilov).

CARLEMAN WEIGHTS

Standard weights in space ϕ = eλψ − eλ‖ψ‖∞ .
Singular weights in time θ(t) = (t + αh)−1(T − t + αh)−1.

THEOREM (RELAXED OBSERVABILITY INEQUALITY)

There exists C > 0 s.t. for any function ah ∈ L∞(]0, T[,Eh), and any h ≤ min(h0, h1)

with h1 ∼ ‖ah‖−
2
3∞ , any solution of −∂tqh +A?h qh + ahqh = 0 satisfies

‖qh(0)‖2
h ≤ Cobs‖B?h qh‖2

L2(0,T;Eh) + e−
C−1

h +T‖ah‖∞ ‖qh(T)‖2
h.

with Cobs = eC(1+ 1
T +T‖ah‖∞+‖ah‖

2
3∞).
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APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

(Fernández-Cara – Zuazua, ’00), (B. – Le Rousseau, ’14)

∂tyh +Ahyh + g(yh)yh = 1ωvh, yh(0) = y0,h,

SUBLINEAR CASE : |g(s)| ≤ M

There exists

C = eC1(1+ 1
T +T‖g‖∞+‖g‖

2
3∞)

such that for any initial data y0,h ∈ Eh, and any h < h0, there exists a semi-discrete
control vh such that

‖vh‖L2(0,T;Uh) ≤ C ‖y0,h‖h , and ‖yh(T)‖h ≤ Ce−
C−1

h ‖y0‖h .

Uniform estimates with respect to h :
Weak convergence of the contro towards a null-control of the semi-linear problem. At
least for a subsequence ...
Strong convergence of the controlled solution

We can replace e−C−1/h by any φ(h) that goes to 0 not too fast.
In practice, we use a Picard fixed-point procedure to compute the approximate
solution but other non-linear solvers can be useful.

SUPERLINEAR CASE : |g(s)| ≤ M ln(1 + |s|)r , r < 3/2

In 1D : For any initial data y0,h ∈ Eh such that ‖Dy0,h‖h ≤ M and h < h0 there
exists a vh such that

‖vh‖L2(0,T;Uh) ≤ CM, and ‖yh(T)‖h ≤ CMe−
C−1

h .

In multi-D : similar result (no need of a H1 estimate) but with a non-uniform
bound of the control

‖vh‖L2(0,T;Uh) ≤ C‖y0,h‖h
h−α, and ‖yh(T)‖h ≤ C‖y0,h‖h

e−
C−1

h .

BONUS : UNIFORM LOCAL CONTROLLABILITY RESULT IN 1D FOR ANY g
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APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS
SKETCH OF PROOF

LINEARIZATION + TRUNCATURE + SCHAUDER FIXED-POINT PROCEDURE

(Szh ) : ∂tyh +Ahyh + g(TRh (zh))︸ ︷︷ ︸
=ah

yh = 1ωvh,

Λh : zh ∈ Some space Zh 7−→ vhthe HUM-pen. control for (Szh )

7−→ yh ∈ the same space Zh.

MAIN ISSUE : to find a suitable space Zh

Sublinear case : one can take for some R0

Zh
def
= {zh ∈ L2(0, T; Uh), ‖zh‖L2(0,T;Uh) ≤ R0}.

Superlinear case :
Improvment in 1D :

Discrete Sobolev embedding ‖yh‖∞ ≤ C‖Dyh‖h.

LEMMA (UNIFORM REGULARISING EFFECT)

Assume that y0,h ∈ Eh is such that ‖y0,h‖∞ ≤ M0 for some M0 > 0 then there exists
t1 > 0 depending only on M0, and g, such that the solution yh of

∂tyh +Ahyh + g(yh)yh = 0, and yh(0) = y0,h,

exists on [0, t1] and satisfies ‖Dyh(t1)‖h ≤ C(M0, g).
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7−→ yh ∈ the same space Zh.

MAIN ISSUE : to find a suitable space Zh

Sublinear case :
Superlinear case : We need an L∞ estimate

Zh
def
= {zh ∈ L∞(0, T; Uh), ‖zh‖L∞(0,T;Uh) ≤ Rh}.

Then we take Rh = Ch−α, α > d/2 in order to satisfy




h . ‖ah‖−
2
3∞ ∼ ln(1 + Rh)

− 2r
3 ⇒ Carleman

h−d/2eCT +ln(1+Rh)
− 2r

3 ‖y0,h‖h ≤ Rh ⇒ stability estimate

+ a good estimate on the control time Th

since we want that

‖yh‖L∞ ≤ h−d/2‖yh‖L∞(0,T;Eh) . h−d/2eCT +ln(1+Rh)
− 2r

3 ‖y0,h‖h ≤ Rh.
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THE FULLY DISCRETE SETTING

We have introduced and analyzed the φ(h)-null-controllability hold for

(Sh)

{
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h.

WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM ?
We study unconditionally stable schemes : the θ-scheme with θ ∈ [1/2, 1]

(Sh,δt)





yn+1
h − yn

h

δt
+Ah(θyn+1

h + (1− θ)yn
h) = Bhvn+1

h , ∀n ∈ J0,M−1K,

y0
h = y0,h ∈ Eh,

where, δt = T/M, vh,δt = (vn
h)1≤n≤M ∈ (Uh)

M is a fully-discrete control function
whose cost is defined by

Jvh,δtKL2
δt(0,T;Uh)

def
=

( M∑

n=1

δt Jvn
hK

2
h

) 1
2

.

The value at the final time iteration of the controlled solution of (Sh,δt) is denoted by

Lh,δt
T

(
vh,δt

∣∣y0,h
) def

= yM
h .
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THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

Fε,h,δt(vh,δt)
def
=

1
2

Jvh,δtK2
L2
δt(0,T;Uh) +

1
2ε

∥∥∥Lh,δt
T

(
vh,δt

∣∣y0,h
)∥∥∥

2

h
.

DEFINITION (DUAL FUNCTIONAL)

We define the functional

Jε,h,δt(qF
h )

def
=

1
2

r
B?hL∗,h,δt

T

(
qF

h

)z2

L2
δt(0,T;Uh)

+
ε

2

∥∥∥qF
h

∥∥∥
2

h

−
〈

y0,h, q1
h − δt(1− θ)Ahq1

h

〉
h
, ∀qF

h ∈ Eh,

where L∗,h,δt
T

(
qF

h

)
= (qn

h)1≤n≤M is the solution of the following adjoint problem




qM+1
h = qF

h ,

qM
h − qM+1

h

δt
+ θAhqM

h = 0,

qn
h − qn+1

h

δt
+Ah(θqn

h + (1− θ)qn+1
h ) = 0, ∀n ∈ J1,M − 1K.

(S∗h,δt)
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THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

Fε,h,δt(vh,δt)
def
=

1
2

Jvh,δtK2
L2
δt(0,T;Uh) +

1
2ε

∥∥∥Lh,δt
T

(
vh,δt

∣∣y0,h
)∥∥∥

2

h
.

Jε,h,δt(qF
h )

def
=

1
2

r
B?hL∗,h,δt

T

(
qF

h

)z2

L2
δt(0,T;Uh)

+
ε

2

∥∥∥qF
h

∥∥∥
2

h

−
〈

y0,h, q1
h − δt(1− θ)Ahq1

h

〉
h
, ∀qF

h ∈ Eh,

THEOREM (DUALITY)

The functionals Fε,h,δt and Jε,h,δt are in duality, in the sense that their respective
minimisers vε,h,δt ∈ L2(0, T; Uh) and qF

ε,h,δt ∈ Eh satisfy

inf
L2
δt(0,T;Uh)

Fε,h,δt = Fε,h,δt(vε,h,δt) = −Jε,h,δt(qF
ε,h,δt) = − inf

Eh
Jε,h,δt,

and moreover
vε,h = B?hL∗,h,δt

T

(
qF
ε,h,δt

)
.
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THE FULLY DISCRETE SETTING
A φ(h)-NULL-CONTROLLABILITY RESULT

THEOREM (CASE θ ∈]1/2, 1])

Assume that the discrete Lebeau-Robbiano inequality (Hα,β) holds and let φ be such
that

lim inf
h→0

φ(h)

e−C/hβ
> 0.

Then, there exists h0 > 0,CT > 0,Cobs > 0 such that for any 0 < h < h0 and any
δt ≤ CT | logφ(h)|−1, the following relaxed observability inequality holds

∥∥∥q1
h − δt(1− θ)Ahq1

h

∥∥∥
2

h
≤ C2

obs

(
JB?h qn

hK
2
L2
δt(0,T;Uh) + φ(h)

∥∥∥qF
h

∥∥∥
2

h

)
, ∀qF

h ∈ Eh.

Thus, for any such δt and h and any initial data y0,h ∈ Eh, the full-discrete control
vφ(h),h,δt, obtained by minimising Fφ(h),h,δt (or equivalently Jφ(h),h,δt) satisfies

q
vφ(h),h,δt

y
L2
δt(0,T;Uh)

≤ Cobs ‖y0,h‖h ,

∥∥∥Lh,δt
T

(
vφ(h),h,δt

∣∣y0,h
)∥∥∥

h
≤ Cobs

√
φ(h) ‖y0,h‖h .

CASE θ = 1/2 : We need the (much stronger) condition δtρ(Ah) ≤ δ for some δ.
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SKETCH OF THE PROOFS

MAIN IDEA : ADAPT THE LEBEAU-ROBBIANO ORIGINAL STRATEGY

STEP 1 : Use the discrete L.R. inequality to prove controllability of frequency modes less
than µ with cost eCµα ‖y0‖h.

STEP 2 : Construct a suitable full discrete control by a discrete finite time slicing
procedure :

{0, ...,M} =
J⊔

j=1

{M′j , ...,M′j + 2Mj}. (?)

Between discrete times M′j and M′j + Mj :
Use a control for frequencies less than 2j/α (Step 1).

Between discrete times M′j + Mj + 1 and M′j + 2Mj :
Let the system evolve without control and take advantage of the parabolic dissipation

since the solution only contains frequencies greater than 2j/α.

NEW DIFFICULTIES

δt has to be small enough (i.e. M large enough) in order to construct a suitable
slicing (?).
The full-discrete heat semi-group

(Id + θδtAh)
−1(Id + (1− θ)δtAh)

do not have the same dissipation properties as the semi-discrete semi-group

e−δtAh .
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SKETCH OF THE PROOFS
FULL-DISCRETE PARABOLIC DISSIPATION

THE θ-SCHEME FOR θ > 1/2
The iteration matrix for the system is

Ch,δt = (Id + θδtAh)
−1 (Id− (1− θ)δtAh) .

• Let us analyse Sp(Ch,δt) :

Image of Sp(δtAh) through

x 7→ 1− (1− θ)x
1 + θx

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

(1 − θ)−1

(
θ−1/2
θ(1−θ) ,

1−θ
θ

)

• In practice, ρ(δtAh) ∼ C δt
hp , for some p (e.g. p = 2 for classical FD)

 Case (b) : For δt × µi,h greater than θ−1/2
θ(1−θ) (possibly→ +∞) the damping factor

can be ∼ (1− θ)/θ < 1 but we assumed that δt ≤ CT | logφ(h)| :
(

1− θ
θ

)M

≤
(

1− θ
θ

) Mδt
CT | log(φ(h))|

= e−ξ
Mδt
hγ ∼ e−ξ

T
CT | logφ(h)| ∼ φ(h).
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SKETCH OF THE PROOFS
FULL-DISCRETE PARABOLIC DISSIPATION

THE CRANK-NICOLSON SCHEME (θ = 1/2)
The iteration matrix for the system is

Ch,δt =

(
Id− δt

2
Ah

)−1(
Id +

δt
2
Ah

)
.

• Let us analyse Sp(Ch,δt) :

Image of Sp(δtAh) through

x 7→ 1− x/2
1 + x/2

2 4 6 8 10

0.2

0.4

0.6

0.8

1

δ

4
δ δ−2

δ+2

• For large δt × µi,h, the damping factor can be ∼ 1. Here we use

δtρ(Ah) ≤ δ.
We thus split the analysis into two cases :

The case δt × µi,h less than 4/δ : natural exponential damping
The case δt × µi,h greater than 4/δ : damping bounded by δ−2

δ+2 < 1.
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FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

ŷF = e−TAh ŷ0.

PROBLEM 1

Starting from any y0 ∈ Eh, can we drive the solution of the semi-discrete system

∂ty +Ahy = Bhv, y(0) = y0,

to ŷF at time T ?

 equivalent to the null-controllability problem with initial data ŷ0 − y0

OUR RESULT : Under suitable assumptions, by minimizing the functional

Jh,δt(qF) =
1
2

M∑

n=1

δt JB?h qnK2
h+
φ(h)

2

∥∥∥qF
∥∥∥

2

h
−
〈

ŷF, qF
〉

h
+
〈

y0, q1 − δt(1− θ)Ahq1
〉

h
,

we produce a full discrete control vh,δt = (B?h qn)n such that
The cost of the control satisfies

M∑

n=1

δt JvnK2
h ≤ C2

obs

(
‖y0 − ŷ0‖h + Csδtζ1

∥∥∥∥A
1
2
h ŷ0

∥∥∥∥
h

)2

+ e−C/δtζ2 ‖ŷ0‖2
h,

for some ζ1, ζ2 > 0.
The controlled solution (yn)n associated with vh,δt and y0 is such that
∥∥∥yM − ŷF

∥∥∥
h
≤
√
φ(h)Cobs

(
‖y0 − ŷ0‖h + Cδtζ1

∥∥∥∥A
1
2
h ŷ0

∥∥∥∥
h

)
+e−C/δtζ2 ‖ŷ0‖h.

MAIN TOOL : Estimate of the difference between the two initial data
∥∥∥ỹδt

0 − ŷ0

∥∥∥
h
≤ Cδtζ

∥∥∥∥A
1
2
h ŷ0

∥∥∥∥
h

.
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FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

ŷF = e−TAh ŷ0.

PROBLEM 2

Starting from any y0 ∈ Eh, can we drive the solution of the full-discrete system

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1, y0 = y0,

to ŷF at discrete time M ?

 This is not equivalent to the null-controllability problem with initial data ŷ0 − y0

INDEED : The full-discrete free trajectory starting at ŷ0 is not equal to ŷF at time M.
In most cases (but not always) ŷF belongs to some full discrete trajectory

ŷF =
(

(Id + θAh)
−1(Id + (1− θ)Ah)

)M
ỹδt

0 .

We do not want the estimates to depend on ỹδt
0 since :

In general we do not want to compute ỹδt
0 .

Its norm can be large with respect to that of ŷF .

OUR RESULT : Under suitable assumptions, by minimizing the functional

Jh,δt(qF) =
1
2
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φ(h)

2

∥∥∥qF
∥∥∥

2

h
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1
2
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h
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h
≤
√
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∥∥∥∥A
1
2
h ŷ0

∥∥∥∥
h
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h
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INTRODUCTION

The error analysis in space is intricate (low regularity expected for the HUM
null-control, ...).
We try here to analyse the error induced by time discretisation in this problem.

FRAMEWORK

We assume the uniform discrete Lebeau-Robbiano (Hα,β) to hold.
We suppose that h > 0 is fixed, that y0 ∈ Eh is given and that h 7→ φ(h) is given.
The minimization of the functional

Jh(qF) =
1
2

T∫

0

JB?h q(t)K2
h dt +

φ(h)

2

∥∥∥qF
∥∥∥

2

h
+ 〈y0, q(0)〉h ,

leads to a semi-discrete control t 7→ vh(t) ∈ L2(]0, T[,Uh).
For simplicity, we consider the implicit Euler scheme (similar results hold for
θ ∈ [1/2, 1[). The minimization of the functional

Jh,δt(qF) =
1
2

M∑

n=1

δt JB?h qnK2
h +

φ(h)

2

∥∥∥qF
∥∥∥

2

h
+
〈

y0, q1
〉

h
,

leads to a full discrete control vh,δt = (vn)n ∈ (Uh)
M .

GOAL : Prove an error estimate between vh,δt and vh.
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MAIN RESULT

THEOREM

Under the same assumptions than previous results (in particular δt ≤ Chγ), the
following error estimate holds

∥∥∥∥vh −
M∑

n=1

1(tn−1,tn)vn

︸ ︷︷ ︸
def
= F0[vh,δt]

∥∥∥∥
L2(]0,T[,Uh)

≤ Cδt
ρ(Ah)√
φ(h)

(
1 + δt

3
2 ρ(Ah)

3
2

)
‖y0‖h .

REMARKS

First order in time estimate (second order for CN provided a suitable time
interpolation operator is used in place of F0[.]).

The estimate is not uniform in h, even if we are interested in the approximate
control problem where φ(h) = ε > 0. The result is probably not optimal.

SKETCH OF PROOF

Write the Euler-Lagrange equations corresponding to the two minimization
problems we consider (the semi-discrete and the full-discrete).

Compare the two Euler-Lagrange equations by using error estimates in time for
the adjoint problem.
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PROOF DETAILS
1/3

EULER-LAGRANGE EQUATION FOR Jh

We denote the minimizer by qF
opt and t 7→ qopt(t) the corresponding solution to the

semi-discrete adjoint problem :

0 =

T∫

0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
〈

qF
opt, q̃

F
〉

h
+ 〈y0, q̃(0)〉h ,

for any q̃F ∈ Eh.

EULER-LAGRANGE EQUATION FOR Jh,δt

We denote the minimizer by qF
opt,δt and by (qn

opt,δt)n the corresponding solution to the
full-discrete adjoint problem

0 =
M∑

n=1

δt
[
B?h qn

opt,δt,B?h q̃n]
h

+ φ(h)
〈

qF
opt,δt, q̃

F
〉

h
+
〈

y0, q̃1
〉

h
,

for any q̃F ∈ Eh.
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PROOF DETAILS
2/3

T∫
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
〈

qF
opt, q̃

F〉
h
+ 〈y0, q̃(0)〉h = 0,

M∑
n=1

δt
[
B?h qn

opt,δt,B?h q̃n
]

h
+ φ(h)

〈
qF

opt,δt, q̃
F
〉

h
+
〈

y0, q̃1
〉

h

= 0,
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PROOF DETAILS
2/3

T∫
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
〈

qF
opt, q̃

F〉
h
+ 〈y0, q̃(0)〉h = 0,

M∑
n=1

δt
[
B?h qn

opt,δt,B?h q̃n
]

h
+ φ(h)

〈
qF

opt,δt, q̃
F
〉

h
+
〈

y0, q̃1
〉

h

= 0,

TRANSFORMATION OF THESE EQUATIONS

δt
[
B?h qn

opt,δt,B?h q̃n
]

h
=

tn∫
tn−1

[
F0[vh,δt](t),B?h (F0[q̃δt](t))

]
h dt

=

tn∫
tn−1

[
F0[vh,δt](t),B?h q̃(t)

]
h dt +

tn∫
tn−1

[
F0[vh,δt](t),B?h

(
F0[q̃δt](t)− q̃(t)

)]
h dt.
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PROOF DETAILS
2/3

T∫
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
〈

qF
opt, q̃

F〉
h
+ 〈y0, q̃(0)〉h = 0,

T∫
0

[
F0[vh,δt](t),B?h q̃(t)

]
h dt + φ(h)

〈
qF

opt,δt, q̃
F
〉

h
+
〈

y0, q̃1
〉

h

= −
T∫
0

[
F0[vh,δt](t),B?h

(
F0[q̃δt](t)− q̃(t)

)]
h dt,
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PROOF DETAILS
2/3

T∫
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
〈

qF
opt, q̃

F〉
h
+ 〈y0, q̃(0)〉h = 0,

T∫
0

[
F0[vh,δt](t),B?h q̃(t)

]
h dt + φ(h)

〈
qF

opt,δt, q̃
F
〉

h
+

〈
y0, q̃1

〉
h

= −
T∫
0

[
F0[vh,δt](t),B?h

(
F0[q̃δt](t)− q̃(t)

)]
h dt,

TRANSFORMATION OF THESE EQUATIONS

q̃1 = q̃(0) + (q̃1 − q̃(0))
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PROOF DETAILS
2/3

T∫
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
〈

qF
opt, q̃

F〉
h
+ 〈y0, q̃(0)〉h = 0,

T∫
0

[
F0[vh,δt](t),B?h q̃(t)

]
h dt + φ(h)

〈
qF

opt,δt, q̃
F
〉

h
+ 〈y0, q̃(0)〉h

= −
T∫
0

[
F0[vh,δt](t),B?h

(
F0[q̃δt](t)− q̃(t)

)]
h dt −

〈
y0, q̃1 − q̃(0)

〉
h
,
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PROOF DETAILS
2/3

T∫
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
〈

qF
opt, q̃

F〉
h
+ 〈y0, q̃(0)〉h = 0,

T∫
0

[
F0[vh,δt](t),B?h q̃(t)

]
h dt + φ(h)

〈
qF

opt,δt, q̃
F
〉

h
+ 〈y0, q̃(0)〉h

= −
T∫
0

[
F0[vh,δt](t),B?h

(
F0[q̃δt](t)− q̃(t)

)]
h dt −

〈
y0, q̃1 − q̃(0)

〉
h
,

SUBTRACTION OF THE EQUATIONS

T∫
0

[
B?h qopt(t)−F0[vh,δt](t),B?h q̃(t)

]
h dt + φ(h)

〈
qF

opt − qF
opt,δt, q̃

F
〉

h

=

T∫
0

[
F0[vh,δt](t),B?h

(
F0[q̃δt](t)− q̃(t)

)]
h dt +

〈
y0, q̃1 − q̃(0)

〉
h
,

 Now we choose q̃F = qF
opt − qF

opt,δt , so that q̃(t) = qopt(t)− q(t) and then

B?h q̃(t) =
(
B?h qopt(t)−F0[vh,δt](t)

)
+ B?h

(
F0[qopt,δt](t)− q(t)

)
.
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PROOF DETAILS
3/3

T∫

0

Jv(t)−F0[vh,δt](t)K2
h dt + φ(h)

∥∥∥qF
opt − qF

opt,δt

∥∥∥
2

h

=

T∫

0

[
F0[vh,δt](t),B?h

(
F0[q̃δt](t)− q̃(t)

)]
h

dt +
〈

y0, q̃1 − q̃(0)
〉

h

−
T∫

0

[
v(t)−F0[vh,δt](t),B?h

(
F0[qopt,δt](t)− q(t)

)]
h

dt.

• The error terms are estimated as follows by usual parabolic techniques :

T∫

0

q
B?h
(
F0[q̃δt](t)− q̃(t)

)y2
h

dt ≤ C

T∫

0

‖F0[q̃δt](t)− q̃(t)‖2
h dt

≤ C

(
δt2
∥∥∥∥A

1
2
h q̃F
∥∥∥∥

2

h

+ δt5
∥∥∥A2

hq̃F
∥∥∥

2

h

)
≤ Cδt2

∥∥∥q̃F
∥∥∥

2

h
ρh(1 + ρ3

h)

•We conclude by using Cauchy-Schwarz inequality.
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MORE OR LESS STANDARD NUMERICAL ANALYSIS TOOLS

Assume that Ah is self-adjoint.
DISCRETE Hs NORMS ‖uh‖2

s,h = 〈(Ah)
suh, uh〉h .

PROPOSITION

Let s ∈ R, qF ∈ RM, t 7→ q(t) ∈ RM the solution of the semi-discrete adjoint problem
−∂tq(t) +Ahq(t) = 0 with q(T) = qF and (qn)n the solution of the fully discrete
(backward) problem

qn − qn+1

δt
+Ahqn = 0, ∀n ∈ {1, . . . ,M},

associated with the same data qM+1 = qF . Let the error be En = qn − q(tn−1).
There exists Cs > 0 independent of h such that

sup
1≤n≤M

‖En‖2
s,h +

(
M∑

n=1

δt ‖En‖2
s+1,h

) 1
2

≤ Csδt
∥∥∥qF
∥∥∥

s+2,h
,

sup
1≤n≤M

∥∥∥(T − tn−1)En
∥∥∥

s,h
≤ Csδt

∥∥∥qF
∥∥∥

s,h
+ Csδt2

∥∥∥qF
∥∥∥

s+2,h
.

We apply those estimates for s = 0, s = −1 and with

qF = qF
opt,δt, and qF = qF

opt,δt − qF
opt.
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THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

N M
20 80 320 1280 +∞

20 14 16 16 16 16
50 22 26 29 29 31
100 30 38 44 49 48
200 45 58 69 77 82

(A) Case φ(h) = h2

N M
20 80 320 1280 +∞

20 24 30 28 27 32
50 83 87 87 93 106

100 235 240 233 262 265
200 778 850 1098 1230 1374

(B) Case φ(h) = h4

TABLE : Conjugate gradient iterates ; ω =]0.3, 0.8[
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THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

N M
20 80 320 1280 +∞

20 7.17 · 10−2 6.54 · 10−2 6.38 · 10−2 6.34 · 10−2 6.33 · 10−2

50 7.98 · 10−2 7.08 · 10−2 6.85 · 10−2 6.79 · 10−2 6.78 · 10−2

100 8.5 · 10−2 7.44 · 10−2 7.15 · 10−2 7.07 · 10−2 7.05 · 10−2

200 9.1 · 10−2 7.75 · 10−2 7.39 · 10−2 7.3 · 10−2 7.27 · 10−2

TABLE : Optimal energy ; φ(h) = h2 ; ω =]0.3, 0.8[
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THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

N M
20 80 320 1280 +∞

20 0.11 8.92 · 10−2 8.43 · 10−2 8.3 · 10−2 8.26 · 10−2

50 0.12 8.94 · 10−2 8.29 · 10−2 8.12 · 10−2 8.07 · 10−2

100 0.12 9.1 · 10−2 8.33 · 10−2 8.13 · 10−2 8.06 · 10−2

200 0.13 9.33 · 10−2 8.41 · 10−2 8.17 · 10−2 8.09 · 10−2

TABLE : Optimal energy ; φ(h) = h4 ; ω =]0.3, 0.8[
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THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

10−3 10−2 10−110−5

10−4

10−3

10−2

slope 1

h

Size of the target M = 20
M = 80

M = 320
M = 1280
————

Exact solution M = 20
M = 80

M = 320
M = 1280

FIGURE : Convergence analysis with φ(h) = h2 ; ω =]0.3, 0.8[
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THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

10−2 10−110−7

10−6

10−5

10−4

10−3

10−2

slope 2

h

Size of the target M = 320
M = 1280
M = 5120

M = 20480
————

Exact solution M = 320
M = 1280
M = 5120

M = 20480

FIGURE : Convergence analysis with φ(h) = h4 ; ω =]0.3, 0.8[
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THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

10−2 10−110−9

10−8

10−7

10−6

10−5

10−4

10−3

slopes 2 and 3

h

Size of the target M = 1280
M = 5120

M = 20480
M = 81920

M = +∞
————

Exact solution M = 1280
M = 5120

M = 20480
M = 81920

M = +∞

FIGURE : Convergence analysis with φ(h) = 1000h6 ; ω =]0.3, 0.8[
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THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

∂ty− 0.1∂2
x y = 1Ωv,

T = 0.5, y0(x) = sin(πx)10.

10−3 10−210−12

10−9

10−6

10−3

100

slope 2

h

Cost of the control
Size of the target

Optimal energy
Exact solution

FIGURE : φ(h) = h2 ; Semi-discrete scheme
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THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

∂ty− 0.1∂2
x y = 1Ωv,

T = 0.5, y0(x) = sin(πx)10.

10−3 10−210−12

10−9

10−6

10−3

100

slope 4

slope 2

h

Cost of the control
Size of the target

Optimal energy
Exact solution

FIGURE : φ(h) = h4 ; Semi-discrete scheme
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A 1D PARABOLIC EQUATION WITH UNSTABLE MODES

∂ty− 0.1∂2
x y− 1.5y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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A NONLINEAR CASE

(Fernández-Cara – Münch, ’11)
(B.–Le Rousseau, ’13)

∂ty− 0.1∂2
x y− 5y log1.4(1 + |y|) = 1]0.2,0.8[v,

T = 0.5, y0(x) = 20 sin(πx).
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

SHORT REVIEW OF KNOWN RESULTS

In the case a21 = cte the system is null-controllable if and only if a21 6= 0
(Kalman-like condition)

(Ammar-Khodja–Benabdallah–Dupaix–González-Burgos, ’09)

In the case where Supp(a21) ∩ ω 6= ∅, the system is null-controllable
(González-Burgos–de Teresa, ’10)

In the case where Supp(a21) ∩ ω = ∅ and a21 has a constant sign, the system is
null-controllable

(Rosier–de Teresa, ’11)

In the case where Supp(a21) ∩ ω = ∅ and a21 changes it sign :
There are structural conditions for the system to be even approximatively controllable.

(B.– Olive, ’13)
A minimal time condition for the null-controllability can occur

(Ammar-Khodja–Benabdallah–González-Burgos–de Teresa, ’14)
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 1 : a21(x) = 1]0.2,0.9[(x), ω =]0.1, 0.5[, y0(x) =
(
sin(3πx), sin(πx)10)t

.
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 1 : a21(x) = 1]0.2,0.9[(x), ω =]0.1, 0.5[, y0(x) =
(
sin(3πx), sin(πx)10)t

.

10−3 10−2

10−7

10−5

10−3

10−1

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. 4
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 2 : a21(x) = 1]0.7,0.9[(x), ω =]0.1, 0.5[, y0(x) =
(
sin(3πx), sin(πx)10)t

.

60/ 70
F. Boyer HUM method and applications



A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 2 : a21(x) = 1]0.7,0.9[(x), ω =]0.1, 0.5[, y0(x) =
(
sin(3πx), sin(πx)10)t

.

10−3 10−2

10−6

10−4

10−2

100

102

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. 4
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 3 : a21(x) = (x− α)1]0,0.5[(x), ω =]0.5, 1[, y0(x) = (sin(2πx), 3 sin(2πx))t.

10−3 10−2

10−3

10−1

101

103

105

slope −4

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 6

Null Cont. 6

FIGURE : α = 1/4
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 3 : a21(x) = (x− α)1]0,0.5[(x), ω =]0.5, 1[, y0(x) = (sin(2πx), 3 sin(2πx))t.

10−3 10−2

10−5

10−3

10−1

101

103

slope −1

slope 1

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. 4 for T > Tmin

FIGURE : α = 1/8
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 4 : a21(x) = 1[α−d,α] − 1[α,α+d], y0(x) =
(
sin(πx)10,−2 sin(2πx)10)t

.

10−3 10−2 10−1

10−1

101

103

105

107

109

slope −4

slope −1

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 6

Null Cont. 6

FIGURE : α = 1/2, d = 1
2
√

3
, ω =]0.8, 1.0[.
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 4 : a21(x) = 1[α−d,α] − 1[α,α+d], y0(x) =
(
sin(πx)10,−2 sin(2πx)10)t

.

0.2 0.4 0.6 0.8 1

−0.1

−5 · 10−2

y1
y2

FIGURE : α = 1/2, d = 1
2
√

3
, ω =]0.8, 1.0[.
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A TWO EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +

(
0 0

a21(x) 0

)
y =

(
1
0

)
1ωv.

CASE 4 : a21(x) = 1[α−d,α] − 1[α,α+d], y0(x) =
(
sin(πx)10,−2 sin(2πx)10)t

.

10−3 10−2 10−1

10−5

10−3

10−1

101

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. ?

FIGURE : α = 1/2, d = 1
2
√

3
, ω =]0, 0.2[∪]0.8, 1.0[.
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A TWO EQUATION SYSTEM WITHOUT COUPLING

∂ty− 0.1∂x

((
1 0
0 γ(x)

)
∂xy
)

=

(
1
1

)
1ωv.

γ(x) = 1ω + α1ωc , y0(x) =
(
sin(πx)10,−2 sin(2πx)10)t

, ω =]0.5, 1.0[

10−3 10−2 10−1

10−1

101

103

105

107

slope −4

slope −1/2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 6

Null Cont. 6

FIGURE : α = 1/9
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A TWO EQUATION SYSTEM WITHOUT COUPLING

∂ty− 0.1∂x

((
1 0
0 γ(x)

)
∂xy
)

=

(
1
1

)
1ωv.

γ(x) = 1ω + α1ωc , y0(x) =
(
sin(πx)10,−2 sin(2πx)10)t

, ω =]0.5, 1.0[

0.2 0.4 0.6 0.8 1

−2

2

·10−2

y1
y2

FIGURE : α = 1/9
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A TWO EQUATION SYSTEM WITHOUT COUPLING

∂ty− 0.1∂x

((
1 0
0 γ(x)

)
∂xy
)

=

(
1
1

)
1ωv.

γ(x) = 1ω + α1ωc , y0(x) =
(
sin(πx)10,−2 sin(2πx)10)t

, ω =]0.5, 1.0[

10−3 10−2 10−1

10−1

101

103

105

107

slope −2

slope 1

slope −3

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. ?

FIGURE : α = 1/8
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A TWO EQUATION SYSTEM WITHOUT COUPLING

∂ty− 0.1∂x

((
1 0
0 γ(x)

)
∂xy
)

=

(
1
1

)
1ωv.

γ(x) = 1ω + α1ωc , y0(x) =
(
sin(πx)10,−2 sin(2πx)10)t

, ω =]0.5, 1.0[

0.2 0.4 0.6 0.8 1

−4

−2

2

4

·10−2

y1
y2

FIGURE : α = 1/8
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SIMULTANEOUS CONTROL OF TWO 2× 2 CASCADE SYSTEMS

∂ty− 0.1∂2
x y +




0 0 0
1O2 (x) 0 0
1O3 (x) 0 0


 y =




1
0
0


 1ω(x)v.

Here also necessary and sufficient conditions for approximate controllability are known
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SIMULTANEOUS CONTROL OF TWO 2× 2 CASCADE SYSTEMS

∂ty− 0.1∂2
x y +




0 0 0
1O2 (x) 0 0
1O3 (x) 0 0


 y =




1
0
0


 1ω(x)v.

CASE 1 : O2 ∩ ω 6= ∅

10−3 10−2

10−6

10−4

10−2

100

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. ?

O2

O3 ω
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SIMULTANEOUS CONTROL OF TWO 2× 2 CASCADE SYSTEMS

∂ty− 0.1∂2
x y +




0 0 0
1O2 (x) 0 0
1O3 (x) 0 0


 y =




1
0
0


 1ω(x)v.

CASE 2 : O2 and O3 are located in different connected components of Ω \ ω

10−3 10−2

10−5

10−3

10−1

101

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. 4

O2

O3 ω
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SIMULTANEOUS CONTROL OF TWO 2× 2 CASCADE SYSTEMS

∂ty− 0.1∂2
x y +




0 0 0
1O2 (x) 0 0
1O3 (x) 0 0


 y =




1
0
0


 1ω(x)v.

CASE 3 : O2 and O3 are located in the same connected component of Ω \ ω

10−3 10−2

10−2

100

102

104

106

108

slope −4

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 6

Null Cont. 6

O2

O3 ω
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SIMULTANEOUS CONTROL OF TWO 2× 2 CASCADE SYSTEMS

∂ty− 0.1∂2
x y +




0 0 0
1O2 (x) 0 0
1O3 (x) 0 0


 y =




1
0
0


 1ω(x)v.

CASE 3 : O2 and O3 are located in the same connected component of Ω \ ω

0.2 0.4 0.6 0.8 1

−8

−6

−4

−2

2

·10−3

y1
y2
y3

O2

O3 ω
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SIMULTANEOUS CONTROL OF TWO 2× 2 CASCADE SYSTEMS

∂ty− 0.1∂2
x y +




0 0 0
1O2 (x) 0 0
1O3 (x) 0 0


 y =




1
0
0


 1ω(x)v.

CASE 4.1 : O2 =]0.35, 0.65[,O3 =]0.5, 1/
√

2[, ω =]0, 0.2[∪]0.8, 1.0[

10−3 10−2

10−5

10−3

10−1

101

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. ?

O2

O3 ωω

CASE 4.2 : O2 =]0.35, 0.65[,O3 =]0.4, 0.6[, ω =]0, 0.2[∪]0.8, 1[

10−3 10−2

10−2

100

102

104

106

108

slope −4

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 6

Null Cont. 6

O2

O3ω ω
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SIMULTANEOUS CONTROL OF TWO 2× 2 CASCADE SYSTEMS

∂ty− 0.1∂2
x y +




0 0 0
1O2 (x) 0 0
1O3 (x) 0 0


 y =




1
0
0


 1ω(x)v.

CASE 4.2 : O2 =]0.35, 0.65[,O3 =]0.4, 0.6[, ω =]0, 0.2[∪]0.8, 1[

0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

·10−2

y1
y2
y3

O2

O3ω ω
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A THREE EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +




0 0 0
a21(x) 0 0

0 a32(x) 0


 y =




1
0
0


 1ω(x)v.

VERY SHORT REVIEW :

If the supports of all the aij intersect the control domain ω and keeps a constant
sign on a part of ω, then the system is null-controllable.

Necessary and sufficient conditions for approximate controllability are known in
the general case.
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A THREE EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +




0 0 0
a21(x) 0 0

0 a32(x) 0


 y =




1
0
0


 1ω(x)v.

CASE 1 : a21 = 1]0,0.5[, a32 = 1, ω =]0.5, 1[.

10−3 10−2

10−1

101

103

105

107

109

slopes −2 and −3

slope 0.5

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. ?
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A THREE EQUATION CASCADE SYSTEM

∂ty− 0.1∂2
x y +




0 0 0
a21(x) 0 0

0 a32(x) 0


 y =




1
0
0


 1ω(x)v.

CASE 2 : a21 = 1]0,0.5[, a32(x) = x− 1/2, ω =]0.5, 1[.

10−3 10−2

10−1

101

103

105

107

109

slope −4

slope −1

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 6

Null Cont. 6
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A 3 EQUATION SYSTEM WITH 2 DISJOINT CONTROLS

(Olive, ’12)

∂ty− 0.1∂2
x y +




1 1 0
1 1 0
1 1 0


 y =




1ω1 (x) 0
0 1ω2 (x)
0 0



(

v1

v2

)
.

y0(x) =
(

0, 0, sin(πx)10
)t
, ω1 =]0.7, 1.0[, ω2 =]0.1, 0.5[
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A 3 EQUATION SYSTEM WITH 2 DISJOINT CONTROLS

(Olive, ’12)

∂ty− 0.1∂2
x y +




1 1 0
1 1 0
1 1 0


 y =




1ω1 (x) 0
0 1ω2 (x)
0 0



(

v1

v2

)
.

y0(x) =
(

0, 0, sin(πx)10
)t
, ω1 =]0.7, 1.0[, ω2 =]0.1, 0.5[

10−3 10−2 10−1

10−5

10−3

10−1

101

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. 4
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THE 2D HEAT EQUATION
A CONTROL TO THE TRAJECTORIES EXAMPLE

∂ty− 0.05∆y = 1]0.3,0.9[×]0.2,0.8[v,
y(0, x) = sin(2πx1) sin(πx2), and yF(x) = −0.4 sin(πx1) sin(2πx2).
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi,’14), (Beauchard, Miller, Morancey, ’14)

Ω =]− 1, 1[×]0, 1[, ω =] 0.75︸︷︷︸
=a

, 1[×]0, 1[, T = 0.5 ∈
]a2

2
,

1 + a2

2
[
.

∂ty− ∂2
x1 y− x2

1∂
2
x2 y = 1ωv,
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi,’14), (Beauchard, Miller, Morancey, ’14)

Ω =]− 1, 1[×]0, 1[, ω =] 0.75︸︷︷︸
=a

, 1[×]0, 1[, T = 0.5 ∈
]a2

2
,

1 + a2

2
[
.

∂ty− ∂2
x1 y− x2

1∂
2
x2 y = 1ωv,

10−2 10−110−4

10−3

10−2

10−1

100

101

102

103

slope 2

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. 4 Tmin > 0
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi,’14), (Beauchard, Miller, Morancey, ’14)

Ω =]− 1, 1[×]0, 1[, ω =] 0.75︸︷︷︸
=a

, 1[×]0.6, 1[, T = 0.5 >
a2

2
.

∂ty− ∂2
x1 y− x2

1∂
2
x2 y = 1ωv,
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GRUSHIN EQUATION

(Beauchard,Cannarsa,Gugliemi,’14), (Beauchard, Miller, Morancey, ’14)

Ω =]− 1, 1[×]0, 1[, ω =] 0.75︸︷︷︸
=a

, 1[×]0.6, 1[, T = 0.5 >
a2

2
.

∂ty− ∂2
x1 y− x2

1∂
2
x2 y = 1ωv,

10−2 10−1

10−2

100

102

104

slope −2
slope −1
slope 1

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 4

Null Cont. 4 Tmin > 0
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THE END

SUMMARY

In the PDE world
Many standard results in controllability theory can be deduced from the analysis of
the penalized HUM approach.
The penalized HUM approach always converge towards something as the penalization
parameter tends to 0.

In the discrete world
Necessity to relate the penalization parameter to discretisation parameters in a clever
way.
Analysis of uniform null-controllability properties with respect to δt and/or h for
semi/fully discrete problems.
Associated relaxed observability inequalities.
We may use numerical simulations to investigate open problems.
Even for non controllable problems, the numerical method applies and gives
interesting results.

PERSPECTIVES

Extend our analysis in the discrete setting to other cases
Non symmetric scalar operators.
Parabolic systems with few controls.
Boundary control problems.
Analysis for other space discretizations (Finite Volume, Finite Element, ...)

From a computational point of view
A deeper understanding of HUM operators preconditioning methods.
More suitable solvers than standard Conjugate Gradient ?
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